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A B S T R A C T   

Emotion recognition from facial expressions is a fundamental human ability that can be harnessed and trans
ferred to machines. The ability to differentiate between spontaneous and posed emotions holds significant 
importance in various domains, including behavioral biometrics, forensics, and security. This paper introduces a 
novel method, called POsed vs Spontaneous Emotion Recognition (POSER), which leverages a modified version 
of the Partitioned Iterated Functions System (PIFS) to obtain a Fractal Encoding. This encoding is used for the 
first time as facial features to train a machine learning approach for the classification of emotions as either 
spontaneous or posed. Furthermore, by adapting the original architecture, we demonstrate the effectiveness of 
these features in distinguishing seven different emotions in controlled as well as wild environments, within a 
framework referred to as POSER-EMO. Experimental results are presented on the SPOS and DISFA+ datasets for 
the first classification problem, where POSER outperforms the state of the art, and on the CK+ and SFEW datasets 
for the second classification problem.   

1. Introduction 

Emotion recognition based on facial cues is a fundamental cognitive 
ability of the human species, comparable to face recognition. Along with 
the capacity to replicate and simulate these emotional states, the ability 
to decipher human intentions through facial expressions has always 
fascinated the scientific community [1]. In the fields of behavioral 
biometrics and forensics, this previously mentioned concept is particu
larly applicable. However, it also presents a significant challenge due to 
the scarcity and imbalance of accessible data pertaining to spontaneous 
emotions. Motivated by these factors, our decision was to explore 
spontaneous emotion recognition from a new perspective by integrating 
facial features with machine learning methods. First of all, we observed 
that in human behavior, the specific facial parts involved in the emotion 
classification can drastically change the overall classification result [2]. 
Taking this into consideration, we made the decision to extract pertinent 
features from the face by employing Partitioned Iterated Function Sys
tems (PIFS), which generate a Fractal Encoding. The fractal encoding 
has been used in the biometric field in three main domains [3]. Its 
application to face recognition has been proposed by Tang et al. [4] and 
Bisogni et al. [5], in both cases to speed up the search process in face 
templates. The same recognition approach is also effective in case of 
depth images [6]. It has been also applied to iris recognition by 
Bourkhriss et al. [7] and Al-Saidi et al. [8] to detect auto-similarities in 

normalized iris and to perform template protection, respectively. In the 
case of fingerprint templates it has been applied by Abdullahi et al. [9] 
and Bajahzar et al. [10] to privacy protection and template recon
struction, respectively. PIFS has been also applied to head pose esti
mation, very recently by the two works of Bisogni et al. [11,12]. 

Notably, in this study, we introduce a modified version of PIFS for 
the generation of a Fractal Encoding array, a novel approach specifically 
tailored for emotion recognition, marking its inaugural use in this 
context. This array is subsequently subjected to classification using a 
machine learning technique. 

To showcase the capabilities of our proposed technique, known as 
POSER, we aim not only to differentiate between spontaneous and posed 
expressions but also to distinguish between different types of expres
sions. To achieve this, we combine classifiers in both cascade and par
allel configurations, defining POSER-EMO, a method capable of 
determining the expressed emotion from the facial data. The architec
tures of POSER and POSER-EMO can be summarized in Figs. 1 and 2 that 
will be analyzed in detail in Section 4. In particular, the main contri
butions of this work are:  

• The novel utilization of Partitioned Iterated Function Systems (PIFS) 
as descriptors for emotions, leading to Fractal Encoding. This pio
neering approach marks the first-time application of PIFS in the 
context of emotion recognition. 
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• POSER: This architecture efficiently extracts facial information from 
an image, employing a modified version of PIFS. It further utilizes 
PIFS to extract a feature array, enabling the subsequent classification 
of emotions as either posed or spontaneous.  

• POSER-EMO: Going beyond the scope of POSER, this architecture 
takes the facial extraction process a step further. It applies the 
modified version of PIFS to extract features and subsequently clas
sifies emotions as either negative or positive. Additionally, it em
ploys a cascade classification approach to identify specific emotions, 
utilizing either a binary or a multi-class approach.  

• A comprehensive range of experiments has been conducted to 
address both the SPOS versus POSED problem and the challenge of 
emotion classification. These experiments specifically focus on 
exploring the structural aspects of the datasets, thereby offering a 
comprehensive evaluation of the proposed architectures. 

The following sections are organized as follows. Section 2 presents 
and discusses recent related work on both problems. Section 3 provides 
background information on the Fractal Encoding algorithm and its 
modified version. In Section 4, we introduce and analyze POSER and 
POSER-EMO, delving into the transition from the image to emotion 
prediction. The results obtained and the datasets used are presented in 
Section 5, accompanied by extensive discussions. Finally, in Section 6, 
we draw conclusions and propose potential future directions for further 
exploration in this field. 

2. Related works 

Emotion recognition from face is a very wide biometrics field. The 
volume of data and the variety of methods related to this topic continue 
to grow. For this reason, here we will report only the most recent works 
on this topic that are relevant in the field. First of all, it is necessary to 
operate on a distinction between spontaneous emotion recognition and 
emotion classification. Emotion classification has been a longstanding 
area of research, but recently, there has been a surge of interest in 
determining the authenticity of expressed emotions, making it a prom
inent aspect of behavioral biometrics. Consequently, we will divide the 
study of facial emotions into these two sub-fields. 

