
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MICE: MEMORY-DRIVEN INTRINSIC COST ESTIMA-
TION FOR MITIGATING CONSTRAINT VIOLATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Constrained Reinforcement Learning (CRL) aims to maximize cumulative re-
wards while satisfying constraints. However, most existing CRL algorithms en-
counter significant constraint violations during training, limiting their applicabil-
ity in safety-critical scenarios. In this paper, we identify the underestimation of the
cost value function as a key factor contributing to these violations. To address this
issue, we propose the Memory-driven Intrinsic Cost Estimation (MICE) method,
which introduces intrinsic costs to enhance the cost estimate of unsafe behav-
iors, thus mitigating the underestimation bias. Our method draws inspiration from
human cognitive processes, specifically the concept of flashbulb memory, where
vivid memories of dangerous events are retained to prevent potential risks. MICE
constructs a memory module to store unsafe trajectories explored by the agent.
The intrinsic cost is formulated as the similarity between the current trajectory
and the unsafe trajectories stored in memory, assessed by an intrinsic generator.
We propose an extrinsic-intrinsic cost value function and optimization objective
based on intrinsic cost, along with the corresponding optimization method. Theo-
retically, we provide convergence guarantees for the new cost value function and
establish the worst-case constraint violation for the MICE update, ensuring fewer
constraint violations compared to baselines. Extensive experiments validate the
effectiveness of our approach, demonstrating a substantial reduction in constraint
violations while maintaining policy performance comparable to baselines.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated great potential in numerous scenarios, such as video
games Vinyals et al. (2019); Yu et al. (2022a), robotics control Haarnoja et al. (2018); Xu et al.
(2020), and Go Schrittwieser et al. (2020), where agents explore the environment to learn the optimal
policy that maximizes expected cumulative reward. However, the lack of safety considerations in
RL leads to unsafe interactions with the environment, which are unacceptable in many safety-critical
problems, such as robot navigation and autonomous driving. Constrained reinforcement learning
(CRL) addresses this issue by finding optimal policies while satisfying predefined constraints, which
extends the applicability of RL to real-world scenarios.

CRL is typically modeled as Constrained Markov Decision Processes (CMDP) Beutler & Ross
(1985); Ross & Varadarajan (1989); Altman (2021), which integrates safety criteria in the form of
constraints into RL, providing a fundamental mathematical framework. Current CRL methods can
be broadly categorized into primal and primal-dual methods. Primal-dual methods Tessler et al.
(2018); Yu et al. (2019); Paternain et al. (2019); Ding et al. (2020) convert the constrained problem
into an unconstrained one using the Lagrangian function and solve it in the dual space. However,
these methods often suffer from inherent oscillations. PID Lagrangian Stooke et al. (2020) intro-
duces proportional and differential control to mitigate these oscillations. Primal methods, such as
Constrained Policy Optimization (CPO) Achiam et al. (2017), approximate the constrained opti-
mization problem with surrogate functions in primal space. Despite these advancements, state-of-
the-art CRL methods still experience significant constraint violations during training.

In this work, we aim to mitigate constraint violations during training in CRL by addressing a critical
issue: the underestimation of the cost value function. We identify the underestimation as a key
factor contributing to constraint violations. Overestimation bias is common in value functions of RL
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due to the maximization of noisy value estimates Thrun & Schwartz (2014); Fujimoto et al. (2018),
and this noise is unavoidable in function approximation methods. Additionally, temporal difference
methods accumulate errors by updating value function estimates using subsequent state estimates.
In CRL, the cost value function requires minimization when constraints are violated, in contrast
to the maximization operation in RL value function updates. This difference introduces unique
challenges: underestimating costs can make risky actions appear less costly, leading to frequent
constraint violations, even with the optimization methods capable of finding the optimal policy.

Drawing inspiration from human cognitive processes, we propose the Memory-driven Intrinsic Cost
Estimation (MICE) algorithm, which constructs an extrinsic-intrinsic cost value update to enhance
the cost estimate of unsafe trajectories, thus mitigating underestimation. Psychological studies of
flashbulb memory Conway (2013) reveal that humans vividly remember significant and surprising
events, helping them develop cautionary behaviors, such as avoiding fire after a burn. Similarly,
we equip CRL agents with a flashbulb memory module to enhance their risk awareness, storing
unsafe trajectories explored by the agent. We introduce an intrinsic cost generated from the flash-
bulb memory, which is formulated as the similarity between the current trajectory and the unsafe
ones stored in memory. Here, extrinsic costs denote task-related costs in CRL, allowing for clear
differentiation. We propose an extrinsic-intrinsic update formulation of the cost value function, ef-
fectively mitigating the underestimation by enhancing the cost estimate of unsafe behaviors. Based
on the extrinsic-intrinsic cost value function, we propose an optimization objective within the trust
region and provide the corresponding optimization method. Theoretically, we establish a constraint
bound for the extrinsic-intrinsic cost value function and provide a worst-case constraint violation
for the MICE update, ensuring few constraint violations during training. Additionally, we provide
a convergence analysis for the extrinsic-intrinsic cost value function. Comparison experiments with
baselines demonstrate that our method significantly reduces constraint violations while maintaining
robust policy performance. Our contribution can be summarized as follows:

• We identify that the underestimation of the cost value function is prevalent in CRL, which
is a key factor in constraint violations during training. This insight highlights an important
challenge for ensuring safety and reliability in CRL applications.

• We propose the MICE algorithm to mitigate underestimation, incorporating the extrinsic-
intrinsic cost value estimate and corresponding optimization objective.

• We provide theoretical guarantees for MICE, including constraint bounds and convergence
analysis. Extensive experiments demonstrate that MICE significantly reduces constraint
violations while maintaining policy performance compared to baselines.

2 RELATED WORK

CRL methods. The optimization methods in CRL can be classified into two categories: the primal-
dual method and the primal method. Primal-dual methods Ding et al. (2021); Ying et al. (2024)
convert constrained problems into unconstrained ones via introducing dual variables. Tessler et al.
(2018) introduce multi-timescale Lagrangian methods to guide the policy update toward constraint
satisfaction. Theoretically, Ding et al. (2020) establish the global convergence with sublinear rates
regarding the optimality gap. Stooke et al. (2020) introduce proportional and differential control to
mitigate cost overshoot and oscillations in the learning dynamics. However, primal-dual approaches
remain sensitive to initial parameters, limiting their application Zhang et al. (2022). In contrast,
primal methods directly optimize constrained problems in the primal space Chow et al. (2018); Yu
et al. (2022b). Chow et al. (2019) propose a safe linear programming algorithm based on a Lyapunov
approach to solve the constrained problems. CPO Achiam et al. (2017) provides a lower bound on
performance and an upper bound on constraint violation. PCPO Yang et al. (2020) first improves the
reward within the trust region, then projects the policy to the feasible region. FOCOPS Zhang et al.
(2020) solves the constraint problem in the nonparametric policy space and then projects the updated
policy back into the parametric space. CUP Yang et al. (2022) provides generalized theoretical
guarantees for surrogate functions with generalized advantage estimator Schulman et al. (2015),
effectively reducing variance while maintaining acceptable bias. Due to the underestimation of the
cost value function, all of the above methods are unable to avoid significant constraint violations
during the training process. We design a safety-based intrinsic cost to mitigate the underestimation,
thus achieving few constraint violations while maintaining a similar performance as baselines.
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Overestimation in RL. The issue of overestimation in RL has been extensively studied. Double
Q-learning Hasselt (2010) addresses this problem by employing two independent estimators to de-
couple action selection and evaluation. Double DQN Van Hasselt et al. (2016) extends this concept
to function approximation, utilizing a separate target value function to estimate the value of the cur-
rent policy, thus reducing bias by enabling evaluating actions without maximization bias. However,
in actor-critic frameworks, the slow-changing nature of the policy means that the current and target
value estimates often remain close, failing to eliminate maximization bias. To address this, TD3
Fujimoto et al. (2018) selects the minimum value from a pair of critics, thereby reducing overes-
timation. AdaEQ Wang et al. (2021) employs the ensemble method, adjusting the ensemble size
based on Q-value approximation error to mitigate overestimation. In this paper, we demonstrate
that the underestimation of cost value in CRL causes constraint violations during training, and we
introduce memory-driven intrinsic cost to effectively mitigate underestimation.

Intrinsic reward. Intrinsic rewards are typically used to design exploration strategies in RL, gener-
ally falling into two categories. The first category encourages agents to explore novel states Zhang
et al. (2021); Seo et al. (2021). The second category incentivizes behaviors aimed at reducing predic-
tion errors or uncertainties to improve the agent’s understanding of the environment Sharma et al.
(2019); Laskin et al. (2022). Lipton et al. (2016) indicate that agents tend to periodically revisit
states under new policies after forgetting them, introducing an intrinsic fear model to prevent peri-
odic catastrophes. In CRL tasks, ROSARL Tasse et al. (2023) treats constraints as intrinsic rewards,
optimizing policies by determining the minimal penalty for unsafe states. In this paper, we use in-
trinsic costs for safer exploration when extrinsic costs are underestimated. Additionally, intrinsic
costs generated from memory provide anticipatory signals for policy updates to avoid dangerous
regions that have been explored.

3 PRELIMINARY

RL can be modeled as a Markov decision process (MDP), denoted by a tuple (S,A,R, P, ρ, γ),
where S is the state space, A is the action space, R : S × A → R is the reward function, P :
S × A → [0, 1] is the transition probability function, ρ is the initial state distribution, and γ ∈
(0, 1) is the discount factor of the reward. Starting from an initial state s0 sampled from the initial
state distribution ρ, the agent perceives the state st from the environment at each time step t, and
takes the action at sampled from the policy π : S → A, receives the reward rt = R(st, at), and
transfers to the next state st+1 according to P (st+1|st, at). Π is the set of all stationary policies. The
discounted future state visitation distribution is defined as dπ(s) := (1 − γ)

∑∞
t=0 γ

tP (st = s|π).
The agent aims to find the optimal policy by maximizing the expected discounted return JR(π) :=
Eτ∼π[

∑∞
t=0 γ

tR(st, at)], where τ = (s0, a0, s1, a1, · · · ) is the trajectory based on the policy π.
The value function based on policy π is V π

R (s) := Eτ∼π[
∑∞
t=0 γ

tR(st, at)|s0 = s], and action-
value function is Qπ

R(s, a) := Eτ∼π[
∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a]. The advantage function
measures the advantage of action a over the mean value: AπR(s, a) := Qπ

R(s, a)− V π
R (s).

