Under review as a conference paper at ICLR 2026

MIMA: ITERATIVE MODEL AVERAGING AND FINE-
TUNING FOR MULTI-TASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large, pre-trained models on downstream tasks has become standard
practice. But multi-task models that combine isolated task-specialised models
remain challenging to construct. Task Arithmetic, a recent approach, merges mul-
tiple task-specific models into a single multi-task network simply by adding their
“task vectors”, without revisiting the original training data. In practice, model
merging often results in substantial performance degradation. We show that inde-
pendent fine-tuning of each model pushes these task vectors in orthogonal direc-
tions in parameter space. We hypothesise that actively aligning task vectors during
fine-tuning will improve the performance of merged models. To test this hypoth-
esis, we propose an iterative model averaging and fine-tuning framework called
MIMA, which stands for Multi-Task Iterated Model Averaging. We demonstrate
that alternating phases of weight averaging and fine-tuning increase the pairwise
cosine similarity between task vectors, encouraging knowledge sharing between
tasks and preventing any one task vector from drifting too far from a unified model
representation. When evaluated on a suite of eight vision benchmark tasks, MIMA
retains competitive performance for each fine-tuned model on its single task, and
significantly reduces the single-task accuracy gap between the fine-tuned model
and the merged model to nearly zero, indicating the complete alignment between
task vectors. Our work reveals new insights into the geometric relationship of the
task vector in Task Arithmetic and presents a more effective framework for editing
the behaviour of pre-trained models towards multi-task learning.

1 INTRODUCTION

Foundation models, such as CLIP (Radford et al., [2021) and BERT (Devlin et al.l [2019) have re-
shaped the default paradigm in machine learning (Bommasani et al., [2021)). These large models,
trained on large datasets, typically outperform or at least match smaller models whose architec-
ture is specifically designed for a single task and trained from scratch, indicating that they capture
generalisable representations for a large family of related tasks. To optimise performance on spe-
cific tasks, foundation, or other pre-trained models can be customised by fine-tuning, producing
specialised models with excellent single-task performance (Yosinski et al., [2014; |[Kornblith et al.,
2019). By design, fine-tuning on task-specific labelled data tends to overwrite earlier knowledge,
leading to catastrophic forgetting and loss of generalisation (Kirkpatrick et al., 2017). Moreover,
maintaining distinct fine-tuned models per task incurs substantial storage and deployment costs.
Multi-task learning (MTL) addresses these issues through knowledge sharing across tasks. For tra-
ditional MTL, training a unified model on multiple tasks requires joint training and simultaneous
access to all raw data, raising potential concerns about data privacy (Sanh et al.|[2022).

As an alternative approach, model merging offers a cost-effective and scalable way to achieve high
multi-task accuracy without data sharing. Given independently fine-tuned networks sharing a com-
mon initialisation, one can combine them directly in parameter space to obtain a unified multi-task
model without accessing the original data (Wortsman et al., [ 2022aj Matena & Raffel, 2022). Differ-
ent merging strategies employ linear interpolation between pre-trained and task-adapted weights (I1-
harco et al., [2022)), weighted averaging based on parameter importance (Matena & Raffel, [2022), or

"Large Language Models were used sparingly to polish the writing for certain paragraphs. All those gener-
ated outputs are further edited and revised by the authors before being used in the paper.



Under review as a conference paper at ICLR 2026

Task vector: 7, = 6; — 6y - Vanilla fine-tuned models . Aligned fine-tuned models VIT-Lj14
£y
2 & e
. . ke 2
0, : 6, O merge 6, : 0, Omerge 6, 8
T T2 T 2 5
. . 50 g
6 - 6, . 6, <
01 05 00 09
Error landscape for task 1 O Error landscape for task 2 Avg. cosine similarity between task vectors
(a) (b)

Figure 1: Tllustration of the multi-task model merging through task vectors. @ Left: The definition
of task vector. The dashed line indicates the actual optimisation trajectory. Middle: Vanilla model
fine-tuning, where models are fine-tuned independently, and their task vectors are merged post-fine-
tuning. These vectors tend to be misaligned (orthogonal), causing the merged model to perform
poorly across tasks as it lies far from any single-task optimum. Right: Alignment of task vectors
increases cosine similarity between task vectors, leading the merged model closer to multiple task
optima and improving overall multi-task performance. (b)) Aligned task vectors yield higher average
accuracy across eight tasks. Each marker represents a merged ViT-L/14 model derived from a set
of task-specific models fine-tuned using MIMA with varying numbers of iterations under a fixed
computational budget. As cosine similarity between final task vectors increases, both model merging
methods show improved accuracy, and the accuracy advantage of Task Arithmetic over Uniform
Average is reduced.

“Task Arithmetic” (ITharco et al., 2023)). In the latter, each fine-tuned model deviation defines a task
vector (as illustrated in Fig. [1a] (left)); summing these vectors with the pre-trained model produces
the multi-task solution. Due to task interference, the independent fine-tuning of each task-specific
model pushes these task vectors in orthogonal directions. Consequently, naive vector addition pro-
duces a merged model far from any individual task optimum (as depicted in Fig. |1a| (middle)). This
often degrades performance, evidenced by a high single-task accuracy drop from fine-tuned models
to the merged model.

Instead of learning each task-specific model independently and only merging at the end, we intro-
duce MIMA: Multi-Task Iterated Model Averaging, which alternates between (i) weight averaging
across all task-specific models and (ii) task-specific fine-tuning. By reinitialising each task-specific
model iteratively from the weight-averaging one, we encourage all task updates to include a common
component and facilitate knowledge transfer across tasks, thereby increasing the pairwise cosine
similarity of their eventual task vectors. As a result, task vectors become more aligned, and their
merged model lies closer to multiple task optima (as depicted in Fig. (right)). We demonstrate
that MIMA effectively aligns task vectors in each iteration, hence narrowing the single-task accuracy
gap between the fine-tuned models and the merged model. Fig. [Tb] empirically shows that greater
task vector alignment directly translates to higher multi-task accuracy. Merged models with higher
cosine similarity between task vectors consistently outperform those obtained via vanilla fine-tuning
across eight tasks. Moreover, the accuracy difference between the two merging methods diminishes
as task vectors become better aligned.

Our main contributions are summarised as follows:

* We identify task-vector orthogonality as the bottleneck in model merging, and introduce
MIMA to align task vectors during fine-tuning.

