
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIMA: ITERATIVE MODEL AVERAGING AND FINE-
TUNING FOR MULTI-TASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large, pre-trained models on downstream tasks has become standard
practice. But multi-task models that combine isolated task-specialised models
remain challenging to construct. Task Arithmetic, a recent approach, merges mul-
tiple task-specific models into a single multi-task network simply by adding their
“task vectors”, without revisiting the original training data. In practice, model
merging often results in substantial performance degradation. We show that inde-
pendent fine-tuning of each model pushes these task vectors in orthogonal direc-
tions in parameter space. We hypothesise that actively aligning task vectors during
fine-tuning will improve the performance of merged models. To test this hypoth-
esis, we propose an iterative model averaging and fine-tuning framework called
MIMA, which stands for Multi-Task Iterated Model Averaging. We demonstrate
that alternating phases of weight averaging and fine-tuning increase the pairwise
cosine similarity between task vectors, encouraging knowledge sharing between
tasks and preventing any one task vector from drifting too far from a unified model
representation. When evaluated on a suite of eight vision benchmark tasks, MIMA
retains competitive performance for each fine-tuned model on its single task, and
significantly reduces the single-task accuracy gap between the fine-tuned model
and the merged model to nearly zero, indicating the complete alignment between
task vectors. Our work reveals new insights into the geometric relationship of the
task vector in Task Arithmetic and presents a more effective framework for editing
the behaviour of pre-trained models towards multi-task learning. 1

1 INTRODUCTION

Foundation models, such as CLIP (Radford et al., 2021) and BERT (Devlin et al., 2019) have re-
shaped the default paradigm in machine learning (Bommasani et al., 2021). These large models,
trained on large datasets, typically outperform or at least match smaller models whose architec-
ture is specifically designed for a single task and trained from scratch, indicating that they capture
generalisable representations for a large family of related tasks. To optimise performance on spe-
cific tasks, foundation, or other pre-trained models can be customised by fine-tuning, producing
specialised models with excellent single-task performance (Yosinski et al., 2014; Kornblith et al.,
2019). By design, fine-tuning on task-specific labelled data tends to overwrite earlier knowledge,
leading to catastrophic forgetting and loss of generalisation (Kirkpatrick et al., 2017). Moreover,
maintaining distinct fine-tuned models per task incurs substantial storage and deployment costs.
Multi-task learning (MTL) addresses these issues through knowledge sharing across tasks. For tra-
ditional MTL, training a unified model on multiple tasks requires joint training and simultaneous
access to all raw data, raising potential concerns about data privacy (Sanh et al., 2022).

As an alternative approach, model merging offers a cost-effective and scalable way to achieve high
multi-task accuracy without data sharing. Given independently fine-tuned networks sharing a com-
mon initialisation, one can combine them directly in parameter space to obtain a unified multi-task
model without accessing the original data (Wortsman et al., 2022a; Matena & Raffel, 2022). Differ-
ent merging strategies employ linear interpolation between pre-trained and task-adapted weights (Il-
harco et al., 2022), weighted averaging based on parameter importance (Matena & Raffel, 2022), or

1Large Language Models were used sparingly to polish the writing for certain paragraphs. All those gener-
ated outputs are further edited and revised by the authors before being used in the paper.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Aligned fine-tuned modelsVanilla fine-tuned models

Error landscape for task 1 Error landscape for task 2

Task vector: 

(a)

0.1 0.5 0.9 0.99 0.999 0.9999

Avg. cosine similarity between task vectors

78

80

82

84

86

88

90

92

A
v
g.

ac
cu

ra
cy

on
8

ta
sk

s
(%

)

ViT-L/14

Uniform Averaging

Task Arithmetic

Ties-Merging

Vanilla fine-tuning

(b)

Figure 1: Illustration of the multi-task model merging through task vectors. (a) Left: The definition
of task vector. The dashed line indicates the actual optimisation trajectory. Middle: Vanilla model
fine-tuning, where models are fine-tuned independently, and their task vectors are merged post-fine-
tuning. These vectors tend to be misaligned (orthogonal), causing the merged model to perform
poorly across tasks as it lies far from any single-task optimum. Right: Alignment of task vectors
increases cosine similarity between task vectors, leading the merged model closer to multiple task
optima and improving overall multi-task performance. (b) Aligned task vectors yield higher average
accuracy across eight tasks. Each marker represents a merged ViT-L/14 model derived from a set
of task-specific models fine-tuned using MIMA with varying numbers of iterations under a fixed
computational budget. As cosine similarity between final task vectors increases, both model merging
methods show improved accuracy, and the accuracy advantage of Task Arithmetic over Uniform
Average is reduced.

“Task Arithmetic” (Ilharco et al., 2023). In the latter, each fine-tuned model deviation defines a task
vector (as illustrated in Fig. 1a (left)); summing these vectors with the pre-trained model produces
the multi-task solution. Due to task interference, the independent fine-tuning of each task-specific
model pushes these task vectors in orthogonal directions. Consequently, naive vector addition pro-
duces a merged model far from any individual task optimum (as depicted in Fig. 1a (middle)). This
often degrades performance, evidenced by a high single-task accuracy drop from fine-tuned models
to the merged model.

Instead of learning each task-specific model independently and only merging at the end, we intro-
duce MIMA: Multi-Task Iterated Model Averaging, which alternates between (i) weight averaging
across all task-specific models and (ii) task-specific fine-tuning. By reinitialising each task-specific
model iteratively from the weight-averaging one, we encourage all task updates to include a common
component and facilitate knowledge transfer across tasks, thereby increasing the pairwise cosine
similarity of their eventual task vectors. As a result, task vectors become more aligned, and their
merged model lies closer to multiple task optima (as depicted in Fig. 1a (right)). We demonstrate
that MIMA effectively aligns task vectors in each iteration, hence narrowing the single-task accuracy
gap between the fine-tuned models and the merged model. Fig. 1b empirically shows that greater
task vector alignment directly translates to higher multi-task accuracy. Merged models with higher
cosine similarity between task vectors consistently outperform those obtained via vanilla fine-tuning
across eight tasks. Moreover, the accuracy difference between the two merging methods diminishes
as task vectors become better aligned.

Our main contributions are summarised as follows:

• We identify task-vector orthogonality as the bottleneck in model merging, and introduce
MIMA to align task vectors during fine-tuning.

• We empirically validate MIMA on eight vision tasks and show MIMA with a larger number
of iterations consistently outperforms vanilla fine-tuning methods in multi-task settings.