A Constrained Markov Decision Process (CMDP) (S,A,R,C, P, ρ, γ) introduces constraints to the
MDP to restrict the set of allowable policies. C : S × A → R denotes the extrinsic cost function,
which maps the state-action pairs to extrinsic costs. We distinguish the intrinsic and extrinsic costs
by cI and cE , respectively. The extrinsic costs refer to constraints in the actual task. d denotes
the constraints threshold, and the expected cumulative discount cost is desired to satisfy JC(π) :=
Eτ∼π[

∑∞
t=0 γ

tC(st, at)] ≤ d. The cost value function V π
C (s), cost action value function Qπ

C(s, a)
and cost advantage function AπC(s, a) in CMDP can be obtained as in MDP by replacing the reward
R with the cost C. The CRL aims to find an optimal policy by maximizing the expected discount
return over the set of feasible policies ΠC := {π ∈ Π : JC(π) ≤ d}:

argmax
π∈Π

JR(π)

s.t. JC(π) ≤ d
(1)

4 METHODOLOGY

In this section, we introduce the Memory-driven Intrinsic Cost Estimation (MICE) algorithm. We
first present the underestimation of the cost value function in CRL. Then we construct the flashbulb
memory to store unsafe trajectories and the intrinsic cost generator to correct the underestimation.
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Figure 1: Structure of MICE.

Finally, we propose an extrinsic-intrinsic update formulation for the cost value in MICE and a new
optimization objective with the solution.

4.1 UNDERESTIMATE BIAS IN COST VALUE FUNCTION

Overestimation commonly arises in RL because updates to the value function tend to greedily select
high action values, resulting in estimations that exceed the optimal value Fujimoto et al. (2018).
Conversely, in the estimation of cost values for CRL, especially when constraints are violated, there
is a tendency to minimize costs, which results in an underestimation of the cost value function.

In cost value estimation methods such as Q-learning, a greedy strategy is used to update the cost
value function QC(s, a) ← QC(s, a) + α[c + γmina′ QC(s

′, a′) − QC(s, a)] during constraint
violations. Assuming the value estimation contains zero-mean noise ϵ, a consistent underestimation
bias is induced by minimizing the noisy value estimate QC(s

′, a′) + ϵ. The zero-mean property
of noise is disrupted after minimization, then the minimization of the value estimate is generally
smaller than the true minimization Eϵ[mina′ QC(s

′, a′) + ϵ] ≤ mina′ QC(s
′, a′) Thrun & Schwartz

(2014). Noise errors in function approximation methods are unavoidable Fujimoto et al. (2018).

In CRL methods based on actor-critic architecture, the policy learns from value estimations pro-
duced by the approximate critic and cost critic. When constraints are violated, the policy is up-
dated with a policy gradient in the direction that minimizes the expectation of cost value estimate:
argminπ∈Πθ

Es∼dπ,a∼π[QC(s, a)], where Πθ represents the policy set parameterized by θ. Denote
the true cost value function as QC(s, a) and the approximate cost value function as Q̂C(s, a). Up-
dated from the current policy πk(·|θ) with the deterministic policy gradient, we denote the policy de-
rived from the true cost value QC(s, a) as π, and the policy derived from the approximate cost value
Q̂C(s, a) as π̂. According to TD3 Fujimoto et al. (2018), if the approximation is lower than the true
value due to unavoidable noise in the function approximation: E[Q̂C(s, π(s))] ≤ E[QC(s, π(s))],
then the cost value is underestimated under the updated policy π̂ within a sufficiently small step size:

E[Q̂C(s, π̂(s))] ≤ E[QC(s, π̂(s))] (2)

To validate the issue of underestimation bias, we compare cost value estimates for various states
against their corresponding true values in CPO Achiam et al. (2017) and PID Lagrangian Stooke
et al. (2020). The true value is estimated using the average discount constraint over 1,000 episodes
under the current policy. Experimental results in Figure 2 show that the cost value functions of differ-
ent CRL methods are significantly underestimated across various environments during the learning
process. The underestimation bias can be propagated and accumulated through temporal difference
updates, as the underestimated cost value estimate serves as the target for subsequent updates.

Compared to overestimation in RL, underestimation in CRL has more detrimental impacts, which
generates unsafe actions that cause damage or task failure. In CRL, actions yielding high rewards
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but violating constraints are mistakenly perceived safe by an underestimated critic and are subse-
quently selected. These unsafe actions propagate through the Bellman equation, generating even
more unsafe actions as the underestimation bias increases. This explains the constraint violations
during training in various CRL methods.

4.2 INTRINSIC COST GENERATED FROM FLASHBULB MEMORY

Figure 2: Underestimation error in different envi-
ronments. The x-axis denotes the time step, the
y-axis is the cost value estimate minus the true
value, and the dashed line is the zero deviation.

Risk awareness helps humans identify potential
dangers and adopt conservative behaviors to en-
sure safety. Typically, humans are impressed by
previous risky behaviors or experiences, which
are vividly recalled to circumvent danger in
similar scenarios. However, CRL agents with
underestimated critics often fail to recognize
the consequences of unsafe actions, leading to
constraint violations. Inspired by human cogni-
tive mechanisms, we introduce an intrinsic gen-
erator that outputs memory-driven intrinsic cost
signals to enhance the agent’s risk awareness.

We construct a flashbulb memory to store un-
safe trajectories where the cumulative extrin-
sic cost exceeds the constraint threshold. These
trajectories are organized as Markov chains with state-action pairs and cumulative costs. The mem-
ory capacity is fixed, mirroring the human tendency to prioritize the most dangerous and recent
experiences. When the memory capacity is reached, the earliest trajectories are sorted by cumu-
lative costs, and the one with the smallest value is removed to store a new unsafe trajectory. This
mechanism ensures the memory remains relevant to the current policy while retaining the most
significant experiences.

We propose an intrinsic cost cI derived from the flashbulb memory. Denote the flashbulb memory
as M : {τm0 , · · · , τmi , · · · , τmn−1} with n unsafe trajectories, where τmi : {s0, a0, · · · } represents
the i-th unsafe trajectory stored in memory. Denote the current trajectory rollout from the initial to
the time step t as τ(t) : {s0, a0, · · · , st−1, at−1}. Intrinsic costs cIt at time step t is generated by
comparing the difference between the current trajectory and the unsafe trajectories in memory M :

cIt =
hγkI

(1 + el2(t))
, where l2(t) =

n−1∑
i=0

∥W (τmi (t)− τ(t))∥2 (3)

where t denotes the time steps of agent’s rollout in environment, τmi (t) = τmi [0 : t − 1] denotes
the segment of the i-th unsafe trajectory from the initial to the time step t. γI ∼ (0, 1) denotes the
intrinsic discount factor, operating with the iteration number k of the value function update. h is the
intrinsic factor. The weight vector W = [w0, w1, · · · ] assigns weights to different state-action pairs,
where pairs with a positive extrinsic cost cE are given greater weight to account for their significant
influence on the cumulative costs:

wt =

{
1, if cEt > 0
ω, if cEt = 0, 0 ≤ ω ≤ 1

(4)

The Euclidean distance l2 is computed between the current trajectory and unsafe trajectories in mem-
ory M , with the accumulation serving as a measure of divergence. A smaller divergence indicates
that the current trajectory is more similar to previous unsafe experiences, resulting in a higher risk
of constraint violation and a greater intrinsic cost cI .

To minimize memory accesses, we design an intrinsic generator Gϕ(τ), parameterized by a network,
to generate intrinsic costs cI based on flashbulb memory. The generator Gϕ(τ) takes the current tra-
jectory as input and outputs an intrinsic cost signal. A random projection layer within the generator
compresses the trajectories into latent space, reducing data dimensionality while capturing relations
between state-action pairs Zhu et al. (2020). During the agent’s learning process, if the cumulative
extrinsic cost of the current trajectory τ is below the constraint threshold d, generator Gϕ directly
generates the intrinsic cost. Otherwise, the trajectory τ is stored in memory M , and Gϕ is updated
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according to following loss function, which regresses towards the corresponding intrinsic cost labels
cI , as defined in Equation 3:

L(Gϕ) = Eτ (Gϕ(τ)− cI)2, if
∑

cE > d (5)

4.3 SAFETY POLICY OPTIMIZATION WITH THE INTRINSIC COST

The cost value function QC(s, a) updated with only extrinsic costs cE in CRL of Q-learning is:
QC(s, a) = (1− α)QC(s, a) + α(cE + γmina′ Es′ [QC(s

′, a′)]). To mitigate the underestimation,
we propose a new update of the extrinsic-intrinsic cost value function QEI

C (s, a), which incorporates
both memory-driven intrinsic costs and task-driven extrinsic costs:

QEI
C (s, a) = (1− α)QEI

C (s, a) + α(cE + cI + γmin
a′

Es′ [QEI
C (s′, a′)]) (6)

where cE and cI denote extrinsic and intrinsic costs, respectively. Starting from the same initial-
ization value, QEI

C is greater than the QC under the same state-action pair: QEI
C (s, a) ≥ QC(s, a),

since QEI
C has a larger update target.