* We empirically validate MIMA on eight vision tasks and show MIMA with a larger number
of iterations consistently outperforms vanilla fine-tuning methods in multi-task settings.

* We show that if task vectors are fully aligned, different merged methods yield similar per-
formance, enabling Uniform Average to achieve results competitive with more complex
methods like Task Arithmetic and Ties-Merging, thereby reducing the need for validation
sets and hyperparameter selection.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

Multi-task learning. MTL aims to improve the generalisation performance of a model by simul-
taneously learning multiple related tasks with a shared representation (Caruana, [1997)). It has been
applied to various problems in deep learning, from natural language processing (Collobert & We-
ston|, 2008)), speech recognition (Shinohara, [2016), to computer vision (Misra et al., 2016). MTL
is typically conducted through hard or soft parameter sharing (Ruder, |2017). In hard parameter
sharing, the parameters of the hidden layers are shared between tasks, while the parameters of the
output layers are task-specific. It acts as a regularisation and reduces the risk of overfitting. Grad-
Norm (Chen et al., |2018)) was proposed to normalise gradient magnitudes when a single network
is trained on multiple tasks. In contrast, soft parameter sharing maintains separate models for each
task, but they are jointly connected, enabling cross-task knowledge transfer through learned con-
nections. Misra et al.| (2016) propose the “cross-stitch” units, which combine the activations from
multiple networks trained on different tasks.

While conventional MTL methods assume simultaneous access to training data from all tasks, this
assumption is often impractical in sensitive privacy settings where raw data cannot be shared across
devices or institutions. To address this, we focus on a hard parameter sharing paradigm following the
data privacy policy. Specifically, we fine-tune individual models on task-specific data independently
and subsequently merge their parameters to construct a unified multi-task model. Crucially, our
method only requires access and modification to the model parameters during fine-tuning, and does
not necessitate sharing the original datasets.

Federated learning. Federated learning is a distributed computing paradigm where multiple
clients train local models on their private data and collaborate to build one shared model. This
is achieved by only sharing model updates from the clients, preserving data privacy. In federated
learning, model merging occurs through multiple rounds of synchronisation among the clients. For
example, Federated Averaging (FedAvg) (McMahan et al.| [2017) maintains a single global model
in the central server and optimises a single global objective. Each time, the central server sends a
global model to a random fraction of clients to train for efficiency. Then, FedAvg iteratively per-
forms model averaging across all clients and updates to the central server.

In contrast, MIMA maintains multiple task-specific objectives and maintains multiple task-specific
models. All these task-specific models can be combined with any merging strategy (e.g., Uniform
Averaging, Task Arithmetic, or Ties-Merging). More importantly, iterative averaging in MIMA
is not used to enforce convergence to a single global model, but rather to align task vectors so
that their merged multi-task model preserves single-task performance. Therefore, MIMA measures
task-vector cosine similarity and the single-task accuracy gap of the merged model, while FedAvg
measures the convergence of the training loss to a global model.

Linear mode connectivity and model merging. Models with the same initialisation or part of
their optimisation path are situated within the same local basin. The accuracy does not decrease
when linearly interpolating weights between them, dubbed as linear mode connectivity (LMC) (Iz-
mailov et al., 2018} [Frankle et al., [2020). LMC enables direct parameter manipulation within a
shared basin and has been widely leveraged to merge models with the same architecture.

The first attempt for model merging with all models fine-tuned on the same task, aiming to improve
its accuracy and generalisation. WiSE-FT (Wortsman et al., [2022b)) computes a linear interpolation
between the pre-trained parameters and the fine-tuned parameters. It shows large improvements
in robustness under distribution shift, while preserving high accuracy on the target dataset. Fisher
Merging (Matena & Raffell [2022) uses the Fisher information (Fisher,|1922) to compute a weighted
average of different models’ parameters. Model Soup (Wortsman et al., 2022a) averages multiple
fine-tuned models with different hyperparameter configurations and further improves the accuracy
and robustness. Another approach attempts to merge models fine-tuned on different tasks to perform
MTL, and this paper primarily focuses on the same objective. [lharco et al| (2022) proposed to
linearly interpolate the weights between fine-tuned models to build a multi-task model. RegMean
(Jin et al.,[2023) uses insights from linear models to minimise prediction differences between merged
and individual models. However, this approach requires information from the dataset and needs to
compute the inner product matrix for the training dataset.



Under review as a conference paper at ICLR 2026

Task Arithmetic (Ilharco et al.l [2023) introduces the concept of “task vector”. It builds the multi-
task model by adding and scaling all task vectors to the pre-trained weights. One disadvantage of
this method is its reliance on a scaling term, which requires optimisation. We show that when task
vectors are aligned, simple averaging matches the performance of task-vector learning, hence elim-
inating the need for a scaling term. The main limitation of task arithmetic methods, however, arises
from interference between task vectors. A variety of works have attempted to reduce such interfer-
ence, but despite some improvement, the accuracy gap between the single-task fine-tuned models
and the multi-task merged model remains large. For example, |Ortiz-Jiménez et al.| (2023) proposed
weight disentanglement, which allows a model to perform task arithmetic by independently manip-
ulating these distinct task vector directions. They showed that fine-tuning models in their tangent
space amplifies this weight disentanglement property, leading to better performance of the merged
models. TIES-Merging (Yadav et al.l|2023) shows that removing redundant parameters and reducing
the sign conflict between task vectors improves the performance of the merged models. Similarly to
these approaches, MIMA exploits the error landscape. Our approach is iterative: MIMA alternately
improves single-task performance (through single-task fine-tuning, increasing the interference) and
optimises the merged model (through repeated model averaging). We show that iterating this combi-
nation of steps aligns task vectors to effectively suppress interference between them. Hence, MIMA
provides a combination of high single-task and multi-task accuracy.

3 PROBLEM STATEMENT

Notation and vanilla fine-tuning. Let 8, € R represent the weights of the pre-trained model,
where d is the number of parameters. We consider a set of 7" downstream tasks, indexed by ¢ €
{1,...,T}, each task ¢ with its own labelled dataset D;. In vanilla fine-tuning, a separate model is
trained from 6 for task ¢, producing task-specific weights 6;:

6, = FineTune(0y, Dy, S),

where S is the total number of gradient-descent steps allocated per task.

