
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO REASON ACROSS
PARALLEL SAMPLES FOR LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling test-time compute brings substantial performance gains for large language
models (LLMs). By sampling multiple answers and heuristically aggregate their
answers (e.g., either through majority voting or using verifiers to rank the answers),
one can achieve consistent performance gains in math domains. In this paper, we
propose a new way to leverage such multiple sample set. We train a compact
LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of
multiple samples and output the final answer, optimizing it for the answer accuracy
with reinforcement learning. Experiments on five reasoning datasets demonstrate
both the efficacy and efficiency of SSA. Notably, SSA improves over naive majority
voting by 8% pass@5 on MATH. Furthermore, our 3B SSA surpasses model-based
re-ranking with a much larger 72B process reward model. Our analysis also
shows promising generalization ability of SSA, across sample set sizes, base model
families and scales, and tasks. By separating LLMs to generate answers and LLMs
to analyze and aggregate sampled answers, our approach can work with the outputs
from premier black box models easily and efficiently.

LLM
Ans 1

Ans 2

Ans 3

SSA Ans

Our Sample Set Aggregator (SSA) approach combines
parallel sampling with sequential reasoning

Frozen

Trainable

Hybrid of Parallel & Sequential Method

Concatenate

LLM
Ans 1

Ans 2

Ans 3

LLM Ans 1 Ans 2 Ans 3

0.6

0.9

0.8

Verifier

Sample K answers and score independently, then
select the highest-​scoring one

LLM is trained to extend reasoning
path until reaching correct answer

Parallel
Method

Sequential
Method

Choose max

Figure 1: Illustration of our approach (bottom), parallel method (top left), and sequential method
(top right). We train a compact LLM, called Sample Set Aggregator (SSA), to take a concatenated
sequence of multiple samples and output the final answer.

1 INTRODUCTION

Recent advances in large language models (LLMs) have significantly enhanced their ability to perform
complex reasoning tasks (El-Kishky et al., 2024; DeepSeek-AI et al., 2025). Orthogonal to approaches
to improve training LLMs through better learning objectives (Ouyang et al., 2022; Rafailov et al.,
2023), architectures (Gu & Dao, 2024; Peng et al., 2023) or training dataset composition (Gunasekar
et al., 2023; Wettig et al., 2025), recent work (Snell et al., 2025) explores a new dimension: test-time
scaling. While having the LLM fixed, by allocating more computation at inference time (e.g., through
repeated sampling and majority voting), one can improve the final task performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In general, test-time scaling methods fall into two paradigms. Parallel scaling generates multiple
reasoning paths independently and aggregates them via strategies such as majority voting or best-of-N
selection (Wang et al., 2023; Uesato et al., 2022; Lightman et al., 2024). Sequential scaling, on the
other hand, iteratively refines a single solution, often through prompting-based self-reflection or by
incentivizing iterative computation (DeepSeek-AI et al., 2025; Muennighoff et al., 2025; Kumar et al.,
2025). In this paper, we introduce a novel test-time scaling approach that leverages both parallel and
sequential scaling. Figure 1 illustrates our approach in comparison with prior work.

We separately have an LM to draft multiple answers and another LM to combine multiple answers to
generate the final answer, naming the latter Sample Set Aggregator (SSA). SSA is optimized with
reinforcement learning (RL) to maximize final answer accuracy. Unlike parallel scaling approaches
that mostly view individual samples from LLMs in isolation, SSA can interpret multiple generations
as representations of the LM’s output distribution, thus directly optimizing the synthesis of the final
answer based on the landscape of the output distribution.

We conduct extensive experiments across five reasoning benchmarks under controlled test-time
compute budgets. Results show that SSA substantially narrows the gap between actual model
performance and oracle-best accuracy (pass@K), outperforming standard parallel strategies such
as reward-based reranking. Moreover, we demonstrate that a compact SSA model can match
the performance of reinforcement-trained larger models used in sequential scaling, suggesting the
effectiveness of SSA as a lightweight way for sequential scaling. Further analysis highlights the
generalization capabilities of SSA: SSA trained on one dataset for a particular model can successfully
synthesize outputs from different model families and sizes across different tasks.

We summarize our key contributions and findings as follows:

• SSA, a lightweight LLM is introduced that concatenates K parallel candidates from a frozen base
model and then performs one sequential RL step to generate the final answer. This single pass
unifies the strengths of parallel and sequential test-time scaling, showing strong performance gain
while training only a small model.

• Conceptually, we propose to reason over the output distribution. Specifically, instead of training
the base LM, SSA optimizes over its sampled outputs. The base LM that produces answers remains
to be a black box; SSA is trained only with sampled answers from base LMs.

• We observe broad and consistent empirical gains across five math benchmarks, two LLM families
(Qwen 2.5, Llama 3.1) and three base sizes (7B, 14B, 32B), over strong baselines.

2 RELATED WORK

Scaling test-time compute in parallel. Recent research has established the effectiveness of increasing
compute used at inference time, known as test-time scaling (El-Kishky et al., 2024; DeepSeek-AI
et al., 2025; Snell et al., 2025; Brown et al., 2025). A prominent approach for test-time scaling
focuses on parallel scaling, which samples multiple answers independently and aggregates them into
a single answer. This aggregation can be performed through majority voting (Wang et al., 2023;
2024a) or more sophisticated selection mechanisms. For instance, some methods prompt language
models to select from one of the multiple samples (Chen et al., 2024a), while others employ dedicated
verifier models to score potential solutions (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al.,
2024; Li et al., 2023; Wang et al., 2024b) and take a weighted majority solution.

Beyond naively sampling multiple answers with fixed decoding strategy, researchers have explored
advanced search strategies, such as beam search (Yao et al., 2023; Xie et al., 2023) and Monte-Carlo
tree search (MCTS) (Li et al., 2025; Xie et al., 2024). These search-based methods typically rely
on verifiers (Xie et al., 2023) or process reward models (Cobbe et al., 2021; Wang et al., 2024b) to
guide the decoding process, while still evaluating different rollouts independently. In contrast to
these approaches that primarily assess samples in isolation, our approach learns to compare different
samples jointly to determine the final answer.

Scaling test-time compute sequentially. Another line of research focuses on sequential scaling,
which increases compute by iteratively updating and refining a solution. One way is to prompt or
train LLMs to self-refine their proposed solutions (Madaan et al., 2023; Kumar et al., 2025; Qu et al.,
2024; Chen et al., 2024b) in an iterative manner. Recent work has demonstrated the possibility of
incentivizing LLMs to spend more tokens in a single completion through reinforcement learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(DeepSeek-AI et al., 2025; Team et al., 2025) or by forcing LLMs to continue their reasoning
chains by appending "wait" token (Muennighoff et al., 2025). While sequential scaling often yields
performance improvements, recent studies debate on whether it outperforms simpler parallel scaling
when controlling for compute (Zeng et al., 2025b; Hochlehnert et al., 2025a;b). Our approach bridges
these paradigms by operating on parallel samples but treating them as a sequence rather than as
isolated instances. The growing length of CoT traces incurs substantial inference cost. Recent efforts
have sought to improve efficiency by introducing length penalties (Aggarwal & Welleck, 2025; Sui
et al., 2025), adaptive thinking (Fang et al., 2025; Zhang et al., 2025b; Lou et al., 2025), or applying
early stopping (Zhang et al., 2025a; Yang et al., 2025b). In contrast, our approach trains a compact
aggregator that achieves both strong performance and efficiency.

Training language models for reasoning. More broadly, our work aims to enhance LLM perfor-
mance on reasoning tasks, which has been a central pursuit in LLM development. Substantial efforts
have been devoted to training LLMs as reasoning policies (distributions more likely to contain correct
answers) through supervised fine-tuning on collections of chain-of-thought (Azerbayev et al., 2024;
Puerto et al., 2024; Luo et al., 2023), or through reinforcement learning with rewards on intermediate
steps (Uesato et al., 2022; Wang et al., 2024b; Kazemnejad et al., 2025) or based solely on final
answer correctness (DeepSeek-AI et al., 2025). Our research is more closely aligned with work on
training LLMs as better verifiers for reasoning tasks and can complement solutions from any policy
models. Existing methods train LLM verifiers to assess individual solutions using human annotations
(Cobbe et al., 2021) or noisy labels derived from answer correctness (Wang et al., 2024b; Hosseini
et al., 2024; Liang et al., 2024). Our approach differs in that we train LLMs to verify sequences of
solutions using reinforcement learning with a verifiable reward signal, the final answer correctness.

3 METHOD

3.1 PROBLEM FORMULATION

Our method assumes two models: (1) LMans: a language model that generate a solution given an
input, and (2) LMSSA: a language model that takes an input and multiple solutions and generates the
final solution.

Let x be an input problem token sequence drawn from a data distribution D, our method solves the
problem with the following two steps:

Step 1: Parallel answer set generation. In this step, we use the LMans, which defines a conditional
distribution LMans(y|x) over all possible tokens y ∈ Y , to sample K candidate solution sequences
from LMans, and obtain

YK = {y1,y2, . . . ,yK}, yi ∼ LMans(· | x) independently.

Step 2: Analyzing parallel answer set for the final answer. We use a separate trained language
model LMSSA that takes sampled answer sequence as input to generate the final answer yfinal.

yfinal ∼ LMSSA(· | x, YK)

Crucially, we treat the LMans as a black-box sampler of potential solutions, and train a much smaller
model (LMSSA) to do a post hoc aggregation as opposed to performing reinforcement learning on
the answer model. Separating the answer generation model from the SSA introduces flexibility
in choosing a different generation model, and enable the use of larger models that are difficult to
fine-tune due to limited compute or are only accessible via APIs. Thus we essentially propose a
general conceptual framework for test-time computing.

To enable an LLM to function as SSA LMSSA for synthesizing the final answer, we provide a natural
language instruction directing the model to “think carefully and thoroughly evaluate the proposed
answer, and identify one correct answer from the proposed candidates”. Following common practice
in prior work (DeepSeek-AI et al., 2025), we specify a structured output format, which we use to
extract the final answer. Please refer to Appendix B Figure 8 for details of the prompt.

In the rest of this section, we will introduce how we train the LMSSA to maximize the correctness of
its final answer. We consider two ways of optimizing the SSA: reinforcement learning (§ 3.2) and
supervised-finetuning (§ 3.3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 TRAINING SSA WITH REINFORCEMENT LEARNING

Let y∗ be the gold solution for x. For the final yfinal given by SSA LMSSA(· | x, YK), we design
a verifiable reward R

(
yfinal,y

∗) that mainly verifies the answer correctness, and update LMSSA to
maximize the expected reward:

E[(x,y∗)∼D, YK∼LMans(·|x)]
[
R
(
LMSSA(x, YK),y∗)]. R(yfinal,y

∗) =


1, if yi is correct,

0.05, if only format is correct,

0, otherwise.

Following prior work (DeepSeek-AI et al., 2025), our reward also consider the format of the output
specified in the prompt. Specifically, we let the reward R to be 1.0 if the answer is correct; we let the
reward be 0.05 if the output follows the format and is incorrect; we let the reward to be 0.0 if the
output does not follow and format.

We use the Group-Relative Policy Optimization (GRPO (Shao et al., 2024)) as our optimization
algorithm, which simplified value function of PPO (Schulman et al., 2017) with a normalized
reward from a group. For the convention of notation, we use πθ for LMSSA with parameter θ. For
completeness, we describe it here. It maximizes:

JGRPO(θ) = E x∼D
YK∼LMans(·|x)

{yi}∼πθold
(·|x,YK)

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

[
min

(
ρi,t(θ) Âi,t, clip

(
ρi,t(θ), 1− ε, 1 + ε

)
Âi,t

)]
− β DKL

(
πθ ∥πref

)
,

with importance weight ρi,t(θ) =
πθ(yi,t | x, YK , yi,<t)

πθold(yi,t | x, YK , yi,<t)
with the advantage as Âi,t =

ri−mean(r)
std(r) ,

Reward as ri = R(yi,y
∗), r = r1, r2, ..., rn, and ε, β are hyperparameters. This policy gradient

method is to maximize the Âi,t which translates to expected reward from ri = R(yi,y
∗).