By augmenting the agent’s memory, the extrinsic-intrinsic target cost value increases the cost esti-
mate of the state-action pair, effectively mitigating the underestimation. The extrinsic-intrinsic value
function potentially introduces overestimation. It is important to note that overestimation does not
result in constraint violations compared to underestimation in CRL. Additionally, the propagation
of overestimation through cost value updates is limited, as the policy tends to avoid actions with
high-cost estimates Fujimoto et al. (2018). Moreover, overestimation within our extrinsic-intrinsic
value function can effectively correct the estimation bias in high-value regions Karimpanal et al.
(2023), see Appendix B.1.

Based on the extrinsic-intrinsic cost value function, we define the cumulative discount extrinsic-
intrinsic cost as JEIC (π) := Eτ∼π[

∑∞
t=0 γ

tCEI(st, at)] = Eτ∼π[
∑∞
t=0 γ

t(cE + cI)], where
CEI(s, a) = cE + cI is the extrinsic-intrinsic cost function. The extrinsic-intrinsic advantage func-
tion in MICE is defined as: AEIC (s, a) = Es′ [cE + cI + γVC(s

′) − VC(s)]. To reduce constraint
violations, we replace JC with the extrinsic-intrinsic constraint JEIC in the optimization objective. To
facilitate optimization, we give the difference in expectation constraint of extrinsic-intrinsic JEIC (π′)
and extrinsic JC(π).

Lemma 1. Given arbitrary two policies π and π′, the difference in expectation constraint of
extrinsic-intrinsic JEIC (π′) and extrinsic JC(π) can be expressed as:

JEIC (π′)− JC(π) = Eτ |π′

[ ∞∑
t=0

γtAEIC (st, at|π)

]
(7)

where AEIC (st, at|π) = Est+1
[cEt + cIt + γV π

C (st+1) − V π
C (st)]. The expectation is taken over

trajectories τ , and Eτ |π′ indicates that actions are sampled from π′ to generate τ .

A proof is provided in Appendix B.2. According to equation 7, we give the optimization objective
of MICE:

πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)] ≤ d

(8)

However, the complex dependency of state visitation distribution dπ(s) on unknown policy π makes
equation 8 difficult to optimize directly. This paper uses the samples generated by the current policy
πk to approximate the original problem in the trust region. Based on the extrinsic-intrinsic value
update function, we seek to solve the following optimization problem:

πk+1 =arg max
π∈Πθ

Es∼dπk ,a∼π[A
πk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

EI
C (s, a|πk)] ≤ d

D(π∥πk) ≤ δ

(9)
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where D(π∥πk) = Es∼dπk [DKL(π∥πk)[s]], DKL is the KL divergence and δ > 0 is the step size.
The set {π ∈ Πθ : D(π∥πk) ≤ δ} is the trust region.

The MICE-CPO method is proposed to solve the optimization objective 9. We approximate the
reward objective and cost constraints with first-order expansion and approximate the KL-divergence
constraint with second-order expansion. The local approximation to equation 9 is:

θk+1 =argmax
θ

gT (θ − θk)

s.t. c+ (gEIC )T (θ − θk) ≤ 0

1

2
(θ − θk)

TH(θ − θk) ≤ δ

(10)

where g is the gradient of the reward objective and gEIC is the gradient of extrinsic-intrinsic constraint
in 9, c = JC(πk) − d, H is the Hessian of the KL-divergence. When the constraint is satisfied, we
can get the analytical solution with the primal-dual method. The solution to the primal problem is:

θ∗ =θk +
1

λ∗H
−1(g − gEIC ν∗) (11)

where λ and ν are the Lagrangian multipliers of the KL-divergence term and the constraint term in
the Lagrangian function, respectively. λ∗, ν∗ are the solutions to the dual problem:

ν∗ = max{0, λ
∗c− u

v
}, λ∗ = argmax

λ≥0

{
1
2λ

(
u2

v − q
)
+ λ

2

(
c2

v − δ
)
− uc

v , ifλc > u

− 1
2

(
q
λ + λδ

)
, otherwise,

(12)
where q = gTH−1g, u = gTH−1gEIC , v = (gEIC )TH−1gEIC . When the constraint is violated, we
use the conjugate gradient method Achiam et al. (2017) to decrease the constraint value:

θ∗ =θk −
(

2δ

(gEIC )TH−1gEIC

) 1
2

H−1gEIC (13)

We also provide the MICE-PIDLag optimization method, detailed in Appendix A.3.

4.4 THEORETICAL ANALYSIS

For extrinsic-intrinsic constraints in MICE, we give an upper bound on the constraint difference:
Theorem 1 (Extrinsic-intrinsic Constraint Bounds). For arbitrary two policies π′ and π, the follow-
ing bound for cumulative discount extrinsic-intrinsic cost holds:

JEIC (π′)− JEIC (π) ≤ 1

1− γ
Es∼dπ,a∼π′

[
AEIC (s, a|π) + 2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

(14)

where ϵEIπ′ := maxs |Ea∼π′,s′∼P [ε
EI
V (s, a, s′)]|, εEIV (s, a, s′) = CEI(s, a, s′) + γVC(s

′) − VC(s)
denotes the extrinsic-intrinsic TD-error, DTV (π

′||π)[s] = (1/2)
∑
a |π′(a|s)− π(a|s)|.

The proof is provided in Appendix B.3. The upper bound in Theorem 1 is associated with the TV
divergence between π and π′. A larger divergence between these two policies results in a larger
upper bound on the constraint gap. This theorem explains the optimization objective 9 within the
trust region in MICE.

By mitigating the underestimation, the MICE algorithm significantly reduces constraint violations
during the learning process. We further establish a theoretical upper bound on the constraint viola-
tion for the updated policy within the optimization framework of MICE:
Theorem 2 (MICE Update Worst-Case Constraint Violation). Suppose πk, πk+1 are related by the
optimization objective 9, an upper bound on the constraint of the updated policy πk+1 is:

JC(πk+1) ≤ d− I +

√
2δγϵ

πk+1

C

(1− γ)2
(15)

where ϵ
πk+1

C := maxs |Ea∼πk+1
[Aπk

C (s, a)]|, I = Eτ |πk+1

[∑∞
t=0 γ

tcIt
]
.
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A proof is provided in Appendix B.3. We further analyze this upper bound in Appendix C.2.1, which
is related to the intrinsic factor. Theorem 2 demonstrates that our method achieves a tighter upper
bound on constraint violation compared to CPO, guaranteeing that the updated policy in MICE has a
lower probability of exceeding the constraint threshold. Based on similar assumptions as in TD3 and
Double Q-learning, we give convergence guarantees of the extrinsic-intrinsic cost value function.
Theorem 3 (Convergence Analysis). Given the following conditions: (1) Each state-action pair is
sampled an infinite number of times. (2)The MDP is finite. (3) γ ∈ [0, 1). (4) QEI

C values are stored
in a lookup table. (5) QEI

C receives an infinite number of updates. (6) The learning rates satisfy
αt(s, a) ∈ [0, 1],

∑
t αt(s, a) = ∞,

∑
t(αt(s, a))

2 < ∞ with probability 1 and αt(s, a) = 0,
∀(s, a) ̸= (st, at). (7) V ar[cEt + cIt ] < ∞,∀s, a. The extrinsic-intrinsic QEI

C will converge to the
optimal value function Q∗

C with probability 1.

The proof is in Appendix B.4. Theorem 3 ensures that our method converges to the optimal solution.

5 EXPERIMENT

Figure 3: Comparison of MICE to baselines on Safety Gym. The x-axis is the total number of
training steps, the y-axis is the average return or constraint. The solid line is the mean and the
shaded area is the standard deviation. The dashed line is the constraint threshold which is 25.

Figure 4: Comparison of MICE to baselines on Safety MuJoCo. The x-axis is the total number of
training steps, the y-axis is the average return or constraint.

The experiments aim to answer the following questions: 1) Does MICE reduce constraint violations
during training while maintaining policy performance compared to baselines? 2) Does the intrin-

8
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(a) underestimation (b) underestimation (c) cost thresholds (d) cost thresholds

Figure 5: (a)(b) Validation experiments of mitigating underestimation with MICE. The y-axis is the
cost value estimate minus the true value, and the dashed line is the zero deviation. (c)(d) Robustness
of MICE to different cost thresholds.

(a) Return (b) Constraint (c) Return (d) Constraint

Figure 6: Ablation experiments of extrinsic-intrinsic cost value in MICE. Comparing the MICE
algorithm with versions that directly add various constants (5, 10, 15) into the cost value function.

sic cost component effectively mitigate underestimation? We conducted experiments across four
navigation tasks using the OpenAI Safety Gym Brockman et al. (2016) and three MuJoCo physical
simulator tasks Todorov et al. (2012). Baselines include the primal-dual method PID Lagrangian
Stooke et al. (2020), the primal method CPO Achiam et al. (2017), and state augmentation meth-
ods Saute Sootla et al. (2022a) and Simmer Sootla et al. (2022b), which focus on zero constraint
violations. Experimental results for more baselines are provided in the Appendix C.2.3. We imple-
mented the MICE-CPO and MICE-PIDLag methods, with detailed optimization procedures outlined
in Appendix A. All experiments were conducted under uniform conditions to ensure fairness and re-
producibility. The total training time step is 107, with a maximum trajectory length of 1000 steps.
To reduce randomness, we used 6 random seeds for each method, calculating the mean and variance
of the results. Additional experiments are provided in Appendix C.2, and our code can be found in
Appendix C.1.

Environments Description. All tasks aim to maximize the expected reward (the higher, the better)
while satisfying the constraint (the lower, the better). In Safety Gym, we train Point and Car agents
on navigation tasks, including the Goal task to navigate to a goal while avoiding hazards, and the
Circle task to go around the center of the circle area without crossing boundaries. In Safety MuJoCo,
agents receive rewards for running along a straight path with a velocity limit for safety and stability.