Task Arithmetic. Following (Ilharco et al. [2023), the task vector 7; for task ¢ is defined as the
vector difference between the fine-tuned weights and pre-trained weights. Mathematically,

T = 6, — 6. (1

This task vector 7; represents the weight update through fine-tuning in parameter space. Therefore,
a merged multi-task model can be obtained by simply adding the sum of each task vector to the
pre-trained model:

T
Omerge = 00 + AZTt = 00 + )‘Z(ef - 00)7 (2)

t=1

where )\ is the scaling factor determined using held-out validation sets from {D;}._;. When \ =
1/T, the resulting weights @p,crge are the same as the average of the fine-tuned weights across all

tasks, i.e., Bmerge = 23:1 et/T

Interference via orthogonal task vectors. Since Task Arithmetic does a linear combination be-
tween task vectors on the basis of a pre-trained model, the efficacy of the merging model in equa-
tion 2] depends on the geometric relationship between the task vectors and error landscapes. If the
merged model is in the basin for each task, it can achieve high multi-task accuracy. In practice, in-
dependently fine-tuning models on distinct tasks often finds that task vectors lie in near-orthogonal
directions (see Appendix [C.I)):

T« T j

T a0, Vi # 3)
7l 75l

Such orthogonality leads to task interference when summing {7 }, as the merged model O,¢r5c may
lie in a region of the error landscape far from any individual task optimum, causing large accuracy
drops on individual tasks.



Under review as a conference paper at ICLR 2026

We aim to design a fine-tuning procedure that, under a fixed total fine-tuning budget S per task,
generates a set of aligned task vectors {74}~ ;. By implicitly encouraging high pairwise cosine
similarity between the task vectors during training, we could build an effective multi-task model
through a simple merge method (e.g. Uniform Averaging) without using any complex post-hoc
modifications (TIES-Merging) or hyperparameter tuning (Task Arithmetic).

4 MIMA

We introduce MIMA and describe its detailed implementation in this section. We split the entire
fine-tuning process into multiple iterations. Each iteration consists of a uniform-averaging phase
followed by a fine-tuning phase, as illustrated in Fig[2] Instead of learning in isolation, our method
frequently performs synchronisation across all task models and iteratively changes the starting point
of fine-tuning, ensuring knowledge sharing among task-specific models.

Uniform-averaging phase. At the beginning of

each iteration ¢ € {2,..., N}, we perform a syn- Merged model
chronisation step across all 7' task-specific mod- Ormerge

els before the fine-tuning phase. This phase estab-

lishes a shared representation that integrates knowl- (—%
edge accumulated from all tasks encountered thus

Fine-tuned model Fine-tuned model

far. Specifically, we compute the average of the task- o0
T

specific weights from the previous iteration, which
serves as a common starting point for all tasks in the

fine-tuning phase: pp— "
T P
. 1 o
0(1—1) _ Tzet(z 1),122 (4)
t=1 Pre-trained model
[

For the first iteration (¢ = 1), we initialise 0 with

the pretrained model: 8(°) = ;. Figure 2: MIMA framework: A common
pre-trained model undergoes N iterations of
uniform-averaging over the weights and fine-
tuning phases for each task. Finally, task-
specific models are merged. The N = 1 case
is equivalent to vanilla model merging.

X N iterations

Fine-tuning phase. Following the uniform-
averaging phase, each task-specific model 6; is
fine-tuned on its labelled dataset, starting from the
shared representation 8~1), for K optimisation
steps (K < S):

6" = FineTune(8(~ ), D;, K).

We define the incremental update 62@ for task ¢ at iteration ¢ as the parameter change before and
after the fine-tuning phase:

5 =6" — iV, 5)

While the task vector 7 represents the total cumulative parameter change relative to the initial model
6y, the incremental update J; is the local parameter change that occurs from the current fine-tuning
phase. Importantly, these incremental updates §; tend to remain orthogonal, as they result from
independent training on distinct tasks. Therefore, we update equation [3|to the following:

0;-90;

0 0,V (6)
11621111651

In contrast, task vectors may become increasingly aligned over iterations due to accumulated shared
components as discussed later. Fig. [3]illustrates the distinction between the local incremental update

4, and the global task vector 7, and we empirically validate such behaviour of incremental updates
and task vectors over iterations in Appendix [C.2]



Under review as a conference paper at ICLR 2026

Iteration. The above weight-averaging and fine- o
tuning phases are repeated for [V iterations. To en-
sure a fair comparison, the total fine-tuning steps S
is fixed:

S=KXxN.

Increasing N introduces more frequent synchro- o & ---- - 6f
nisation at the cost of fewer weight update steps
per phase, offering a tunable trade-off between ex-
ploration (task-specific adaptation) and alignment
(cross-task knowledge sharing).

—> Task vector: 7

The averaged model at iteration ¢ is the initial pre- o oy — > Incremental update: &
trained model plus the average of all incremental up- ) )
dates up to that point. Combining equation @ and Figure 3: A vector-based illustration of the

equation 5] the evolution of the averaged model can update process for two tasks. The solid
be expressed as: line represents the task vector 7, while the

dashed line represents the incremental up-
(1
gli-1 — (i-1) _ g(i—2) i—1)  date d;. At the first iteration, Tt = 4,
ZB T Z(S Over iterations, shared components 6 ac-
L cumulate, aligning 7 despite §; remaining
i—

near-orthogonal.
ST DI IANE ™

lltl

Accordingly, the task vector T ") after iteration i can
be decomposed as:

i 5 (1 ifi =1;
) = 5 . @®)
Ir 6 480, otherwise
This highlights that each task vector contains both a task-specific update term Jt(i) and an accumu-

lating shared term %.Zle Zthl 6t(l). As iteration progresses, the shared term becomes dominant,
leading to implicit alignment across task vectors.

Final merge. After N iterations, we obtain a set of task-specific weights {et(N)}thl. These can
then be merged into unified weights 0crge using any standard merging method.

5 EMPIRICAL INVESTIGATION: MIMA

In this section, we present the experimental settings (Sec. and results (Sec. [5.2). Additional
details and results are included in the Appendix due to page limitations.