• We show that if task vectors are fully aligned, different merged methods yield similar per-
formance, enabling Uniform Average to achieve results competitive with more complex
methods like Task Arithmetic and Ties-Merging, thereby reducing the need for validation
sets and hyperparameter selection.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Multi-task learning. MTL aims to improve the generalisation performance of a model by simul-
taneously learning multiple related tasks with a shared representation (Caruana, 1997). It has been
applied to various problems in deep learning, from natural language processing (Collobert & We-
ston, 2008), speech recognition (Shinohara, 2016), to computer vision (Misra et al., 2016). MTL
is typically conducted through hard or soft parameter sharing (Ruder, 2017). In hard parameter
sharing, the parameters of the hidden layers are shared between tasks, while the parameters of the
output layers are task-specific. It acts as a regularisation and reduces the risk of overfitting. Grad-
Norm (Chen et al., 2018) was proposed to normalise gradient magnitudes when a single network
is trained on multiple tasks. In contrast, soft parameter sharing maintains separate models for each
task, but they are jointly connected, enabling cross-task knowledge transfer through learned con-
nections. Misra et al. (2016) propose the “cross-stitch” units, which combine the activations from
multiple networks trained on different tasks.

While conventional MTL methods assume simultaneous access to training data from all tasks, this
assumption is often impractical in sensitive privacy settings where raw data cannot be shared across
devices or institutions. To address this, we focus on a hard parameter sharing paradigm following the
data privacy policy. Specifically, we fine-tune individual models on task-specific data independently
and subsequently merge their parameters to construct a unified multi-task model. Crucially, our
method only requires access and modification to the model parameters during fine-tuning, and does
not necessitate sharing the original datasets.

Federated learning. Federated learning is a distributed computing paradigm where multiple
clients train local models on their private data and collaborate to build one shared model. This
is achieved by only sharing model updates from the clients, preserving data privacy. In federated
learning, model merging occurs through multiple rounds of synchronisation among the clients. For
example, Federated Averaging (FedAvg) (McMahan et al., 2017) maintains a single global model
in the central server and optimises a single global objective. Each time, the central server sends a
global model to a random fraction of clients to train for efficiency. Then, FedAvg iteratively per-
forms model averaging across all clients and updates to the central server.

In contrast, MIMA maintains multiple task-specific objectives and maintains multiple task-specific
models. All these task-specific models can be combined with any merging strategy (e.g., Uniform
Averaging, Task Arithmetic, or Ties-Merging). More importantly, iterative averaging in MIMA
is not used to enforce convergence to a single global model, but rather to align task vectors so
that their merged multi-task model preserves single-task performance. Therefore, MIMA measures
task-vector cosine similarity and the single-task accuracy gap of the merged model, while FedAvg
measures the convergence of the training loss to a global model.

Linear mode connectivity and model merging. Models with the same initialisation or part of
their optimisation path are situated within the same local basin. The accuracy does not decrease
when linearly interpolating weights between them, dubbed as linear mode connectivity (LMC) (Iz-
mailov et al., 2018; Frankle et al., 2020). LMC enables direct parameter manipulation within a
shared basin and has been widely leveraged to merge models with the same architecture.

The first attempt for model merging with all models fine-tuned on the same task, aiming to improve
its accuracy and generalisation. WiSE-FT (Wortsman et al., 2022b) computes a linear interpolation
between the pre-trained parameters and the fine-tuned parameters. It shows large improvements
in robustness under distribution shift, while preserving high accuracy on the target dataset. Fisher
Merging (Matena & Raffel, 2022) uses the Fisher information (Fisher, 1922) to compute a weighted
average of different models’ parameters. Model Soup (Wortsman et al., 2022a) averages multiple
fine-tuned models with different hyperparameter configurations and further improves the accuracy
and robustness. Another approach attempts to merge models fine-tuned on different tasks to perform
MTL, and this paper primarily focuses on the same objective. Ilharco et al. (2022) proposed to
linearly interpolate the weights between fine-tuned models to build a multi-task model. RegMean
(Jin et al., 2023) uses insights from linear models to minimise prediction differences between merged
and individual models. However, this approach requires information from the dataset and needs to
compute the inner product matrix for the training dataset.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task Arithmetic (Ilharco et al., 2023) introduces the concept of “task vector”. It builds the multi-
task model by adding and scaling all task vectors to the pre-trained weights. One disadvantage of
this method is its reliance on a scaling term, which requires optimisation. We show that when task
vectors are aligned, simple averaging matches the performance of task-vector learning, hence elim-
inating the need for a scaling term. The main limitation of task arithmetic methods, however, arises
from interference between task vectors. A variety of works have attempted to reduce such interfer-
ence, but despite some improvement, the accuracy gap between the single-task fine-tuned models
and the multi-task merged model remains large. For example, Ortiz-Jiménez et al. (2023) proposed
weight disentanglement, which allows a model to perform task arithmetic by independently manip-
ulating these distinct task vector directions. They showed that fine-tuning models in their tangent
space amplifies this weight disentanglement property, leading to better performance of the merged
models. TIES-Merging (Yadav et al., 2023) shows that removing redundant parameters and reducing
the sign conflict between task vectors improves the performance of the merged models. Similarly to
these approaches, MIMA exploits the error landscape. Our approach is iterative: MIMA alternately
improves single-task performance (through single-task fine-tuning, increasing the interference) and
optimises the merged model (through repeated model averaging). We show that iterating this combi-
nation of steps aligns task vectors to effectively suppress interference between them. Hence, MIMA
provides a combination of high single-task and multi-task accuracy.

3 PROBLEM STATEMENT

Notation and vanilla fine-tuning. Let θ0 ∈ Rd represent the weights of the pre-trained model,
where d is the number of parameters. We consider a set of T downstream tasks, indexed by t ∈
{1, . . . , T}, each task t with its own labelled dataset Dt. In vanilla fine-tuning, a separate model is
trained from θ0 for task t, producing task-specific weights θt:

θt = FineTune(θ0,Dt, S),

where S is the total number of gradient-descent steps allocated per task.

Task Arithmetic. Following (Ilharco et al., 2023), the task vector τt for task t is defined as the
vector difference between the fine-tuned weights and pre-trained weights. Mathematically,

τt = θt − θ0. (1)

This task vector τt represents the weight update through fine-tuning in parameter space. Therefore,
a merged multi-task model can be obtained by simply adding the sum of each task vector to the
pre-trained model:

θmerge = θ0 + λ
∑

τt = θ0 + λ

T∑
t=1

(θt − θ0), (2)

where λ is the scaling factor determined using held-out validation sets from {Dt}Tt=1. When λ =
1/T , the resulting weights θmerge are the same as the average of the fine-tuned weights across all
tasks, i.e., θmerge =

∑T
t=1 θt/T .

