
Under review as a conference paper at ICLR 2023

LEARNING OBJECT AFFORDANCE WITH CONTACT
AND GRASP GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding object affordance can help in designing better and more robust
robotic grasping. Existing work in the computer vision community formulates the
object affordance understanding as a grasping pose generation problem, which
treats the problem as a black box by learning a mapping between objects and the
distributions of possible grasping poses for the objects. On the other hand, in the
robotics community, estimating object affordance represented by contact maps is
of the most importance as localizing the positions of the possible affordance can
help the planning of grasping actions. In this paper, we propose to formulate the
object affordance understanding as both contacts and grasp poses generation. we
factorize the learning task into two sequential stages, rather than the black-box
strategy: (1) we first reason the contact maps by allowing multi-modal contact
generation; (2) assuming that grasping poses are fully constrained given contact
maps, we learn a one-to-one mapping from the contact maps to the grasping poses.
Further, we propose a penetration-aware partial optimization from the intermedi-
ate contacts. It combines local and global optimization for the refinement of the
partial poses of the generated grasps exhibiting penetration. Extensive validations
on two public datasets show our method outperforms state-of-the-art methods re-
garding grasp generation on various metrics.

1 INTRODUCTION

Affordance is an area studying how an object can be used by an agent. Understanding affordance
can help to design better and more robust robotic systems operating in complex and dynamic envi-
ronments (Hassanin et al., 2021). For example, a cup can be grasped and passed over by a hand
and a bed can be sat or slept onto by a human. Learning affordance (or affordance understanding)
has wide applications like grasping (Bohg et al., 2013), action recognition and prediction (Jain
et al., 2016; Koppula et al., 2013; Koppula & Saxena, 2015), functionality understanding (Grabner
et al., 2011), social scene understanding (Chuang et al., 2018) etc. In this paper, we focus on object
affordance for hands, i.e. hand-object interactions.

Though of great importance to many applications, only several works about 3D grasp synthesis
using deep learning (Corona et al., 2020; Taheri et al., 2020; Jiang et al., 2021; Karunratanakul
et al., 2020; Zhang et al., 2021; Taheri et al., 2021) have been proposed in the computer vision
community. In (Taheri et al., 2020), a dataset for human grasping objects with annotations of
full body meshes and objects meshes have been collected, and a coarse-to-fine hand pose generation
network based on a conditional autoencoder (CVAE) is proposed. In (Karunratanakul et al., 2020), a
new implicit representation is proposed for hand and object interactions. The previous work (Taheri
et al., 2021) takes a step further to learn dynamic grasping sequences including the motion of the
whole body given an object, instead of static grasping poses. Both these work defines affordance as
possible grasping poses allowed by the objects. However, instantiations of affordance understanding
can include affordance categorization, reasoning, semantic labeling, activity recognition, etc. (Deng
et al., 2021)

Among all these, semantic labeling of contact areas between agents and objects is found to be of the
most importance (Deng et al., 2021; Roy & Todorovic, 2016; Zhu et al., 2015) because localizing
the position of possible affordance can greatly help the planning of actions for robotic hands (Mo
et al., 2021; Wu et al., 2021; Mandikal & Grauman, 2021; 2022). In the robotics community, Mo
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et al. (2021) and Wu et al. (2021) first estimate the contact points for parallel-jaw grippers and plan
paths to grasp the target objects. For dexterous robotic hand grasping, recent works (Mandikal &
Grauman, 2021; 2022) find that leveraging contact areas from human grasp can improve the grasping
success rate significantly in a reinforcement learning framework. However, they assume an object
only has one grasp contact area and learn a one-to-one mapping from an object to the contact.