5.1 EXPERIMENTAL SETTINGS

Fine-tuning. All the fine-tuning experiments follow the same training procedure specified in [II-
harco et al.|(2022; 2023); |Ortiz-Jiménez et al.|(2023). We start with the same pre-trained CLIP ViT
model (ViT-B/32, ViT-B/16, ViT-L/14) downloaded from the open_c1ip repository (Ilharco et al.,
2021)) as our pre-trained model 6 and fine-tune it through end-to-end supervised learning for a total
of S = 2000 iterations on each task. We use the AdamW optimiser with a batch size of 128, a
learning rate of le-5, a weight decay (Loshchilov & Hutter, 2019) of 0.1, and a cosine annealing
learning rate schedule with 200 warm-up steps. When fine-tuning, we froze the final classification
layer output and only optimise the image encoder layers. We vary the number of MIMA iterations
(V) across {1,2,4,8,16,20}. Note that the case N = 1 corresponds to the standard, independent
fine-tuning baseline.

Datasets. We use eight published image classification datasets for our eight tasks, including Cars
(Krause et al.,|2013)), DTD (Cimpoi et al., 2014}, EuroSAT (Helber et al., | 2019), GTSRB (Stallkamp
et al., 2011), MNIST (LeCunl [1998)), RESISC45 (Cheng et al.,|2017)), SUN397 (Xiao et al.,|2016),



Under review as a conference paper at ICLR 2026

and SVHN (Netzer et al.l 2011). We apply default settings for training and testing, using each
validation set for hyperparameter selection including the Task Arithmetic scaling factor \.

Merging method. We evaluate three primary merging methods after the final MIMA iteration:
(1) Uniform Averaging calculates the element-wise mean over the weights of fine-tuned models:

% Zthl 0§N>. (2) Task Arithmetic (Ilharco et al.,|2023)) scales and sums the final task vectors and
the initial pre-trained model: 6y + A Zle (0§N) — 6)). The optimal scaling factor ) is found via a
grid search over [0,0.05,0.1,...,1.0] on held-out validation sets. (3) Ties-Merging (Yadav et al.,

2023) follows three steps of emphTrim, Elect Sign, and Disjoint Merge on task vectors. The optimal
scaling factor A is found via a grid search over [0.8,0.85,0.9, ..., 1.8] on held-out validation sets.

We also evaluate a practical setting where no validation set is available. Uniform Averaging is a
hyperparameter-free method without the need for a validation set. Following the recommendations
from previous work, we set A = 1 for Ties-Merging and A = 0.4 for Task Arithmetic.

5.2 EXPERIMENTAL RESULTS

ViT-B/32 ViT-B/16 ViT-L/14

90 q

87 4

84 4

81 4

Avg. accuracy on 8 tasks (%)

70 P 82
. : 80
R : : : S : : ‘ ‘ L S : : : ‘
1 4 8 12 16 20 1 4 8 12 16 20 1 4 8 12 16 20
Number of iterations (V) Number of iterations () Number of iterations (V)
[--e-- Uniform Averaging (w/o validation sets) Task Arithmetic ~ —— Ties-Merging
(2)
ViT-B/32 ViT-B/16 ViT-L/14
90
S %0 _,.8-':::::::::::::::8535:5113 ” ‘_.::;g:::::::::::::::::8.::'-'-'-'-'-@
= i g So
BR0q KA 851 08,
E g [CER
& ¢ N 801 &
© O." 246 e
3 9 o6 75
2 60 o 0
< 50 60
& 48
= 55
= 55
) 401 T T T T T T 2 T T T T T T T T T T T T
1 4 8 12 16 20 1 4 8 12 16 20 1 4 8 12 16 20
Number of iterations (V) Number of iterations () Number of iterations (N)
[--e-- Uniform Averaging (w/o validation sets) Task Arithmetic (w/o validation sets) -6+ Ties-Merging (w/o validation N\u)]
(b)

Figure 4: Comparing the average absolute accuracy on eight tasks among Uniform Averaging, Task
Arithmetic and Ties-Merging over varying numbers of iterations /N. Dotted lines indicate results
without validation sets, while solid lines indicate results with validation sets. @: With validation
sets, Task Arithmetic and Ties-Merging benefit from additional numbers of iterations. (b): Without
validation sets, Task Arithmetic is unstable and its performance drops substantially as [NV increases.

MIMA performance. Fig. [illustrates the trend of average absolute accuracy on the eight vision
tasks as a function of the number of iterations IV, comparing Uniform Averaging, Task Arithmetic
and Ties-Merging for the three ViT architectures. The performance of Uniform Averaging and Task
Arithmetic improves monotonically with a larger number of iterations IV across all architectures. For
Fig. [4a] after selecting the optimal scaling term X for task vectors using validation sets, both Task
Arithmetic and Ties-Merging achieve higher average accuracy than Uniform Averaging. However,
their performance advantage over Uniform Averaging diminishes as /V increases. This indicates that



Under review as a conference paper at ICLR 2026

with sufficient alignment among task vectors, a simple, hyperparameter-free averaging of weights is
nearly as effective as the more complex approaches. Fig. [4b|evaluates merging in the absence of the
validation set. In this case, neither Task Arithmetic nor Ties-Merging can consistently outperform
Uniform Averaging when more frequent MIMA averaging is used. In fact, the alignment between
task vectors can hurt Task Arithmetic with a fixed scaling term A, leading to degraded performance
as the number of iterations grows.

ViT-B/32 ViT-B/16 ViT-L/14

—  — |10+ —_ —  — |10 _— = —

= == -

0.8 1 0.8 q

& o 0.6
= =N
X =
0.4 0.4 4

HH

0.2 q

0.0 q

0.0 4

o
@ o
i é =
1 2 4 8 16 20 1 2 4 8 16 20 1 2 4 8 16 20
Number of iterations (V) Number of iterations (N) Number of iterations (N)

Figure 5: Box plot for pairwise cosine similarities between final task vectors as a function of the
number of iterations N.

Pairwise cosine similarity. To directly validate our central hypothesis, we compute the pairwise

cosine similarity between the final task vectors Tt(N). Fig. shows the distribution of these sim-

ilarities as N increases. For the baseline case of vanilla fine-tuning (N = 1), the pairwise cosine
similarities are very low, typically centred around 0.0 to 0.1, confirming the near-orthogonality of
independently learned task vectors. As NV increases, the median and interquartile range of cosine
similarities shift steadily towards 1. This provides direct evidence that MIMA successfully aligns
task vectors, forcing them to point in a common direction in parameter space.