Interference via orthogonal task vectors. Since Task Arithmetic does a linear combination be-
tween task vectors on the basis of a pre-trained model, the efficacy of the merging model in equa-
tion 2 depends on the geometric relationship between the task vectors and error landscapes. If the
merged model is in the basin for each task, it can achieve high multi-task accuracy. In practice, in-
dependently fine-tuning models on distinct tasks often finds that task vectors lie in near-orthogonal
directions (see Appendix C.1):

τi · τj
∥τi∥∥τj∥

≈ 0, ∀i ̸= j (3)

Such orthogonality leads to task interference when summing {τt}, as the merged model θmerge may
lie in a region of the error landscape far from any individual task optimum, causing large accuracy
drops on individual tasks.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We aim to design a fine-tuning procedure that, under a fixed total fine-tuning budget S per task,
generates a set of aligned task vectors {τt}Tt=1. By implicitly encouraging high pairwise cosine
similarity between the task vectors during training, we could build an effective multi-task model
through a simple merge method (e.g. Uniform Averaging) without using any complex post-hoc
modifications (TIES-Merging) or hyperparameter tuning (Task Arithmetic).

4 MIMA

We introduce MIMA and describe its detailed implementation in this section. We split the entire
fine-tuning process into multiple iterations. Each iteration consists of a uniform-averaging phase
followed by a fine-tuning phase, as illustrated in Fig 2. Instead of learning in isolation, our method
frequently performs synchronisation across all task models and iteratively changes the starting point
of fine-tuning, ensuring knowledge sharing among task-specific models.

Task 1 Task 

Pre-trained model

Fine-tuned modelFine-tuned model

Averaged model

Merged model

 iterations

Figure 2: MIMA framework: A common
pre-trained model undergoes N iterations of
uniform-averaging over the weights and fine-
tuning phases for each task. Finally, task-
specific models are merged. The N = 1 case
is equivalent to vanilla model merging.

Uniform-averaging phase. At the beginning of
each iteration i ∈ {2, . . . , N}, we perform a syn-
chronisation step across all T task-specific mod-
els before the fine-tuning phase. This phase estab-
lishes a shared representation that integrates knowl-
edge accumulated from all tasks encountered thus
far. Specifically, we compute the average of the task-
specific weights from the previous iteration, which
serves as a common starting point for all tasks in the
fine-tuning phase:

θ̄(i−1) =
1

T

T∑
t=1

θ
(i−1)
t , i ≥ 2 (4)

For the first iteration (i = 1), we initialise θ̄(0) with
the pretrained model: θ̄(0) = θ0.

Fine-tuning phase. Following the uniform-
averaging phase, each task-specific model θt is
fine-tuned on its labelled dataset, starting from the
shared representation θ̄(i−1), for K optimisation
steps (K ≤ S):

θ
(i)
t = FineTune(θ̄(i−1),Dt,K).

We define the incremental update δ
(i)
t for task t at iteration i as the parameter change before and

after the fine-tuning phase:

δ
(i)
t = θ

(i)
t − θ̄(i−1). (5)

While the task vector τt represents the total cumulative parameter change relative to the initial model
θ0, the incremental update δt is the local parameter change that occurs from the current fine-tuning
phase. Importantly, these incremental updates δt tend to remain orthogonal, as they result from
independent training on distinct tasks. Therefore, we update equation 3 to the following:

δi · δj
∥δi∥∥δj∥

≈ 0,∀i ̸= j (6)

In contrast, task vectors may become increasingly aligned over iterations due to accumulated shared
components as discussed later. Fig. 3 illustrates the distinction between the local incremental update
δt and the global task vector τt, and we empirically validate such behaviour of incremental updates
and task vectors over iterations in Appendix C.2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Task vector: 

Incremental update: 

Figure 3: A vector-based illustration of the
update process for two tasks. The solid
line represents the task vector τt while the
dashed line represents the incremental up-
date δt. At the first iteration, τ (1)

t = δ
(1)
t .

Over iterations, shared components θ̄ ac-
cumulate, aligning τt despite δt remaining
near-orthogonal.

Iteration. The above weight-averaging and fine-
tuning phases are repeated for N iterations. To en-
sure a fair comparison, the total fine-tuning steps S
is fixed:

S = K ×N.

Increasing N introduces more frequent synchro-
nisation at the cost of fewer weight update steps
per phase, offering a tunable trade-off between ex-
ploration (task-specific adaptation) and alignment
(cross-task knowledge sharing).

The averaged model at iteration i is the initial pre-
trained model plus the average of all incremental up-
dates up to that point. Combining equation 4 and
equation 5, the evolution of the averaged model can
be expressed as:

θ̄(i−1) =
1

T

T∑
t=1

θ
(i−1)
t = θ̄(i−2) +

1

T

T∑
t=1

δ
(i−1)
t

= θ0 +
1

T

i−1∑
l=1

T∑
t=1

δ
(l)
t , i ≥ 2 (7)

Accordingly, the task vector τ (i)
t after iteration i can

be decomposed as:

τ
(i)
t =

{
δ
(1)
t , if i = 1;
1
T

∑i−1
l=1

∑T
t=1 δ

(l)
t + δ

(i)
t , otherwise

(8)

This highlights that each task vector contains both a task-specific update term δ
(i)
t and an accumu-

lating shared term 1
T

∑i
l=1

∑T
t=1 δ

(l)
t . As iteration progresses, the shared term becomes dominant,

leading to implicit alignment across task vectors.

Final merge. After N iterations, we obtain a set of task-specific weights {θ(N)
t }Tt=1. These can

then be merged into unified weights θmerge using any standard merging method.

5 EMPIRICAL INVESTIGATION: MIMA

In this section, we present the experimental settings (Sec. 5.1) and results (Sec. 5.2). Additional
details and results are included in the Appendix due to page limitations.

5.1 EXPERIMENTAL SETTINGS

Fine-tuning. All the fine-tuning experiments follow the same training procedure specified in Il-
harco et al. (2022; 2023); Ortiz-Jiménez et al. (2023). We start with the same pre-trained CLIP ViT
model (ViT-B/32, ViT-B/16, ViT-L/14) downloaded from the open clip repository (Ilharco et al.,
2021) as our pre-trained model θ0 and fine-tune it through end-to-end supervised learning for a total
of S = 2000 iterations on each task. We use the AdamW optimiser with a batch size of 128, a
learning rate of 1e-5, a weight decay (Loshchilov & Hutter, 2019) of 0.1, and a cosine annealing
learning rate schedule with 200 warm-up steps. When fine-tuning, we froze the final classification
layer output and only optimise the image encoder layers. We vary the number of MIMA iterations
(N ) across {1, 2, 4, 8, 16, 20}. Note that the case N = 1 corresponds to the standard, independent
fine-tuning baseline.

Datasets. We use eight published image classification datasets for our eight tasks, including Cars
(Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp
et al., 2011), MNIST (LeCun, 1998), RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2016),

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and SVHN (Netzer et al., 2011). We apply default settings for training and testing, using each
validation set for hyperparameter selection including the Task Arithmetic scaling factor λ.