To overcome the limitation of work in both computer vision and robotics community, we propose to
formulate the object affordance understanding as both contacts and grasp poses generation. Specifi-
cally, we factorize the learning task into two sequential stages, rather than taking a black-box hand
pose generative network that directly learns an object to the possible grasping poses in previous
work. 1) In the first stage, we generate multiple hypotheses of the grasping contact areas, repre-
sented by binary 3D segmentation maps. 2) In the second stage, we learn a one-to-one mapping
from the contact to the grasping pose by assuming the grasping pose is fully constrained given a
contact map. Different from a coarse-to-fine strategy, our decomposition not only provides interme-
diate semantic contact maps, but also benefits from the intermediate task learning in the quality of
the generated poses. This intermediate task learning has been proven effective in many computer
vision tasks (Tang et al., 2019; Wan et al., 2018; Tome et al., 2017; Wu et al., 2017). In the robotic
grasping, it is shown that optimizing grasping poses directly from contacts is superior to re-targeting
observed grasps to the target hands (Brahmbhatt et al., 2019b), which also motivates our choice.

Therefore, the other benefit of the intermediate contact representation is enabling the optimization
from the contacts. Different from the optimization for the full grasps from scratch in (Brahmbhatt
et al., 2019b), we propose a penetration-aware partial optimization from the intermediate contacts.
It combines of a local and global optimization for the refinement of the partial poses of the generated
grasps exhibiting penetration. The local-global optimization constrains gradients to affect only on
the partial poses requiring adjustment, which results in faster convergence and better grasp quality
than a global optimization.

In summary, our key contributions are (1) we formulate object affordance understanding as contact
and grasp pose synthesis; (2) we develop a novel two-stage affordance learning framework that first
generates contact maps and then predicts the grasp pose constrained by the maps; (3) we propose
a penetration-aware partial optimization from the intermediate contacts for the grasp refinement;
(4) benefiting from the first two decomposed learning stages and partial optimization, our method
outperforms existing methods both quantitatively and qualitatively.

2 RELATED WORKS

Grasp Generation Human grasp generation is a challenging task due to higher degrees of freedom
of human hands and the requirement of the generated hands to interact with objects in a physically
reasonable manner. Most methods use models such as MANO (Romero et al., 2017) to parame-
terize hand poses, aiming to directly learn a latent conditional distribution of the hand parameters
given objects via large datasets. The distribution is usually learned by generation network models
such as Conditional Variational Auto-Encoder (Sohn et al., 2015), or Adversarial Generative Net-
works(Arjovsky et al., 2017). To get finer poses, many existing works adopt a coarse-to-fine strategy
by learning the residuals of the grasping poses in the refinement stage. Corona et al. (2020) uses a
generative adversarial network to obtain an initial grasp, and then an extra network to refine it while
Taheri et al. (2020) passes hand parameters to a CVAE model and output an initial grasp, followed
by a further refinement.

In recent work, however, Jiang et al. (2021) proposes to exploit contact maps to refine human grasps
by leveraging the consistency of the contact map. Though estimating the hand-object contact maps,
it only reasons about the contact consistency to refine the generated pose while our work exploits
the contact maps as an intermediate representation for the final grasp generation. On the other
hand, in the area of robotic grasping, Brahmbhatt et al. (2019b) introduces a loss for optimization
using contact maps captured from thermal cameras (Brahmbhatt et al., 2019a; 2020) to filter and
rank random grasps sampled by Graspit! (Miller & Allen, 2004). It concludes that synthesized
grasping poses optimized directly from the contact demonstrate superior quality to other approaches,
kinematically re-targeting observed human grasps to the target hand model. The contact maps are
also used in the hand and object reconstruction. Grady et al. (2021) proposes a differentiable contact
optimization to refine the hand pose reconstructed from an image.
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Figure 1: The framework of our method. It consists of three-stages: ContactCVAE, GraspNet and
Penetration-aware Partial Optimization. ContactCVAE takes an object point cloud O as input and
generates a contact map C ′. GraspNet estimates a grasp parameterized by θ from the contact map
C ′. Finally, penetration-aware partial optimization refines θ to get the final grasp.