2.1. Spontaneous vs posed classification methods 

Recognizing if a user is genuinely happy, sad, angry, etc. is un
doubtedly an advantage in the study of behavioral biometrics. Different 
from emotion recognition from the face, in which humans are particu
larly able to detect the emotion, recognizing a spontaneous or posed 
expression from the face is a more difficult task for humans. It has been 
proven that an expression can be created not only by posing but also by 
acting in different ways. Humans can pose expressions by Mimic or by 
the Stanislavski method, well known to actors [13]. To detect posed 
expression, the kinematic of the face movements can be studied, as in 
[14]. Here, in particular, the authors find a connection between the 
speed of movement of a set of facial landmarks and the genuineness of 

the expression. Studies like this are also interested in another field 
strictly related, the micro-expression recognition [15]. Some facial ex
pressions are more easily recognized; for this reason, some authors focus 
on an ad hoc study of the latter. The smile has gained particular atten
tion in automatic posed expression recognition. In [16], Saito et al. used 
geometric features, such as temporal features and reflection intensity 
distribution, to train a Support Vector Machine able to distinguish be
tween a posed and spontaneous smile with 94.6% of accuracy. In [17] 
Park et al. solved the same problem by using action units and by 
studying three-dimensional facial landmarks. Here they observed that 
spontaneous smiles have higher intensities for the upper face than the 
lower face, and the opposite happens for a posed smile. On the other 
hand, considering only an expression is quite limiting in a real-world 
context. For this reason, lately, some methods are focusing on sponta
neous vs posed recognition for a large set of emotions. One of the 
problems that authors on this topic have to face is the limited amount of 
data, which makes it difficult to use deep learning techniques. In [18] 
Racoviteanu et al. use convolutional filters to solve this problem and 
further highlight the unbalance of state-of-the-art datasets that leads to a 
preference for the F1 score as a metric instead of classical accuracy. 
Wang et al., in [19] used several Latent Regression Bayesian Networks 
(LRBNs) to analyze the patterns of facial landmark points. In their study, 
the LRBN capture both the latent variables and the probabilistic de
pendencies among landmarks to model the spatial pattern that charac
terizes spontaneous expressions. Spatial and temporal patterns together 
are recently used to recognize a genuine expression, as in [20]. Here, 
Wang et al. used an interval-temporal-restricted Boltzmann machine (IT- 
RBM) to study the facial behavior during the expression. Facial 
expression is seen as a multifarious activity composed of sequential or 
overlapping primitive facial events. Comparing those methods to 
POSER, we do not use temporal features but a single frame, and we do 
not use landmarks but the whole facial image. Also in our study, we took 
care to present the F1 score to avoid distorted accuracy due to the un
balance of the available datasets. Table 1 outlines the classification 
methods described to distinguish Spontaneous vs. Posed. 

2.2. Emotion classification methods 

Compared to spontaneous vs posed expression recognition, which 
has gained more attention in recent times, emotion classification from 
the face is a very widely explored topic. The number of datasets and how 
they are acquired are very heterogeneous, leading to a burgeoning 
literature on the subject. In the already mentioned [20], the IT-RBM that 
uses both spatial and temporal variables is also able to classify the 
performed emotion. In [21], Tanfous et al. use the temporal information 
to track the facial landmarks and the geometric variations of the latter 
due to the acquisition of 3D landmarks by using RGB-D sensors. Also in 
[22], Kacem et al. analyze the temporal variation of landmarks. Here, in 
the Riemannian manifold of positive matrices of fixed rank, as param
etrized trajectories. Then, we can find a set of works focused on deep 
learning to build an emotion classifier. Jung et al. [23] use two deep 
networks to extract temporal appearance features and temporal 

Fig. 1. POSER, SPOS vs POSED architecture: 1 extract the face, 2 obtain the fractal encoding with neutral reference, 3 use the binary classifier to obtain spontaneous 
or posed. 
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geometric features, respectively. The two models are then compared 
using an integration technique. We can also find models that do not use 
temporal variables, such as the one proposed by Tang et al. [24]. Here, a 
network called FreNet processes the image in the frequency domain, and 
the features are extracted at different levels thanks to discrete cosine 
transforms and weight-shared multiplication kernels. The idea to extract 
features from different levels using deep learning was also developed by 
Wang et al. [25]. The network they propose is called OAENet and it is 
composed of convolutional blocks that extract high-level features and an 
attention branch to highlight local information. W. Xie et al. presented 
two methods to solve emotion recognition with deep features. In the first 
one [26], they used feature sparseness to build a deep model with fewer 
parameters. In the latest [27] they improve the deep sparseness strategy 
to automatically adapt the hyper-parameter of the proposed network to 
different environments proposed by the state-of-the-art datasets. On the 
other hand, we can find works that are more focused on specific aspects 
or problems related to emotion recognition from faces. In [28], Umer 
et al. investigate the impact of data augmentation since, as previously 
mentioned, the amount of data needed to perform deep learning on this 
task is very low. S. Xie et al. [29] have focused their efforts on the 
research of salient regions of the face and on other biometric traits (age, 
gender, and ethnicity) that lead to different conclusions. In [30] Fu et al. 
are focused on the semantic perturbation in emotion recognition. Their 
architecture assumes the form of an asymmetrical autoencoder that 
takes into account the semantics of neighborhoods. Kar et al. [31] pre
sent an approach called KELM (Kernel Extreme Learning Machine). To 
decompose expression images, they adopted Variational Mode Decom
position (VMD). Then, they used a Whale Optimization (WO) algorithm 
to fine-tune RBF KELM parameters. To learn feature representation, 
Tong et al. [32] propose AWOBNet (Adaptive Weight Based on Over
lapping Blocks Network). They use feature map blocking to extract local 
features of the network to improve performance. Gan et al. [33] focusing 
on eliminating the impact of redundant information from emotional- 
unrelated regions on facial expression recognition. To reach this aim, 
they used densely connected CNN and propose to combine the latter 
with a hierarchical spatial attention method. Poux et al. [34] focused on 
recognizing partial occluded faces with an optical flow reconstruction. 
They use denoising auto-encoders that have been trained to reconstruct 
corrupted optical flow. The loss function used compares the recon
struction with the ground-truth optical flow calculated on images 
without occlusions. Karnati et al. [35] proposed a network called 
FLEPNet. FLEPNet's building components are multi-scale convolutional 
and multi-scale residual block-based DCNN. They explore modified 
homomorphic filtering to successfully normalize the illumination, 
thereby minimizing the intraclass difference. Finally, there are also 
methods that are intended to solve the problem in the wild. In this 
category, we can find works focused on the occlusions, naturally present 
in this kind of environment (Wang et al. [36]), or on the challenges 
offered by variations in pose or illumination (Li et al. [37], Zhang et al. 
[38]). In some cases, emotion recognition is solved together with other 
tasks such as Face Synthesis and Face Alignment as proposed by Zhang 
et al. [39]. Table 2 summarizes the key concepts of the emotion 