Performance and Constraint. Figure 3 shows the learning curves for MICE and baseline methods
in Safety Gym. The first row represents the cumulative discount reward of the episode during the
training process. The second row is the cumulative discount cost, with the black dashed line indi-
cating the cost threshold. The results indicate that MICE significantly reduces constraint violations
during training while maintaining similar policy performance compared to baselines. Notably, in
navigation tasks like PointGoal, the intrinsic cost provides predictive signals to avoid obstacles, al-
lowing the policy performance of MICE-CPO to converge faster than the baseline CPO. In Safety
MuJoCo, as shown in Figure 4, MICE achieves zero violation for the velocity constraint during
training, with a convergence speed comparable to baselines. Our approach matches the constraint
satisfaction levels of Saute and SimmerPID, which emphasize zero constraint violations, while sur-
passing their policy performance. Extended experiments covering a broader range of task types and
robot types are provided in Appendix C.2.5.

Mitigating Underestimation with MICE. To assess the effectiveness of the extrinsic-intrinsic cost
value function in MICE for mitigating underestimation, we compare the gap between the cost value

9
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(a) Return (b) Constraint (c) Return (d) Constraint
Figure 7: Sensitivity analysis of hyperparameters in MICE. (a)(b) Comparative experiment with
different intrinsic factor h. (c)(d) Comparative experiment with different memory capacity.

estimates and their true values across MICE and baselines. True values are derived using the average
discount constraint over 1,000 episodes under the current policy. Results in Figure 5a and 5b illus-
trate that the MICE method significantly mitigates the underestimation by enhancing the cost value
estimates. Furthermore, the extrinsic-intrinsic cost value function gradually converges to the true
value, confirming the convergence analysis in Theorem 3. Besides, we compared the TD3-based
cost value function and MICE in mitigating constraint bias, detailed in Appendix C.2.4.

Ablation Study of Intrinsic Cost. To validate the effectiveness of memory-driven intrinsic cost
estimate module in MICE, we construct comparison experiments between the MICE algorithm and
versions that directly add various constants (5, 10, 15) into the cost value function. Results shown
in Figure 6 demonstrate that adding constants decreases policy performance. Our method is both
theoretically and empirically validated to converge to the optimal value. While this is not guaranteed
in versions of adding constants, leading to reduced performance and sub-optimal results for the final
policy. Compare to constants, the intrinsic cost signal contains more memory-related and task-
related information, helping to avoid hazards and improve performance.

Robustness to Constraint Thresholds. To evaluate the adaptability of MICE to varying constraint
thresholds, we construct sensitivity analysis experiments in SafetyPointGoal1-v0 with thresholds
set at 0, 15, and 25, as illustrated in Figure 5c and 5d. The results show that MICE effectively
accommodates different constraint threshold requirements. Specifically, when the threshold is set
at 15, MICE balances policy performance with constraint satisfaction. In scenarios with a strict
threshold of 0, MICE successfully achieves the policy striving to meet the constraints.

Sensitivity Analysis of Hyperparameters. The intrinsic factor and memory capacity are critical
hyperparameters in MICE, and we conducted experiments to assess their sensitivity individually.
(1) By modifying the intrinsic factor h, we can effectively adjust the agent’s risk preference to suit
various task requirements. Figure 7a and 7b demonstrate the robustness of MICE for different risk
preferences in SafetyCarCircle-v0. Specifically, for tasks demanding high security, increasing h ef-
fectively enhances the agent’s risk aversion. While excessive risk aversion may compromise policy
performance, it is essential for security-oriented tasks. h is set to 0.6 in our work. More detailed
analysis and experiments on the intrinsic factor are provided in Appendix C.2.1. (2) Memory capac-
ity presents less impact on MICE performance compared to the intrinsic factor, as shown in Figure
7c and 7d in SafetyCarCircle-v0. A larger memory capacity slightly reduces constraint violation
by allowing the storage of earlier trajectories that assist the agent in avoiding hazards. However, it
may also retain less relevant trajectories, resulting in a more conservative policy. A smaller memory
capacity causes a more aggressive policy due to the limited number of saved trajectories, which may
not provide sufficient intrinsic signals when exploring new regions, potentially leading to constraint
violations. We set the capacity as 64 in this paper. Detailed analysis is provided in Appendix C.2.2.

6 CONCLUSION

This paper highlights an important challenge in CRL, underestimation of the cost value, which
significantly contributes to constraint violations. To mitigate the underestimation, we propose the
MICE algorithm, which incorporates an extrinsic-intrinsic cost value update mechanism inspired by
human cognitive processes. MICE enhances the cost estimates of unsafe trajectories, reducing the
likelihood of constraint violations. Theoretically, we give the upper bound of constraint violations
and convergence guarantees of the MICE algorithm. Extensive experimental results show that MICE
reduces constraint violations while maintaining robust policy performance.
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Reproducibility Statement. We make a lot of efforts to ensure reproducibility of our work. We
provide a link to a anonymous downloadable source code in Appendix C.1. For the theoretical results
presented in this paper, we provide clear explanations of all assumptions, along with complete proofs
of the claims, which can be found in Appendix B. For the environments used in the experiments, a
complete description of the tasks and agents included in environments is provided in Appendix C.3.
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A SAFETY POLICY OPTIMIZATION IN MICE

A.1 NOTATIONS

Notations

cI intrinsic cost

cE extrinsic cost

R reward function

P transition probability function

ρ initial state distribution

γ discount factor of the reward

π the policy

dπ the discounted future state visitation distribution

τ trajectory

C extrinsic cost function

Qπ
R(s, a) action-value function

V π
R (s) value function

AπR(s, a) advantage function

JR the expected discount return

JC the expected discount cost return

d cost threshold

ΠC the set of feasible policies

Qπ
C(s, a) action cost value function

V π
C (s) cost value function

AπC(s, a) cost advantage function

ϵ the noise in value estimate

Q̂C(s, a) the approximate cost value function

α step size

M flashbulb memory

τm unsafe trajectory

G intrinsic generator

ϕ network parameters of intrinsic generator

h intrinsic factor

γI intrinsic discount factor

W weight vector of state-action pairs

ω intrinsic weight

QEI
C extrinsic-intrinsic cost value function

JEIC cumulative discount extrinsic-intrinsic cost

CEI extrinsic-intrinsic cost function

AEIC extrinsic-intrinsic cost advantage function

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The CRL aims to find an optimal policy by maximizing the expected discount return over the set of
feasible policies ΠC := {π ∈ Π : JC(π) ≤ d}:

argmax
π∈Π

JR(π)

s.t. JC(π) ≤ d
(16)

The following equation briefly gives the performance difference of arbitrary two policies, which
represents the expected return of another policy π′ in terms of the advantage function over π:

JR(π
′)− JR(π) =

1

1− γ
Es∼dπ′ ,a∼π′ [AπR(s, a)] (17)

This implies that iterative updates to the policy, π′(s) = argmaxaA
π
R(s, a), lead to performance

improvement until convergence to the optimal solution.

According to the performance difference equation (17), CRL is defined as a constrained optimization
problem:

πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[Aπk

C (s, a)] ≤ d
(18)

where policy π ∈ Πθ is parameterized with parameters θ, and πk represents the current policy.

In this paper, we define the cumulative discount extrinsic-intrinsic cost as JEIC (π) :=
Eτ∼π[

∑∞
t=0 γ

tCEI(st, at)] = Eτ∼π[
∑∞
t=0 γ

t(cE + cI)], where CEI(s, a) = cE + cI is the
extrinsic-intrinsic cost function. The extrinsic-intrinsic advantage function in MICE is defined as:

AEIC (s, a) = Es′ [cE + cI + γVC(s
′)− VC(s)] (19)

To reduce constraint violations, we replace JC with the extrinsic-intrinsic constraint JEIC in the
optimization objective. We give the optimization objective of MICE based on the extrinsic-intrinsic
cost value estimate and Lemma 1:

πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)] ≤ d

(20)

where policy π ∈ Πθ is parameterized with parameters θ, and πk represents the current policy.
We propose two optimization methods, MICE-CPO and MICE-PIDLag, based on CPO and PID
Lagrangian respectively, to solve the optimization 20.

A.2 MICE-CPO

The complex dependency of state visitation distribution dπ(s) on unknown policy π makes 20 diffi-
cult to optimize directly. To address this, this paper uses samples generated by the current policy πk
to approximate the original problem locally. Based on the extrinsic-intrinsic value update function,
we seek to solve the following optimization problem in the trust region:

πk+1 =arg max
π∈Πθ

Es∼dπk ,a∼π[A
πk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

EI
C (s, a|πk)] ≤ d

D(π∥πk) ≤ δ

(21)

where Πθ is the policy set parameterized by parameter θ, D(π∥πk) = Es∼dπk [DKL(π∥πk)[s]], DKL

is the KL divergence and δ > 0 is the step size. The set {π ∈ Πθ : D(π∥πk) ≤ δ} is the trust
region.
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In the MICE-CPO method, we approximate the reward objective and cost constraints with first-order
expansion and approximate the KL-divergence constraint with second-order expansion. The local
approximation to 21 is:

θk+1 =argmax
θ

gT (θ − θk)

s.t. c+ (gEIC )T (θ − θk) ≤ 0

1

2
(θ − θk)

TH(θ − θk) ≤ δ

(22)

where g denotes the gradient of the reward objective in 21, gEIC denotes the gradient of extrinsic-
intrinsic constraint in 21, c = JC(πk) − d, H is the Hessian of the KL-divergence. When the
constraint is satisfied, we can get the analytical solution with the primal-dual method. The solution
to the primal problem is

θ∗ =θk +
1

λ∗H
−1(g − gEIC ν∗) (23)

where λ and ν are the Lagrangian multipliers of the KL-divergence term and the constraint term in
the Lagrangian function, respectively. λ∗, ν∗ are the solutions to the dual problem:

ν∗ = max{0, λ
∗c− u

v
} (24)

λ∗ = argmax
λ≥0

{
1
2λ

(
u2

v − q
)
+ λ

2

(
c2

v − δ
)
− uc

v , ifλc > u

− 1
2

(
q
λ + λδ

)
, otherwise,

(25)

where q = gTH−1g, u = gTH−1gEIC , v = (gEIC )TH−1gEIC .