Object Affordance for Robotic Grip Object affordance is not only used in generating human poses
and hand poses, but also important for robotic grippers. Many robotic grasping works focus on
parallel-jaw grippers. Yan et al. (2018) learns to rate a proposed gripper pose to be a success or
failure in a data-driven way. Mousavian et al. (2019) uses a variational autoencoder(VAE) to gener-
ate robotic grasps, and their method can directly work in the real world with only training purely in
simulation. In contrast, in (Mo et al., 2021; Wu et al., 2021), locations for grasping points are first
predicted and the actions are planned to approach these points. Zhou & Hauser (2017) increases
the number of jaws of the gripper and estimate grasp quality using information collected from over-
head depth images of novel objects using a modified convolutional neural network (CNN). In recent
work for dexterous robotics hands (Mandikal & Grauman, 2021; 2022), contact maps from human
grasping are used to guide the planning of the robotic hands based on reinforcement learning.

3 METHOD

Figure 1 shows our method pipeline, which generates maps for contact areas by a network naming
ContactCVAE, maps the contact maps to grasping poses by the other network naming GraspNet
and refines the generated grasp by a penetration-aware optimization module. In the work, we adopt
MANO (Romero et al., 2017) to represent grasps. The MANO model M parameterizes the hand
mesh M = (V, F ) (V ∈ R778×3, F ∈ R1538 denotes the mesh vertices and faces) by the shape
parameters β ∈ R10 and pose parameters θ ∈ R51, i.e. M = M(θ, β). In the work, we use the
mean shape and use M = M(θ) for brevity.

In the first stage, ContactCVAE aims to learn a contact map distribution represented by a latent
vector z given an input object by a conditional variational autoencoder. The network takes an object
point cloud O ∈ RN×3 and the contact map C ∈ RN×1 as the input and learns to make the output
contact map C

′ ∈ RN×1 as close to the input contact map as possible. N is the number of the
points in O. Each point in the point cloud is represented by its normalized 3D positions. Each point
in the contact map takes a value in [0, 1] representing the contact score. During inference, given an
object, a contact map C

′
can be generated by sampling from z. In the second stage, GraspNet learns

a mapping from the contact map C
′

to the hand mesh M constrained by the map. The pose θ′ of
the predicted mesh M ′ from GraspNet is refined with a penetration-aware partial optimization in the
third stage.

3.1 CONTACTCVAE

Architecture Figure 2 demonstrates the architecture of the ContactCVAE network, which is a gen-
erative model based on CVAE (Sohn et al., 2015). It consists of two blocks: a Condition-Encoder
and a Generator. Condition-Encoder The Condition-Encoder Eθc is built on PointNet (Qi et al.,
2017). It takes a point cloud as input to extract both local features fl ∈ RN×64 and global features,
which are duplicated N times to make a feature map fg ∈ RN×1024 for matching the shape of local
featurefl. These two features are then concatenated as flg for the conditional inputs for the generator
below.

Generator Network The generator Gϕg
follows an encoder-decoder architecture. As shown on the

top of Figure 2, the encoder, Eθe : (C,O) ↣ z, is based on PointNet (Qi et al., 2017) architecture
which takes both an object point cloud O and a contact map C as inputs and outputs the latent code
z ∈ R64. The encoder is only employed in training and is discarded in the inference. The latent
code z represents a sample of the learned distribution Q(z|µ, σ2) and is used to generate the contact
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Figure 2: The architecture of ContactCVAE. (a) In the training stage, it takes both an object point
cloud and a contact map as input to reconstruct the contact map; (b) In the testing stage, by sampling
from the latent distribution, it generates grasp contacts with an object point cloud as the conditional
input only. ⊗ means concatenation.

map, where µ, σ2 denotes the mean and variance of the distribution. We then duplicate the latent
code z N times to make the latent feature fz for all the points.

The decoder Dθd :(f i
z, f

i
lg) ↣ C ′i is a classifier for a point i which merges three different features

(global f i
g , local f i

l and latent f i
z) to classify whether the point belongs to a contact map or not. The

decoder Dθd uses the MLP architecture and the weights are shared for all points.