classification methods. 

3. Fractal encoding: An introductory overview 

Fractal Encoding is mainly used in image processing to perform 
fractal compression, based on Partitioned Iterated Function System 
(PIFS). The first approach using PIFS to solve a biometrics problem was 
proposed in 1997 in [40]. Here, the Fractal Encoding is used to obtain a 
representation of the face to solve the face recognition problem. From 
this work, many other algorithms were developed based on PIFS, that 

Fig. 2. POSER-EMO, Emotion classification architecture. 1 extract the face, 2 obtain the fractal encoding with neutral reference, 3 use of an ensable of classifier to 
obtain positive vs negative emotions, 4 based on the results of 3 use a binary or multiclass classifier. 

Table 1 
Overview of Spontaneous vs. Posed classification methods.  

Authors Method 

Saito et al. [16] Geometric features + SVM 
Park et al. [17] 3D facial landmarks + ANOVA 
Racoviteanu et al. [18] CNN features vectors + SVM, RF, MLP 
Wang et al. [19] Facial landmark points + LRBNs 
Wang et al. [20] Interval temporal restricted Boltzmann machine (IT-RBM) 
POSER Fractal encoding algorithm + GNB  

Table 2 
Overview of emotion classification methods.  

Authors Method 

Tanfous et al. 
[21] 

2D/3D facial landmarks + Sparse Coding, Dictionary Learning 

Kacem et al. 
[22] 

Facial landmarks (Riemannian geometry) + ppfSVM 

Jung et al. [23] Deep temporal appearance network (DTAN) + Deep temporal 
geometry network (DTGN) 

Tang et al. [24] Frequency neural network (FreNet) 
Wang et al. 

[25] 
Oriented attention pseudo-siamese network (OAENet) 

Xie et al. 
[26,27] 

Feature sparseness-based regularization (deep features) 

Umer et al. 
[28] 

Deep learning features + augmentation techinques 

Xie et al. [29] Salient expression region descriptor + Encoder/Decoder 
Fu et al. [30] semantic perturbation 
Kar et al. [31] Variational Mode Decomposition (VMD) and Whale Optimization 

(WO) + KELM. 
Tong et al. [32] Adaptive Weight Based on Overlapping Blocks Network 

(AWOBNet) 
Gan et al. [33] Densely connected module + Spatial attention module 
Poux et al. [34] auto-encoder with skip connections (optical flow domain) 
Karnati et al. 

[35] 
Texture-based feature-level ensemble parallel network (FLEPNet) 

Wang et al. 
[36] 

Region Attention Network (RAN) 

Li et al. [37] Deep Locality-Preserving Convolutional Neural Network (DLP- 
CNN) 

Zhang et al. 
[38] 

Generative Adversarial Network (GAN) 

Zhang et al. 
[39] 

End-to-end deep learning framework 

POSER Fractal encoding algorithm + Bagging  
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also report the theoretical details of this technique, as in [12]. From a 
mathematical point of view, PIFS was developed by Arnaud Jacquin 
[41]. The idea is to codify a small part of the image in a downsampled 
version of another part of the image by using a set of affine 
transformations. 

Before defining the transformations that can be used for this purpose, 
we must define the concept of a metric. In particular, for three generic 
points of the image x,y,z, we can define d as a metric if the following are 
satisfied: 

d(x, y) = 0 ⇔ x = y
d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z).
(1) 

To obtain the reduction of the image, we are interested in functions 
that reduce the distances between points. For this reason, if d is the 

metric used to evaluate the distance between the points of the image, we 
are interested in functions that satisfy: 

d(f (x) , f (y) ) ≤ kd(x, y) (2)  

where f is called a contraction mapping, and the inequality is true for all 
the x and y points of the image and 0 ≤ k < 1. Thanks to the fixed point 
theorem, we are sure that, not only do contraction mappings reduce the 
distances between points, but also that if we iteratively apply these 
functions to a point in the image, the resulting point converges to the 
initial point: 

lim
n→∞

f n(x) = lim
n→∞

f (f (f (…(x) ) ) )
⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

n times

= xi (3)  

where f(*) is the contractive function and xi is one point of the image. 
At this point, we have only to define how a smaller block of pixels of 

the image can be made similar to a bigger block of pixels of the same 
image. To this aim, we define the affine transformations as: 

W(X) = AX +B (4)  

where A is the transformation matrix, X is the array of the image 
composed by (x, y) coordinates and z gray level, and B is an offset vector. 
By affine transformation, an image can be translated, rotated, scaled or 
modified in contrast and brightness. 