Implementation We use a training set combining GSM8K and MATH (Cobbe et al., 2021; Hendrycks
et al., 2021). To prepare the dataset, we use Qwen2.5-7B-Instruct model as LMans to generate five
answers for each questions (Qwen et al., 2025). Then we concatenate the question and each answer
(ordered randomly) as input context of SSA LLM. We filter out instances where the combined answers
exceed 4000 tokens, or where fewer than three valid answers are available. This results a dataset with
a total size of 17.4k. We set the GRPO sample size to be 8, resulting in 8 ∗ 17.4k ≈ 140k during
training.

3.3 TRAINING SSA WITH SUPERVISED FINETUNING

We also explore the training of the SSA via supervised fine-tuning (SFT), leveraging a stronger
model to construct oracle reasoning paths across multiple sampled answers to identify correct final
answer. Once we constructed the oracle dataset, we use the standard language modeling objective,
but only training on the output part. We assume a dataset of oracle reasoning path that leads to y∗. If
y∗ = (y∗1 , y

∗
2 , . . . , y

∗
T) is tokenized into T tokens, the SFT loss is to minimize:

LSFT(θ) = −
∑

(x, YK ,y∗)∈D

T∑
t=1

log
[
LMSSA

(
y∗t

∣∣ x, YK , y∗
<t

)]
,

Implementation We prompt Qwen 2.5 7B Instruct model for 5 candidate solutions per question in the
GSM8K dataset. Then, we provide concatenated candidate solutions to GPT-4.1 Nano model along
with the original question and ground-truth answer (The exact prompt is in Appendix B). GPT-4.1
Nano then provides a step-by-step reasoning process to identify and generate the best final answer
from these candidates, yielding 7.47k training examples. Overall, this approach achieves a 96.24%
match rate with the original ground-truth answers.1

1When we inspected the remaining cases, we find many ground-truth labels are incorrect.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. For evaluation, we use an array of commonly used math reasoning datasets: the test split
of GSM8K, MATH as the in-domain evaluation sets, and AIME 2024 (MAA, 2024), AMC 2023, and
Olympiad (He et al., 2024) as the test sets. We use the extracted answers and grade them against the
ground truth answers, using the library that has been used in prior work (Lightman et al., 2024).

Base Models for Candidate Generation (LMans). We use the Qwen-2.5-Instruct model, with sizes
7B, 14B, and 32B to generate K of answers. We use a decoding temperature 0.5 to construct the
training and test dataset. In the training phase, we use k = 5 to train the SSA model. In the testing
phase, we evaluated the performance with k = {5, 10, 15}.
Base Models for SSA (LMSSA). We use the Qwen-2.5-base model with sizes 0.5B, 1.5B, and 3B.
We chose the Qwen-2.5 model family due to its popularity and wide availability for PRM verifiers,
making it possible to compare against existing PRM verifiers from the same model family.

Training Implementation Details. For the training library, we use torchtune due to its efficient
VRAM management (torchtune maintainers & contributors, 2024). We use GRPO batch sample
group size 8, batch size 1, temperature 1.0, AdamW optimizer, KL coefficient 0.01, and learning rate
1e-5. We trained all experiments one epoch. For hardware, we use 8*H100 80GB for training. For
shorter context, it is also possible to train with 48GB VRAM.

4.2 COMPARISON SYSTEMS

The following models are compared, including the proposed SSA with three variations.

Rule-based Baselines. We report pass@k, which reports the percentage of examples where any of k
number of solution is correct (Brown et al., 2025). Pass@k also serves as the oracle performance
assuming we have an oracle verifier. We also report the majority vote (Wang et al., 2023), counting
the most frequent answer among the answer set.

Outcome Reward Model (ORM). We use off the shelf Llama-3.1-8B ORM model trained with
RLHF-Reward Modeling (Xiong et al., 2024) to re-rank multiple samples, selecting the best one
scored by the reward. We will call it Llama-ORM (8B). It is trained with 273k data. For ORM
evaluations, it adds an evaluation token at the end of the answer and the model will provide a score.

Process Reward Model (PRM). One prominent way to leverage multiple parallel sample is using
process reward models. We use the Qwen-7B PRM (Qwen PRM) and Qwen-72B PRM model from
Zhang et al. (2025c) to re-rank the candidate solutions.

We note that compared to the PRM model, our SSA is trained with significantly less resources
regarding both model scale (0.5B - 3B vs 7B) and the amount of training data. Specifically, Qwen-7B
PRM is trained with more than 500,000 queries with 6 to 8 answers with step labels, resulting
over 3 million total training data (about 20× larger than the training data size of SSA). For a more
fair comparison, we also include Shepherd PRM (Wang et al., 2024b), 7B model trained with
440k total step level data from their MCTS roll out. Additionally, Qwen PRM initialized from
Qwen2.5-Math-7B-Instruct (Yang et al., 2024), whereas we initialized from the Qwen 2.5 base
model.

For evaluation, we follow the training method of Qwen PRM (Zhang et al., 2025c), and we separate
steps with ‘\n\n’ delimiter. Then we use PRM model to compute a score for each step and use their
product to calculate the response score since this yielded the best performance in their experiments.

Universal Self Consistency (USC) (Chen et al., 2024a). USC is a prompting-based method takes
a concatenation of the multiple parallel sample answers, and instructs a LM to generate the final
answer. The exact prompt can be found in Appendix B. The task setting is equivalent to our SSA
method, but the LM is not trained to optimize for the final answer.

SSA and Varitions. We train three types of the SSA models, one trained with the SFT objective only
(SFT), one trained with SFT objective and then with the RL objective (SFT + RL), and one that is
trained with RL objective only (RL). For SFT objective, we use the dataset described in Section 3.3 to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results (accuracy %) with k = 5 candidate answers generated by Qwen2.5-7B-Instruct as
LLMans model. Aggregation overheads (seconds/question) is measured end to end with AMC23 40
questions with k=5.

Method Aggregation
Overhead (s)

Datasets Avg
GSM8K MATH AIME24 AMC23 Olympiad

pass@1 - 89.01 64.00 10.00 37.50 27.00 45.50
pass@5 - 95.45 78.00 16.67 67.50 41.10 59.74
Majority Vote - 91.66 68.20 10.00 47.50 31.01 49.67
USC w/ Qwen 3B 8.48 61.18 42.80 6.67 17.50 15.43 28.72
USC w/ Qwen 7B 5.89 5.89 61.20 6.67 47.50 28.78 43.83
LLama ORM (8B) 0.61 93.1 67.40 13.33 47.50 28.64 49.99
Qwen PRM (7B) 0.64 92.57 69.40 13.33 57.50 32.05 52.97
Qwen PRM (72B) 5.86 92.87 69.6 13.33 57.50 33.68 53.40
Shepherd PRM (7B) 0.65 90.75 64.40 13.33 35.00 27.00 46.10
SSA RL (0.5B) 0.20 92.65 75.40 10.00 57.50 37.98 54.71
SSA RL (1.5B) 0.33 92.49 76.60 10.00 52.50 38.72 54.06
SSA RL (3B) 0.55 93.25 76.80 13.33 57.50 39.76 56.13

finetune the model. We use learning rates 5e-5, 2e-5, and 1e-5 for 0.5B, 1.5B, and 3B correspondingly.
For RL objective, we use GRPO method described in the Section 3.2. For SFT + RL objective, we
use the trained model from the SFT objective, then we continue to train the RL objective on top of it.
For each variant, we present models of three different sizes, trained from Qwen-0.5B, 1.5B, and 3B
base models checkpoint respectively.

As an ablation for the SSA (RL), we also present SSA trained on GSM8K data only. Another ablation
is to train the SSA RL version without thinking. It helps us to understand how each design decisions
affect the output and performance under controlled settings.

5 MAIN RESULTS

5.1 COMPARISON WITH PARALLEL SCALING BASELINES

5 10 15
k = Number of Candidate Solutions

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

7B LLMans

5 10 15
k = Number of Candidate Solutions

14B LLMans

5 10 15
k = Number of Candidate Solutions

32B LLMans

SSA RL 3B
SSA RL 1.5B
SSA RL 0.5B
Qwen PRM 7B
Majority

Comparison of Different Methods Across Model Sizes

Figure 2: Compare the performance of SSA RL, PRM, and Majority Vote methods across Qwen 2.5
LLMans model sizes (7B, 14B, 32B) and number of candidate solutions k = 5, 10, 15.

We report performances across GSM8K, MATH, AIME24, AMC23, Olympiad benchmark in Table
1, more detailed results can be seen in Table 4 Appendix A.

Overall, the results suggest that SSA is highly effective at leveraging multiple sampled solutions.
In comparison to baseline methods, SSA substantially narrows the performance gap relative to the
oracle (pass@5). Notably, even the smallest SSA variant leads to strong gains. SSA (0.5B) achieves
an average performance of 54.7%, even outperforming the Qwen PRM (7B) baseline which uses
a much larger model. We focus on SSA RL results in this section and leave more detailed results
including SSA SFT and SSA SFT + RL in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Generalization results for different model families (accuracy %) with k = 5 candidate from
Llama 3.1 8B Instruct LLMans models. Aggregation overhead (seconds) is measured end to end with
AMC23 40 questions with k=5.

Method Aggregation
Overhead (s)

Datasets Avg
GSM8K MATH AIME24 AMC23 Olympiad

Majority Vote - 87.95 50.40 6.67 35.00 17.66 39.54
USC w/ Qwen 7B 5.89 84.15 51.6 6.67 37.5 19.29 39.84
LLama ORM (8B) 0.61 89.61 51.8 13.33 30.00 18.4 40.63
Qwen PRM (7B) 0.64 91.51 56.20 13.33 35.00 20.77 43.36
SSA RL (0.5B) 0.20 88.17 52.80 10.00 30.00 20.18 40.23
SSA RL (1.5B) 0.33 88.48 56.60 10.00 27.50 20.47 40.61
SSA RL (3B) 0.55 89.08 57.80 10.00 32.50 20.62 42.00

5.2 GENERALIZATION CAPABILITIES OF SSA.

Generalization across scales. SSA trained on outputs from a smaller answer model (Qwen 2.5 7B
Instruct) can generalize to outputs from larger answer models (14B, 32B). Figure 2 compare the
overall performance of SSA and the other baselines under different numbers of samples. We can
see that SSA RL consistently outperform the baselines under different number of candidate solution
samples across Qwen models with scales ranging from 7B to 32B. More SSA versions and results are
in Table 4 in the Appendix A

Generalization across model families. In addition to the Qwen 2.5 7B Instruct model, we also
tested Llama 3.1 8B Instruct model for inference (Grattafiori et al., 2024).

Results are in Table 2. We can see the SSA method can also generalize well outside of the training
data distribution and outperforming Majority Vote, USC, and ORM methods. While Qwen PRM
performs slightly better than SSA RL 3B here (+1.36%), it requires substantially more training data
(over 3 million examples , x21 times) and a larger model (7B).

Generalization to harder datasets. In Table 1, while we have trained the SSA models with problems
only from GSM8K and MATH, we observe substantial performance gains on other harder datasets
(AMC23 and Olympiad). Such results indicate SSA can generalize to unseen test sets outside of the
training datasets.

In addition, we tested SSA on general tasks (specifically ARC-C, MMLU-Pro, and TruthfulQA (Clark
et al., 2018; Wang et al., 2024c; Lin et al., 2022)) without additional training. We observe minor gains
compared to majority vote, especially when using both SFT and RL, in ARC-C and MMLU-Pro
dataset, but very little for TruthfulQA dataset. Further research is needed to study generalization
across different domains. More details can be found in Appendix A.8.