Testing Stage During inference, as shown in the bottom of Figure 2, we only employ the
Conditional-Encoder and decoder Dθd . A latent code z is randomly sampled from a Gaussian
distribution and forms the latent feature fz . At the same time, the Condition-Encoder takes an ob-
ject point cloud to output the global and local feature. With these features (fz, fg, fl), Dθd outputs
the grasp contact C ′ for the object.

Contact Loss The goal of training the model is optimizing θe, θd to reconstruct the contact map
well. We simplify the goal as a binary classification task. Thus, we adopt the binary cross-entropy
loss for the model over all the points, name as Lc1. However, some samples have small contact
regions and it is hard for the model to learn those samples well by simply adopting the BCE loss.
To address this problem, we additionally introduce the dice loss (Milletari et al., 2016) to train the
model. It can assist the model in paying attention to small target region. In our work, we adopt the
dice loss for the same purpose and name as Lc2. the formulation of the two loss is defined as:

Lc1 = −
∑N

i=0[yilog(ŷi) + (1− yi)log(1− ŷi)] (1)

Lc2 = 1− 2
∑N

i=0 yiŷi∑N
i=0 yi+

∑N
i=0 ŷi

(2)

where ŷi and yi represent the predicted contact and ground truth of a point i, respectively.

Following the training of CVAE (Sohn et al., 2015), we use the KL-Divergence loss regularizing the
latent distribution to be close to a standard Gaussian distribution. The loss term is named as Lkl.
The overall loss function of the ContactCVAE network, Lcontact, is represented as:

Lcontact = γ0Lc1 + γ1Lc2 + γ2Lkl, (3)

where the γ0 = 0.5, γ1 = 0.5 and γ2 = 1e− 3 are constants for balancing the loss terms.

3.2 GRASPNET

Architecture With the assumption of hands full constrained by a contact map, we adopt a one-to-one
mapping function for getting the grasping pose from the generated contact from the first stage. As
shown in the Figure 3, the model takes an object point cloud O and its generated (or reconstructed)
contact C ′ as the input to predict the hand mesh for the grasping pose, which is represented by the
MANO model (Romero et al., 2017). Specifically, we employ a PointNet (Qi et al., 2017) to extract
the feature, and then use a MLP with four hidden layers to regress the MANO parameters. Given
the parameters, the MANO model forms a differentiable layer which outputs the hand mesh M .
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Figure 3: The architecture of GraspNet. It takes the concatenation of the generated (reconstructed)
object contact C ′ and the point cloud O as input to predict the grasp mesh parameterized by MANO.

During the training period, we use both ground truth and reconstructed contact map to train the
GraspNet. During inference, we only use the generated contact map to predict the grasp mesh. Both
reconstructed and generated contact maps are from the ContactCVAE model in the first stage.

Grasp Loss We simply adopt the reconstruction loss (L2 distance) for the predicted vertices, named
as Lv . We also use the chamfer distance Lcd between hands and objects, and penetration loss
Lptr from (Taheri et al., 2020; Jiang et al., 2021) which punishes penetrations between the hand
and object. The loss on MANO parameters is divided into two parts. We use the L1 loss for
the translation parameter (θ′t ∈ R3) and the geodesic loss (Mahendran et al., 2017) for the pose
parameter (θ′p ∈ R48), named as Lt and Lp respectively.

Consistency Loss Similar to (Jiang et al., 2021), we introduce the contact consistency loss Lcst =
∥C ′ − C ′′∥2. Based on the distance between the object and the grasp mesh M , the contact map C ′′

can be inferred. If the grasp mesh M is predicted correctly from the GraspNet, the input contact
map C ′ should be consistent with the contact map C ′′.

The overall loss of GraspNet, Lgrasp, is the weighted sum of all the above loss terms:
Lgrasp = λvLv + λcdLcd + λptrLptr + λtLt + λpLp + λcstLcst, (4)

where λv=35, λcd=20, λptr=5, λt=0.1, λp=0.1 and λcst=0.05 denote the corresponding loss weights.