Single-task accuracy gap. A key challenge in
multi-task learning is preserving the high perfor-

(€]
mance of task-specific models. We define the single- ror VIT-B/32
task accuracy gap as the difference between the ac- " tii?ji’
curacy of an individual fine-tuned model and the jé 516 :
accuracy of the merged model on that same task: é Oi
Acc(Ot(N),Dt) — Acc(Omerge, D). Fig. @shows EER RN
that this gap shrinks to nearly zero over 16 iterations, & s ;'
demonstrating that the single multi-task model per- R R
forms almost as well as a collection of task-specific o _— : - fﬁ.......;}

models. Number of iterations (V)

Figure 6: Average single-task accuracy gap
between individual fine-tuned models and
the merged model through Uniform Averag-
ing with varying numbers of iterations N.

Error landscape visualisation. To build a geo-
metric intuition for the effectiveness of MIMA, we
visualise the error landscape for fine-tuning ViT-
B/16 models with varying numbers of iterations.
Fig. [7]plots a 2D slice of the error landscape for two
tasks (Cars and RESISC45). The plane is defined by
the pre-trained model and two task-specific models fine-tuned on each task.

For vanilla fine-tuning baseline (N = 1), the low-error “valleys” for the two tasks are far apart, and
the average model may lie in a region of high error for both. As we increase N to 4 and then 8§,
the two found task-specific valleys rotate towards each other. At N = §, the two valleys are nearly
parallel, creating a basin of shared low error. The average model now could reside within this shared
basin, achieving low error for both tasks simultaneously. This visualisation confirms that MIMA
could find a more suitable landscape to resolve task conflict with a shared solution space.



Under review as a conference paper at ICLR 2026

Cars Test Error

RESISC45 Test Error Average Test Error (Cars, RESISC45)

>40.0

40.0

24.1

0 1 2

@N=1

RESISC45 Test Error

w
o
o
w

Cars Test Error Average Test Error (Cars, RESISC45)

1.5

=

(byN =4

RESISC45 Test Error

Cars Test Error Average Test Error (Cars, RESISC45)

21.2 0.5

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

[ % Pretrained model @ Fine-tuned model on Cars ) Fine-tuned model on RESISC15

(c) N =8

Figure 7: Increasing the number of iterations in MIMA decreases the angle between final task
vectors (illustrated by the grey arrows). This figure shows a two-dimensional slice of the error
landscapes for ViT-B/16 models on Cars (left), RESISC45 (middle), and their average (right). As in
Izmailov et al.| (2018]), we obtain the orthonormal basis u, v for the plane spanned by the two task
vectors. A point P with coordinates (x, y) in the plane would then be givenby P = Op+z-u+y-v.

6 CONCLUSION

In this paper, we addressed a challenge in multi-task model merging: the task interference caused by
combining independently trained models with near-orthogonal task vectors. We proposed MIMA, a
framework that interleaves vanilla fine-tuning with iterative weight averaging to enforce alignment
between task-specific models during training.

Our empirical results on vision tasks confirm this, demonstrating that our algorithm dramatically
improves the performance of merged models. By progressively aligning task vectors, our algorithm
enables a single multi-task model to retain nearly all of the performance of its specialised, fine-tuned
models, effectively reducing the single-task accuracy gap. The simplicity and effectiveness of our
proposed algorithm make it a practical and powerful technique for building efficient and capable
multi-task systems from large pre-trained foundation models.



Under review as a conference paper at ICLR 2026

REFERENCES

Rishi Bommasani et al. On the Opportunities and Risks of Foundation Models. arXiv.org,
abs/2108.07258, 2021.

Rich Caruana. Multitask Learning. Machine Learning, 28(1):41-75, 1997.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
Normalization for Adaptive Loss Balancing in Deep Multitask Networks. In International Con-
ference on Machine Learning (ICML), pp. 793-802, 2018.

Gong Cheng, Junwei Han, and Xiaogiang Lu. Remote Sensing Image Scene Classification: Bench-
mark and State of the Art. Proceedings of the IEEE, 105(10):1865-1883, 2017.

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing Textures in the Wild. In Computer Vision and Pattern Recognition (CVPR), pp. 3606—
3613, 2014.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Infernational Conference on Machine Learning
(ICML), pp. 160-167, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In North American Chapter of the As-
sociation for Computational Linguistics (NAACL), pp. 4171-4186, 2019.

Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transac-
tions of the Royal Society of London. Series A, containing papers of a mathematical or physical
character, 222(594-604):309-368, 1922.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear Mode
Connectivity and the Lottery Ticket Hypothesis. In International Conference on Machine Learn-
ing (ICML), pp. 3259-3269, 2020.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A Novel Dataset
and Deep Learning Benchmark for Land Use and Land Cover Classification. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217-2226, 2019.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo. 5143773l If you use this software, please cite it as below.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. In Conference on Neural Information Processing Systems (NeurIPS), 2022.

Gabriel Ilharco, Marco Tilio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In International Conference on Learning
Representations (ICLR), 2023.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wil-
son. Averaging Weights Leads to Wider Optima and Better Generalization. In Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 876-885, 2018.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless Knowledge Fusion by
Merging Weights of Language Models. In International Conference on Learning Representations
(ICLR), 2023.

James Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the
national academy of sciences, 114(13):3521—3526, 2017.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do Better ImageNet Models Transfer Better?
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

10


https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

Under review as a conference paper at ICLR 2026

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d Object Representations for Fine-
Grained Categorization. In IEEE International Conference on Computer Vision (ICCV) - Work-
shops, pp. 554-561, 2013.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations (ICLR), 2019.

Michael S Matena and Colin Raffel. Merging Models with Fisher-Weighted Averaging. In Confer-
ence on Neural Information Processing Systems (NeurIPS), 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1273-1282, 2017.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-Stitch Networks for
Multi-task Learning. In Computer Vision and Pattern Recognition (CVPR), pp. 3994-4003, 2016.

Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading Digits in Natural
Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning, volume 2011, pp. 4, 2011.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pascal Frossard. Task Arithmetic in the Tangent
Space: Improved Editing of Pre-Trained Models. In Conference on Neural Information Process-
ing Systems (NeurIPS), 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In Inter-
national Conference on Machine Learning (ICML), pp. 8748-8763, 2021.

Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv.org,
abs/1706.05098, 2017.

Victor Sanh et al. Multitask Prompted Training Enables Zero-Shot Task Generalization. In Interna-
tional Conference on Learning Representations (ICLR), 2022.