5.3 COMPARISON WITH SEQUENTIAL TEST-TIME SCALING

7B 14B 32B
Answer LLM Model Size

40

45

50

55

60

65

70

75

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

57.4
59.6

64.6

58.6
60.1

65.8

51.8

55.8

61.8

Model Performance by Size
Model

LLMans+ SSA 3B
Sequential Scaling w/ RL
LLMans Majority Vote

Figure 3: Performance comparison between se-
quential scaling with RL and our SSA

We have demonstrated the advantageous of SSA
over diverse parallel scaling methods in early
§5.1. We now compare the performance on SSA
and reasoning models that are enabled to spend
more test-time compute sequentially with an
RL-based approach as in (DeepSeek-AI et al.,
2025). In particular, we use the results reported
by Simple-RL Zoo from Zeng et al. (2025a) be-
cause they also uses Qwen-series models and
train them on GSM8K and MATH dataset. In
our comparison, we match the test-time compu-
tation, specifically, our 3B SSA is trained with
Qwen-2.5-7B answers, but we apply it on top
of 7B, 14B, 32B LLMans models. We sample
8 candidate solutions from the LLMans model

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of SSA (accuracy, % averaged over 5 datasets) under increasing number of
samples K. ∗ denote runs that use the adapted two-stage SSA (applied when K>=32). SSA at
K = 15, 64 even outperform majority voting and PRM at K = 128.

Answer K 15 32 64 128

Majority Vote 54.73 54.07 54.43 55.11
Qwen PRM (7B) 56.02 55.37 58.49 56.58
SSA RL (3B) 59.12 58.42∗ 59.78∗ 58.68∗

with a maximum token length of 1,024 per answer, roughly matching the maximal generation length,
8,192, of these reasoning models.

As shown in Figure 3, both the SSA and the RL training from sequential scaling improve over
majority voting. While SSA slightly underperforms sequential scaling with RL training, note that we
only optimize the 3B model as opposed to the 7B, 14B, and 32B model.

5.4 SCALING SSA TO HANDLE A LARGER SAMPLE SET

In this section, we study SSA performance at larger K values (K=32–128). So far, SSA considers
all K answers as a concatenated single input. However, concatenation at larger K quickly runs into
context length limitations, leading to performance degradation or failures in answer extraction. For
instance, with K = 32, the concatenated input length approaches ∼30K tokens, nearly saturating
the 32K context window of our backbone model (Qwen-2.5-3B). Furthermore, prior work highlights
that the effective usable window is often shorter than the nominal size (Yang et al., 2025a; Liu et al.,
2024; Hsieh et al., 2024; Ye et al., 2025).

Two-Stage SSA To address this, we introduce a simple yet effective two-stage adaptation of SSA
for large K. In the first stage, we evenly split the K samples into l2 groups of size l1, and run SSA
independently on each group to produce l2 intermediate candidates. In the second stage, SSA is
applied to aggregate these l2 candidates into a final answer. Instead of running SSA once, with
this two-stage adaptation, we run SSA for l2 + 1 times, l2 times to aggregate l1 inputs, and once
to aggregate l2 inputs. We include full descriptions of two stage SSA in Appendix A.5. For our
experiments, we set the hyperparameter l1 = 15. This sets l2 = 3 for K = 32, and l2 = 5 for
K = 64 and l2 = 9 for K = 128.

Results Table 3 presents results of SSA under increasing K on Qwen-2.5-7B outputs, compared
against majority voting and PRM-7B. We find that SSA makes more efficient use of samples,
achieving strong performance. For example, SSA at K = 15 already surpasses both majority vote
and PRM at K = 128. By contrast, PRM shows less stable performance (with noticeable fluctuations
across K), as it operates by scoring individual answers without cross-sample aggregation, making it
more vulnerable to the noisy reward model.

6 ANALYSES

6.1 COMPARING RL VS SFT

As an alternative to RL, we can train the SSA via supervised fine-tuning (SFT). How would SFT
compare to RL? In our setup, we use the dataset described in Section 3.3 and fine-tune 0.5B, 1.5B,
and 3B SSA models on this data for one epoch (learning rates 5e-5, 2e-5, and 1e-5, respectively). For
comparison, we also train SSA models with only RL (on the same GSM8K problems for SFT) for
controlled settings. Figure 4a and Table 6 (Appendix A.2) summarize the results.

We observe that SFT slightly outperforms RL in 0.5B, suggesting that direct supervision from
high-quality data can help small model. For larger models (1.5B, 3B), RL yields better accuracy
and robustness to larger k during inference. SFT trained on LLMans with k = 5 generalizes less
effectively to k = 10. Overall, both SFT and RL can work well, but SFT’s performance relies heavily
on dataset quality and alignment. We also note that SFT tends to produce more readable reasoning
traces, whereas RL outputs are often minimal (example outputs can be found in Appendix C).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.5B 1.5B 3B
SSA Model Size

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

49.0
50.0

53.9

47.7

51.7

55.4

49.8

51.3

55.2

48.3

55.4 55.0

51.2
52.0

48.1

50.4

49.0
47.9

Average Performance Across All Datasets by Model Size

RL No-Think (k=5)
RL No-Think (k=10)
RL (k=5)
RL (k=10)
SFT (k=5)
SFT (k=10)

(a) Performance comparison of different training meth-
ods (SFT, No-Think, RL) across model sizes.

0 500 1000 1500 2000
Training Step

50

100

150

200

250

Re
sp

on
se

 L
en

gt
h

(to
ke

ns
)

Response Length Throughout Training by Model Size

0.5B (Running Avg)
1.5B (Running Avg)
3B (Running Avg)

(b) Response length evolution during training for dif-
ferent model sizes.

Figure 4: Training method performance and response length analysis. (a) Average accuracy across
datasets shows RL method is more generalizable than SFT method, with performance improving for
larger models. (b) Response length trends during training show a rapid decrease of output length.

6.2 TO THINK OR NOT TO THINK

A distinct pattern we noted in our RL training is the reduction of the thinking tokens. Figure 4b shows
how response length quickly drops during training across all model sizes. The model often simply
repeats the provided instruction format for thinking (e.g., ‘<think>reasoning process here</think>’)
followed immediately with the final answer. Examples are shown in Appendix C Figure 14. This
contrasts with other RL-based reasoning models that generate longer explanations with more training
(DeepSeek-AI et al., 2025; Zeng et al., 2025a). It is likely because our SSA is conditioned on multiple
candidate solutions, reducing the utility of detailed reasoning.

To assess the necessity of explicit reasoning tokens, we train an RL model variant without the
reasoning step (‘No Think’), where the model directly generates the answer (see Appendix B for
prompt and Appendix C Figure 15 for example). Figure 4a summarizes the results, and Table 6 in
Appendix A.2 compares this variant with the original approach across three model sizes in details.
We observe minor performance degradation without explicit thinking, suggesting detailed reasoning
tokens might not substantially contribute to the final performance in our current setup.

7 CONCLUSION

We introduce SSA, a small LM trained with RL that can leverage outputs from a larger base LLM.
By decoupling RL training from base model, it suggests that the quality of the base model knowledge
is more important for performance. This novel hybrid approach, blending parallel and sequential
scaling methods, provides practical benefits for plug and play.

Limitations Across benchmarks, SSA succeeds mainly by picking an correct candidate among input
candidate answers. Failures happens mainly when the gold answer is absent among the candidates
(Appendix A.6 quantifies this trend). We experimented with enabling SSA to generate new final
answers by cutting the last 10% of candidate answer tokens, but this does not yield better performance
(See Appendix A.7 for details).

Future work We outline few possibilities for further improving and extending our approach.
Promising directions include scaling the number of outputs to be aggregated, as well as building SSA
that can incorporate outputs from multiple LLMs. Improving its performance for diverse application
beyond mathematical reasoning, as well as enhacing SSA’s new target answer synthesis ability can be
fruitful. Overall, we believe SSA’s hybrid approach offers a promising direction for future research in
LLM reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Implementation details are describe in the Section 4. We also provide relevant code as supplementary
materials.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=4WnqRR915j.

Bradley Brown, Jordan Juravsky, Ryan Saul Ehrlich, Ronald Clark, Quoc V Le, Christopher Re, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2025. URL https://openreview.net/forum?id=0xUEBQV54B.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
models. In ICML 2024 Workshop on In-Context Learning, 2024a. URL https://openreview.net/
forum?id=LjsjHF7nAN.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=KuPixIqPiq.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,

10

https://arxiv.org/abs/2503.04697
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=KuPixIqPiq

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Ahmed El-Kishky, Daniel Selsam, Francis Song, Giambattista Parascandolo, Hongyu Ren, Hunter
Lightman, Hyung Won Chung, Ilge Akkaya, Ilya Sutskever, Jason Wei, Jonathan Gordon, Karl
Cobbe, Kevin Yu, Lukas Kondraciuk, Max Schwarzer, Mostafa Rohaninejad, Noam Brown,
Shengjia Zhao, Trapit Bansal, Vineet Kosaraju, and Wenda Zhou. Learning to reason with llms,
Sep 2024. URL https://openai.com/index/learning-to-reason-with-llms/.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. ArXiv,
abs/2505.13379, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,

11

https://arxiv.org/abs/2501.12948
https://openai.com/index/learning-to-reason-with-llms/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=tEYskw1VY2.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat
Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/abs/2306.11644.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

12

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2306.11644

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
reproducibility, 2025a. URL https://arxiv.org/abs/2504.07086.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
reproducibility, 2025b. URL https://arxiv.org/abs/2504.07086.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STar: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=stmqBSW2dV.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Unlocking RL potential for LLM reasoning
through refined credit assignment, 2025. URL https://openreview.net/forum?id=5mJrGtXVwz.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
Faust. Training language models to self-correct via reinforcement learning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=CjwERcAU7w.

Shuangtao Li, Shuaihao Dong, Kexin Luan, Xinhan Di, and Chaofan Ding. Enhancing reasoning
through process supervision with monte carlo tree search. arXiv preprint arXiv:2501.01478, 2025.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2023.

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang, Yingbo Zhou, and Semih Yavuz. Improving
LLM reasoning through scaling inference computation with collaborative verification, 2024. URL
https://openreview.net/forum?id=Qyile3DctL.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=v8L0pN6EOi.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qingping
Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
reinforcement learning. ArXiv, abs/2505.11896, 2025. URL https://api.semanticscholar.org/
CorpusID:278739729.

13

https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2504.07086
https://openreview.net/forum?id=stmqBSW2dV
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=5mJrGtXVwz
https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=Qyile3DctL
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2109.07958
https://aclanthology.org/2024.tacl-1.9/
https://api.semanticscholar.org/CorpusID:278739729
https://api.semanticscholar.org/CorpusID:278739729

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

MAA. American invitational mathematics examination - AIME. American Invitational Mathe-
matics Examination - AIME 2024, February 2024. URL https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime. Accessed: 2024-05-14.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with hu-
man feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 27730–27744.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, Xingjian Du, Matteo Grella,
Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong,
Bartłomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi
Saito, Guangyu Song, Xiangru Tang, Johan S. Wind, Stanisław Woźniak, Zhenyuan Zhang,
Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=7SaXczaBpG.

Haritz Puerto, Tilek Chubakov, Xiaodan Zhu, Harish Tayyar Madabushi, and Iryna Gurevych. Fine-
tuning with divergent chains of thought boosts reasoning through self-correction in language
models, 2024.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. ArXiv, abs/2407.18219, 2024. URL https://api.
semanticscholar.org/CorpusID:271432135.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=HPuSIXJaa9.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

14

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://arxiv.org/abs/2501.19393
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=7SaXczaBpG
https://api.semanticscholar.org/CorpusID:271432135
https://api.semanticscholar.org/CorpusID:271432135
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2402.03300

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
4FWAwZtd2n.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on efficient
reasoning for large language models. ArXiv, abs/2503.16419, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

torchtune maintainers and contributors. torchtune: Pytorch’s finetuning library, April 2024. URL
https//github.com/pytorch/torchtune.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Soft self-consistency improves
language model agents, 2024a. URL https://arxiv.org/abs/2402.13212.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-task
language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024c. URL https://openreview.net/forum?
id=y10DM6R2r3.

Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
Organize the web: Constructing domains enhances pre-training data curation, 2025. URL https:
//arxiv.org/abs/2502.10341.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Bw82hwg5Q3.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

15

https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https//github.com/pytorch/torchtune
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2402.13212
https://aclanthology.org/2024.acl-long.510/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://arxiv.org/abs/2502.10341
https://arxiv.org/abs/2502.10341
https://openreview.net/forum?id=Bw82hwg5Q3
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2409.12122

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. ArXiv, abs/2504.15895, 2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=5Xc1ecxO1h.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation. In
Second Conference on Language Modeling, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025a.
URL https://arxiv.org/abs/2503.18892.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities?, 2025b.
URL https://arxiv.org/abs/2502.12215.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification. In Second Conference
on Language Modeling, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. ArXiv, abs/2505.13417, 2025b.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025c. URL https://arxiv.org/abs/2501.07301.

16

https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2502.12215
https://arxiv.org/abs/2501.07301

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A MORE RESULTS DETAILS

A.1 SSA RESULTS

We compared SSA performance across model size, number of candidate solution k size, subcategories,
and different version of SSAs.

SSA RL performance We can see SSA has strong performance gain in most of the sub categories
compared to other methods in Figure 5. In addition, we also see consistent performance gain from
0.5B, 1B, and 3B model across different LLMans sizes, and from Figure 6, we can see that LLMans
has more effect over the performance gain than the SSA model size.

GSM8K MATH AIME24 AMC23 Olympiad
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

92.7

75.4

10.0

57.5

38.0

92.5

76.6

10.0

52.5

38.7

93.3

76.8

13.3

57.5

39.8

91.7

68.2

10.0

47.5

31.0

92.6

69.4

13.3

57.5

32.1

75.0

61.2

6.67

47.5

28.8

SSA (0.5B)
SSA (1.5B)
SSA (3B)
Majority Vote
Qwen PRM (7B)
USC w/ Qwen (7B)

Figure 5: Compare the performance of model based on Qwen 2.5 7B with k = 5. SSAs are in green.
We see SSA method is very effective against baseline methods.

In addition, we report all benchmark breakdon performance of SSA compared to the PRM 7B and
majority vote in Table 4.

5 10 15 20
k = Number of Candidate Solutions

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

0.5B SSA

5 10 15 20
k = Number of Candidate Solutions

1B SSA

5 10 15 20
k = Number of Candidate Solutions

3B SSA

RL 32B
RL 14B
RL 7B

SFT+RL 32B
SFT+RL 14B
SFT+RL 7B

Figure 6: Compare each SSA’s performance on the average of 5 benchmarks with both RL and
SFT+RL methods. SFT+RL details are in Section A.3. The same SSAs are used on top of Qwen 2.5
7B, 14B, and 32B outputs. For each model, the parallel number of candidate solutions k for SSAs are
k = 5, 10, 15, 20.

We also report the statistical significance of all results in Table 5. For statistical testing, we employed
McNemar’s test, which is appropriate for paired binary outcomes. On our combined dataset analysis
(aggregating all 2563 test examples across five benchmarks), our improvements over the baseline are
statistically significant (p<0.05) for all configurations.

A.2 ABLATION ON SFT, NO THINK, AND RL RESULTS

We put a combined table of SFT, No Think and RL in Table 6.

A.3 COMBINING SFT AND RL

Because we observe that the model does not give human interpretable reasoning process, we wonder
whether we can improve it. Understanding the model reasoning is important for the decision making
process. So we decided to use the SFT version to cold start the model behavior. We hope to have a
model to give reasoning process on why they select certain answers. We will call the cold started
model as SSA SFT+RL. The performance comparison is in Figure 6 and Table 7. Overall, we observe
1-2% drop of the performance with SSA SFT+RL. However, it gives us a stronger sense on the
model decision making process. In addition, SFT+RL version seems to have a better performance on
datasets outside of the math domain as our discussion in Section A.8

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Ta
bl

e
4:

Pe
rf

or
m

an
ce

(%
)o

n
fiv

e
m

at
he

m
at

ic
al

be
nc

hm
ar

ks
fo

r7
B

,1
4

B
an

d
32

B
in

fe
re

nc
e

m
od

el
s

tr
ai

ne
d

w
ith

R
L

or
R

L
+

SF
T.

B
en

ch
m

ar
k

M
et

ho
d

7B
14

B
32

B
R

L
R

L
+S

FT
R

L
R

L
+S

FT
R

L
R

L
+S

FT

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

G
SM

8K

Pa
ss

@
k

95
.4

5
96

.2
1

96
.3

6
96

.6
6

95
.4

5
96

.2
1

96
.3

6
96

.6
6

96
.6

6
97

.1
9

97
.5

0
97

.6
5

96
.6

6
97

.1
9

97
.5

0
97

.6
5

97
.1

2
97

.5
0

97
.8

8
97

.8
8

97
.1

2
97

.5
0

97
.8

8
97

.8
8

M
aj

or
ity

vo
te

91
.6

6
91

.9
6

92
.7

2
92

.6
5

91
.6

6
91

.9
6

92
.7

2
92

.6
5

94
.6

2
94

.5
4

94
.3

1
94

.3
9

94
.6

2
94

.5
4

94
.3

1
94

.3
9

95
.3

0
95

.7
5

95
.9

8
95

.9
8

95
.3

0
95

.7
5

95
.9

8
95

.9
8

Q
w

en
PR

M
7B

92
.5

7
93

.1
8

93
.4

0
93

.3
3

92
.5

7
93

.1
8

93
.4

0
93

.3
3

95
.3

8
95

.9
1

96
.1

3
96

.1
3

95
.3

8
95

.9
1

96
.1

3
96

.1
3

96
.1

3
96

.5
9

96
.7

4
96

.8
2

96
.1

3
96

.5
9

96
.7

4
96

.8
2

Q
w

en
PR

M
72

B
92

.8
7

93
.7

1
93

.8
6

94
.0

9
92

.8
7

93
.7

1
93

.8
6

94
.0

9
95

.6
8

96
.0

6
96

.4
4

96
.2

9
95

.6
8

96
.0

6
96

.4
4

96
.2

9
95

.7
5

96
.0

6
96

.4
4

96
.1

3
95

.7
5

96
.0

6
96

.4
4

96
.1

3
0.

5B
92

.6
5

92
.8

7
92

.4
9

92
.6

5
92

.5
7

92
.8

7
92

.8
0

92
.9

5
94

.6
9

94
.9

2
94

.6
2

94
.7

7
94

.6
2

94
.6

2
94

.7
7

94
.7

7
96

.4
4

96
.1

3
96

.5
1

96
.2

9
95

.9
1

96
.1

3
96

.2
1

96
.2

1
1.

5B
92

.4
9

92
.7

2
93

.2
5

93
.1

0
92

.5
7

93
.0

3
93

.1
0

92
.0

4
94

.3
9

94
.5

4
94

.7
7

94
.9

2
94

.8
4

94
.8

4
94

.7
7

94
.3

9
96

.0
6

96
.2

9
96

.3
6

96
.2

9
96

.1
3

95
.9

8
96

.2
1

96
.2

1
3B

93
.2

5
93

.1
8

93
.6

3
93

.3
3

92
.6

5
92

.9
5

93
.2

5
92

.9
5

94
.7

7
94

.9
2

95
.0

7
94

.9
2

94
.6

9
94

.6
2

94
.6

9
94

.7
7

96
.2

9
96

.2
9

96
.4

4
96

.3
6

95
.9

8
96

.2
1

96
.0

6
95

.9
1

M
AT

H

Pa
ss

@
k

78
.0

0
81

.4
0

83
.4

0
85

.0
0

78
.0

0
81

.4
0

83
.4

0
85

.0
0

82
.0

0
84

.2
0

85
.6

0
85

.8
0

82
.0

0
84

.2
0

85
.6

0
85

.8
0

81
.8

0
84

.0
0

85
.8

0
86

.4
0

81
.8

0
84

.0
0

85
.8

0
86

.4
0

M
aj

or
ity

vo
te

68
.2

0
69

.4
0

71
.6

0
71

.2
0

68
.2

0
69

.4
0

71
.6

0
71

.2
0

74
.4

0
75

.2
0

75
.0

0
75

.4
0

74
.4

0
75

.2
0

75
.0

0
75

.4
0

75
.0

0
75

.4
0

75
.4

0
75

.0
0

75
.0

0
75

.4
0

75
.4

0
75

.0
0

Q
w

en
PR

M
7B

69
.4

0
69

.0
0

69
.2

0
70

.0
0

69
.4

0
69

.0
0

69
.2

0
70

.0
0

73
.6

0
74

.4
0

74
.2

0
75

.2
0

73
.6

0
74

.4
0

74
.2

0
75

.2
0

73
.2

0
74

.0
0

74
.0

0
74

.2
0

73
.2

0
74

.0
0

74
.0

0
74

.2
0

Q
w

en
PR

M
72

B
69

.6
70

.4
71

.4
72

.2
69

.6
70

.4
71

.4
72

.2
72

.8
74

.6
75

75
.2

72
.8

74
.6

75
75

.2
72

.8
74

.6
75

74
.6

72
.8

74
.6

75
74

.6
0.

5B
75

.4
0

76
.2

0
76

.8
0

78
.2

0
76

.8
0

78
.0

0
78

.6
0

79
.6

0
80

.6
0

81
.2

0
80

.4
0

80
.4

0
80

.6
0

81
.4

0
81

.8
0

81
.6

0
82

.4
0

82
.2

0
80

.6
0

81
.4

0
83

.0
0

82
.4

0
83

.0
0

83
.4

0
1.

5B
76

.6
0

77
.6

0
78

.6
0

79
.4

0
76

.8
0

77
.6

0
78

.0
0

78
.4

0
81

.4
0

81
.2

0
81

.6
0

82
.4

0
82

.2
0

81
.8

0
81

.6
0

81
.0

0
82

.8
0

84
.0

0
83

.6
0

84
.0

0
83

.6
0

83
.8

0
83

.8
0

83
.0

0
3B

76
.8

0
78

.8
0

79
.2

0
79

.8
0

77
.2

0
77

.4
0

79
.2

0
79

.2
0

82
.0

0
82

.6
0

82
.6

0
82

.4
0

80
.8

0
81

.4
0

82
.4

0
82

.0
0

82
.8

0
83

.2
0

83
.4

0
83

.0
0

82
.8

0
83

.4
0

83
.6

0
84

.6
0

A
IM

E
24

Pa
ss

@
k

16
.6

7
20

.0
0

26
.6

7
30

.0
0

16
.6

7
20

.0
0

26
.6

7
30

.0
0

16
.6

7
23

.3
3

26
.6

7
30

.0
0

16
.6

7
23

.3
3

26
.6

7
30

.0
0

30
.0

0
33

.3
3

33
.3

3
33

.3
3

30
.0

0
33

.3
3

33
.3

3
33

.3
3

M
aj

or
ity

vo
te

10
.0

0
13

.3
3

16
.6

7
16

.6
7

10
.0

0
13

.3
3

16
.6

7
16

.6
7

10
.0

0
13

.3
3

20
.0

0
16

.6
7

10
.0

0
13

.3
3

20
.0

0
16

.6
7

20
.0

0
30

.0
0

26
.6

7
30

.0
0

20
.0

0
30

.0
0

26
.6

7
30

.0
0

Q
w

en
PR

M
7B

13
.3

3
16

.6
7

20
.0

0
23

.3
3

13
.3

3
16

.6
7

20
.0

0
23

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

23
.3

3
20

.0
0

23
.3

3
23

.3
3

23
.3

3
20

.0
0

23
.3

3
23

.3
3

Q
w

en
PR

M
72

B
13

.3
3

16
.6

7
20

23
.3

3
13

.3
3

16
.6

7
20

23
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
13

.3
3

13
.3

3
20

20
26

.6
7

30
20

20
26

.6
7

30
0.

5B
10

.0
0

16
.6

7
6.