3.3 PENETRATION-AWARE PARTIAL OPTIMIZATION
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Figure 4: Left: our penetration-aware partial optimization. Penetration is detected in the index and
thumb finger. Partial poses θp for the index finger are pointed out. Right: the result of a global
optimization

Though GraspNet gives plausible grasps for most cases, the grasps may exhibit penetration, resulting
in low grasp success rate in simulation. Hence, we propose to detect the penetration and refine the
partial poses causing it while keep other partial poses of good quality unchanged. The full hand
mesh is divided into six parts: five fingers and the palm. If penetration is detected in the palm area,
all the poses are adjusted. If penetration is detected in a finger part and no penetration happens in
the palm area, only the partial poses of the finger are adjusted. We use θp to represent the partial
poses requiring adjustment and the refined poses θ∗p are obtained by

θ∗p = argmin
θp

(ω0Lcst(C
′′(θp), C

′) + ω1Lptr(M(θp), O) + ω2Lh(θp, θ
′
p)). (5)

Lcst is the consistency loss defined above. C ′′(θp) denotes the process of generating a contact
map from the variable θp. Lptr penalizes the penetration between the hand and object as similar
in (Jiang et al., 2021; Karunratanakul et al., 2020). Lh makes the refined partial poses stay close to
the prediction θ′p from GraspNet. ω0=0.01, ω1=2 and ω2=0.02.

Figure 4 (Left) shows an example of our partial optimization for the poses θp of the finger. In the
refinement stage, as the loss mainly results from local wrong partial poses, the global optimization
argminθ L(θ) (Right in Figure 4) has two issues 1) the gradient affects other good poses, 2) the
gradient cannot take full effect on the refinement for the wrong partial poses.
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4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We sample N = 2048 points on an object mesh as the input object point cloud. Our method is
trained using a batch size of 32 examples, and an Adam optimizer with a constant learning rate of
1e-4. The training dataset is randomly augmented with [−1, 1]cm translation and rotation at three
(XYZ) dimensions. All the experiments were implemented in PyTorch, in which our models ran
130 epochs in a single RTX 3090 GPU with 24GB memory. In the Obman dataset (Hasson et al.,
2019), all the ground truth contact map is derived by normalizing the distance between the ground
truth of hand and object. For the inference refinement (both partial and global optimization), the
Adam optimizer with a learning rate of 2.0× 10−4 is used. In the refinement process, each input is
optimized for 200 steps.

4.2 DATASETS

Obman We first validate our framework on the Obman dataset (Hasson et al., 2019), which is a
large-scale synthetic dataset, including 3D hand interacting with objects. The hands are generated
by a physical-based optimization engine Graspit! (Miller & Allen, 2004), and are parameterized
by the MANO model (Romero et al., 2017). The dataset contain 8 categories of everyday objects
selected from ShapeNet (Chang et al., 2015) with a total of 2772 meshes. The model trained on this
dataset will benefit from the diversified object models. The object contact map is derived as (Taheri
et al., 2020) by thresholding the normalized distance between the object points and their nearest
hand vertices. Points with the distance smaller than a threshold are marked as contact.

ContactPose The ContactPose dataset (Brahmbhatt et al., 2020) is a real dataset for studying hand-
object interaction, which captures both ground-truth thermal contact maps and hand-object poses.
Though the dataset contains only 25 household objects and 2306 grasp contacts, it captures more
real interactions. For example, the contact in ContactPose spreads across large sections of the hand,
as opposed to that at the fingertips for most cases in Obman. We manually split the dataset into
a training and test group according to object type. Specifically, we use 4 objects (cup, toothpaste,
stapler, and flashlight) with 336 grasp contacts as a test set, and the rest for training the model.
ContactPose uses the thermal camera-based method to capture the contact region.