Yusuke Shinohara. Adversarial Multi-Task Learning of Deep Neural Networks for Robust Speech
Recognition. In Interspeech 2016. ISCA, 2016.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign
Recognition Benchmark: A multi-class classification competition. In IEEE International Joint
Conference on Neural Network (IJCNN), 2011.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International Conference on Machine Learning (ICML),
pp- 23965-23998, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
Schmidt. Robust Fine-Tuning of Zero-Shot Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7959-7971, 2022b.

Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun Database:
Exploring a Large Collection of Scene Categories. International Journal of Computer Vision, 119
(1):3-22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-Merging:
Resolving Interference When Merging Models. In Conference on Neural Information Processing
Systems (NeurIPS), 2023.

11



Under review as a conference paper at ICLR 2026

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Conference on Neural Information Processing Systems (NeurIPS), pp. 3320—
3328, 2014.

A  EXPERIMENTAL SETTINGS

A.1 VISION DATASET DETAILS

 Cars (Krause et al.,2013)) contains car images across 196 classes. The train/validation/test
splits have 7,333/814/8, 041 images, respectively.

* DTD (Cimpoi et al) 2014) contains texture images “in the wild” in 47 classes. The
train/validation/test splits have 3,384 /376/1, 880 images, respectively.

* EuroSAT (Helber et al., 2019) contains Sentinel-2 satellite images in 10 classes. The
train/validation/test splits have 21,600/2,700/2, 700 images, respectively.

* GTSRB (Stallkamp et al.l 2011) contains images of traffic sign in 43 classes. The
train/validation/test splits have 23, 976/2, 664 /12, 630 images, respectively.

* MNIST (LeCun, |1998) contains images of handwritten digit in 10 classes. The
train/validation/test splits have 55, 000/5,000/10, 000 images, respectively.

* RESISC45 (Cheng et al., [2017)) contains images of remote sensing scene in 45 classes.
The train/validation/test splits have 17,010/1,890/6, 300 images, respectively.

* SUN397 (Xiao et al.,[2016)) contains scene images in 397 classes. The train/validation/test
splits have 17,865/1,985/19, 850 images, respectively.

* SVHN (Netzer et al.,[2011) contains images of printed digits cropped from house number
plates in 10 classes. The train/validation/test splits have 68,257/5,000/26, 032 images,
respectively.

For any dataset without a publicly available test set, we use its validation set for testing and re-
split the original training set into train/validation subsets. For all datasets, we report classification
accuracy as our evaluation metric.

A.2 COMPUTING INFRASTRUCTURE

All fine-tuning and evaluation of each CLIP ViT model are conducted on a single NVIDIA A100
GPU using PyTorch, running on an internal compute cluster.

B ADDITIONAL PERFORMANCE RESULTS
In this section, we present additional experiments to expand the findings discussed in the main text.

B.1 MAIN RESULTS

Table [T] provides a detailed comparison of merging methods across three CLIP ViT architectures,
showing both average absolute and relative accuracies as the number of MIMA iterations (/V) in-
creases. Specifically, we define the relative accuracy for the merged model as the single-task accu-
racies achieved by the merged model divided by the single-task accuracies achieved by the corre-
sponding individual fine-tuned model (averaged across all tasks). Mathematically,

1 ET: Acc(emergev Dt)

Relative accuracy = T Acc(6;,Dy)
CC\Uy, Ly

t=1

By this definition, the relative accuracy of the individual fine-tuned models on their respective tasks
is 100%.

The results for the baseline case (/N = 1) show a large performance gap between the individually
fine-tuned models and the merged models. For ViT-L/14, Task Arithmetic and Ties-Merging achieve

12



Under review as a conference paper at ICLR 2026

Table 1: Average absolute (%) and relative accuracies (%) of different CLIP ViTs merged by Uni-
form Averaging, Task Arithmetic and Ties-Merging on 8 tasks. We report results for varying num-
bers of MIMA iterations (), and N = 1 corresponds to the baseline vanilla fine-tuning approach.

. ViT-B/32 ViT-B/16 ViT-L/14
Method Number of Iterations ) “Rel () | Abs. (1) Rel. (1) | Abs. (1) Rel. (1)
Pre-trained - 48.1 - 553 - | 652 -
Fine-tuned 90.2 100 92.5 100 94.0 100
Uniform Averaging N =1 65.8 73.3 71.9 77.7 79.3 84.2
Task Arithmetic B 70.6 79.4 75.6 82.4 84.1 89.9
Ties-Merging 73.6 82.7 78.1 85.2 85.3 91.2
Fine-tuned 89.8 100 92.1 100 939 100
Uniform Averaging N =2 74.2 82.7 79.1 85.6 85.3 90.6
Task Arithmetic - 77.2 87.2 81.5 89.2 88.7 94.9
Ties-Merging 78.1 88.3 82.5 90.3 88.9 95.1
Fine-tuned 88.6 100 91.0 100 93.2 100
Uniform Averaging N—4 81.8 92.1 84.6 92.7 89.3 95.6
Task Arithmetic B 83.0 95.4 85.7 95.1 90.9 98.2
Ties-Merging 83.3 95.8 86.3 95.8 91.1 98.4
Fine-tuned 87.8 100 90.5 100 92.8 100
Uniform Averaging N =28 85.8 97.7 88.4 97.6 91.8 98.9
Task Arithmetic - 85.9 99.9 88.8 99.2 92.3 100.2
Ties-Merging 86.4 100.4 89.0 99.5 92.6 100.5
Fine-tuned 88.0 100 90.5 100 93.0 100
Uniform Averaging N =16 87.6 99.5 90.2 99.7 92.8 99.8
Task Arithmetic o 87.3 101.1 90.3 100.8 92.9 100.6
Ties-Merging 88.1 102.1 90.7 101.3 93.1 100.8
Fine-tuned 88.1 100 90.7 100 93.1 100
Uniform Averaging N =20 88.0 99.8 90.6 99.9 929 99.9
Task Arithmetic o 87.6 101.3 90.5 100.9 93.0 100.5
Ties-Merging 88.4 102.2 90.9 101.3 93.2 100.8

Table 2: The optimal scaling term A used in Task Arithmetic, selected via a held-out validation.

N=1 N=2 N=4 N=8 N=16 N=20
ViT-B/32  0.25 0.2 0.15 0.15 0.15 0.15
ViT-B/16  0.25 0.2 0.15 0.15 0.15 0.15
ViT-L/14 0.3 0.25 0.2 0.15 0.15 0.15

Table 3: The optimal scaling term A used in Ties-Merging, selected via a held-out validation.