67
13

.3
3

10
.0

0
13

.3
3

13
.3

3
13

.3
3

16
.6

7
16

.6
7

16
.6

7
13

.3
3

16
.6

7
16

.6
7

16
.6

7
13

.3
3

23
.3

3
30

.0
0

26
.6

7
23

.3
3

20
.0

0
23

.3
3

23
.3

3
26

.6
7

1.
5B

10
.0

0
20

.0
0

16
.6

7
16

.6
7

10
.0

0
10

.0
0

16
.6

7
16

.6
7

13
.3

3
20

.0
0

20
.0

0
13

.3
3

13
.3

3
20

.0
0

20
.0

0
13

.3
3

26
.6

7
26

.6
7

30
.0

0
26

.6
7

23
.3

3
30

.0
0

23
.3

3
26

.6
7

3B
13

.3
3

20
.0

0
16

.6
7

13
.3

3
13

.3
3

13
.3

3
10

.0
0

13
.3

3
10

.0
0

16
.6

7
16

.6
7

13
.3

3
10

.0
0

16
.6

7
16

.6
7

13
.3

3
23

.3
3

30
.0

0
30

.0
0

26
.6

7
23

.3
3

30
.0

0
26

.6
7

26
.6

7

A
M

C
23

Pa
ss

@
k

67
.5

0
80

.0
0

85
.0

0
85

.0
0

67
.5

0
80

.0
0

85
.0

0
85

.0
0

72
.5

0
80

.0
0

80
.0

0
82

.5
0

72
.5

0
80

.0
0

80
.0

0
82

.5
0

75
.0

0
82

.5
0

87
.5

0
90

.0
0

75
.0

0
82

.5
0

87
.5

0
90

.0
0

M
aj

or
ity

vo
te

47
.5

0
52

.5
0

57
.5

0
57

.5
0

47
.5

0
52

.5
0

57
.5

0
57

.5
0

50
.0

0
55

.0
0

55
.0

0
60

.0
0

50
.0

0
55

.0
0

55
.0

0
60

.0
0

67
.5

0
70

.0
0

67
.5

0
65

.0
0

67
.5

0
70

.0
0

67
.5

0
65

.0
0

Q
w

en
PR

M
7B

57
.5

0
62

.5
0

62
.5

0
60

.0
0

57
.5

0
62

.5
0

62
.5

0
60

.0
0

60
.0

0
60

.0
0

65
.0

0
65

.0
0

60
.0

0
60

.0
0

65
.0

0
65

.0
0

65
.0

0
67

.5
0

65
.0

0
62

.5
0

65
.0

0
67

.5
0

65
.0

0
62

.5
0

Q
w

en
PR

M
72

B
57

.5
62

.5
70

70
57

.5
62

.5
70

70
62

.5
57

.5
60

60
62

.5
57

.5
60

60
57

.5
62

.5
60

65
57

.5
62

.5
60

65
0.

5B
57

.5
0

62
.5

0
60

.0
0

55
.0

0
60

.0
0

60
.0

0
62

.5
0

55
.0

0
57

.5
0

57
.5

0
62

.5
0

57
.5

0
62

.5
0

57
.5

0
65

.0
0

67
.5

0
75

.0
0

72
.5

0
72

.5
0

72
.5

0
75

.0
0

67
.5

0
75

.0
0

72
.5

0
1.

5B
52

.5
0

55
.0

0
57

.5
0

55
.0

0
60

.0
0

57
.5

0
60

.0
0

52
.5

0
55

.0
0

57
.5

0
55

.0
0

62
.5

0
60

.0
0

57
.5

0
65

.0
0

60
.0

0
70

.0
0

67
.5

0
75

.0
0

75
.0

0
65

.0
0

67
.5

0
70

.0
0

67
.5

0
3B

57
.5

0
60

.0
0

65
.0

0
55

.0
0

52
.5

0
52

.5
0

65
.0

0
52

.5
0

65
.0

0
62

.5
0

62
.5

0
67

.5
0

60
.0

0
60

.0
0

67
.5

0
65

.0
0

72
.5

0
72

.5
0

77
.5

0
72

.5
0

70
.0

0
67

.5
0

75
.0

0
70

.0
0

O
ly

m
pi

ad

Pa
ss

@
k

41
.1

0
47

.1
8

50
.1

5
51

.4
8

41
.1

0
47

.1
8

50
.1

5
51

.4
8

46
.2

9
51

.4
8

54
.1

5
56

.2
3

46
.2

9
51

.4
8

54
.1

5
56

.2
3

50
.3

0
54

.1
5

56
.3

8
58

.0
1

50
.3

0
54

.1
5

56
.3

8
58

.0
1

M
aj

or
ity

vo
te

31
.0

1
32

.7
9

35
.1

6
35

.3
1

31
.0

1
32

.7
9

35
.1

6
35

.3
1

36
.0

5
38

.1
3

39
.6

1
39

.7
6

36
.0

5
38

.1
3

39
.6

1
39

.7
6

39
.7

6
41

.9
9

42
.5

8
42

.8
8

39
.7

6
41

.9
9

42
.5

8
42

.8
8

Q
w

en
PR

M
7B

32
.0

5
34

.4
2

35
.0

1
33

.8
3

32
.0

5
34

.4
2

35
.0

1
33

.8
3

34
.1

2
36

.3
5

36
.8

0
36

.9
4

34
.1

2
36

.3
5

36
.8

0
36

.9
4

39
.6

1
39

.6
1

39
.9

1
40

.5
0

39
.6

1
39

.6
1

39
.9

1
40

.5
0

Q
w

en
PR

M
72

B
33

.6
8

35
.4

6
35

.9
1

35
.3

1
33

.6
8

35
.4

6
35

.9
1

35
.3

1
35

.7
6

38
.5

8
39

.7
6

40
.2

1
35

.7
6

38
.5

8
39

.7
6

40
.2

1
40

.6
5

40
.9

5
41

.2
5

41
.5

4
40

.6
5

40
.9

5
41

.2
5

41
.5

4
0.

5B
37

.9
8

39
.0

2
40

.0
6

38
.7

2
37

.9
8

39
.1

7
39

.9
1

40
.2

1
41

.5
4

40
.8

0
41

.2
5

42
.7

3
40

.9
5

40
.5

0
41

.6
9

43
.0

3
45

.5
5

47
.0

3
45

.7
0

45
.8

5
45

.2
5

47
.0

3
46

.2
9

46
.8

8
1.

5B
38

.7
2

41
.1

0
41

.2
5

41
.6

9
39

.4
7

39
.9

1
40

.8
0

39
.7

6
42

.4
3

42
.8

8
43

.4
7

43
.1

8
41

.6
9

42
.1

4
42

.7
3

41
.8

4
46

.8
8

48
.2

2
47

.9
2

48
.5

2
47

.0
3

47
.3

3
47

.7
7

47
.6

3
3B

39
.7

6
40

.6
5

41
.1

0
42

.4
3

38
.4

3
40

.3
6

40
.9

5
41

.5
4

42
.8

8
43

.0
3

43
.9

2
44

.5
1

41
.9

9
43

.0
3

43
.7

7
43

.9
2

47
.1

8
48

.2
2

49
.4

1
48

.8
1

46
.4

4
46

.8
8

47
.3

3
48

.5
2

Av
er

ag
e

Pa
ss

@
k

59
.7

4
64

.9
6

68
.3

2
69

.6
3

59
.7

4
64

.9
6

68
.3

2
69

.6
3

62
.8

2
67

.2
4

68
.7

8
70

.4
4

62
.8

2
67

.2
4

68
.7

8
70

.4
4

66
.8

4
70

.3
0

72
.1

8
73

.1
2

66
.8

4
70

.3
0

72
.1

8
73

.1
2

M
aj

or
ity

vo
te

49
.6

7
52

.0
0

54
.7

3
54

.6
7

49
.6

7
52

.0
0

54
.7

3
54

.6
7

53
.0

1
55

.2
4

56
.7

8
57

.2
4

53
.0

1
55

.2
4

56
.7

8
57

.2
4

59
.5

1
62

.6
3

61
.6

3
61

.7
7

59
.5

1
62

.6
3

61
.6

3
61

.7
7

Q
w

en
PR

M
7B

52
.9

7
55

.1
5

56
.0

2
56

.1
0

52
.9

7
55

.1
5

56
.0

2
56

.1
0

55
.2

9
56

.0
0

57
.0

9
57

.3
2

55
.2

9
56

.0
0

57
.0

9
57

.3
2

59
.4

5
59

.5
4

59
.8

0
59

.4
7

59
.4

5
59

.5
4

59
.8

0
59

.4
7

Q
w

en
PR

M
72

B
53

.4
0

55
.7

5
58

.2
3

58
.9

9
53

.4
0

55
.7

5
58

.2
3

58
.9

9
56

.0
1

56
.0

1
56

.9
1

57
.0

1
56

.0
1

56
.0

1
56

.9
1

57
.0

1
57

.3
4

58
.8

2
59

.8
7

61
.4

5
57

.3
4

58
.8

2
59

.8
7

61
.4

5
0.

5B
54

.7
1

57
.4

5
55

.2
0

55
.5

8
55

.4
7

56
.6

7
57

.4
3

56
.2

2
58

.2
0

58
.2

2
59

.0
9

57
.7

5
59

.0
7

58
.1

4
59

.9
9

60
.0

5
64

.5
4

65
.5

7
64

.4
0

63
.8

7
63

.8
3

63
.2

8
64

.7
7

65
.1

3
1.

5B
54

.0
6

57
.2

8
57

.4
5

57
.1

7
55

.7
7

55
.6

1
57

.7
1

55
.8

7
57

.3
1

59
.2

2
58

.9
7

59
.2

7
58

.4
1

59
.2

6
60

.8
2

58
.1

1
64

.4
8

64
.5

4
66

.5
8

66
.1

0
63

.0
2

64
.9

2
64

.2
2

64
.2

0
3B

56
.1

3
58

.5
3

59
.1

2
56

.7
8

54
.8

2
55

.3
1

57
.6

8
55

.9
0

58
.9

3
59

.9
4

60
.1

5
60

.5
3

57
.5

0
59

.1
4

61
.0

1
59

.8
0

64
.4

2
66

.0
4

67
.3

5
65

.4
7

63
.7

1
64

.8
0

65
.7

3
65

.1
4

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Ta
bl

e
5:

St
at

is
tic

al
co

m
pa

ri
so

n
of

SS
A

m
od

el
s

vs
.b

as
el

in
es

on
m

at
he

m
at

ic
al

be
nc

hm
ar

ks
.

B
as

el
in

e
M

et
ho

d
7B

14
B

32
B

5
10

20
5

10
20

5
10

20

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g
p-

va
l

si
g

p-
va

l
si

g

M
aj

or
ity

Vo
te

0.
5B

vs
.M

aj
1.

1e
-1

4
*

3.
5e

-1
4

*
1.

9e
-0

5
*

7.
0e

-1
1

*
1.

4e
-0

6
*

4.
5e

-0
6

*
2.

5e
-1

6
*

3.
6e

-1
0

*
2.

5e
-0

6
*

1B
vs

.M
aj

4.
2e

-1
7

*
2.

0e
-1

8
*

9.
6e

-1
4

*
1.

2e
-1

2
*

1.
3e

-0
9

*
7.

4e
-1

2
*

1.
4e

-1
8

*
1.

8e
-1

7
*

1.
6e

-1
6

*
3B

vs
.M

aj
5.

8e
-2

5
*

6.
3e

-2
3

*
5.

1e
-1

5
*

3.
1e

-1
7

*
5.

1e
-1

4
*

4.
3e

-1
4

*
2.

0e
-2

0
*

3.
0e

-1
5

*
8.

4e
-1

5
*

Q
w

en
PR

M
7B

0.
5B

vs
.P

R
M

6.
7e

-0
6

*
1.

0e
-0

4
*

4.
6e

-0
4

*
1.

1e
-0

8
*

1.
8e

-0
4

*
1.

4e
-0

3
*

3.
3e

-1
3

*
2.

8e
-1

1
*

6.
6e

-0
7

*
1B

vs
.P

R
M

1.
1e

-0
6

*
1.

2e
-0

6
*

2.
7e

-0
8

*
9.

3e
-1

0
*

8.
1e

-0
6

*
9.

0e
-0

6
*

1.
0e

-1
3

*
1.

5e
-1

5
*

2.
7e

-1
3

*
3B

vs
.P

R
M

1.
0e

-1
0

*
1.

4e
-0

8
*

4.
2e

-1
0

*
1.

5e
-1

3
*

2.
0e

-0
8

*
6.

9e
-0

8
*

5.
5e

-1
5

*
3.