Now, putting together all the concepts above introduced, we can 
define an Iterated Function System as a set F of contractive affine 
functions f1,…,fN, where F is a contractive function itself of fixed point X 
called the attractor, such that 

F(X) = ∪
N

i=1
fi(X) = X. (5)  

4. Method 

In this section, we introduce our novel adaptation of the PIFS algo
rithm, which has been adjusted to address the specific task of Emotion 
Classification. 

4.1. Modified PIFS 

Defined as D a collection of sub-domains Di and F a collection of 
contractive maps fi, the step of our PIFS are summarized in the following 
pseudo-code. 

Algorithm 1. Modified PIFS   

The result of this algorithm is the list of the selected Dj,i transformed 
blocks with their transformations in terms of translation, rotation, 
scaling, contrast, and brightness. The original version of the PIFS algo
rithm can be found in [42], Fig. 4. In particular, we can find in our 
version two main differences:  

1. We use a reference image instead of the image itself to build the 
Domain blocks. In particular, instead of re-creating the domain 
blocks for each image to be computed, we use a neutral expression of 
a random subject as a reference image. On one side, we drastically 
reduce the necessary computational time; on the other side, we will 
use the same neutral reference for all the images.  

2. The Domain block to be selected is searched only near the range 
block from a distance point of view. This means that we force the 
algorithm to encode near blocks in near blocks. By this operation, we 
further reduce the computational time and also ensure that similar 
parts of the image are compared. This step is not necessary for other 
kinds of analysis, on the other hand, it is very useful in emotion 
recognition. 

The size of Domain blocks and range Blocks are chosen to be square, 
and the differences between them indicate the level of compression. 
Here, to further speed up the search for the optimal block, we used the 
optimization of the Fractal Encoding introduced in [43]. 

In Fig. 3 we can appreciate the modified PIFS extractor on the facial 
images. The set of blocks obtained is flattened to represent the feature 
array describing the emotion. Then, as described in the following sec
tions, the feature arrays can be classified by machine learning 
algorithms. 
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4.2. Modified PIFS in POSER implementation 

In this sub-section, we describe how the Modified PIFS algorithm is 
implemented in POSER. In particular, we discuss two distinct architec
tures. We mainly propose a Spontaneous vs. Posed classifier; however, to 
demonstrate the effectiveness of the Fractal Encoding to also detect the 
kind of emotion, we also propose an architecture able to distinguish 
between 7 different emotions, as above introduced. The steps in com
mon between the two architectures concern the manipulation of the 
images, but the classification steps are different. The shared steps are:  

• Step 1, Face detection. The face is detected by using Max-Margin 
Object Detection (MMOD) [44] adapted to faces. This detector uses 
a Convolutional Neural Network (CNN). The method is robust and 
able to detect faces from varying view angles, occlusions, and illu
mination variations.  

• Step 2, Fractal Encoding. Here, we encode the detected face. By 
following the steps described in Section 3, we obtain a matrix rep
resenting the encoding of the face. Each row of the matrix represents 
an encoded block, and each column represents the correspondent 
transformation. To obtain a more easy to compare representation, we 
transform the matrix into an array by simply making the rows 
consecutive. 

POSER classification  

• Step 3, Spos vs Posed Classification. The classifier we used in this step 
is a Gaussian Naive Bayes classifier. The aim of this classifier is to 
maximize the probability of belonging to a class by a maximum a 
posteriori rule: 

y = arg max
k∈{0,1}

p(Ck)
∏n

i=1
p(xi|Ck) (6)  

where k is the class Spontaneous or Posed, xi represent the i − th entry of 
the Fractal Encoding, p(Ck) is the probability of the label Ck and p(xi|Ck)

is the conditional probability that the feature xi is present in the Ck class. 
The result of the classifier is a model that takes as input the face 
encoding and returns 0 if the emotion is Posed and 1 if it is Spontaneous. 

POSER-EMO classification  

• Step 3, Positive vs Negative classification. We built a binary classifier 
that distinguishes between Positive emotions (Happy, Surprise) and 
Negative emotions (Angry, Contempt, Sad, Fear, Disgust) + Neutral. 
The classifier used in this step is a Bagging Classifier. This classifier 
fits basic classifiers trained on a random subset of the original 
training set and then aggregates their predictions. The base classi
fiers are trained in parallel, belonging to the ensemble methods. This 
step takes as input the encoded face and returns 0 if the emotion is 
positive, 1 if it is negative. 

• Step 4, Emotion Classification. Once the emotion is classified as pos
itive or negative, in this step we use two different classifiers, one for 
the positives and one for the negatives. The positive classifier is a 

binary Gaussian NB, that return the positive emotion as happy or 
surprise. The negative classifier is a multi-class Gaussian NB that 
contemplates six classes. 

In this last architecture, the final accuracy must take into account 
both the errors committed in Step 3 and the errors of the single classifier 
in Step 4. For this reason the final accuracy will be: 

Acc =
N −

(
errb + errp + errn

)

N

*

100 (7)  

where N is the total number of tested images, and errb is the number of 
errors in the first classifier. The images that are wrongly classified by the 
first classifier will automatically be considered errors since they will be 
passed to the wrong emotion classifier. errp is the number of errors 
committed by the positive classifier, and errn is the number of errors 
committed by the negative classifier. errp and errn consider only the error 
to classify emotion since the error between positive and negative has 
already been taken into account by errb. 