N=1 N=2 N=4 N=8 N=16 N=20
ViT-B/32  0.85 1.05 1.45 1.5 0.45 1.5
ViT-B/16 1 1 1.5 1.7 1.6 1.5
ViT-L/14 1.05 1.3 1.8 1.7 1.7 1.65

84.1% and 85.3% average absolute accuracy, respectively, while compared to the absolute average
accuracy of each fine-tuned model on its own task is 94.0%. This gap is even larger for Uniform
Averaging, which achieves 79.3% average absolute accuracy. This is expected, as Task Arithmetic
and Ties-merging use a tuned scaling factor A to partially mitigate misalignment (see optimal values

in Tables 2]and 3, whereas Uniform Averaging does not.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

With MIMA, the performance of the merged models improves dramatically. As N increases, both
Uniform Averaging and Task Arithmetic see substantial accuracy gains. For ViT-L/14, the average
absolute accuracy of the model merged with Task Arithmetic also sees a similar rise from 84.1%
(N =1)1t093.0% (N = 20). Similarly, Uniform Averaging increases from 79.3% to 92.9%. This
demonstrates that our method effectively mitigates task interference, allowing even a naive averaging
approach to produce a high-performing multi-task model. Notably, with sufficient iterations (N >
8), the merged models achieve relative accuracies near or even exceeding 100%, indicating that the
final multi-task model is on par with, and sometimes even better than, the task-specific models.

ViT-B/32
100
=
~, 80
Q
<
=
§ 60 1
&
)
Z 40 q
s
2
20 20 A
£
o4
Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
ViT-B/16
100
x
~. 80
Q
]
-
5 60 A
Q
<
)
740 4
&
0 20
=
o4
Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
ViT-L/14
100
=
o, 80
Q
<
—
2 601
Q
<
)
740 4
<
2020 4
=
o4
Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

I- N=1 s N=2 B N =14 N =38 N =16 B N =20 -Zero-shotl

Figure 8: Single-task accuracy for zero-shot model and each task-specific model with different
numbers of iterations.

B.2 FINE-TUNING ACCURACIES

A key benefit of our method is that it improves the multi-task accuracy without sacrificing the single-
task specialisation. Figure [§] shows the single-task accuracies achieved by task-specific models:
before fine-tuning (referred to as zero-shot) and after fine-tuning with different numbers of iterations.
These results indicate that an increase in the number of iterations will not significantly change the
single-task accuracy for any given task.

14



Under review as a conference paper at ICLR 2026

B.3 MULTI-TASK ACCURACIES

Figure 0] reports the absolute accuracies of the merged models using Uniform Averaging. The per-
formance of the merged model improves uniformly across all eight tasks with a larger number of
MIMA iterations.

ViT-B/32 ViT-B/16
EuroSAT EuroSAT

SUN397 SUN397 SUN397

[—o—A\‘—l —— N-2 N—4 —e N-3% —o—x—zn]

Figure 9: Comparison of the merged multi-task model using Uniform Average on eight tasks. The
multi-task accuracy is uniformly improved as the number of iterations increases.

C ADDITIONAL COSINE SIMILARITY RESULTS

In this section, we evaluate the cosine similarity between incremental updates &, or task vectors 7
for the fine-tuned models during the iteration.

Cosine similarity between task vectors Cosine similarity between task vectors Cosine similarity between task vectors

SUN397 0.04 0.03 0.03 0.03 0.03 0.04 SUN397 0.03 0.04 0.03 0.02 003 0.03 0.04 SUN&OT 0.02 0.03 0.02 001 0.02 0.02 0.03

Cars - 0.03 0.03 0.03 0.04 0.03 0.04 Cars -

0.03 0.03 0.03 0.03 0.03 0.03 Cz\rs—().liZ[](iZ 0.02 0.02 0.03 0.02 0.02

RESISC45 - 0.07 0.03 0.04 0.04 0.04 RESISC45-0.04 0.03 0.07 0.03 0.04 004 004 RESISC45-0.03 0.02 0.05 0.02 0.03 0.03 0.03
EuroSAT - 0.03 0.03 0.07 0.05 0.05 0.04 0.04 EuroSAT - 0.03 0.03 0.07 0.04 004 004 0.04 EuroSAT - 0.02 0.02 .03 0.04 0.03
SVHN - 0.03 0.03 0.03 0.05 M 0.09 "0.16 0.03 SVHN - 0.02 0.03 0.03 0.04 0.08 0.03 SVHN - 0.01 0.02 0.06 0.02

GTSRB - 0.03 0.04 0.04 0.05 0.09 0.08 0.04 GTSRB - 0.03 0.03 0.04 0.04 0.08 0.08 0.04 GTSRB - 0.02 0.03 0.05 0.03

MNIST - 0.03 0.03 0.04 0.04 (016 0.08 0.04 MNIST - 0.03 0.03 0.04 0.04 MNIST - 0.02 0.02

0.04 0.05

DTD - 0.04 0.04 004 0.04 0.03 0.04 (]vl)-l DTD - 0.04 0.03 0.04 0.04 DTD - 0.03 0.02 0.03 0.03 002 003 0.03
S O SR S F XS
& & & & F&HFSS
$ & S o
(b) ViT-B/16 (¢) ViT-L/14

Figure 10: The cosine similarity matrix for the task vectors obtained from vanilla fine-tuning CLIP
models (N = 1). Normally, most task vectors are nearly orthogonal (similarity ~ 0), indicating
misalignment. Two semantically similar tasks will slightly increase the cosine similarity on the task
vector, such as MNIST and SVHN.

C.1 VANILLA FINE-TUNING (N = 1)

According to the definition, the incremental updates and task vectors are the same 6t(1) = ‘rt(l) for
the baseline case N = 1. Figure[I0]shows the pairwise cosine similarity matrix, where most pairs
have a similarity close to zero. Two tasks with semantic similarity (MNIST and SVHN) produce
task vectors with a larger cosine similarity. The observations have also been observed by
2023).