4.3 EVALUATION METRICS

A good generated pose should be physically stable and should be in contact with the object without
Penetration. In this work, we adopt three metrics to evaluate the quality of generated grasp poses:
(1) Penetration The penetration is measured by the depth (Dep, cm) and the volume (Vol, cm3) be-
tween the objects and generated hand meshes. The depth is the maximum or mean of the distances
from the hand mesh vertices to the surface of the object if a penetration occurs. Following (Jiang
et al., 2021; Karunratanakul et al., 2020), the volume is measured by voxelizing the hand-object
mesh with voxel size 0.5cm. (2) Simulation Displacement (Sim-Disp) The simulation displace-
ment is adopted to measure the stability of the generated grasp. We report the average (Mean, cm)
and variance (Var, cm) of the simulation displacement as measured by a physics-based simulator
following the same settings as (Jiang et al., 2021; Karunratanakul et al., 2020). The displacement
is the Euclidean distance between the object centers before and after applying a grasp on the object.
Though used in the existing work, the results of previous work (Karunratanakul et al., 2020) indicate
that a high penetration might correspond to a low simulation value and therefore we suggest readers
use it for a rough reference only. (3) Contact Rate (CR, %) A physically plausible hand-object
interaction requires contact between the hand and the object. We define a sample as positive if the
hand-object contact exists, which means that there exists at least a point on the hand surface is on or
inside the surface of the object. The contact rate is the percentage of those positive samples over all
the test samples.

In addition to the metrics used in the hand generation work, we introduce two more metrics to
evaluate the quality of the grasping pose distributions. (4) Grasp Success Rate (Sim-SR, %) The
grasp success rate aims to evaluate the rate of grasp success. Specifically, we define the positive
sample as the one with penetration-vol< 5cm3 and simulation-mean < 2cm. The success rate is
the percentage of those positive samples over all the test samples. (5) Diversity (Div, cm) It is also
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Table 1: Quantitative comparison on Obman test set.

Methods Penetration (↓) Sim-Disp (↓) CR (↑) Div (↑) Sim-SR (↑)
Dep Vol Mean Var

Grabnet (Taheri et al., 2020) - 8.41 1.66 - 98.25 7.93 27.60
GraspField (Karunratanakul et al., 2020) 0.56 6.05 2.07 ±2.81 89.40 - -

Jiang et al. (2021) 0.46 5.12 1.52 ±2.29 99.97 - -

Param2Mesh (Baseline) 0.70 13.07 1.75 ±2.88 98.56 8.31 21.63
Ours w/o refine 0.45 5.20 1.70 ±2.22 100.00 9.20 47.21

Ours global refine 0.50 4.15 2.00 ±2.50 97.01 8.89 58.89
Ours 0.44 3.94 1.74 ±2.28 100.00 10.18 61.37

GT 0.01 1.70 1.66 ±2.44 100.00 7.86 87.12
Ours w/o refine (GT) 0.43 4.68 1.97 ±2.40 100.00 7.89 49.67

Ours (GT) 0.36 3.75 1.98 ±2.46 99.86 8.16 57.19

Table 2: Quantitative comparison on ContactPose test set.

Methods Penetration (↓) Sim-Disp (↓) CR (↑) Div (↑) Sim-SR (↑)
Dep Vol Mean var

GrabNet(coarsenet) (Taheri et al., 2020) 0.76 13.42 1.10 ±1.54 97.51 6.11 16.31
GrabNet(refinenet) (Taheri et al., 2020) 0.92 16.74 1.04 ±1.60 97.42 5.92 16.89

Param2Mesh (baseline) 1.02 19.18 1.14 ±1.79 81.84 6.37 13.19
Ours w/o refine 0.73 10.06 1.08 ±1.18 98.85 7.40 24.71

Ours global refine 0.70 7.49 1.58 ±1.79 96.23 7.56 32.07
Ours 0.68 6.09 1.23 ±1.85 98.85 7.66 38.08

GT 0.45 6.64 0.73 ±1.09 100.00 6.60 41.50
Ours w/o refine (GT) 0.60 9.54 0.95 ±0.97 100.00 6.79 33.93

Ours (GT) 0.51 5.91 1.06 ±1.13 99.65 7.03 39.12

significant to evaluate the diversity for the generation task. In this work, we use MAE to measure
the diversity of generated results. Specifically, we measure the divergence between each generated
sample and all other samples and then average them. Referring to the research (Guo et al., 2020),
the formulation is defined as Eq. 6.