When the constraint is violated, we use the conjugate gradient method to decrease the constraint
value:

θ∗ =θk −
(

2δ

(gEIC )TH−1gEIC

) 1
2

H−1gEIC (26)

A.3 MICE-PIDLAG

In the MICE-PIDLag method, we write the CRL problem 20 as the first-order dynamical system:

θk+1 = θk + η(g − λkg
EI
C )

yk = JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)]

λk = h(y0, · · · , yk, d)

(27)

where η is the step size of the update, g is the gradient of reward objective in 20 and gEIC denotes the
gradient of extrinsic-intrinsic constraint in 20. h denotes the control function. λ is the Lagrangian
multiplier for the 20. We provide the updated formulas for the Lagrangian multiplier in MICE-
PIDLag:

λ← (KP∆+KII +KD∂)+ (28)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where (·)+ = max{0, ·}, and

∆← (JC(πk) +
1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)]− d),

I ← (I +∆)+,

∂ ←
(
JC(πk) +

1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk)]− JC(πk−1)−

1

1− γ
Es∼dπ,a∼π[AEIC (s, a|πk−1)]

)
+

=
1

1− γ

(
Es∼dπ,a∼π[AEIC (s, a|πk)]− Es∼dπ,a∼π[AEIC (s, a|πk−1)] + Es∼dπk ,a∼πk

[A
πk−1

C (s, a)]
)
+

(29)
KP , KI , and KD are the coefficients of the respective control terms. The initial value of the integral
term I is 0.

B THEORETICAL PROOF

In this section, we provide theoretical guarantees for our approach from several perspectives. First,
we present the estimation bias lemma and the expected constraint difference between arbitrary two
policies under the new cost value function. Then, we provide an extrinsic-intrinsic constraint bound
and a tighter constraint violation upper bound in the MICE update. Additionally, we demonstrate
that our cost value function can converge to the optimal solution.

B.1 ESTIMATION BIAS LEMMA

Lemma 2. In a finite MDP for a given state-action pair (s, a), the difference between the optimal
cost value function Q∗

C(s, a) and the cost value estimate QEI
C,m(s, a) after m updates is given by:

Q∗
C(s, a)−QEI

C,n+m(s, a) = (1−α)m[Q∗
C(s, a)−QEI

C,n(s, a)]−α
m∑
i=1

(1−α)i−1tn+m−i(s, a) (30)

where QEI
C,n(s, a) is the estimate of the value function at the n − th update, α is the step size, and

tn(s, a) = cE + cI + γmina′ Es′ [QEI
Cn

(s′, a′)]−Q∗
C(s, a) is the target difference.

Proof. We use induction method to proof this lemma 2.

Base Case: m = 1

Substituting m = 1 in lemma 2, we get:

Q∗
C(s, a)−QEI

C,n+1(s, a) = (1− α)[Q∗
C(s, a)−QEI

C,n(s, a)]− αtn(s, a) (31)

According to the update equation of the extrinsic-intrinsic cost value function in MICE, we get:

QEI
C,n+1(s, a) = (1− α)QEI

C,n(s, a) + α(cE + cI + γmin
a′

Es′ [QEI
C,n(s

′, a′)])

= (1− α)QEI
C,n(s, a) + α(tn(s, a) +Q∗

C(s, a))
(32)

which is equivalent to equation 31.

Induction Step: m = k + 1

Assuming lemma 2 is true for m = k, which is:

Q∗
C(s, a)−QEI

C,n+k(s, a) = (1−α)k[Q∗
C(s, a)−QEI

C,n(s, a)]−α

k∑
i=1

(1−α)i−1tn+k−i(s, a) (33)

Now we need to prove that it holds for m = k + 1. According to the cost value update equation in
MICE, we get:
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QEI
C,n+k+1(s, a) = (1− α)QEI

C,n+k(s, a) + α(cE + cI + γmin
a′

Es′ [QEI
C,n+k(s

′, a′)])

= (1− α)QEI
C,n+k(s, a) + α(tn+k(s, a) +Q∗

C(s, a))
(34)

Then we can get:

Q∗
C(s, a)−QEI

C,n+k+1(s, a) = (1− α)[Q∗
C(s, a)−QEI

C,n+k(s, a)]− αtn+k(s, a) (35)

Substituting the equation 33, we get:

Q∗
C(s, a)−QEI

C,n+k+1(s, a)

=(1− α)

[
(1− α)k[Q∗

C(s, a)−QEI
C,n(s, a)]− α

k∑
i=1

(1− α)i−1tn+k−i(s, a)

]
− αtn+k(s, a)

=(1− α)k+1[Q∗
C(s, a)−QEI

C,n(s, a)]− α

k+1∑
i=1

(1− α)i−1tn+k+1−i(s, a)

(36)
which satisfies the equation when m = k + 1 in lemma 2.

Lemma 2 indicates that when n = 0 and QEI
C,n(s, a) is a random initial value for the cost value

function, in a stochastic high value region of the state-action space, it is likely that Q∗
C(s, a) >

QEI
C,n(s, a) Karimpanal et al. (2023). In this case, overestimation of our extrinsic-intrinsic cost

value function can effectively reduce the estimation bias, whereas underestimation in the traditional
value function further increases the estimation bias.

B.2 CONSTRAINT DIFFERENCE LEMMA

Lemma 3. Given arbitrary two policies π and π′, the difference in expectation constraint of
extrinsic-intrinsic JEIC (π′) and extrinsic JC(π) can be expressed as:

JEIC (π′)− JC(π) = Eτ |π′

[ ∞∑
t=0

γtAEIC (st, at|π)

]
(37)

where AEIC (st, at|π) = Est+1 [c
E
t + cIt + γV π

C (st+1) − V π
C (st)]. The expectation is taken over

trajectories τ , and Eτ |π′ indicates that actions are sampled from π′ to generate τ .

Proof. The expectations in JEIC (π′) and JC(π) can be expanded as:

JEIC (π′) := Eτ∼π′ [

∞∑
t=0

γt(cE(st, π
′(st)) + cI(st, π

′(st)))]

JC(π) := Eτ∼π[
∞∑
t=0

γtcE(st, π(st))] = Es0∼ρ[V π
C (s0)]

(38)
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JEIC (π′)− JC(π)

=Eτ |π′

[ ∞∑
t=0

γt
(
cE(st, π

′(st)) + cI(st, π
′(st))

)]
− Es0∼ρ[V π

C (s0)]

=Eτ |π′

[ ∞∑
t=0

γt
(
cE(st, π

′(st)) + cI(st, π
′(st))

)
− V π

C (s0)

]

=Eτ |π′

[ ∞∑
t=0

γt
(
cE(st, π

′(st)) + cI(st, π
′(st) + V π

C (st)− V π
C (st))

)
− V π

C (s0)

]
=Eτ |π′ [−V π

C (s0) + cE(s0, π
′(s0)) + cI(s0, π

′(s0)) + V π
C (s0)− V π

C (s0)

+ γcE(s1, π
′(s1)) + γcI(s1, π

′(s1)) + γV π
C (s1)− γV π

C (s1) + · · · ]

=Eτ |π′

[ ∞∑
t=0

γt
(
cE(st, π

′(st)) + cI(st, π
′(st)) + γV π

C (st+1)− V π
C (st)

)]

=Eτ |π′

[ ∞∑
t=0

γtAEIC (st, π
′(st)|π)

]

(39)

Here the term AEIC (st, π
′(st)|π) denotes that the advantage value function AEIC is over π, the action

is selected according to π′.

The second equation above holds because that

Eτ |π′ [V π
C (s0)]

=Es∼dπ′ ,a∼π′,s′∼P [V π
C (s0)]

=Es0∼ρ [V π
C (s0)]

(40)

The initial state s0 in V π
C (s0) depends solely on the initial state distribution ρ, allowing the expecta-

tion over τ |π′ to be expressed as an expectation over s0 ∼ ρ.

The third equation in proof holds by adding V π
C while subtracting V π

C . The fourth equation expands
the cumulative sum over time steps t. The final equation follows from the definition of AEIC .

The performance difference theorem is a fundamental property in RL that describes the relationship
between the difference in expected cumulative rewards of arbitrary two policies and the advantage
function. Similarly, we provide an expression for the difference between the expected constraints of
two policies based on the extrinsic-intrinsic cost value function.

Lemma 4. Given arbitrary two policy π and π′, the difference in expectation of cumulative cost can
be expressed as:

JC(π
′)− JC(π) = Eτ |π′

[ ∞∑
t=0

γtAEIC (st, at|π)

]
− I (41)

where AEIC (st, at|π) = Est+1 [c
E
t + cIt + γV π

C (st+1) − V π
C (st)], I = Eτ |π′

[∑∞
t=0 γ

tcIt
]
.. The

expectation is taken over trajectories τ , and Eτ |π′ indicates that actions are sampled from π′ to
generate τ .
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Proof.

Eτ |π′

[ ∞∑
t=0

γtAEIC (st, at|π)

]

=Eτ |π′

[ ∞∑
t=0

γt
(
cEt + cIt + γV π(st+1)− V π(st)

)]

=Eτ |π′

[ ∞∑
t=0

γt
(
cEt + cIt

)
− V π(s0)

]

=Eτ |π′

[ ∞∑
t=0

γt
(
cEt + cIt

)]
− Es0 [V π(s0)]

=JC(π
′) + Eτ |π′

[ ∞∑
t=0

γtcIt

]
− JC(π)

(42)

B.3 CONSTRAINT BOUNDS

For extrinsic-intrinsic constraints in MICE, we give an upper bound on the constraint difference:

Theorem 4 (Extrinsic-intrinsic Constraint Bounds). For arbitrary two policies π′ and π, the follow-
ing bound for cumulative discount extrinsic-intrinsic cost holds:

JEIC (π′)− JEIC (π) ≤ 1

1− γ
Es∼dπ,a∼π′

[
AEIC (s, a|π) + 2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

(43)

where ϵEIπ′ := maxs |Ea∼π′,s′∼P [ε
EI
V (s, a, s′)]|, εEIV (s, a, s′) = CEI(s, a, s′) + γVC(s

′) − VC(s)
denotes the extrinsic-intrinsic TD-error, DTV (π

′||π)[s] = (1/2)
∑
a |π′(a|s)− π(a|s)|.