In Fig. 1 we can appreciate the workflow of POSER for SPOS vs 
POSED problem with the steps above mentioned. Here, starting from an 
image from the SPOS dataset we will introduce in the next section, we 
see the Fractal Encoding step with a neutral reference and the use of the 
binary Gaussian NB classifier. In Fig. 2 we show the Emotion Classifi
cation architecture of POSER-EMO, where starting from a SFEW image 
fractal encoded, we firstly classify the positive or negative emotion by a 
Bagging classifier and then we use a binary or multi-class Gaussian NB 
classifier to obtain the final prediction. 

The total time to perform the pre-processing phase on an image, 
including face detection and localization, is 0.98 s. To compute the 
fractal encoding, the algorithm requires 0.46 s. The time taken by 
GaussianNB to predict a single sample was approximately 2.7 × 10− 4 

seconds. All the times were obtained by performing the experiments on a 
MacBook Pro 2.6 GHz Intel Core i7 6 core 16 GB 2667 MHz DDR4 Intel 
UHD Graphics 6,301,536 MB, with Python 3.7.6. We can notice that the 
majority of time is required for face detection and localization. In fact, 
other than this, the algorithm requires less than half a second to provide 
the final estimation. We can thus observe that a faster detector can 
drastically improve the computational time required, and an optimiza
tion technique could also be implemented on the fractal encoding search 
strategy (already speeded up in the modified PIFS we propose compared 
to the traditional one). 

5. Experiments 

This section illustrates the datasets, presents the comparison results 
with state-of-the-art methods, provides insightful discussions, and in
cludes additional studies to further enhance our understanding. 

5.1. Dataset descriptions 

In this section we present the Dataset used for both Spontaneity 
Recognition and Emotion Recognition. 

Fig. 3. The core of POSER and POSER-EMO: the modified PIFS to extract the emotion features array. The blocks identifier are composed by 6 elements each, for a 
total of 64 blocks. After the flatten, the final array has 384 entries. 

C. Bisogni et al.                                                                                                                                                                                                                                 



Image and Vision Computing 144 (2024) 104952

6

5.1.1. SPOS 
The Spontaneous vs. Posed Facial Expression Database (SPOS) [45] 

includes both Spontaneous and Posed Expressions. In particular, 7 
subjects were recorded twice. In the first session, they watched a movie 
clip to induce spontaneous expression, and in the second session, they 
repeated all the previous. There are 343 posed frames and 1583 spon
taneous frames. We noticed that this dataset is highly unbalanced; for 
this reason, in experiments we also evaluated F1-score, other than ac
curacy. Examples of the SPOS database can be seen in Fig. 4 (a). On the 
top row the posed anger, disgust, fear, happy, sad, surprise. On the 
bottom row, the spontaneous ones. 

5.1.2. DISFA and DISFA+

The Denver Intensity of Spontaneous Facial Action Database (DISFA) 
and the Extended Denver Intensity of Spontaneous Facial Action Data
base (DISFA+) are spontaneous and posed databases, respectively. 
DISFA [46] contains video sequences of 27 adults. During the video 
sequences, the spontaneous expressions are stimulated by showing 
different videos to the subjects. DISFA+ [47] has been released as an 
extended version of DISFA, in particular, to add to the previous one the 
respective posed expression, as seen in Fig. 4 (b). 

5.1.3. CK+

The Extended Cohn-Kanade (CK+) Dataset [48] is composed of 123 
different subjects recorded for a total of 593 video sequences in posed 
expressions. The frames that we extracted to perform the emotion 
recognition experiments are the same well known in the literature (as in 
[20]). In particular, 45 for Anger, 18 for Contempt, 59 for Disgust, 25 for 
Fear, 69 for Happy, 28 for Sadness, 83 for Surprise, 67 for Neutral. In 
Fig. Fig. 4 (c) some samples from the dataset can be appreciated. 

5.1.4. SFEW 
The Static Facial Expressions in the Wild (SFEW) dataset [49] is a 

dataset created by the frames of the previous AFEW Dataset. The dataset 
already comes split into Train, Validation, and Test with 958, 436, and 
372 samples, respectively. The images are from film sequences, and each 
frame is labeled with one of the seven expressions: anger, disgust, fear, 
neutral, happiness, sadness, and surprise. Sample images of SFEW can be 
found in Fig. 4 (d). 

We used SPOS and DISFA+ to perform the experiments of POSER on 
Spontaneous vs Posed recognition, CK+ to evaluate POSER on emotion 
recognition on a posed database, and SFEW to evaluate POSER on 
emotion recognition methods on a dataset in the wild. 

5.2. Evaluation protocols 

Spontaneous vs Posed detection. For the Spontaneous vs. Posed 
detection experiments, we conducted two types of experiments: an intra- 
dataset experiment and a cross-dataset experiment. In the intra-dataset 
experiment, we were aware of the potential impact that the biometric 
component could have on the performance, so we performed a k-fold 
cross-validation. Specifically, we used five-fold subject-independent 
cross-validation on the SPOS database and nine-fold subject-indepen
dent cross-validation on the DISFA+ database, following the method
ology described in [20]. In the cross-dataset experiment, we alternated 
between using the two datasets as training and testing sets, respectively. 
These experimental setups allow us to assess the performance of the 
Spontaneous vs Posed detection model on both datasets and evaluate its 
generalization capabilities to unseen subjects and real-world scenarios. 