Merging method. We evaluate three primary merging methods after the final MIMA iteration:
(1) Uniform Averaging calculates the element-wise mean over the weights of fine-tuned models:
1
T

∑T
t=1 θ

(N)
t . (2) Task Arithmetic (Ilharco et al., 2023) scales and sums the final task vectors and

the initial pre-trained model: θ0 + λ
∑T

t=1(θ
(N)
t − θ0). The optimal scaling factor λ is found via a

grid search over [0, 0.05, 0.1, . . . , 1.0] on held-out validation sets. (3) Ties-Merging (Yadav et al.,
2023) follows three steps of emphTrim, Elect Sign, and Disjoint Merge on task vectors. The optimal
scaling factor λ is found via a grid search over [0.8, 0.85, 0.9, . . . , 1.8] on held-out validation sets.

We also evaluate a practical setting where no validation set is available. Uniform Averaging is a
hyperparameter-free method without the need for a validation set. Following the recommendations
from previous work, we set λ = 1 for Ties-Merging and λ = 0.4 for Task Arithmetic.

5.2 EXPERIMENTAL RESULTS

1 4 8 12 16 20
Number of iterations (N)

65

70

75

80

85

A
v
g.

ac
cu

ra
cy

on
8

ta
sk

s
(%

)

ViT-B/32

1 4 8 12 16 20
Number of iterations (N)

72

75

78

81

84

87

90

ViT-B/16

1 4 8 12 16 20
Number of iterations (N)

80

82

84

86

88

90

92

ViT-L/14

Uniform Averaging (w/o validation sets) Task Arithmetic Ties-Merging

(a)

1 4 8 12 16 20
Number of iterations (N)

40

50

60

70

80

90

A
v
g.

ac
cu

ra
cy

on
8

ta
sk

s
(%

)

ViT-B/32

1 4 8 12 16 20
Number of iterations (N)

42

48

54

60

66

72

78

84

90

ViT-B/16

1 4 8 12 16 20
Number of iterations (N)

55

60

65

70

75

80

85

90

ViT-L/14

Uniform Averaging (w/o validation sets) Task Arithmetic (w/o validation sets) Ties-Merging (w/o validation sets)

(b)

Figure 4: Comparing the average absolute accuracy on eight tasks among Uniform Averaging, Task
Arithmetic and Ties-Merging over varying numbers of iterations N . Dotted lines indicate results
without validation sets, while solid lines indicate results with validation sets. (a): With validation
sets, Task Arithmetic and Ties-Merging benefit from additional numbers of iterations. (b): Without
validation sets, Task Arithmetic is unstable and its performance drops substantially as N increases.

MIMA performance. Fig. 4 illustrates the trend of average absolute accuracy on the eight vision
tasks as a function of the number of iterations N , comparing Uniform Averaging, Task Arithmetic
and Ties-Merging for the three ViT architectures. The performance of Uniform Averaging and Task
Arithmetic improves monotonically with a larger number of iterations N across all architectures. For
Fig. 4a, after selecting the optimal scaling term λ for task vectors using validation sets, both Task
Arithmetic and Ties-Merging achieve higher average accuracy than Uniform Averaging. However,
their performance advantage over Uniform Averaging diminishes as N increases. This indicates that

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

with sufficient alignment among task vectors, a simple, hyperparameter-free averaging of weights is
nearly as effective as the more complex approaches. Fig. 4b evaluates merging in the absence of the
validation set. In this case, neither Task Arithmetic nor Ties-Merging can consistently outperform
Uniform Averaging when more frequent MIMA averaging is used. In fact, the alignment between
task vectors can hurt Task Arithmetic with a fixed scaling term λ, leading to degraded performance
as the number of iterations grows.

1 2 4 8 16 20

Number of iterations (N)

0.0

0.2

0.4

0.6

0.8

1.0

P
ai

rw
is

e
co

si
n

e
si

m
il

ar
it

y

ViT-B/32

1 2 4 8 16 20

Number of iterations (N)

0.0

0.2

0.4

0.6

0.8

1.0

ViT-B/16

1 2 4 8 16 20

Number of iterations (N)

0.0

0.2

0.4

0.6

0.8

1.0

ViT-L/14

Figure 5: Box plot for pairwise cosine similarities between final task vectors as a function of the
number of iterations N .

Pairwise cosine similarity. To directly validate our central hypothesis, we compute the pairwise
cosine similarity between the final task vectors τ

(N)
t . Fig. 5 shows the distribution of these sim-

ilarities as N increases. For the baseline case of vanilla fine-tuning (N = 1), the pairwise cosine
similarities are very low, typically centred around 0.0 to 0.1, confirming the near-orthogonality of
independently learned task vectors. As N increases, the median and interquartile range of cosine
similarities shift steadily towards 1. This provides direct evidence that MIMA successfully aligns
task vectors, forcing them to point in a common direction in parameter space.

1 4 8 12 16 20
Number of iterations (N)

0

5

10

15

20

25

A
v
g.

si
n

gl
e-

ta
sk

ac
cu

ra
cy

ga
p

on
8

ta
sk

s
(%

)

ViT-B/32

ViT-B/16

ViT-L/14

Figure 6: Average single-task accuracy gap
between individual fine-tuned models and
the merged model through Uniform Averag-
ing with varying numbers of iterations N .

Single-task accuracy gap. A key challenge in
multi-task learning is preserving the high perfor-
mance of task-specific models. We define the single-
task accuracy gap as the difference between the ac-
curacy of an individual fine-tuned model and the
accuracy of the merged model on that same task:
Acc(θ(N)

t ,Dt) − Acc(θmerge,Dt). Fig. 6 shows
that this gap shrinks to nearly zero over 16 iterations,
demonstrating that the single multi-task model per-
forms almost as well as a collection of task-specific
models.

Error landscape visualisation. To build a geo-
metric intuition for the effectiveness of MIMA, we
visualise the error landscape for fine-tuning ViT-
B/16 models with varying numbers of iterations.
Fig. 7 plots a 2D slice of the error landscape for two
tasks (Cars and RESISC45). The plane is defined by
the pre-trained model and two task-specific models fine-tuned on each task.