The upper bound in Theorem 4 is related to the TV divergence DTV (π
′∥π)[s] between π and π′.

DTV (π
′∥π) is the total variation divergence, as mentioned in TRPO and CPO, which is:

DTV (π
′||π)[s] = 1

2

∑
a

|π′(a|s)− π(a|s)| (44)

A larger divergence between the two policies results in a larger upper bound on the constraint gap.
This relationship supports the optimization objective 21 within the trust region in MICE.

Proof. Define the state visit probability for time step t as ptπ(s) = P (st = s|π), denote the transition
matrix as Pπ(s

′|s) =
∫
daπ(a|s)P (s′|s, a), we get ptπ = Pπp

t−1
π = · · · = P tπρ. The discounted

future state distribution dπ(s) satisfies:

dπ(s) = (1− γ)

∞∑
t=0

γtP (st = s|π)

= (1− γ)

∞∑
t=0

γtptπ(s)

= (1− γ)

∞∑
t=0

γtP tπρ

= (1− γ)

∞∑
t=0

(γPπ)
tρ

= (1− γ)(I − γPπ)
−1ρ

(45)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where ρ is the initial state distribution, I is the identity matrix. Multiply both sides by (I − γPπ),
we get

(I − γPπ)d
π(s) = (1− γ)ρ (46)

For cost value function VC(s) with polices π′ and π, we get the following according to the 46:

(1− γ)Es∼ρ[VC(s)] + Es∼dπ,a∼π,s′∼P [γVC(s′)]− Es∼dπ [VC(s)]

=(1− γ)

∫
dsρ(s)VC(s) +

∫
ds

∫
da

∫
ds′dπ(s)π(a|s)P (s′|s, a)γVC(s′)−

∫
dsdπ(s)VC(s)

=

∫
ds(1− γ)ρ(s)VC(s) +

∫
dsdπ(s)PπγVC(s

′)−
∫

dsdπ(s)VC(s)

=

∫
ds(I − γPπ)d

π(s)VC(s) +

∫
dsdπ(s)PπγVC(s

′)−
∫

dsdπ(s)VC(s)

=0
(47)

The third equation above holds as the 46. Then we get:

(1− γ)Es∼ρ[VC(s)] + Es∼dπ,a∼π,s′∼P [γVC(s′)]− Es∼dπ [VC(s)] = 0 (48)

The definition of discount total extrinsic-intrinsic cost is:

JEIC (π) =
1

1− γ
Es∼dπ,a∼π,s′∼P [CEI(s, a, s′)] (49)

By combining this with 48, we get the discount total extrinsic-intrinsic cost equation:

JEIC (π) = Es∼ρ[VC(s)] +
1

1− γ
Es∼dπ,a∼π,s′∼P [CEI(s, a, s′) + γVC(s

′)− VC(s)] (50)

where the first term on the right side is the estimate of the policy constraint, and the second term on
the right side is the average extrinsic-intrinsic TD-error of the approximator.

The extrinsic-intrinsic TD-error εEIV (s, a, s′) = CEI(s, a, s′)+γVC(s
′)−VC(s). According to the

equation 50, the expectation extrinsic-intrinsic constraint difference of any two policies is:

JEIC (π′)− JEIC (π) =
1

1− γ

(
Es∼dπ′ ,a∼π′,s′∼P [ε

EI
V (s, a, s′)]− Es∼dπ,a∼π,s′∼P [εEIV (s, a, s′)]

)
(51)

To simplify the representation, we denote ε̄π′(s) = Ea∼π′,s′∼P [ε
EI
V (s, a, s′)]. The first term of the

right side in 51 can be represented as:

Es∼dπ′ ,a∼π′,s′∼P [ε
EI
V (s, a, s′)] =

∫
dsdπ

′
∫

daπ′
∫

ds′PεEIV (s, a, s′)

= ⟨dπ
′
, ε̄π′⟩

= ⟨dπ, ε̄π′⟩+ ⟨dπ
′
− dπ, ε̄π′⟩

(52)

the second equation holds by adding dπ while subtracting dπ .

According to the Hölder’s inequality, for any p, q ∈ [1,∞] satisfy 1
p + 1

q = 1, we set p = 1 and
q =∞, and get:

⟨dπ
′
− dπ, ε̄π′⟩ ≤ ∥dπ

′
− dπ∥1∥ε̄π′∥∞ (53)
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According to the definition in this theorem, we have ∥ε̄π′∥∞ = ϵEIπ′ , and ∥dπ′ − dπ∥1 =

2DTV (d
π′∥dπ). According to the Lemma 3 in CPO, we have:

∥dπ
′
− dπ∥1 ≤

2γ

1− γ
Es∼dπ [DTV (π

′∥π)[s]] (54)

By the importance sampling, we get:

⟨dπ, ε̄π′⟩ = ⟨π
′

π
dπ, ε̄π⟩ (55)

The second term of the right side in 51 can be represented as:

Es∼dπ,a∼π,s′∼P [εEIV (s, a, s′)] =

∫
dsdπ

∫
daπ

∫
ds′PεEIV (s, a, s′)

= ⟨dπ, ε̄π⟩
(56)

Then we get the final result by combining the above equations:

JEIC (π′)− JEIC (π) ≤ 1

1− γ

(
⟨π

′

π
dπ, ε̄π⟩+ 2DTV (d

π′
∥dπ)ϵEIπ′ − ⟨dπ, ε̄π⟩

)
=

1

1− γ

(
(
π′

π
− 1)⟨dπ, ε̄π⟩+ 2DTV (d

π′
∥dπ)ϵEIπ′

)
≤ 1

1− γ
Es∼dπ,a∼π,s′∼P

[
(
π′

π
− 1)εEIV (s, a, s′) +

2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

=
1

1− γ
Es∼dπ,a∼π′

[
AEIC (s, a|π) + 2γϵEIπ′

1− γ
DTV (π

′∥π)[s]
]

(57)

By mitigating the underestimation, the MICE algorithm significantly reduces constraint violations
during the learning process. We further establish a theoretical upper bound on the constraint viola-
tion for the updated policy within the optimization framework of MICE:

Theorem 5 (MICE Update Worst-Case Constraint Violation). Suppose πk, πk+1 are related by the
optimization objective 21, an upper bound on the constraint of the updated policy πk+1 is:

JC(πk+1) ≤ d− I +

√
2δγϵ

πk+1

C

(1− γ)2
(58)

where ϵ
πk+1

C := maxs |Ea∼πk+1
[Aπk

C (s, a)]|, I = Eτ |πk+1

[∑∞
t=0 γ

tcIt
]
.

Theorem 5 demonstrates that our method achieves a tighter upper bound on constraint violation
compared to CPO, which guarantees that the updated policy in MICE has a lower probability of
exceeding the constraint limits.

Proof. According to the Corollary 2 in CPO Achiam et al. (2017),

JC(πk+1)− JC(πk) ≤
1

1− γ
Es∼dπk ,a∼πk+1

[
Aπk

C (s, a) +
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]

]
(59)

As πk, πk+1 are related by 21, we get

JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[AEIC (s, a|πk)] ≤ d (60)

which is:
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JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[cE + cI + γVC(s
′)− VC(s)] ≤ d

JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[Aπk

C (s, a)] +
1

1− γ
Es∼dπk ,a∼πk+1

[cI ] ≤ d

JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[Aπk

C (s, a)] ≤ d− I

(61)

According to Pinsker’s inequality, for arbitrary distributions p, q, the TV-divergence and KL-
divergence are related by:

DTV (p||q) ≤
√

DKL(p||q)
2

(62)

According to Jensen’s inequality, we get:

Es∼dπk [DTV (πk+1||πk)[s]] ≤
√

1

2
Es∼dπk [DKL(πk+1||πk)[s]]

≤
√

δ

2

(63)

Then we get the final result:

JC(πk+1) ≤ d− I +

√
2δγϵ

πk+1

C

(1− γ)2
(64)

B.4 CONVERGENCE ANALYSIS

Based on the same assumptions as in TD3 and Double Q-learning, we give convergence guarantees
of the extrinsic-intrinsic cost value function in MICE.

Lemma 5. Consider a stochastic process (ζt,∆t, Ft), t ≥ 0 where ζt,∆t, Ft : X → R satisfy the
equation:

ζt+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt) (65)
where xt ∈ X ant t = 0, 1, 2, · · · . Let Pt be a sequence of increasing σ-fields such that ζ0 and ∆0

are P0-measurable and ζt, ∆t and Ft−1 are Pt-measurable, t = 1, 2, · · · . Assume that the following
holds:

1. The set X is finite.

2. ζt(xt) ∈ [0, 1],
∑
t ζt(xt) = ∞,

∑
t(ζt(xt))

2 < ∞ with probability 1 and ∀x ̸= xt :
ζ(x) = 0.

3. ∥ E[Ft|Pt] ∥∞≤ κ ∥ ∆t ∥∞ +ct where κ ∈ [0, 1) and ct converges to 0 with probability
1.

4. V ar[Ft(xt)|Pt] ≤ K(1 + κ ∥ ∆t ∥∞)2, where K is some constant.

where ∥ · ∥∞ denotes the maximum norm. Then ∆t converges to 0 with probability 1.

We use the Lemma 5 to prove the convergence of our approach with a similar condition in Q-
learning.

Theorem 6 (Convergence Analysis). Given the following conditions:

1. Each state-action pair is sampled an infinite number of times.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2. The MDP is finite.