Emotion Classification. For the emotion classification task, we 
conducted two experiments. For CK+, we performed a subject- 
independent experiment where 80% of the subjects were used for 
training. This ensures that the model is trained on a diverse set of sub
jects. The remaining 20% of subjects were used for testing to evaluate 
the model's performance on unseen individuals. On the other hand, for 
the SFEW dataset, the data is already split into training and testing sets. 
Therefore, we utilized the provided split, with the training set used for 
model training and the testing set used for evaluating the model's per
formance on unseen samples from the dataset. 

5.3. Implementation details 

Spontaneous vs Posed detection. For binary classification to 
distinguish between posed and spontaneous emotions, a binary Gaussian 
Naive Bayes classifier was employed. This classifier assumes a Gaussian 
distribution and applies the Naive Bayes assumption of conditional in
dependence of features given the class label. To optimize its perfor
mance, a grid search methodology was used to search for the optimal 

Fig. 4. The used Databases. (a) SPOS (b) DISFA and DISFA+, (c) CK+ (d) SFEW. On the top row the posed anger, disgust, fear, happy, sad, surprise. On the bottom 
row the spontaneous ones. 
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parameter ‘var_smoothing’. This involved systematically evaluating the 
classifier's performance across a predefined set of ‘var_smoothing’ values 
to find the one that yielded the best results. During the training phase, a 
k-fold approach with k = 5 was used to mitigate overfitting. This 
involved dividing the training data into five equal-sized subsets or folds. 
The classifier was trained and evaluated five times, with each fold 
serving as the validation set once while the remaining folds were used 
for training. By repeating this process and averaging the performance 
across all folds, the impact of overfitting was minimized. 

Emotion Classification. For the classification of emotion as nega
tive or positive, a bagging classifier was used instead. The bagging 
classifier creates an ensemble of base classifiers by training each clas
sifier on different subsets of the training data. This is done through 
bootstrapping, where random subsets of the original data are sampled 
with replacement to generate new training sets for each base classifier. 
By training the base classifiers on different subsets, the bagging classifier 
captures diverse patterns and reduces overfitting. Similarly, a k-fold 
strategy and a grid search were applied for the bagging classifier. The 
grid search explored different combinations of hyperparameters, such as 
the number of baseline estimators (n_estimators), the maximum number 
of samples used for each baseline estimator (max_samples), and the 
maximum number of features considered for each baseline estimator 
(max_features). The goal was to find the configuration that produced the 
best results. Finally, for the cascade classification of specific emotions, a 
Gaussian Naive Bayes classifier was used, following the same approach 
as described earlier. 

5.4. POSER results 

The first dataset we take under consideration for Spontaneous vs 
Posed detection is SPOS. The face is extracted and Fractal Encoding is 
performed as discussed in Section 4. Those operations have been con
ducted on both training than testing sets. The classifier we used is 
GaussianNB. In particular, the variance smoothing is set to 1e-07. We 
considered various configurations of the Fractal Encodings with 
different range and domain values. When the values of range and 
domain pixels increase, the resulting encoding array decrease. For this 
reason, we also tested the configuration that gives us the longest array (4 
pixel range and 8 pixel domain) with PCA analysis to reduce the 
dimension. The experimental results on SPOS are reported in Table 3. As 
we can notice, due to an unbalanced dataset, the most balanced situation 
between classes is not the one with the highest accuracy. In particular, 
we noticed that when we reduce almost 1/4 of the original dimension of 
the array through PCA (from 384 to 100), the Spontaneous and Posed 
expressions have similar accuracy. In a real use case in-the-wild sce
nario, since the Spontaneous expressions are more frequent, it could be 
better to not use PCA, obtaining an accuracy 0.12 points higher. How
ever, if we imagine using the algorithm in a controlled scenario (e.g. a lie 
detector test), we can take more advantage of a method able to detect 
posed expressions with higher accuracy. For this reason, from the results 
of SPOS, we can suggest that the PCA technique can be more or less 
desirable depending on the application scenario. 

Then we conducted the same experiments on the DISFA+ Dataset 
(Table 4), using the same classifier, GaussianNB, and a variance 

smoothing of 1e-09. Here we can notice that there is no advantage in the 
use of PCA for the balance of the accuracy of the classes, the best result is 
in fact obtained in (4, 8) configuration without PCA. We can impute this 
difference to SPOS Dataset, to the fact that DISFA+ is balanced in posed 
and spontaneous expressions. 

In Table 5 we reported the comparisons on both datasets with the 
state of the art. 

As can be observed by Table 5, POSER outperforms the state of the 
art in both SPOS than DISFA+. In particular, also on SPOS, where the 
accuracy of the method by [16] is higher than ours, our F1 score is 
significantly higher. Since the SPOS dataset is highly unbalanced, the 
F1-score is a more reliable index compared to accuracy. This means that 
POSER, even if with an accuracy of 0.0064 lower than the one of [16], 
has a better distribution of the error between the classes, with a differ
ence of 0.0468 in the F1-score. On DISFA+, POSER is significantly better 
both in terms of Accuracy than F1-score. In this case, we can also un
derline that, differently from SPOS, the DISFA+ dataset is balanced in 
terms of spontaneous and posed, so in this case, the accuracy is more 
reliable with respect to the case of SPOS. Those results clearly demon
strate how Fractal Encoding is suitable to distinguish posed from spon
taneous emotions. This can be explained by the property of the method 
to recognize differences in the same expressions. 