5e
-1

5
*

1.
7e

-1
2

*

N
ot

e:
A

ll
re

su
lts

ar
e

on
th

e
co

m
bi

ne
d

of
al

l5
be

nc
hm

ar
ks

.T
he

*
in

di
ca

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
(p

<
0.

05
).

A
ll

SS
A

m
od

el
s

(0
.5

B
,1

B
,3

B
)s

ho
w

si
gn

ifi
ca

nt
im

pr
ov

em
en

to
ve

rb
ot

h
M

aj
or

ity
vo

te
an

d
PR

M
ba

se
lin

es
ac

ro
ss

al
li

nf
er

en
ce

m
od

el
si

ze
s

(7
B

,1
4B

,3
2B

).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Ablation of different training methods. Including SFT method, No Thinking Method, and
RL methods trained with LLMans k = 5 on GSM8K train data only. We report LLMans k = 5, 10
results as accuracy (%)

GSM8K MATH AIME24 AMC23 Olympiad Average
Model k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10

Baseline
Majority Vote 91.66 91.96 68.20 69.40 10 13.33 47.50 52.50 31.01 32.79 49.67 52.0
PRM 92.57 93.18 69.4 69.00 13.33 16.67 57.5 62.5 32.05 34.42 52.97 55.15

0.5B
SFT 91.51 92.04 66.0 66.6 10.0 10.0 57.5 50.0 30.86 33.38 51.17 50.4
RL No-Think 91.43 91.58 62.4 61.2 10.0 10.0 52.5 47.5 28.49 28.19 48.96 47.69
RL 92.42 93.1 58.6 57.2 10.0 13.33 60.0 50.0 28.04 27.89 49.81 48.3

1.5B
SFT 91.51 91.66 72.4 70.4 10.0 10.0 50.0 42.5 36.05 30.56 51.99 49.02
RL No-Think 92.65 93.1 63.2 63.2 10.0 16.67 52.5 52.5 31.75 32.94 50.02 51.68
RL 92.65 93.1 71.6 73.0 10.0 20.0 47.5 55.0 34.57 35.91 51.26 55.4

3B
SFT 91.13 91.58 68.4 66.6 6.67 10.0 45.0 40.0 29.38 31.31 48.12 47.9
RL No-Think 92.8 93.25 72.6 72.8 10.0 20.0 57.5 52.5 36.8 38.28 53.94 55.37
RL 93.18 93.1 75.0 74.8 13.33 16.67 60.0 52.5 34.57 37.69 55.22 54.95

Table 7: Average Performance (%) of SSA RL and SSA SFT+RL over five benchmarks. The answers
are generated with Qwen 32B models. The second row indicates the number of sampled answers (k).

Method RL SFT + RL
5 10 15 20 5 10 15 20

Pass@k 66.84 70.30 72.18 73.12 66.84 70.30 72.18 73.12
Majority vote 59.51 62.63 61.63 61.77 59.51 62.63 61.63 61.77
Qwen PRM 59.45 59.54 59.80 59.47 59.45 59.54 59.80 59.47
SSA (0.5B) 64.54 65.57 64.40 63.87 63.83 63.28 64.77 65.13
SSA (1.5B) 64.48 64.54 66.58 66.10 63.02 64.92 64.22 64.20
SSA (3B) 64.42 66.04 67.35 65.47 63.71 64.80 65.73 65.14

A.4 INCREASING k DURING TRAINING

We see that the inference k could lead to the potential improvements of the performance. Would
the same hold if we improve the k during training. For the original design, we use k = 5 for the
training. For comparison, we train the model with k = 8 to see its performance. The results are
presented in Figure 7. We see that training longer context does not help with the performance. In fact
it has lower performance on average for the dataset. It might due to longer context creates more same
answers, and it would make the model to choose more depends on the majority vote than distinguish
the differences.

6 8 10 12 14 16 18 20
Inference k

54

55

56

57

58

59

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

0.5B SSA Performance

6 8 10 12 14 16 18 20
Inference k

1B SSA Performance

6 8 10 12 14 16 18 20
Inference k

3B SSA Performance

Model Configuration
5-answer GRPO
8-answer GRPO

Figure 7: Compare training k and their effect. It seems that increasing context length to longer k
during training does not out perform the shorter context.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Aggregation overhead per question

Answer K 32 64 128

Qwen PRM (7B) 5.25 5.41 5.80
SSA RL (3B) 9.28 7.94 7.02

A.5 SCALING K DURING INFERENCE AND TWO-STAGE SSA

To handle large K under context limits, we use a simple two-stage adaptation of SSA.

Stage 1. We form ℓ2 overlapping groups by taking evenly spaced, cyclic windows of length ℓ1 over
the K candidates. Concretely, with start indices si =

⌊
iK
ℓ2

⌋
for i = 0, . . . , ℓ2 − 1, the i-th group

is Gi =
[
a(si+t) mod K

]ℓ1−1

t=0
. We run SSA independently on each Gi to produce one intermediate

winner.

Stage 2. We concatenate the ℓ2 intermediate winners and run SSA once more to produce the final
answer.

This makes ℓ2+1 SSA calls: ℓ2 calls on inputs of size ℓ1, then one call on ℓ2. We use ℓ1=15 in
all experiments; thus ℓ2=⌈K/ℓ1⌉ gives ℓ2=3 for K=32, ℓ2=5 for K=64, and ℓ2=9 for K=128.
By construction, groups overlap whenever ℓ1 > K/ℓ2 (our default), yielding a replication factor
(ℓ1ℓ2)/K that adds controlled redundancy for robustness at modest extra compute. The details are in
Algorithm 1.

In addition to the performance reported in the Table 3, we also report the aggregation overhead over
the AMC23 dataset. The results are in Table 8.

Algorithm 1 Two-stage SSA

Require: Question x; K candidates A = {a0, . . . , aK−1}; group size ℓ1; group count ℓ2
1: if K ≤ ℓ1 then
2: return SSA(x,A)
3: end if
4: stage1← [] ▷ will hold ℓ2 winners (full CoTs)
5: for i = 0 to ℓ2 − 1 do ▷ Stage 1: ℓ2 calls, each on ℓ1 answers

6: si ←
⌊
i ·K
ℓ2

⌋
evenly spaced starts

7: Gi ←
[
a ((si+t) mod K) : t = 0, . . . , ℓ1 − 1

]
cyclic window (overlap-allowed)

8: ŷi ← SSA(x,Gi) infer the group’s final answer
9: aGi

← MapBack(ŷi, Gi) pick the chosen candidate’s full CoT
10: stage1.append(aGi

)
11: end for
12: return SSA(x,stage1) ▷ Stage 2: aggregate ℓ2 winners

A.6 ERROR ANALYSIS

We conduct error analysis of the SSA outputs. We use SSA 3B model with five answer samples.
Across all datasets the vast majority of correct cases are simply copied from a candidate that already
contains the ground-truth answer. Hence the main value of SSA lies in finding the right candidate.
When the ground-truth answer is absent from the sample set, SSA fails in two ways: it either chooses
the majority wrong answer (y∗ /∈ C copied) or try to come up a new but still wrong answer (y∗ /∈ C
synthesized). While SSA sometimes come up with the correct answer even the ground truth are not
provided in the inference, when we manually examine the answers in this category most are in wrong
format that extraction failed. It confirms an input quality bottleneck: if no correct candidate exists,
the policy has difficulty to recover it. Conversely, errors with a correct candidate present (y∗ ∈ C /
copied wrong or y∗ ∈ C / synthesized wrong) are much smaller, showing that SSA rarely mis-ranks
truly correct answers. In order to understand whether SSA can synthesize new answers, we designed
addition experiments to cut off last 10% of the answers, and our results are in Appendix A.7. It

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Accuracy and error composition for the 3 B SSA (k=5). Columns are percentages of the
whole dataset. y∗ ∈ C means ground-truth answer y∗ included among the 5 candidates C.

Acc.↑ Correct Wrong

y∗ ∈ C
copied

y∗ /∈ C
synthesized

y∗ /∈ C
copied

y∗ /∈ C
synthesized

y∗ ∈ C
copied

y∗ ∈ C
synthesized

GSM8K 93.3 87.7 5.5 3.3 1.0 2.3 0.2
MATH 79.2 75.6 3.6 9.4 3.6 6.6 1.2
AMC23 57.5 52.5 5.0 12.5 7.5 12.5 10.0
AIME24 13.3 13.3 0.0 23.3 50.0 3.3 10.0
Olympiad 39.8 34.9 4.9 27.6 24.6 5.6 2.4

shows that the SSA has synthesize ability when answers are all removed, and the accuracy has some
degradation.

A.7 COPY OR SYNTHESIZE?

Our error analysis reveals that the majority of correct answers are copied from the provided responses.
To test whether the SSA can synthesize answers, we created a variant of the dataset where the last
10% of every answer is cut off. This ensures that the final answers are not directly available in the
input, requiring the model to synthesize them.

Table 10: Performance comparison between original responses and those with last 10% removed.

Method Datasets Avg
GSM8K MATH AIME24 AMC23 Olympiad

Original (complete answers)
SSA 93.25 76.80 13.33 57.50 39.76 56.13

Truncated (last 10% removed)
SSA + RL 74.22 52.80 0.00 22.50 23.00 34.50
SSA + RL + SFT 89.99 67.80 6.67 40.00 31.01 47.09

As shown in Table 10, performance significantly drops when answers must be synthesized rather than
copied. The RL method alone achieves only 34.50% average accuracy, while combining RL with
SFT improves this to 47.09%. Notably, the RL+SFT approach recovers much of the performance gap,
particularly on GSM8K (89.99% vs. original 93.25%), suggesting effective synthesis capabilities for
easy problems. However, since pure copy would only result 0%, this suggests that SSA is not just
copy but able to synethize correct results.

A.8 GENERALIZATION TO OTHER TASKS

Table 11 reports accuracy on three general tasks benchmarks. On ARC-C and MMLU-Pro the
SFT + RL SSA mostly beats the majority-vote baseline (Clark et al., 2018; Wang et al., 2024c). Pure
RL SSAs give smaller (sometimes negative) gains, suggesting that an SFT warm-start improves out-
of-domain transfer. Pure SFT SSAs exhibit varied performance: strong at 3B scale but significantly
weaker at smaller scales (0.5B and 1.5B), suggesting SFT’s generalization capability strongly depends
on model capacity for out domain generalization. On TruthfulQA (truthfulness/adversarial) none
of the SSAs can consistently outperform majority voting, suggesting that truthfulness might not be
beneficial from answer selection. Tackling truthfulness might require different goal than reasoning
among answers.

Table 11: Model evaluation results on ARC, MMLU-PRO, TruthfulQA benchmarks

Metric Qwen2.5-7B-Instruct SSA RL SSA SFT + RL SSA SFT
pass@1 Majority Vote (5) 0.5B 1.5B 3B 0.5B 1.5B 3B 0.5B 1.5B 3B

ARC-C 88.65 91.38 88.05 91.3 88.99 91.72 91.38 91.81 69.88 90.02 92.06
MMLU-PRO 43.63 49.24 33.19 43.09 39.84 46.28 48.01 50.37 25.76 43.93 51.41
TruthfulQA 62.43 66.23 66.52 67.11 64.62 66.08 64.47 63.89 49.85 63.89 66.23

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 12: Efficiency Evaluation. We report end-to-end runtime on one RTX 6000 Ada.

Method Base-LM passes Aggregator time Total time (s) ↓ Overall Accuracy (%) ↑

Qwen2.5-7B 1 – 556.12 45.5
Majority vote (k=5) 5×Qwen2.5-7B – 2 780.6 49.67
Qwen PRM 7B (k=5) 5×Qwen2.5-7B 21.9 2 780.6 + 21.9 = 2 802.5 52.97
SSA RL 3B (k=5, ours) 5×Qwen2.5-7B 25.7 2 780.6 + 25.7 = 2 806.3 56.13

SimpleRL 7B (seq. RL) 1 pass – 3 273.2 58.56

“Base-LM passes” = number of forward decodes of Qwen-2.5-7B-Instruct (556.12 s per pass). Aggregator time
is measured separately.