15



Under review as a conference paper at ICLR 2026

ViT-B/32 ViT-B/16 ViT-L/14
10 1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 Cl 0.2
o o © °
<) ° o o o
£ - £ [-] o o o ==
=004 S -2 === |00 = = % 0.0 —_— -
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
10 1.0 1.0
J— — —
0.8 08
o (o]
= 0.6 == 0.6
. = =
_
0.4 0.4
° o
8 0.2 o e} 0.2 ©
[e] el = -
e £ 2
0.0 4 004 T 0.0
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
Fine-tuning steps Fine-tuning steps Fine-tuning steps
@N=4
ViT-B/32 ViT-B/16 ViT-L/14
1.0 1.0 1.0
0.8 08
0.6 0.6
04 0.4
(e}
%5 0.2 Q 0.2
%5 8 °6¢
[o] [e] oo
2280088288 cananw 2800038288 n0msnml o §g998§9gx——ﬂ‘x-¥-l
vvvug-,‘.rlf vovwguEssg Yrrggagg
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
1.0 1 —====]10 —====] 10 =
- -
= = =
ht 0.8 L 08 ES
) ) T =
& 3 &
) ; ° ; s
& 0.6 & 0.6 =]
o o 2
& z T
og 4
o 0.4 o = 0.4 2
o = o & o
I o & 2
0. = L] o %
8 0.2 8 02 o %
= T
g~ 8 o=
& & 8
0.0 5 0.0 5 0.0 £
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Fine-tuning steps Fine-tuning steps Fine-tuning steps

Figure 11: Evolution of the cosine similarity between any task vector 7; or incremental update d;
during fine-tuning for (@) N = 4 and (b) N = 16 MIMA iterations. Each box plot shows the
distribution of pairwise cosine similarity at a given fine-tuning step, which is at the end of the fine-
tuning phase. The cosine similarity of the incremental update §; remains near 0 while the task vector
T, steadily increases towards 1.

C.2 MIMA (N > 1)

With MIMA, the behaviours of task vectors 7; and incremental updates &, diverge during fine-
tuning. Figure [[T]shows this phenomenon for N = 4 and N = 16. At the end of each fine-tuning
phase, the incremental update d; between any different tasks remains nearly orthogonal to each other.
However, the cosine similarity between any task vectors 7 gradually increases with each iteration.
As the total number of fine-tuning steps approaches the budget (20000 fine-tuning steps), the cosine
similarity between task vectors approaches 1. This observation validates our hypothesis described
in the main content, where MIMA forces task vectors into a shared direction in the parameter space.

16



Under review as a conference paper at ICLR 2026

D ADDITIONAL ERROR LANDSCAPE VISUALISATION

To demonstrate the generality of our findings, we extend the error landscape visualisation to two
additional, distinct datasets: DTD and SUN397 (Fig. [I2). These visualisations complement the
results shown in the main text and confirm that MIMA effectively aligns the task vector in the
parameter space across different tasks.

DTD Test Error SUN397 Test Error

Average Test Error (DTD, SUN397)

>40.0

23.0
219
21.3

210 0

20.7

@N =1

DTD Test Error SUN397 Test Error

Average Test Error (DTD, SUN397)

(byN =14

DTD Test Error SUN397 Test Error Average Test Error (DTD, SUN397)

o

=

S
o

0 0.5 1 1.5

[ % Pretrained model @ Fine-tuned model on DTD A Fine-tuned model on SUN397

©N=38

Figure 12: Error landscape visualisation for DTD (left), SUN397 (middle), and their average (right).
Consistent with our findings in the main text, increasing the number of MIMA iterations (V) rotates
the misaligned low-error valleys into a shared basin, providing the merged model with high perfor-
mance.

E THEORETICAL ANALYSIS: WHY MIMA IMPROVES ALIGNMENT

To gain theoretical insight into why iterative averaging and fine-tuning encourage task vector align-
ment, we analyse task vectors after the first and second iterations. For this theoretical analysis, we
make two simplifying assumptions about the geometry of task-specific updates 9:

17



Under review as a conference paper at ICLR 2026

1. (cross-task orthogonality) For any two distinct tasks s # ¢ and any iterations 4,j €
{1,..., N}, their respective updates are orthogonal:

567 =0
This assumption reflects sufficiently high dimensionality of the parameter space, where
updates for different tasks are unlikely to be correlated.
2. (within-task non-negativity) For each task ¢, the updates from any iterations ¢,; €
{1, ..., N} exhibit non-negative alignment:
8. 69 >0

This assumption suggests that any fine-tuning step will not push the model outside the
basin. In other words, the fine-tuning for a given task tends to move the parameters in a
direction that is not entirely opposed to its other fine-tuning updates.

Under these assumptions, we can show that MIMA provably increases alignment.

Proposition 1 (Improved Alignment via MIMA). Under the assumptions of cross-task orthogonal-
ity and within-task non-negativity, for any two distinct tasks © # j, the pairwise cosine similarity
between their task vectors after iteration 2 is greater than or equal to their cosine similarity after
iteration 1:

COS(Ti(Q), Tj(2)) > COS(Ti(l), Tj(l)> =0,Vi # j.

Proof. By definition, task vectors after fine-tuning phase 1 are 7' = 5 ) and T = 6( Given
the cross-task orthogonality assumption for i # j, we have:

20D 505 g

Therefore, the cosine similarity between is:

(SONPCY
1) (1)) T T

COS|(T. T _—
(o TSI

T T
1
o = ( E 1>+5§2)> : (TE 5,5”+5§2)>
b=1

Applying the cross-task orthogonality assumption 6@ . 6§j ) = 0, Vs # t:

T
2) (2 1 1 .2 < 2) <(1
P = LS e+ L (60500 1 2500)
Since ||65"||2 > 0 for all a, and by the within-task non-negativity assumption, 552) ~6§1) > 0 and
5;2) -55-1) > 0, it follows that:

TZ-(2)~TJ»(2) >0,

2.2

7T
cos (Ti(2), j(z)) 7(12) ](2) >0 = cos (7'i(1)7 Tj(l)).
[l M5l

O

Our theoretical analysis shows that this averaging and fine-tuning procedure is guaranteed to im-
prove the cosine similarity between task vectors from the first iteration to the second iteration under
assumptions of cross-task orthogonality and within-task non-negativity.

18



	Introduction
	Related Work
	Problem Statement
	MIMA
	Empirical Investigation: MIMA
	Experimental Settings
	Experimental Results

	Conclusion
	Experimental Settings
	Vision Dataset Details
	Computing Infrastructure

	Additional Performance Results
	Main Results
	Fine-Tuning Accuracies
	Multi-Task Accuracies

	Additional Cosine Similarity Results
	Vanilla Fine-Tuning (N=1)
	MIMA (N>1)

	Additional Error Landscape Visualisation
	Theoretical Analysis: Why MIMA Improves Alignment