To analyze the robustness of POSER we also performed across tests 
using SPOS as training set and DISFA+ as a test set and vice-versa. The 
results are shown in Table 6. Here we can appreciate that POSER is 
robust even if the datasets used are very different. In this experiment, the 
behavior connected to the dataset distribution can be further observed, 
since even if with a similar mean accuracy, the distribution over the 
Posed and Spontaneous classes are the opposite. 

5.5. POSER-EMO results 

In our study on emotion classification, we used the CK+ dataset as 
the main dataset. However, CK+ posed a challenge because of the 
limited number of total frames available. As a result, we only had a small 
number of samples per emotion, despite each sample having a high- 

Table 3 
SPOS vs POSED test on SPOS Dataset.  

SPOS Dataset 

Encoding PCA Acc POSED Acc SPOS Mean Acc 

(4,8) None 0.46 0.93 0.85 
(8,16) None 0.47 0.68 0.65 
(16,32) None 0.60 0.22 0.29 
(4,8) 50 0.49 0.72 0.67 
(4,8) 100 0.72 0.73 0.73 
(4,8) 150 0.68 0.76 0.75  

Table 4 
SPOS vs POSED test on DISFA+ Dataset.  

DISFA+ Dataset 

Encoding PCA Acc POSED Acc SPOS Mean Acc 

(4,8) None 0.9988 0.9988 0.9977 
(8,16) None 0.9966 0.9955 0.9944 
(16,32) None 0.99 0.84 0.91 
(4,8) 50 0.99 0.89 0.94 
(4,8) 100 0.99 0.88 0.94 
(4,8) 150 0.99 0.87 0.93  

Table 5 
Results in classification of Spontaneous vs Posed Expressions.  

Dataset SPOS DISFA+

Method Accuracy F1-score Accuracy F1-score 

Wang et al. [20] 0.8291 0.8051 0.9490 0.9404 
Racoviteanu et al. [18] 0.684 0.73 / / 
Wang et al. [19] 0.7607 0.6364 0.9053 0.9362 
Yang et al. [16] 0.8547 0.8632 0.9296 0.9470 
POSER 0.8483 0.91 0.9977 0.9977  

Table 6 
Mixed experiments.  

Config Train Test POS Acc SPOS Acc Mean Acc 

PCA SPOS DISFA+ 0.94 0.53 0.75 
PCA DISFA+ SPOS 0.42 0.92 0.83  
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dimensional coding array of 576 elements. We included all emotions in 
the dataset, including neutrals and the often-avoided emotion of 
contempt, which had a very small number of instances (18) and shared 
similarities with disgust. We solved the emotion recognition task by 
using network in cascade. Firstly we divided the emotions into negative 
and positive. Angry, Contempt, Disgust, Fear, Neutral, Sadness are 
labeled as Negative. Happy and Surprise are labeled as Positive. A 
Bagging Classifier is firstly trained to distinguish between negative and 
positive emotions. The parameters of the classifier are set as: max fea
tures 0.6, max samples 0.8, estimators 50, random state 42. We will refer 
to this network as PosNeg. Then, two GaussianNB Classifiers with 1e-09 
of variance are trained to distinguish positive the emotions inside pos
itives and negatives, PosC and NegC respectively. Since the classifiers 
need to be executed in cascade, the overall accuracy is determined as 
follows: The images in the test set first pass through PosNeg. Based on 
the classification by PosNeg, the images are then sent to the corre
sponding network predicted by PosNeg. If PosNeg misclassifies an 
image, there is no opportunity for the image to be correctly classified 
since it will be directed to the wrong classifier. However, if PosNeg 
accurately classifies the image, the correctness of the prediction depends 
solely on PosC or NegC. Hence, achieving high accuracy in PosNeg is 
crucial to prevent error propagation throughout the network and ensure 
accurate classification. 

Based on the data presented in Table 7, it is evident that classifying 
positive emotions is comparatively easier. Conversely, when examining 
negative emotions, we noticed a significant level of variability in terms 
of relative accuracy. This variability is clearly depicted in Table 8, which 
displays the confusion matrix for the NegC. 

The observed phenomenon cannot be attributed solely to the fact 
that PosC is used for a binary problem and NegC for a multi-class 
problem. Even when separate binary networks are constructed for 
each negative expression, a significant portion of the expressions 
(approximately 15% for each network) are misclassified. This implies 
that multiple binary negative networks claim the emotion to belong to 
their respective classes with high accuracy, leading to an undecidable 
problem. Table 9 provides a detailed report on this phenomenon. 

In Table 10 we compare POSER-EMO on CK+ with the state of the art. Since no one in the state of the art considers both neutral than 
contempt in the final accuracy reported, we also use VGGFace2 [50] as a 
feature extractor, by substituting the dense layers to be adaptable to 
CK+, as is customary in the use of large network architectures on a small 
dataset. 

From the results, it is clear that POSER is comparable with the ones in 
[20]. In fact, POSER-EMO, VGGFace2 and the method in [20] are those 
who do not use DataAugmentation. Since CK+ is very small, this step 
makes a huge difference in terms of accuracy and it is not practicable 
where the data are numeric (like the features we extracted). 

We then tested POSER-EMO on a dataset in the wild, SFEW. Also in 
this case we used the mouth and the split in binary. In particular, the 
result obtained on positive and negative expressions are in Table 11. 

We can observe that, once an emotion is classified as positive, it is 
simple for POSER-EMO to correctly detect what positive it is (happy, 
surprise). On the other hand, classify the negative emotions is chal
lenging. In particular, the final accuracy given by the cascade is highly 
impacted by the low accuracy obtained in distinguish negative from 
positive images, that generates an error in the first step of the method 
that does not allow the following networks to receive the correct 
emotions. 