For vanilla fine-tuning baseline (N = 1), the low-error “valleys” for the two tasks are far apart, and
the average model may lie in a region of high error for both. As we increase N to 4 and then 8,
the two found task-specific valleys rotate towards each other. At N = 8, the two valleys are nearly
parallel, creating a basin of shared low error. The average model now could reside within this shared
basin, achieving low error for both tasks simultaneously. This visualisation confirms that MIMA
could find a more suitable landscape to resolve task conflict with a shared solution space.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3

0

1

2

3
Cars Test Error

0 1 2 3

0

1

2

3
RESISC45 Test Error

0 1 2 3

0

1

2

3
Average Test Error (Cars,RESISC45)

12.5

12.8

13.1

13.8

15.3

18.5

25.4

40.0

> 40.0

3.0

3.3

3.7

4.5

6.3

10.4

19.6

40.0

> 40.0

10.3

10.6

10.9

11.7

13.3

16.7

24.1

40.0

> 40.0

(a) N = 1

0 0.5 1 1.5

0

0.5

1

1.5

Cars Test Error

0 0.5 1 1.5

0

0.5

1

1.5

RESISC45 Test Error

0 0.5 1 1.5

0

0.5

1

1.5

Average Test Error (Cars,RESISC45)

18.7

19.0

19.3

19.9

21.2

23.7

29.1

40.0

> 40.0

4.4

4.7

5.1

5.9

7.7

11.7

20.5

40.0

> 40.0

12.6

12.9

13.2

13.9

15.4

18.6

25.4

40.0

> 40.0

(b) N = 4

0 0.5 1 1.5

0

0.5

1

1.5

Cars Test Error

0 0.5 1 1.5

0

0.5

1

1.5

RESISC45 Test Error

0 0.5 1 1.5

0

0.5

1

1.5

Average Test Error (Cars,RESISC45)

20.0

20.3

20.6

21.2

22.4

24.8

29.8

40.0

> 40.0

5.1

5.4

5.8

6.6

8.3

12.3

20.9

40.0

> 40.0

12.6

12.9

13.2

13.9

15.4

18.6

25.4

40.0

> 40.0

Pre-trained model Fine-tuned model on Cars Fine-tuned model on RESISC45

(c) N = 8

Figure 7: Increasing the number of iterations in MIMA decreases the angle between final task
vectors (illustrated by the grey arrows). This figure shows a two-dimensional slice of the error
landscapes for ViT-B/16 models on Cars (left), RESISC45 (middle), and their average (right). As in
Izmailov et al. (2018), we obtain the orthonormal basis u,v for the plane spanned by the two task
vectors. A point P with coordinates (x, y) in the plane would then be given by P = θ0+x ·u+y ·v.

6 CONCLUSION

In this paper, we addressed a challenge in multi-task model merging: the task interference caused by
combining independently trained models with near-orthogonal task vectors. We proposed MIMA, a
framework that interleaves vanilla fine-tuning with iterative weight averaging to enforce alignment
between task-specific models during training.

Our empirical results on vision tasks confirm this, demonstrating that our algorithm dramatically
improves the performance of merged models. By progressively aligning task vectors, our algorithm
enables a single multi-task model to retain nearly all of the performance of its specialised, fine-tuned
models, effectively reducing the single-task accuracy gap. The simplicity and effectiveness of our
proposed algorithm make it a practical and powerful technique for building efficient and capable
multi-task systems from large pre-trained foundation models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rishi Bommasani et al. On the Opportunities and Risks of Foundation Models. arXiv.org,
abs/2108.07258, 2021.

Rich Caruana. Multitask Learning. Machine Learning, 28(1):41–75, 1997.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
Normalization for Adaptive Loss Balancing in Deep Multitask Networks. In International Con-
ference on Machine Learning (ICML), pp. 793–802, 2018.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote Sensing Image Scene Classification: Bench-
mark and State of the Art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing Textures in the Wild. In Computer Vision and Pattern Recognition (CVPR), pp. 3606–
3613, 2014.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In International Conference on Machine Learning
(ICML), pp. 160–167, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In North American Chapter of the As-
sociation for Computational Linguistics (NAACL), pp. 4171–4186, 2019.

Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transac-
tions of the Royal Society of London. Series A, containing papers of a mathematical or physical
character, 222(594-604):309–368, 1922.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear Mode
Connectivity and the Lottery Ticket Hypothesis. In International Conference on Machine Learn-
ing (ICML), pp. 3259–3269, 2020.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A Novel Dataset
and Deep Learning Benchmark for Land Use and Land Cover Classification. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. In Conference on Neural Information Processing Systems (NeurIPS), 2022.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In International Conference on Learning
Representations (ICLR), 2023.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wil-
son. Averaging Weights Leads to Wider Optima and Better Generalization. In Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 876–885, 2018.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless Knowledge Fusion by
Merging Weights of Language Models. In International Conference on Learning Representations
(ICLR), 2023.

James Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the
national academy of sciences, 114(13):3521—3526, 2017.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do Better ImageNet Models Transfer Better?
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

10

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d Object Representations for Fine-
Grained Categorization. In IEEE International Conference on Computer Vision (ICCV) - Work-
shops, pp. 554–561, 2013.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations (ICLR), 2019.

Michael S Matena and Colin Raffel. Merging Models with Fisher-Weighted Averaging. In Confer-
ence on Neural Information Processing Systems (NeurIPS), 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1273–1282, 2017.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-Stitch Networks for
Multi-task Learning. In Computer Vision and Pattern Recognition (CVPR), pp. 3994–4003, 2016.

Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading Digits in Natural
Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning, volume 2011, pp. 4, 2011.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pascal Frossard. Task Arithmetic in the Tangent
Space: Improved Editing of Pre-Trained Models. In Conference on Neural Information Process-
ing Systems (NeurIPS), 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In Inter-
national Conference on Machine Learning (ICML), pp. 8748–8763, 2021.

Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv.org,
abs/1706.05098, 2017.

Victor Sanh et al. Multitask Prompted Training Enables Zero-Shot Task Generalization. In Interna-
tional Conference on Learning Representations (ICLR), 2022.

Yusuke Shinohara. Adversarial Multi-Task Learning of Deep Neural Networks for Robust Speech
Recognition. In Interspeech 2016. ISCA, 2016.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign
Recognition Benchmark: A multi-class classification competition. In IEEE International Joint
Conference on Neural Network (IJCNN), 2011.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International Conference on Machine Learning (ICML),
pp. 23965–23998, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
Schmidt. Robust Fine-Tuning of Zero-Shot Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7959–7971, 2022b.

Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun Database:
Exploring a Large Collection of Scene Categories. International Journal of Computer Vision, 119
(1):3–22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-Merging:
Resolving Interference When Merging Models. In Conference on Neural Information Processing
Systems (NeurIPS), 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Conference on Neural Information Processing Systems (NeurIPS), pp. 3320–
3328, 2014.

A EXPERIMENTAL SETTINGS

A.1 VISION DATASET DETAILS

• Cars (Krause et al., 2013) contains car images across 196 classes. The train/validation/test
splits have 7, 333/814/8, 041 images, respectively.

• DTD (Cimpoi et al., 2014) contains texture images “in the wild” in 47 classes. The
train/validation/test splits have 3, 384/376/1, 880 images, respectively.

• EuroSAT (Helber et al., 2019) contains Sentinel-2 satellite images in 10 classes. The
train/validation/test splits have 21, 600/2, 700/2, 700 images, respectively.

• GTSRB (Stallkamp et al., 2011) contains images of traffic sign in 43 classes. The
train/validation/test splits have 23, 976/2, 664/12, 630 images, respectively.

• MNIST (LeCun, 1998) contains images of handwritten digit in 10 classes. The
train/validation/test splits have 55, 000/5, 000/10, 000 images, respectively.