3. γ ∈ [0, 1).

4. QC values are stored in a lookup table.

5. QC receives an infinite number of updates.

6. The learning rates satisfy αt(s, a) ∈ [0, 1],
∑
t αt(s, a) = ∞,

∑
t(αt(s, a))

2 < ∞ with
probability 1 and αt(s, a) = 0, ∀(s, a) ̸= (st, at).

7. V ar[cEt + cIt ] <∞,∀s, a.

The extrinsic-intrinsic QEI
C will converge to the optimal value function Q∗

C with probability 1.

Theorem 6 ensures that our method converges to the optimal solution.

Proof. We apply Lemma 5 to prove Theorem 6. Denote the variables in Lemma 5 with Pt =
{QEI

C0, s0, a0, α0, c
E
1 , s1, · · · , st, at}, X = S × A, ζt = αt. Define ∆t(st, at) = QEI

Ct (st, at) −
Q∗
C(st, at), Ft = cEt + cIt + γQEI

Ct (st+1, a
∗)−Q∗

C(st, at), where a∗ = argminaQ
EI
C (st+1, a).

Condition 1 of the lemma 5 holds by condition 2 of the theorem 6. Condition 2 of the lemma 5 holds
as the theorem condition 6 with ζt = αt. The condition 4 of lemma 5 holds as a consequence of the
condition 7 in the theorem.

So we need to show that the lemma condition 3 on the expected contraction of Ft holds.

The extrinsic-intrinsic Q-learning equation in our paper is:

QEI
C (s, a) = (1− α)QEI

C (s, a) + α(cE + cI + γmin
a′

Es′ [QEI
C (s′, a′)]) (66)

We have
∆t+1(st, at) =QEI

Ct+1(st, at)−Q∗
C(st, at)

=(1− αt)Q
EI
Ct (st, at) + αt(c

E
t + cIt + γQEI

t (st+1, a
∗))−Q∗

C(st, at)

=(1− αt)(Q
EI
Ct (st, at)−Q∗

C(st, at)) + αt(c
E
t + cIt + γQEI

Ct (st+1, a
∗)−Q∗

C(st, at))

=(1− αt)∆t + αtFt
(67)

For the Ft, we can write
Ft(st, at) =cEt + cIt + γQEI

Ct (st+1, a
∗)−Q∗(st, at)

=FEt (st, at) + cIt
(68)

where FEt (st, at) = cEt + γQEI
Ct (st+1, a

∗) − Q∗
C(st, at) is the value of Ft in normal Q-learning.

According to the convergence analysis in Q-learning, we get E[FEt |Pt] ≤ γ ∥ ∆t ∥∞. Then
condition 3 of lemma 2 holds if cIt converges to 0 with probability 1.

The intrinsic cost in our paper is defined as:

cI =
hγkI

(1 + el2)
(69)

where γI ∼ (0, 1). So cI converges to 0 with probability 1, which then shows condition 3 of lemma
5 is satisfied. So the QEI

C (st, at) converges to Q∗(st, at).

C EXPERIMENT

C.1 ALGORITHM PROCESS

We provide the main code in an anonymized form for MICE-CPO and MICE-PIDLag in https:
//anonymous.4open.science/r/ICLR25-6568. A formal description of our method is
shown in Algorithm 1.
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Algorithm 1 MICE: Memory-driven Intrinsic Cost Estimation

Input: Initialize policy network πθ, value networks V ω
R and V ψ

C , flashbulb memory M , and intrinsic
generator Gϕ. Set the hyperparameter.
Output: The optimal policy parameter θ.
1: for epoch k=0,1,2,... do
2: Sample N trajectories τ1, ..., τN under the current policy πθk .
3: Update flashbulb memory M .
4: Output the intrinsic cost cI by the intrinsic generator.
5: Process the trajectories to C-returns, calculate extrinsic-intrinsic advantage functions AEI

with V ψ
C and cI by GAE method Schulman et al. (2015).

6: for K iterations do
7: Update value networks V ω

R , V ψ
C , and intrinsic generator Gϕ.

8: Update policy network πθ.
9: if 1

N

∑N
j=1 DKL(πθ||πθk)[sj ] > δ then

10: Break.
11: end if
12: end for
13: end for
14: return policy parameters θ = θk+1.

C.2 ADDITIONAL EXPERIMENTS

We design comparative experiments to verify the effect of hyperparameters in MICE and ablation
experiments to verify the effectiveness of the components in MICE. Additionally, we conduct com-
parative experiments against more baselines.

C.2.1 INTRINSIC FACTOR

(a) Return (b) Constraint (c) Return (d) Constraint

Figure 8: Sensitivity analysis of MICE algorithm for different intrinsic factor in different environ-
ments. (a)(b) are in the SafetyCarCirlce1-v0 environment, (c)(d) are in the SafetyPointGoal1-v0
environment.

We construct experiments in different environments to analyze the sensitivity of the MICE algorithm
to various intrinsic factors. The results are illustrated in Figure 8, where h = 0.6 is the value set in
our paper.

Increasing the intrinsic factor enhances the intrinsic cost, thereby raising the agent’s risk awareness.
This adjustment can effectively mitigate the underestimation bias in cost value estimates and reduce
constraint violations, which is particularly important for safety-critical tasks that require a more con-
servative policy. However, setting an excessively high intrinsic factor may lead to an overestimation
bias, adversely affecting policy performance, as observed with h = 0.8 in Figure 8. Conversely,
decreasing the intrinsic factor can enhance policy performance for tasks that are less sensitive to
safety. But if the intrinsic factor is too small, it may fail to sufficiently counteract the underestima-
tion bias, resulting in partial constraint violations, as demonstrated with h = 0.4 in Figure 8. In
our experiments, h is set to 0.6, which balance policy performance and constraint satisfaction across
various tasks.
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Furthermore, we provide a theoretical analysis of the intrinsic factor within the MICE framework.
The Worst-Case Constraint Violation bound in CPO Achiam et al. (2017) is:

JC(πk+1) ≤ d+

√
2δγϵ

πk+1

C

(1− γ)2
(70)

In our paper, the bound is:

JC(πk+1) ≤ d− I +

√
2δγϵ

πk+1

C

(1− γ)2
(71)

where ϵ
πk+1

C := maxs |Ea∼πk+1
[AC(s, a)]|, I = Eτ |πk+1

[∑∞
t=0 γ

tcIt
]
. cIt =

hγk
I

(1+el2(t))
,

where l2(t) =
∑n−1
i=0 ∥W (τmi (t) − τ(t))∥2. As l2(t) ≥ 0 and 0 < γI < 1. Denote the minimum

value of cIt as cImin, then we get 0 ≤ cImin ≤ cIt ≤ h
2 .

The term of I in our theorem 2 is bounded by:

0 ≤ cImin(1− γt)

1− γ
≤ I ≤ h(1− γt)

2(1− γ)
(72)

Then the upper bound d− I +
√
2δγϵ

πk+1
C

(1−γ)2 in our paper satisfies:

d−h(1− γt)

2(1− γ)
+

√
2δγϵ

πk+1

C

(1− γ)2
≤ d−I+

√
2δγϵ

πk+1

C

(1− γ)2
≤ d−cImin(1− γt)

1− γ
+

√
2δγϵ

πk+1

C

(1− γ)2
≤ d+

√
2δγϵ

πk+1

C

(1− γ)2

(73)

The right-hand side of the above equation is the upper bound in CPO, which indicates that our upper
bound is smaller than that of CPO. We can adjust the scale of the left-hand side of the above equation
by controlling the intrinsic factor h, which is characterized as risk preference. By increasing h,
we obtain a safer but more conservative policy. Conversely, by decreasing h, we can get a high-
performance policy with partial constraint violation. The results supporting this observation are
illustrated in Figure 8.

C.2.2 MEMORY CAPACITY

(a) Return (b) Constraint
Figure 9: Comparative experiment on the effect of different flashbulb memory capacity on the
performance of MICE-CPO algorithm in SafetyCarCircle1-v0 environment.

We conduct additional experiments in the SafetyCarCircle1-v0 environment, varying the effect of the
flashbulb memory capacity in the MICE-CPO method. We experimented with memory capacity of
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16, 64, and 128, with 64 being the value used in our original paper. The results of these experiments
are shown in Figure 9.

With a memory capacity of 16, the results exhibit a more aggressive policy with more constraint
violations. This occurs because a smaller memory can only store a limited number of unsafe trajec-
tories. When the policy explores new danger zones, the memory may not provide sufficient intrinsic
cost signals, leading to partial constraint violations but potentially higher performance.

Conversely, with a larger memory capacity of 128, the results show a more conservative policy with
fewer constraint violations. A larger memory can store more past experiences, helping the agent
avoid a greater number of known risks. However, for on-policy approaches, an excessively large
memory may retain trajectories that are not relevant to the current policy. This misalignment can
result in an overly conservative policy that hinders performance.

The performance is well-balanced at a medium memory capacity of 64, which was chosen in our
original experiments. This capacity allows the agent to remember a sufficient number of past unsafe
experiences, providing an adequate intrinsic cost signal to avoid known risks while maintaining
robust policy performance.

C.2.3 BASELINES

The MICE approach can be extended to other CRL algorithms based on actor-critic architectures.
We compare MICE-CPO and MICE-PIDLag with their corresponding baselines, CPO and PIDLag,
across multiple environments to validate the improvements offered by our approach. The results are
shown in Figure 10 and Figure 11, which indicates that our MICE approach effectively improves
constraint satisfaction over the respective original approaches while maintaining the same or even
better level of policy performance.

We introduce more baselines to compare the effect of MICE. CUP Yang et al. (2022) is a projection
approach that provides generalized theoretical guarantees for surrogate functions with a general-
ized advantage estimator Schulman et al. (2015), effectively reducing variance while maintaining
acceptable bias. IPO Liu et al. (2020) augments the objective with a logarithmic barrier function to
restrict the policy to feasible regions. P3O Zhang et al. (2022) penalizes constraints with a ReLU
operator to obtain an unconstrained problem. We designed comparison experiments that include
these baselines, as shown in Figure 12 and 13. These baselines are implemented based on the uni-
fied framework for safe RL in Ji et al. (2023). The results indicate that our approach outperforms
baselines in both policy performance and constraint satisfaction across multiple tasks.