A.9 EFFICIENCY EVALUATION

We now evaluate the amount of compute required for each aggregation strategy. Compared to other
methods which considers each sample independently, our method considers them jointly, generating
longer sequence which can incur high computation cost.

Compute Cost (Wall-clock) For more details, we conduct an actual measure based on the real
settings. The results are in Table 12. All measurements were taken on a single NVIDIA RTX 6000
Ada with the AMC23 benchmark (40 questions). In practice, parallelized sampling from the LLM
can significantly speed up the time required.

Inference Cost To measure raw compute (flops), we follow the formula from Kaplan et al. (2020).
It uses roughly Cforward ≈ 2N , and the backward pass is about 2 times which is 4N . So the total is
C ≈ 6N FLOPs per training token, with N as the model parameter and C as the non embedding
training compute. We use D as token length.

For inference cost we will use Cforward ≈ 2ND per query. For k = 5, input context D ≈ 5 ∗ 1000.
So the SSA method needs a 7B base model with inference cost 2ND = 2 ∗ 7 ∗ 109 ∗ (1000 ∗ 5) =
70TFLOPs. SSA itself has a constant compute overhead of 2ND = 2 ∗ 3 ∗ 109 ∗ (5000 + 60) ≈
30TFLOPs since SSA’s compute cost depends on the input token length not the inference model
size. The total for SSA would be 70 + 30 = 100TFLOPs. In comparison, the sequential RL
approach would result 2ND = 2 ∗ 7 ∗ 109 ∗ 8000 ≈ 110TFLOPs. This method scales favourably
to larger bases (SSA 350 TFLOPs vs Sequential RL 512 TFLOPs on a 32B model).

A.10 STABILITY ANALYSES

A.10.1 EFFECT OF CANDIDATE ORDERING

A potential concern for methods that concatenate K candidates is that the relative order of those
candidates might influence the SSA’s decision. To test this, we evaluate the 3B SSA (RL) under
three independent random permutations of the K responses of 7B answer model at inference time,
holding everything else fixed. As shown in Table 13, we do not observe meaningful differences when
changing the order.

A.10.2 TRAINING DIFFERENT RANDOM SEED

Reinforcement learning can exhibit sensitivity to initialization. We therefore train SSA 3B (RL) with
another seed 16 using identical data and hyperparameters, and evaluate the resulting checkpoints
under the same protocol as the main results of 7B answer model. Table 14 reports per-K accuracy.
We do not see significant differences.

A.11 TRAINING DATA STATISTICS

Table 15 summarizes the distribution of instance-level correctness in the raw training pool prior to
filtering. For each question we sampled K=5 candidate solutions using top-k sampling. “m/5”
indicates that exactly m of the five candidates match the reference answer.

Filtering and preprocessing. We apply two light filters before RL training:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 13: Ordering sensitivity. SSA 3B (RL)
evaluated with the original concatenation order
vs. three random permutations at inference time.
Values are accuracy (%).

Metric 5 10 15 20

Original (%) 56.13 58.53 59.12 56.78
Avg. over 3 random permutations (%) 56.06 58.70 59.40 58.47

Table 14: Training-seed sensitivity.SSA 3B
(RL) trained with different random seeds. Values
are accuracy (%).

Metric 5 10 15 20

Original Random Seed 42(%) 56.13 58.53 59.12 56.78
Random Seed 16 (%) 56.09 57.27 59.49 56.64

Table 15: Correctness distribution in the raw training pool (five sampled responses per question).
Counts and column percentages are shown.

Correct GSM8K MATH Combined

0/5 618 (8.3%) 3170 (26.4%) 3788 (19.5%)
1/5 218 (2.9%) 1007 (8.4%) 1225 (6.3%)
2/5 198 (2.6%) 841 (7.0%) 1039 (5.3%)
3/5 268 (3.6%) 881 (7.3%) 1149 (5.9%)
4/5 477 (6.4%) 1157 (9.6%) 1634 (8.4%)
5/5 5694 (76.2%) 4944 (41.2%) 10638 (54.6%)

Total 7473 (100.0%) 12000 (100.0%) 19473 (100.0%)

• Validity filter. We discard instances where more than one of the five samples is NULL (un-
parsable/empty). This removes ≈0.4% of GSM8K and ≈9.8% of MATH instances.

• Length filter. Answer sets exhibit a long-tailed length distribution; some concatenations exceed
8k tokens due to looping or unbounded reasoning. To control VRAM and remove pathological
traces, we drop instances whose concatenated prompt + answers exceed 4k tokens. This reduces
the pool from ∼19k to ∼17k instances and slightly denoises the supervision.

These filters are minimal (no step-level labeling) and aimed purely at stabilizing training; we did not
tune them for accuracy.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B PROMPT DETAILS

For SSA method, we trained and evaluate it with the following prompt:

SSA Prompt: A conversation between User and Assistant. The user provide a question and some
proposed answers. The Assistant first evaluate each answers individually,check whether each answer
directly addresses the original question, assess the correctness of each answer based on logical reasoning,
calculations, and accuracy relative to the question. After thorough evaluation, identify one correct answer.
If the correct answer is not in the provided proposed answers, the Assistant will combine the correct
answer with the proposed answers and provide the correct answer. The reasoning process and answer
are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning
process here</think> <answer>answer here</answer>.

Figure 8: Example prompt for SSA. For reward extraction, we will use rule based extraction to extract
anything inside <think></think> and <answer></answer>. If the output matches the structure and
able to extract some values we will provide minimal format reward.

SSA No-Think Prompt:A conversation between User and Assistant. The user provide a question and
some proposed answers. The Assistant answer the question based on the proposed answers. The answer is
enclosed within <answer></answer> tag, i.e., <answer>answer here</answer>.

Figure 9: Example prompt for SSA

USC Prompt: You are a helpful assistant. The user provide a question and some proposed answers. The
Assistant first evaluate each answers individually,check whether each answer directly addresses the original
question, assess the correctness of each answer based on logical reasoning, calculations, and accuracy
relative to the question. After thorough evaluation, identify one correct answer based on majority consensus.
The reasoning process and answer are enclosed within <think></think> and <answer></answer> tags,
respectively, i.e., <think>reasoning process here</think> <answer>answer here</answer>.

Figure 10: Example prompt for USC prompt to the Instruct model

SFT Data Construction Prompt: Here is a question and some proposed answers. You need to evaluate
each answers individually, check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question.
After thorough evaluation, identify one correct answer. If the correct answer is not in the provided proposed
answers, the Assistant will combine the correct partial responses to proposed answers and provide the
correct answer. Make the reasoning process concise and to the point. The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively,i.e., <think>reasoning process
here</think> <answer>answer here</answer>. Here is the Question and proposed answers: Question and
5 Answers.
Here is the labeled answer with answer tags ’<answer>Ground Truth Answer</answer>’, and most likely
the correct answer. If none of the proposed answers is correct, come up with the reasoning process to arrive
at the actual correct final answer. **Attention: Do not ever mention the answer is given in the response,
but you need to justify it from the problem and proposed answers!**

Figure 11: Example prompt for constructing SFT dataset

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C EXAMPLE RESULTS

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first evaluate each answers individually,check
whether each answer directly addresses the original question, assess the correctness of each answer based on logical reasoning, calculations, and accuracy relative to
the question. After thorough evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will combine the
correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>reasoning process here</think> <answer>answer here</answer>.

User: Question: What is the value of\n\\[2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3?\\]\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo solve the given expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it consists of pairs of terms where each pair is
of the form \\((2k)^3 - (2k-1)^3 \\).\n\nLet's simplify the general term in the series:\n\\[\n(2k)^3 - (2k-1)^3\n\\]\n\nUsing the binomial expansion for cubes, we
have:\n\\[\na^3 - b^3 = (a - b)(a^2 + ab + b^2)\n\\]\nwhere \\(a = 2k\\) and \\(b = 2k-1\\). Substituting these values, we get:\n\\[\n(2k)^3 - (2k-1)^3 = [(2k) - (2k-1)][(2k)^2 +
(2k)(2k-1) + (2k-1)^2]\n\\]\nSimplifying inside the brackets:\n\\[\n(2k - (2k-1)) = 1\n\\]\nSo,\n\\[\n(2k)^3 - (2k-1)^3 = 1 \\cdot [(2k)^2 + (2k)(2k-1) + (2k-1)^2]\n\\]\nNow, let's
expand the quadratic expression:\n\\[\n(2k)^2 = 4k^2\n\\]\n\\[\n(2k)(2k-1) = 4k^2 - 2k\n\\]\n\\[\n(2k-1)^2 = 4k^2 - 4k + 1\n\\]\nAdding these together:\n\\[\n4k^2 + (4k^2 -
2k) + (4k^2 - 4k + 1) = 12k^2 - 6k + 1\n\\]\nThus,\n\\[\n(2k)^3 - (2k-1)^3 = 12k^2 - 6k + 1\n\\]\n\nNext, we need to sum this expression from \\(k=1\\) to \\(k=9\\) (since the
sequence goes up to 18, which corresponds to \\(k=9\\)):\n\\[\n\\sum_{k=1}^{9} (12k^2 - 6k + 1)\n\\]\n\nWe can split this into three separate sums:\n\\[\n\\sum_{k=1}^{9}
12k^2 - \\sum_{k=1}^{9} 6k + \\sum_{k=1}^{9} 1\n\\]\n\nCalculating each sum separately:\n1. Sum of squares:\n\\[\n\\sum_{k=1}^{9} k^2 = \\frac{9 \\cdot 10 \\cdot 19}{6}
= 285\n\\]\nMultiplying by 12:\n\\[\n12 \\sum_{k=1}^{9} k^2 = 12 \\cdot 285 = 3420\n\\]\n\n2. Sum of integers:\n\\[\n\\sum_{k=1}^{9} k = \\frac{9 \\cdot 10}{2} =
45\n\\]\nMultiplying by 6:\n\\[\n6 \\sum_{k=1}^{9} k = 6 \\cdot 45 = 270\n\\]\n\n3\n\n

Answer 2:\nTo find the value of the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it is a sum of dieerences of cubes in
pairs. Let's break it down step by step.\n\nFirst, consider the general term in the sequence:\n\\[(2k)^3 - (2k-1)^3 \\]\nfor \\(k = 1, 2, 3, \\ldots, 9 \\).\n\nWe need to
simplify the expression \\((2k)^3 - (2k-1)^3\\). Using the identity for the dieerence of cubes, \\(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\\), where \\(a = 2k\\) and \\(b = 2k-1\\), we
get:\n\\[\n(2k)^3 - (2k-1)^3 = (2k - (2k-1)) \\left((2k)^2 + (2k)(2k-1) + (2k-1)^2 \\right)\n\\]\nSimplifying inside the parentheses:\n\\[\n= 1 \\left(4k^2 + 4k^2 - 2k + 4k^2 - 4k +
1 \\right)\n= 4k^2 + 4k^2 - 2k + 4k^2 - 4k + 1\n= 12k^2 - 6k + 1\n\\]\n\nNow, we need to sum this expression from \\(k=1\\) to \\(k=9\\):\n\\[\n\\sum_{k=1}^{9} (12k^2 - 6k +
1)\n\\]\n\nWe can split this into three separate sums:\n\\[\n\\sum_{k=1}^{9} 12k^2 - \\sum_{k=1}^{9} 6k + \\sum_{k=1}^{9} 1\n\\]\n\nUsing the formulas for the sum of
squares and the sum of the first \\(n\\) natural numbers:\n\\[\n\\sum_{k=1}^{n} k^2 = \\frac{n(n+1)(2n+1)}{6}\n\\]\n\\[\n\\sum_{k=1}^{n} k =
\\frac{n(n+1)}{2}\n\\]\n\\[\n\\sum_{k=1}^{n} 1 = n\n\\]\n\nFor \\(n = 9\\):\n\\[\n\\sum_{k=1}^{9} k^2 = \\frac{9 \\cdot 10 \\cdot 19}{6} = 285\n\\]\n\\[\n\\sum_{k=1}^{9} k =
\\frac{9 \\cdot 10}{2} = 45\n\\]\n\\[\n\\sum_{k=1}^{9} 1 = 9\n\\]\n\nSubstituting these values back into our expression:\n\\[\n12 \\sum_{k=1}^{9} k^2 - 6 \\sum\n\n