• RESISC45 (Cheng et al., 2017) contains images of remote sensing scene in 45 classes.
The train/validation/test splits have 17, 010/1, 890/6, 300 images, respectively.

• SUN397 (Xiao et al., 2016) contains scene images in 397 classes. The train/validation/test
splits have 17, 865/1, 985/19, 850 images, respectively.

• SVHN (Netzer et al., 2011) contains images of printed digits cropped from house number
plates in 10 classes. The train/validation/test splits have 68, 257/5, 000/26, 032 images,
respectively.

For any dataset without a publicly available test set, we use its validation set for testing and re-
split the original training set into train/validation subsets. For all datasets, we report classification
accuracy as our evaluation metric.

A.2 COMPUTING INFRASTRUCTURE

All fine-tuning and evaluation of each CLIP ViT model are conducted on a single NVIDIA A100
GPU using PyTorch, running on an internal compute cluster.

B ADDITIONAL PERFORMANCE RESULTS

In this section, we present additional experiments to expand the findings discussed in the main text.

B.1 MAIN RESULTS

Table 1 provides a detailed comparison of merging methods across three CLIP ViT architectures,
showing both average absolute and relative accuracies as the number of MIMA iterations (N ) in-
creases. Specifically, we define the relative accuracy for the merged model as the single-task accu-
racies achieved by the merged model divided by the single-task accuracies achieved by the corre-
sponding individual fine-tuned model (averaged across all tasks). Mathematically,

Relative accuracy =
1

T

T∑
t=1

Acc(θmerge,Dt)

Acc(θt,Dt)

By this definition, the relative accuracy of the individual fine-tuned models on their respective tasks
is 100%.

The results for the baseline case (N = 1) show a large performance gap between the individually
fine-tuned models and the merged models. For ViT-L/14, Task Arithmetic and Ties-Merging achieve

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 1: Average absolute (%) and relative accuracies (%) of different CLIP ViTs merged by Uni-
form Averaging, Task Arithmetic and Ties-Merging on 8 tasks. We report results for varying num-
bers of MIMA iterations (N ), and N = 1 corresponds to the baseline vanilla fine-tuning approach.

Method Number of Iterations ViT-B/32 ViT-B/16 ViT-L/14
Abs. (↑) Rel. (↑) Abs. (↑) Rel. (↑) Abs. (↑) Rel. (↑)

Pre-trained - 48.1 – 55.3 – 65.2 –

Fine-tuned

N = 1

90.2 100 92.5 100 94.0 100
Uniform Averaging 65.8 73.3 71.9 77.7 79.3 84.2
Task Arithmetic 70.6 79.4 75.6 82.4 84.1 89.9
Ties-Merging 73.6 82.7 78.1 85.2 85.3 91.2

Fine-tuned

N = 2

89.8 100 92.1 100 93.9 100
Uniform Averaging 74.2 82.7 79.1 85.6 85.3 90.6
Task Arithmetic 77.2 87.2 81.5 89.2 88.7 94.9
Ties-Merging 78.1 88.3 82.5 90.3 88.9 95.1

Fine-tuned

N = 4

88.6 100 91.0 100 93.2 100
Uniform Averaging 81.8 92.1 84.6 92.7 89.3 95.6
Task Arithmetic 83.0 95.4 85.7 95.1 90.9 98.2
Ties-Merging 83.3 95.8 86.3 95.8 91.1 98.4

Fine-tuned

N = 8

87.8 100 90.5 100 92.8 100
Uniform Averaging 85.8 97.7 88.4 97.6 91.8 98.9
Task Arithmetic 85.9 99.9 88.8 99.2 92.3 100.2
Ties-Merging 86.4 100.4 89.0 99.5 92.6 100.5

Fine-tuned

N = 16

88.0 100 90.5 100 93.0 100
Uniform Averaging 87.6 99.5 90.2 99.7 92.8 99.8
Task Arithmetic 87.3 101.1 90.3 100.8 92.9 100.6
Ties-Merging 88.1 102.1 90.7 101.3 93.1 100.8

Fine-tuned

N = 20

88.1 100 90.7 100 93.1 100
Uniform Averaging 88.0 99.8 90.6 99.9 92.9 99.9
Task Arithmetic 87.6 101.3 90.5 100.9 93.0 100.5
Ties-Merging 88.4 102.2 90.9 101.3 93.2 100.8

Table 2: The optimal scaling term λ used in Task Arithmetic, selected via a held-out validation.

N = 1 N = 2 N = 4 N = 8 N = 16 N = 20

ViT-B/32 0.25 0.2 0.15 0.15 0.15 0.15

ViT-B/16 0.25 0.2 0.15 0.15 0.15 0.15

ViT-L/14 0.3 0.25 0.2 0.15 0.15 0.15

Table 3: The optimal scaling term λ used in Ties-Merging, selected via a held-out validation.

N = 1 N = 2 N = 4 N = 8 N = 16 N = 20

ViT-B/32 0.85 1.05 1.45 1.5 0.45 1.5

ViT-B/16 1 1 1.5 1.7 1.6 1.5

ViT-L/14 1.05 1.3 1.8 1.7 1.7 1.65

84.1% and 85.3% average absolute accuracy, respectively, while compared to the absolute average
accuracy of each fine-tuned model on its own task is 94.0%. This gap is even larger for Uniform
Averaging, which achieves 79.3% average absolute accuracy. This is expected, as Task Arithmetic
and Ties-merging use a tuned scaling factor λ to partially mitigate misalignment (see optimal values
in Tables 2 and 3), whereas Uniform Averaging does not.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

With MIMA, the performance of the merged models improves dramatically. As N increases, both
Uniform Averaging and Task Arithmetic see substantial accuracy gains. For ViT-L/14, the average
absolute accuracy of the model merged with Task Arithmetic also sees a similar rise from 84.1%
(N = 1) to 93.0% (N = 20). Similarly, Uniform Averaging increases from 79.3% to 92.9%. This
demonstrates that our method effectively mitigates task interference, allowing even a naive averaging
approach to produce a high-performing multi-task model. Notably, with sufficient iterations (N ≥
8), the merged models achieve relative accuracies near or even exceeding 100%, indicating that the
final multi-task model is on par with, and sometimes even better than, the task-specific models.

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

100

S
in

gl
e-

ta
sk

ac
cu

ra
cy

(%
)

ViT-B/32

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

100

S
in

gl
e-

ta
sk

ac
cu

ra
cy

(%
)

ViT-B/16

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

100

S
in

gl
e-

ta
sk

ac
cu

ra
cy

(%
)

ViT-L/14

N = 1 N = 2 N = 4 N = 8 N = 16 N = 20 Zero-shot

Figure 8: Single-task accuracy for zero-shot model and each task-specific model with different
numbers of iterations.