Here, we provide a additional introduction to the baseline methods employed in the main text. State
augmentation methods aim to achieve constraint satisfaction with probability one. Saute RL Sootla
et al. (2022a) eliminates safety constraints by expanding them into the state space and reshaping the
objective. Specifically, the residual safety budget is treated as a new state to quantify the risk of
violating the constraint. Simmer Sootla et al. (2022b) extends the state space with a state encapsu-
lating the safety information. This safe state is initialized with a safety budget, and the value of the
safe state can be used as a distance measure to the unsafe region. Simmer reduces safety constraint
violations by scheduling the initial safety budget.

WCSAC Yang et al. (2021) is a constrained RL algorithm that extends the Soft Actor-Critic al-
gorithm with a safety critic algorithm for risk control. It obtains a certain level of conditional
Value-at-Risk (CVaR) from the distribution as a safety measure to judge constraint satisfaction.
We construct experiments to compare WCSAC and MICE in the SafetyPointGoal1-v0 environment,
with hyperparameters in WCSAC set as specified in its original paper. The results, shown in Figure
14, indicate that our method and WCSAC achieve similar results in terms of constraint satisfaction,
MICE converges faster, as shown in Figure 14(b). In terms of cumulative rewards, MICE signifi-
cantly outperforms WCSAC, as shown in Figure 14(a). The CVaR method in WCSAC focuses on
the tail distribution of the cost value function, which can be affected by extreme data, resulting in
overly conservative policy performance. In contrast, MICE effectively balances policy performance
and constraint satisfaction by mitigating underestimation.
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Figure 10: Comparison of MICE and their respective baseline approaches on Safety Gym. The x-
axis is the total number of training steps, the y-axis is the average return or constraint. The solid
line is the mean and the shaded area is the standard deviation. The dashed line in the cost plot is the
constraint threshold which is 25.

Figure 11: Comparison of MICE and their respective baseline approaches on Safety MuJoCo.

C.2.4 COMPARED TO TD3-BASED COST VALUE FUNCTION

TD3 is a reinforcement learning method designed to mitigate the overestimation bias in the reward
value function, which uses the minimum output from two separately-learned action-value networks
during policy update. Similarly, TD3 can serve as a baseline for addressing underestimation bias in
cost by using the maximum output from two separately-learned cost value networks. We conducted
experiments to compare the cost value estimation bias between TD3 cost value function and MICE
with the PIDLag optimization method in SafetyPointGoal1-v0 and SafetyCarGoal1-v0, as shown in
Figure 15.

The results show that TD3 mitigates underestimation bias in cost value estimation, but it cannot
fully eliminate it. This limitation arises from the inherent slow adaptation of neural networks, which
results in a residual correlation between the value networks, thus preventing TD3 from completely
eliminating the underestimation bias. In contrast, MICE can completely eliminate this bias by ad-
justing the intrinsic factor, leading to improved constraint satisfaction.

Additionally, compared to the TD3 cost value function, the flashbulb memory structures in MICE
help address the catastrophic forgetting issue in neural networks Lipton et al. (2016), where agents
may forget previously encountered states and revisit them under new policies. This mechanism
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Figure 12: Comparison of MICE to baselines on Safety Gym. The x-axis is the total number of
training steps, the y-axis is the average return or constraint. The solid line is the mean and the
shaded area is the standard deviation. The dashed line in the cost plot is the constraint threshold
which is 25.

Figure 13: Comparison of MICE to baselines on Safety MuJoCo.

generates intrinsic cost signals that guide the agent away from previously explored dangerous tra-
jectories, effectively preventing repeated encounters with the same hazards.

C.2.5 EVALUATION ON MORE ENVIRONMENTS

We extended our evaluation to encompass more tasks and complex settings, including
SafetyPointButton1-v0 and SafetyHopperVelocity-v4, with results presented in Appendix C.2.5 and
Figure 16 (highlighted in green for clarity). The SafetyPointButton1-v0 task has more complex set-
tings, with an observation dimensionality of 76 (range (−∞,∞)) and an action dimensionality of 2
(range (−∞,∞)). SafetyHopperVelocity-v4 introduces a different robot type. These experiment re-
sults demonstrate that MICE effectively balances performance and constraint satisfaction compared
to multiple baselines, showcasing its scalability across a broader range of task types and robot types.

C.2.6 CRITERIA FOR JUDGING UNSAFE TRAJECTORIES.

For risk-sensitive tasks, when many trajectories have costs just below the threshold, more conserva-
tive criteria can be adopted for judging unsafe trajectories. For instance, a trajectory can be stored
in memory if its cumulative cost exceeds a specific quantile of the constraint threshold, thereby
improving constraint satisfaction.
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(a) Return (b) Constraint

Figure 14: (a)(b) Comparison experiment between MICE and WCSAC in SafetyPointGoal1-v0.

(a) Estimation Error (b) Estimation Error
Figure 15: Comparison experiment about Estimation Error of MICE-PIDLag to TD3-PIDLag. The
y-axis is the cost value estimate minus the true value, and the dashed line is the zero deviation.

We conducted experiments where trajectories were stored if their cumulative cost exceeded 90% of
the constraint threshold. The results, as shown in Figure 17, demonstrate that this approach leads to
a more conservative policy with reduced constraint violations.

C.3 ENVIRONMENTS

C.3.1 SAFETY GYM

Figure 18 shows the environments in the Safety Gym. Safety Gym is the standard API for safe
reinforcement learning developed by Open AI. The agent perceives the world through the sensors
of the robots and interacts with the environment via its actuators in Safety Gym. In this work, we
consider two agents, Point and Car, and two tasks, Goal and Circle.

The Point is a simple robot constrained to a two-dimensional plane. It is equipped with two actuators,
one for rotation and another for forward/backward movement. It has a small square in front of it,
making it easier to visually determine the orientation of the robot. The action space in Point consists
of two dimensions ranging from -1 to 1, and the observation space consists of twelve dimensions
ranging from negative infinity to positive infinity.

The Car is a more complex robot that moves in three-dimensional space and has two indepen-
dently driven parallel wheels and a freely rotating rear wheel. For this robot, both steering and
forward/backward movement require coordination between the two drive wheels. The action space
of Car includes two dimensions with a range from -1 to 1, while the observation space consists of
24 dimensions with a range from negative infinity to positive infinity.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 16: Comparison of MICE to baselines on More Environments. The x-axis is the total number
of training steps, the y-axis is the average return or constraint. The solid line is the mean and the
shaded area is the standard deviation. The dashed line is the constraint threshold which is 25.

Figure 17: Comparison of MICE-CPO with different criteria for judging unsafe trajectories. MICE-
CPO with cumulative cost exceeds constraint threshold, MICE-CPO(0.9d) with cumulative cost
exceeds 90% of constraint threshold.

Goal: The agent is required to navigate towards the location of the goal. Upon successfully reach-
ing the goal, the goal location is randomly reset to a new position while maintaining the remaining
layout unchanged. The rewards in the task of Goal are composed of two components: reward dis-
tance and reward goal. In terms of reward distance, when the agent is closer to the Goal it gets a
positive value of reward, and getting farther will cause a negative reward. Regarding the reward
goal, each time the agent successfully reaches the Goal, it receives a positive reward value denoting
the completion of the goal. In SafetyGoal1, the Agent needs to navigate to the Goal’s location while
circumventing Hazards. The environment consists of 8 Hazards positioned throughout the scene
randomly.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) PointGoal1 (b) CarGoal1 (c) PointCircle1 (d) CarCircle1

Figure 18: Environments in Safety Gym.

(a) Ant (b) HalfCheetah (c) Humanoid

Figure 19: Environments in Safety MuJoCo.

Circle: Agent is required to navigate around the center of the circle area while avoiding going
outside the boundaries. The optimal path is along the outermost circumference of the circle, where
the agent can maximize its speed. The faster the agent travels, the higher the reward it accumulates.
The episode automatically ends if the duration exceeds 500 time steps. When out of the boundary,
the agent gets an activated cost.

C.3.2 SAFETY MUJOCO

The agent in Safety MuJoCo is provided by OpenAI Gym, and it is trained to move along a straight
line while constrained with a velocity limit. Figure 19 illustrates the different environments.

C.4 HYPERPARAMETERS

All experiments are implemented in Pytorch 2.0.0 and CUDA 11.3 and performed on Ubuntu 20.04.2
LTS with a single GPU (GeForce RTX 3090). The hyperparameters are summarized in Table 1.
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Parameter CPO PIDLag MICE-CPO MICE-PIDLag

hidden layers 2 2 2 2
hidden sizes 64 64 64 64
activation tanh tanh tanh tanh
actor learning rate 3e− 4 3e− 4 3e− 4 3e− 4
critic learning rate 3e− 4 3e− 4 3e− 4 3e− 4
intrinsic weight ω N/A N/A 0.5 0.5
batch size 64 64 64 64
trust region bound 1e− 2 N/A 1e− 2 N/A
discount factor gamma 0.99 0.99 0.99 0.99
GAE gamma 0.95 0.95 0.95 0.95
intrinsic discount factor gamma γI N/A N/A 0.99 0.99
normalization coefficient 1e− 3 1e− 3 1e− 3 1e− 3
clip ratio N/A 0.2 N/A 0.2
conjugate gradient damping 0.1 N/A 0.1 N/A
initial lagrangian multiplier N/A 1e− 3 N/A 1e− 3
lambda learning rate N/A 0.035 N/A 0.035
intrinsic factor h N/A N/A 0.6 0.6
memory capacity n N/A N/A 64 64

Table 1: Hyperparameters
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