Diversity =
1

Ng(Ng − 1)

Ng∑
i=0

Ng∑
k=0

∥vi − vk∥2, (i ̸= k) (6)

Ng is the number of generated samples. vi,vk represent the i-th and k-th generated sample.

4.4 SELF COMPARISON

To verify the contribution of our proposed factorization, we construct three variants of our method.
Param2Mesh Baseline: A baseline for grasp generations. It learns the latent distribution of MANO
parameter directly, which is similar to the first stage of the previous work (Taheri et al., 2020).
Specifically, we use the same CVAE of our Contact2Grasp to make a fair comparison but replace
the encoder Eθeof our ContactCVAE with fully connected layers to take the MANO parameters as
inputs. Given a 3D object point cloud and a random sample for the distribution, the decoder Dθd
generates MANO parameters directly. Also, the coarsenet (Taheri et al., 2020) can be served as
a baseline as well but with a different architecture. Ours w/o refine : A variant of our method
removing the final testing time refinement. Ours global refine: A variant of our method adopting
global refinement at the third stage. Ours (GT) shows GraspNet in the second stage trained and
tested on GT contract maps and Ours w/o refine (GT) without the refinement. By comparing to this
variant, we are able to verify the quality of our generated contact maps from ContactCVAE.

Effectiveness of Two Stage Learning Factorization Results on both Obman (Table 1) and Con-
tactPose datasets (Table 2) show our proposed method can improve Param2Mesh significantly on
all metrics, indicating the effectiveness of the two stage factorization. The penetration-vol improve
by 60% (Ours w/o refine) and 70% (Ours) on Obman. A reasonable grasp pose should embody
both low penetration and simulation displacement. Thus the Sim-SR is a more comprehensive met-
ric considering both of them. It can be observed that our method shows the best Sim-SR result on
Obman (61.37%), improving Param2Mesh by 118%.

On ContactPose, we also compare our method with other variants in diversity. Our method gener-
ates more diverse samples than the Param2Mesh baseline and the variant using ground truth contact
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Figure 5: The visualization of generated contact and grasp for objects from Obman test set and
ContactPose test set. We also present some failure examples. For each example, we present both
the predicted grasp pose (left) and the corresponding contact map (right), which is presented in the
form of heat map. Note that all the contact map is generated from our method.

maps. For the latter, as in the second stage only a one-to-one mapping is learned, the diversity actu-
ally measures the ground truth poses while our method in the first stage can generate new samples
and therefore it is reasonable to have more diverse samples than the ground truth poses.

Effectiveness of Penetration-aware Partial Optimization Results on Obman (Table 1) and Con-
tactPose (Table 2) indicate that partial optimization strategy (Ours) achieves better performance
than global refinement (Ours glob refine) over all the metrics, which presents the effectiveness of
the proposed method.

As shown in Figure 5, we can observe that the generated contact map is reasonable, corresponding
to the grasp pose. Although there are some failure examples (including unstable grasps and serious
penetration), the hand pose is substantially natural as human behavior.

Quality of Generated Contact Maps When compared with Our (GT) and Our w/o refine (GT), the
metrics for penetration of our methods are worse but the margin is relative small compared to our
improvement from the baseline. For example, on Obman Table 1, penetration depth of our methods
are 0.45mm and 0.44mm while those of Our (GT) and Our w/o refine (GT) are 0.43mm and 0.36mm.
The comparison indicates the generated maps in the first stage are of high quality. The examples in
Figure 5 also show that the generated contact convey meaningful information for grasping.