B.2 FINE-TUNING ACCURACIES

A key benefit of our method is that it improves the multi-task accuracy without sacrificing the single-
task specialisation. Figure 8 shows the single-task accuracies achieved by task-specific models:
before fine-tuning (referred to as zero-shot) and after fine-tuning with different numbers of iterations.
These results indicate that an increase in the number of iterations will not significantly change the
single-task accuracy for any given task.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 MULTI-TASK ACCURACIES

Figure 9 reports the absolute accuracies of the merged models using Uniform Averaging. The per-
formance of the merged model improves uniformly across all eight tasks with a larger number of
MIMA iterations.

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SUN397

SVHN

20
40

60
80

ViT-B/32

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SUN397

SVHN

20
40

60
80

ViT-B/16

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SUN397

SVHN

20
40

60
80

ViT-L/14

N = 1 N = 2 N = 4 N = 8 N = 20

Figure 9: Comparison of the merged multi-task model using Uniform Average on eight tasks. The
multi-task accuracy is uniformly improved as the number of iterations increases.

C ADDITIONAL COSINE SIMILARITY RESULTS

In this section, we evaluate the cosine similarity between incremental updates δt or task vectors τt
for the fine-tuned models during the iteration.

SU
N
39

7
Car

s

R
ESI

SC
45

Eur
oS

AT

SV
H
N

G
TSR

B

M
N
IS

T
D
TD

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

1.00 0.03 0.04 0.03 0.03 0.03 0.03 0.04

0.03 1.00 0.03 0.03 0.03 0.04 0.03 0.04

0.04 0.03 1.00 0.07 0.03 0.04 0.04 0.04

0.03 0.03 0.07 1.00 0.05 0.05 0.04 0.04

0.03 0.03 0.03 0.05 1.00 0.09 0.16 0.03

0.03 0.04 0.04 0.05 0.09 1.00 0.08 0.04

0.03 0.03 0.04 0.04 0.16 0.08 1.00 0.04

0.04 0.04 0.04 0.04 0.03 0.04 0.04 1.00

Cosine similarity between task vectors

(a) ViT-B/32

SU
N
39

7
Car

s

R
ESI

SC
45

Eur
oS

AT

SV
H
N

G
TSR

B

M
N
IS

T
D
TD

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

1.00 0.03 0.04 0.03 0.02 0.03 0.03 0.04

0.03 1.00 0.03 0.03 0.03 0.03 0.03 0.03

0.04 0.03 1.00 0.07 0.03 0.04 0.04 0.04

0.03 0.03 0.07 1.00 0.04 0.04 0.04 0.04

0.02 0.03 0.03 0.04 1.00 0.08 0.20 0.03

0.03 0.03 0.04 0.04 0.08 1.00 0.08 0.04

0.03 0.03 0.04 0.04 0.20 0.08 1.00 0.04

0.04 0.03 0.04 0.04 0.03 0.04 0.04 1.00

Cosine similarity between task vectors

(b) ViT-B/16

SU
N
39

7
Car

s

R
ESI

SC
45

Eur
oS

AT

SV
H
N

G
TSR

B

M
N
IS

T
D
TD

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

1.00 0.02 0.03 0.02 0.01 0.02 0.02 0.03

0.02 1.00 0.02 0.02 0.02 0.03 0.02 0.02

0.03 0.02 1.00 0.05 0.02 0.03 0.03 0.03

0.02 0.02 0.05 1.00 0.04 0.03 0.04 0.03

0.01 0.02 0.02 0.04 1.00 0.06 0.12 0.02

0.02 0.03 0.03 0.03 0.06 1.00 0.05 0.03

0.02 0.02 0.03 0.04 0.12 0.05 1.00 0.03

0.03 0.02 0.03 0.03 0.02 0.03 0.03 1.00

Cosine similarity between task vectors

(c) ViT-L/14

Figure 10: The cosine similarity matrix for the task vectors obtained from vanilla fine-tuning CLIP
models (N = 1). Normally, most task vectors are nearly orthogonal (similarity ≈ 0), indicating
misalignment. Two semantically similar tasks will slightly increase the cosine similarity on the task
vector, such as MNIST and SVHN.

C.1 VANILLA FINE-TUNING (N = 1)

According to the definition, the incremental updates and task vectors are the same δ
(1)
t = τ

(1)
t for

the baseline case N = 1. Figure 10 shows the pairwise cosine similarity matrix, where most pairs
have a similarity close to zero. Two tasks with semantic similarity (MNIST and SVHN) produce
task vectors with a larger cosine similarity. The observations have also been observed by (Ilharco
et al., 2023).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

P
ai

rw
is

e
co

si
n

e
si

m
il

ar
it

y
b

et
w

ee
n

in
cr

em
en

ta
l

u
p

d
at

es

ViT-B/32

500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0
ViT-B/16

500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0
ViT-L/14

500 1000 1500 2000

Fine-tuning steps

0.0

0.2

0.4

0.6

0.8

1.0

P
ai

rw
is

e
co

si
n

e
si

m
il

ar
it

y
b

et
w

ee
n

ta
sk

ve
ct

or
s

500 1000 1500 2000

Fine-tuning steps

0.0

0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000

Fine-tuning steps

0.0

0.2

0.4

0.6

0.8

1.0

(a) N = 4

250 500 750 1000 1250 1500 1750 2000

0.0

0.2

0.4

0.6

0.8

1.0

P
ai

rw
is

e
co

si
n

e
si

m
il

ar
it

y
b

et
w

ee
n

in
cr

em
en

ta
l

u
p

d
at

es

ViT-B/32

250 500 750 1000 1250 1500 1750 2000

0.0

0.2

0.4

0.6

0.8

1.0
ViT-B/16

250 500 750 1000 1250 1500 1750 2000

0.0

0.2

0.4

0.6

0.8

1.0
ViT-L/14

250 500 750 1000 1250 1500 1750 2000

Fine-tuning steps

0.0

0.2

0.4

0.6

0.8

1.0

P
ai

rw
is

e
co

si
n

e
si

m
il

ar
it

y
b

et
w

ee
n

ta
sk

ve
ct

or
s

250 500 750 1000 1250 1500 1750 2000

Fine-tuning steps

0.0

0.2

0.4

0.6

0.8

1.0

250 500 750 1000 1250 1500 1750 2000

Fine-tuning steps

0.0

0.2

0.4

0.6

0.8

1.0

(b) N = 16

Figure 11: Evolution of the cosine similarity between any task vector τt or incremental update δt
during fine-tuning for (a) N = 4 and (b) N = 16 MIMA iterations. Each box plot shows the
distribution of pairwise cosine similarity at a given fine-tuning step, which is at the end of the fine-
tuning phase. The cosine similarity of the incremental update δt remains near 0 while the task vector
τt steadily increases towards 1.