In particular, for the negative emotions, the confusion matrix of the 
first network is in Table 12. 

It is clear that the positive spontaneous emotions are not well clas
sified. If on one hand it means that only easy positive emotions pass to 
the following network (PosC), on the other hand, the remaining images 
are wrong regardless of the prediction of the following network. 

The confusion matrix of the negative spontaneous images is shown in 
Table 13. 

Table 7 
The accuracies obtained on CK+.  

Classifier Accuracy 

PosNeg 0.9665 
PosC 1 
NegC 0.77 
Cascade 0.8323  

Table 8 
The confusion matrix of NegC on CK+.  

Emotions Angry Cont. Disg. Fear Neut. Sad 

Angry 0.5806 0.0645 0.0967 0.0967 0.1612 0 
Cont. 0 0.5555 0 0.2222 0.2222 0 
Disg. 0.0869 0 0.7826 0 0.0869 0.0434 
Fear 0 0 0.0769 0.6923 0.2307 0 
Neut. 0.0102 0.0408 0.0102 0 0.8877 0.0510 
Sad 0.01428 0 0 0 0.3571 0.50  

Table 9 
Accuracy of the binary classifiers.  

Emotion Accuracy Classifier 

Fear 0.9491 DecisionTree 
Sad 0.8034 SVC 
Disgust 0.8728 SGDClassifier 
Angry 0.8119 SVC 
Contempt 0.8601 GaussianNB 
Neutral 0.8432 AdaBoostClassifier  

Table 10 
Comparisons with the state of the art on CK+. C indicates 
that ‘Contempt’ has not been considered, N indicate that 
‘Neutral’ has not been considered.  

Method Accuracy 

Wang et al. [20]-N 0.8716 
Tanfous et al. [21]-N 0.9573 
Kacem et al. [22]-N 0.9687 
Jung et al. [23]-N 0.9725 
Fu et al. [30]-N,C 0.9858 
Tang et al. [24]-N 0.9841 
Wang et al.[25]-C 0.9813 
W. Xie et al. [26]-C 0.9783 
W. Xie et al. [27]-C 0.9759 
S. Xie et al. [29]-N,C 0.9588 
Umer et al. [28]-N 0.9769 
Kar et al. [31] 0.9881 
Gan et al. [33]-N 0.9571 
Poux et al. [34]-N 0.928 
Karnati et al. [35]-C 0.9894 
VGGFace2 0.777 
POSER-EMO 0.8323  

Table 11 
The accuracies obtained on Sfew.  

Classifier Accuracy 

PosNeg 0.552 
PosC 0.9411 
NegC 0.4035 
Cascade 0.2911  

Table 12 
The accuracies obtained on Sfew.  

Emotions Negative Positive 

Negative 0.6333 0.3666 
Positive 0.6136 0.3863  
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As we can observe, the emotion with the best accuracy is angry, 
followed by Sad. The lower is Disgust since the method can not detect 
any emotion of this kind. 

By comparisons with the state of the art, we observe that SFEW is a 
very challenging dataset. In Table 14 we reported those comparisons. In 
particular, we can observe that the accuracy of POSER-EMO is compa
rable with methods that do not perform pre-training on other datasets. 
As a consequence, even if the overall accuracy of all the methods is 
small, the best accuracy coincides with those deep learning methods that 
operate on SFEW by using transfer learning. In this way, they can 
compensate for the small amount of data available in SFEW. 

6. Conclusions 

The analysis of emotion recognition can be approached from two 
distinct perspectives. Firstly, it involves distinguishing between spon
taneous and posed expressions, while secondly, it involves classifying 
different types of expressions. This paper addresses these challenges by 
first tackling the posed versus spontaneous recognition problem. We 
achieve this by utilizing a modified version of PIFS as facial features, 
which are subsequently classified using machine learning techniques. 
Our findings demonstrate that the proposed technique, known as 
POSER, outperforms the current state-of-the-art methods in this domain. 
Furthermore, we extend our investigation to encompass the detection of 
user expressions in both controlled and uncontrolled environments, by 
combining the proposed features with a cascade architecture comprising 
various classifiers. This integrated approach, named POSER-EMO, yields 
positive results. The utilization of POSER emphasizes the significance of 
Fractal Encoding, originally developed for image compression, and 
subsequently applied in face recognition and head pose estimation. Our 
study demonstrates its efficacy in resolving the challenges associated 
with emotion recognition. In future research, building upon the success 
of POSER in distinguishing between spontaneous and posed emotions, 
which predominantly involve micro-expressions, we plan to explore its 
application in this particular domain. Additionally, considering that 
several methods have achieved notable outcomes by incorporating 
temporal variables, we propose incorporating temporal features into our 
Fractal Encoding approach, considering consecutive frames. This inte
gration of PIFS-based Fractal Encoding into the architectures of POSER 
and POSER-EMO not only enhances the accuracy and robustness of 
emotion classification but also opens up new possibilities for investi
gating the relationship between emotions and fractal geometry. In pre
vious works on fractal encodings that involved face detection, it has 
been used a combination of Viola Jones detection algorithm refined by 
dlib. In the present work we used a mediapipe extension based on Max- 

Margin Object Detection (MMOD). This has been demonstrated to be 
superior in terms of performance compared to Viola-Jones [52]. In 
particular, the percentage of false positives is drastically reduced. In 
future, the face detector used can be easily substituted with the new 
implementations proposed by mediapipe (as BlazeFace Sparse) or other 
distributions. 
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