Semantic Analysis of Latent Contact Map Space Using the generated object contacts to formulate
the hand grasp is one of contributions and here we show whether our Contact2Grasp can learn the
latent distribution for contact well. In the point generation work (Achlioptas et al., 2018), it demon-
strates the quality of the generation model by showing that the learned representation is amenable to
intuitive and semantically rich operations. Inspired by the work, we conduct the semantic analysis
of the latent space learned from our Contact2CVAE model as detailed below.

First, we use ContactCVAE to generate N contact maps and their corresponding latent z. Second,
we cluster contact maps using mean shift and adopt the dice metric to measure the distance between
different contact maps. Then we select a sample from each cluster set randomly. Each sample con-
sists of a contact map and its corresponding latent z. Then, we interpolate between the latent z of
different samples to get a new latent z, and then the new latent z is fed into the decoder of ContactC-
VAE to get its corresponding contact map. In the paper, we interpolate 2 latent z and therefore get
2 contact maps. Finally, their contact maps are fed into GraspNet to get their corresponding grasp
poses.

Figure 6 exemplifies two pairs of the types selected and the contact maps and grasping poses inter-
polated between them. Notice that the grasps change gradually in alignment with the contact maps
between Type A and Type B. For example, in Figure 6 (b), the yellow arrow and circle denote small
differences between the contact maps and the grasp poses. As the contact region gradually appears,
the middle finger moves to the corresponding position smoothly. Similar interesting observation can
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TypeA TypeB

(a)

(b)

TypeA TypeB

TypeA TypeB

(a)

Figure 6: Interpolated contact maps and grasps between different types of generated contacts (TypeA
and TypeB). Note that the grasping poses (e.g. finger positions denoted in the yellow circle and
arrow) change with transitions between two types of contacts.

be found for manipulating the phone in Figure 6 (a) where the hand poses change from holding to
pressing gradually.

4.5 COMPARISON WITH EXISTING WORK

When compared with the state-of-the-arts, our method achieves the least penetration, highest grasp
success rate, highest contact rate and highest diversity on both Obman and ContactPose. The im-
provement can be attributed to the factors as follows. Existing work (Taheri et al., 2020; Jiang et al.,
2021) aims to learn the mapping relationship between the object and grasp pose distribution directly,
e.g. point clouds to joint rotations. Such mapping relationship is highly non-linear. In comparison,
our proposal decomposes the hard problem into two tasks by introducing intermediate contact maps.
The point clouds of object and the contact areas represented by the segmentation maps on the point
clouds are aligned in the same 3D space, which is relatively easy to learn. In ContactCVAE, we also
make full use of the alignment and design a local point feature to point classification mapping in the
structure.

Limitations Although our method achieves significant performance, there exists some limitations.
The major limitations of our method can be summarized in two aspects. (1) The two-stage learning:
The error from the first stage cannot be corrected. If a generated contact map from the first stage
is of low quality, the resulting grasp may be influenced as well. (2) Ambiguity of Contact Map:
In some cases, the contact maps are ambiguous, which results in more than one plausible grasping
pose. Therefore, the assumption of the one-to-one mapping in the second stage does not hold. To
address the limitations mentioned above, some solutions can be explored as the future work. (1)
Contact Filter: Before inputting the generated contact maps to the GraspNet, a clustering algorithm
(e.g. mean shift) can be adopted to filter those deviating too far from the distribution. (2) More
detailed contact maps: To address the ambiguity problem, we can introduce more-detailed contact
maps, which contains contact areas with different parts of the hands providing stronger constraints.

5 CONCLUSION

In this paper, we propose a novel framework for human grasps generation, which holds the potential
for different deep architectures. The highlight of this work is exploiting the object affordance rep-
resented by the contact map, to formulate a functionality-oriented grasp pose and using penetration-
aware partial optimization to refine partial-penetrated poses without hurting good-quality ones. The
proposed method is extensively validated on two public datasets. In terms of diversity and stabil-
ity, both quantitative and qualitative evaluations support that, our method has clear advantages over
other strong competitors in generating high-quality human grasps.
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