C.2 MIMA (N > 1)

With MIMA, the behaviours of task vectors τt and incremental updates δt diverge during fine-
tuning. Figure 11 shows this phenomenon for N = 4 and N = 16. At the end of each fine-tuning
phase, the incremental update δt between any different tasks remains nearly orthogonal to each other.
However, the cosine similarity between any task vectors τt gradually increases with each iteration.
As the total number of fine-tuning steps approaches the budget (20000 fine-tuning steps), the cosine
similarity between task vectors approaches 1. This observation validates our hypothesis described
in the main content, where MIMA forces task vectors into a shared direction in the parameter space.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D ADDITIONAL ERROR LANDSCAPE VISUALISATION

To demonstrate the generality of our findings, we extend the error landscape visualisation to two
additional, distinct datasets: DTD and SUN397 (Fig. 12). These visualisations complement the
results shown in the main text and confirm that MIMA effectively aligns the task vector in the
parameter space across different tasks.

0 1 2 3

0

1

2

3

DTD Test Error

0 1 2 3

0

1

2

3

SUN397 Test Error

0 1 2 3

0

1

2

3

Average Test Error (DTD, SUN397)

17.8

18.0

18.3

19.0

20.3

22.9

28.5

40.0

> 40.0

20.7

21.0

21.3

21.9

23.0

25.4

30.2

40.0

> 40.0

22.9

23.2

23.5

24.0

25.1

27.2

31.5

40.0

> 40.0

(a) N = 1

0 0.5 1 1.5

0

0.5

1

1.5

DTD Test Error

0 0.5 1 1.5

0

0.5

1

1.5

SUN397 Test Error

0 0.5 1 1.5

0

0.5

1

1.5

Average Test Error (DTD, SUN397)

18.4

18.7

19.0

19.6

20.9

23.5

28.9

40.0

> 40.0

23.6

23.8

24.1

24.6

25.7

27.7

31.8

40.0

> 40.0

24.2

24.4

24.7

25.2

26.2

28.2

32.2

40.0

> 40.0

(b) N = 4

0 0.5 1 1.5

0

0.5

1

1.5

DTD Test Error

0 0.5 1 1.5

0

0.5

1

1.5

SUN397 Test Error

0 0.5 1 1.5

0

0.5

1

1.5

Average Test Error (DTD, SUN397)

19.6

19.9

20.2

20.8

22.0

24.5

29.6

40.0

> 40.0

24.4

24.6

24.9

25.4

26.4

28.4

32.3

40.0

> 40.0

24.0

24.3

24.5

25.1

26.1

28.1

32.1

40.0

> 40.0

Pre-trained model Fine-tuned model on DTD Fine-tuned model on SUN397

(c) N = 8

Figure 12: Error landscape visualisation for DTD (left), SUN397 (middle), and their average (right).
Consistent with our findings in the main text, increasing the number of MIMA iterations (N ) rotates
the misaligned low-error valleys into a shared basin, providing the merged model with high perfor-
mance.

E THEORETICAL ANALYSIS: WHY MIMA IMPROVES ALIGNMENT

To gain theoretical insight into why iterative averaging and fine-tuning encourage task vector align-
ment, we analyse task vectors after the first and second iterations. For this theoretical analysis, we
make two simplifying assumptions about the geometry of task-specific updates δ:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1. (cross-task orthogonality) For any two distinct tasks s ̸= t and any iterations i, j ∈
{1, . . . , N}, their respective updates are orthogonal:

δ(i)s · δ(j)t = 0.

This assumption reflects sufficiently high dimensionality of the parameter space, where
updates for different tasks are unlikely to be correlated.

2. (within-task non-negativity) For each task t, the updates from any iterations i, j ∈
{1, . . . , N} exhibit non-negative alignment:

δ
(i)
t · δ(j)t ≥ 0.

This assumption suggests that any fine-tuning step will not push the model outside the
basin. In other words, the fine-tuning for a given task tends to move the parameters in a
direction that is not entirely opposed to its other fine-tuning updates.

Under these assumptions, we can show that MIMA provably increases alignment.
Proposition 1 (Improved Alignment via MIMA). Under the assumptions of cross-task orthogonal-
ity and within-task non-negativity, for any two distinct tasks i ̸= j, the pairwise cosine similarity
between their task vectors after iteration 2 is greater than or equal to their cosine similarity after
iteration 1:

cos
(
τ
(2)
i , τ

(2)
j

)
≥ cos

(
τ
(1)
i , τ

(1)
j

)
= 0,∀i ̸= j.

Proof. By definition, task vectors after fine-tuning phase 1 are τ
(1)
i = δ

(1)
i and τ

(1)
j = δ

(1)
j . Given

the cross-task orthogonality assumption for i ̸= j, we have:

τ
(1)
i · τ (1)

j = δ
(1)
i · δ(1)j = 0.

Therefore, the cosine similarity between is:

cos
(
τ
(1)
i , τ

(1)
j

)
=

τ
(1)
i · τ (1)

j

∥τ (1)
i ∥∥τ (1)

j ∥
= 0.

τ
(2)
i ·τ (2)

j =

(
1

T

T∑
a=1

δ(1)a + δ
(2)
i

)
·

(
1

T

T∑
b=1

δ
(1)
b + δ

(2)
j

)

Applying the cross-task orthogonality assumption δ
(i)
s · δ(j)t = 0, ∀s ̸= t:

τ
(2)
i ·τ (2)

j =
1

T 2

T∑
a=1

∥δ(1)a ∥2 + 1

T

(
δ
(2)
i ·δ(1)i + δ

(2)
j ·δ(1)j

)
Since ∥δ(1)a ∥2 ≥ 0 for all a, and by the within-task non-negativity assumption, δ(2)i ·δ(1)i ≥ 0 and
δ
(2)
j ·δ(1)j ≥ 0, it follows that:

τ
(2)
i ·τ (2)

j ≥ 0,

cos
(
τ
(2)
i , τ

(2)
j

)
=

τ
(2)
i ·τ (2)

j

∥τ (2)
i ∥∥τ (2)

j ∥
≥ 0 = cos

(
τ
(1)
i , τ

(1)
j

)
.

Our theoretical analysis shows that this averaging and fine-tuning procedure is guaranteed to im-
prove the cosine similarity between task vectors from the first iteration to the second iteration under
assumptions of cross-task orthogonality and within-task non-negativity.

18


	Introduction
	Related Work
	Problem Statement
	MIMA
	Empirical Investigation: MIMA
	Experimental Settings
	Experimental Results

	Conclusion
	Experimental Settings
	Vision Dataset Details
	Computing Infrastructure

	Additional Performance Results
	Main Results
	Fine-Tuning Accuracies
	Multi-Task Accuracies

	Additional Cosine Similarity Results
	Vanilla Fine-Tuning (N=1)
	MIMA (N>1)

	Additional Error Landscape Visualisation
	Theoretical Analysis: Why MIMA Improves Alignment