Answer 3:\nTo find the value of the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it consists of pairs of terms where each
pair is of the form \\((2n)^3 - (2n-1)^3 \\).\n\nFirst, let's simplify the general term in the sequence:\n\\[\n(2n)^3 - (2n-1)^3\n\\]\nUsing the binomial expansion for cubes,
we have:\n\\[\na^3 - b^3 = (a - b)(a^2 + ab + b^2)\n\\]\nHere, \\(a = 2n\\) and \\(b = 2n-1\\). So,\n\\[\n(2n)^3 - (2n-1)^3 = (2n - (2n-1))((2n)^2 + (2n)(2n-1) + (2n-
1)^2)\n\\]\nSimplifying inside the parentheses:\n\\[\n= 1 \\cdot ((2n)^2 + 2n(2n-1) + (2n-1)^2)\n\\]\n\\[\n= (4n^2 + 4n^2 - 2n + 4n^2 - 4n + 1)\n\\]\n\\[\n= 4n^2 + 4n^2 - 2n +
4n^2 - 4n + 1\n\\]\n\\[\n= 12n^2 - 6n + 1\n\\]\n\nNow, we need to sum these simplified terms from \\(n=1\\) to \\(n=9\\):\n\\[\n\\sum_{n=1}^{9} (12n^2 - 6n + 1)\n\\]\n\nWe
can split this into three separate sums:\n\\[\n\\sum_{n=1}^{9} 12n^2 - \\sum_{n=1}^{9} 6n + \\sum_{n=1}^{9} 1\n\\]\n\nCalculating each sum separately:\n1. Sum of
squares:\n\\[\n\\sum_{n=1}^{9} n^2 = \\frac{9 \\cdot 10 \\cdot 19}{6} = 285\n\\]\nSo,\n\\[\n12 \\sum_{n=1}^{9} n^2 = 12 \\cdot 285 = 3420\n\\]\n\n2. Sum of
integers:\n\\[\n\\sum_{n=1}^{9} n = \\frac{9 \\cdot 10}{2} = 45\n\\]\nSo,\n\\[\n6 \\sum_{n=1}^{9} n = 6 \\cdot 45 = 270\n\\]\n\n3. Sum of ones:\n\\[\n\\sum_{n\n\n

Answer 4:\nTo find the value of the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it is a sum of dieerences of cubes in
pairs. Specifically, it can be written as:\n\n\\[\n(2^3 - 1^3) + (4^3 - 3^3) + (6^3 - 5^3) + \\dots + (18^3 - 17^3)\n\\]\n\nWe can use the identity for the dieerence of cubes,
which states \\(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\\). For each pair \\((2k)^3 - (2k-1)^3 \\):\n\n\\[\n(2k)^3 - (2k-1)^3 = (2k - (2k-1))((2k)^2 + (2k)(2k-1) + (2k-1)^2)\n\\]\n\\[\n=
1 \\left(4k^2 + 4k^2 - 2k + 4k^2 - 4k + 1\\right)\n\\]\n\\[\n= 1 (12k^2 - 6k + 1)\n\\]\n\\[\n= 12k^2 - 6k + 1\n\\]\n\nSo, the expression simplifies to:\n\n\\[\n(2^3 - 1^3) + (4^3 -
3^3) + (6^3 - 5^3) + \\dots + (18^3 - 17^3) = (12 \\cdot 1^2 - 6 \\cdot 1 + 1) + (12 \\cdot 2^2 - 6 \\cdot 2 + 1) + \\dots + (12 \\cdot 9^2 - 6 \\cdot 9 + 1)\n\\]\n\nThis can be
written as:\n\n\\[\n\\sum_{k=1}^{9} (12k^2 - 6k + 1)\n\\]\n\nWe can split this sum into three separate sums:\n\n\\[\n12 \\sum_{k=1}^{9} k^2 - 6 \\sum_{k=1}^{9} k +
\\sum_{k=1}^{9} 1\n\\]\n\nUsing the formulas for the sum of the first \\(n\\) squares and the sum of the first \\(n\\) integers, we get:\n\n\\[\n\\sum_{k=1}^{9} k^2 = \\frac{9
\\cdot 10 \\cdot 19}{6} = 285\n\\]\n\\[\n\\sum_{k=1}^{9} k = \\frac{9 \\cdot 10}{2} = 45\n\\]\n\\[\n\\sum_{k=1}^{9} 1 = 9\n\\]\n\nSubstituting these val\n\n

Answer 5:\nTo solve the expression \\(2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \\dots + 18^3 - 17^3\\), we can observe that it consists of pairs of terms where each pair is of the
form \\((2n)^3 - (2n-1)^3 \\).\n\nFirst, let's simplify the general term \\((2n)^3 - (2n-1)^3 \\):\n\\[\n(2n)^3 - (2n-1)^3 = 8n^3 - (8n^3 - 12n^2 + 6n - 1) = 12n^2 - 6n +
1.\n\\]\n\nNow, we need to sum this expression for \\(n = 1 \\) to \\(n = 9 \\) (since the sequence goes up to 18 and 17, which correspond to \\(n = 1 \\) to \\(n = 9
\\)):\n\\[\n\\sum_{n=1}^{9} (12n^2 - 6n + 1).\n\\]\n\nWe can split this sum into three separate sums:\n\\[\n\\sum_{n=1}^{9} 12n^2 - \\sum_{n=1}^{9} 6n + \\sum_{n=1}^{9}
1.\n\\]\n\nUsing the formulas for the sum of squares and the sum of the first \\(n \\) natural numbers:\n\\[\n\\sum_{n=1}^{9} n^2 = \\frac{9 \\cdot 10 \\cdot 19}{6} =
285,\n\\]\n\\[\n\\sum_{n=1}^{9} n = \\frac{9 \\cdot 10}{2} = 45,\n\\]\n\\[\n\\sum_{n=1}^{9} 1 = 9.\n\\]\n\nSubstituting these values back in, we get:\n\\[\n12 \\sum_{n=1}^{9}
n^2 - 6 \\sum_{n=1}^{9} n + \\sum_{n=1}^{9} 1 = 12 \\cdot 285 - .

Assistant: <think>Each proposed answer simplifies the general term and sums the series. The key is to recognize that the series is composed of pairs of cubes, and each
pair simplifies to \\(12n^2 - 6n + 1\\). The sums of squares and integers from 1 to 9 are well-known and can be calculated directly. The total sum is the sum of these three
parts: \\(12 \\cdot 285 - 6 \\cdot 45 + 9\\). Calculating each part: \\(12 \\cdot 285 = 3420\\), \\(6 \\cdot 45 = 270\\), and \\(9 = 9\\). Summing these: \\(3420 - 270 + 9 =
3159\\). All answers arrive at the same total, confirming the correctness of the calculation.</think> <answer>3159</answer>",

Figure 12: Example output when we cut off the last 10% of all answers to test whether SSA can
synthesize. SSA SFT+RL 3B can synthesize and continue to get the final correct answer from
AMC23 data. We can see the final answer 3159 does not appear anywhere in the provided solutions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

 A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first
evaluate each answers individually,check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question. After thorough
evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will
combine the correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning process here</think>
<answer>answer here</answer>. User: Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many
bolts in total does it take?\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo determine the total number of bolts needed for the robe, we start by identifying the amount of each type of fiber
required:\n\n- The robe requires 2 bolts of blue fiber.\n- It requires half as much white fiber as blue fiber, which means it needs
\\(\\frac{1}{2} \\times 2 = 1 \\) bolt of white fiber.\n\nAdding these together gives us the total number of bolts:\n\n\\[2
\\text{ (blue)} + 1 \\text{ (white)} = 3 \\text{ bolts} \\]\n\n#### 3\n\n

Answer 2:\nTo determine the total number of bolts needed for the robe, we start by identifying the amount of each type of fiber
required:\n\n1. The robe requires 2 bolts of blue fiber.\n2. The amount of white fiber required is half the amount of blue fiber,
which is \\(\\frac{2}{2} = 1 \\) bolt.\n\nAdding these together gives the total number of bolts needed:\n\\[2 \\text{ (blue)} + 1
\\text{ (white)} = 3 \\text{ bolts} \\]\n\n#### 3\n\n

Answer 3:\nTo determine the total number of bolts of fiber needed for the robe, we start by identifying the amount of each type
of fiber required.\n\n1. The robe requires 2 bolts of blue fiber.\n2. The amount of white fiber required is half that of the blue
fiber. Therefore, the amount of white fiber needed is:\n \\[\n \\frac{2}{2} = 1 \\text{ bolt}\n \\]\n\nNext, we add the bolts of
blue fiber and white fiber together to find the total number of bolts needed:\n\\[\n2 \\text{ (blue)} + 1 \\text{ (white)} = 3
\\text{ bolts}\n\\]\n\nThus, the total number of bolts of fiber needed for the robe is:\n#### 3\n\n

Answer 4:\nA robe takes 2 bolts of blue fiber and half that amount in white fiber, which means it takes 1 bolt of white fiber
(since half of 2 is 1). Therefore, the total number of bolts needed is 2 (blue) + 1 (white) = 3 bolts.\n\n#### 3\n\n

Answer 5:\nA robe takes 2 bolts of blue fiber and half that amount in white fiber, which means it takes 1 bolt of white fiber
(since half of 2 is 1). \n\nIn total, the robe takes 2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts.\n\n#### 3.

Assistant: <think>Each proposed answer correctly identifies that the robe requires 2 bolts of blue fiber and half that amount in
white fiber, which is 1 bolt. The total bolts needed are then 2 (blue) + 1 (white) = 3 bolts. All answers arrive at the same
conclusion through correct reasoning and calculations. Since all answers are consistent and correct, the most straightforward
and clear answer is the one that explicitly states the total as 3 bolts, which is Answer 5. Therefore, the correct answer is 3
bolts.</think> <answer>3</answer>

Figure 13: SSA SFT Example. We can see there is a more clear reasoning on the response on the
decision process.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

 A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first
evaluate each answers individually,check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question. After thorough
evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will
combine the correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning process here</think>
<answer>answer here</answer>.

User: Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much profit did he make?\n\nBelow are the proposed answers:\n\n

Answer 1:\nFirst, we need to calculate the new value of the house after the repairs. The original cost of the house was $80,000,
and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nThe repairs increased the value of the house by 150%. To find the new value of the
house, we need to calculate 150% of the original purchase price ($80,000) and add it to the original purchase
price.\n\n\\[150\\% \\text{ of } 80,000 = 1.5 \\times 80,000 = 120,000 \\]\n\nAdding this to the original purchase price gives us
the new value of the house:\n\n\\[80,000 + 120,000 = 200,000 \\]\n\nNow, we subtract the total amount Josh spent (the initial
purchase price plus the repair costs) from the new value of the house to determine his profit:\n\n\\[200,000 - 130,000 =
70,000 \\]\n\nTherefore, Josh made a profit of $70,000.\n\n#### $70,000\n\n

Answer 2:\nFirst, we need to calculate the new value of the house after the repairs. The original cost of the house was $80,000,
and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nNext, we know that the repairs increased the value of the house by 150%. An
increase of 150% means the value of the house became 250% (or 2.5 times) its original value before the repairs. So, the new
value of the house is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nNow, to find the profit, we subtract the total cost from the
new value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\]\n\nTherefore, the profit Josh made is:\n\n#### $195,000\n\n

Answer 3:\nFirst, let's calculate the new value of the house after the repairs. The original cost of the house was $80,000, and
Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value is:\n\n\\[80,000
+ 50,000 = 130,000 \\]\n\nNext, we need to determine the new value of the house after the 150% increase in value. A 150%
increase means the value of the house becomes 250% (100% original value + 150% increase) of its pre-repair value. The pre-
repair value of the house is $130,000, so the new value is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nNow, to find the profit,
we subtract the total cost from the new value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\]\n\nTherefore, the profit Josh
made is:\n\n#### $195,000\n\n

Answer 4:\nFirst, let's calculate the new value of the house after the repairs. The original purchase price of the house was
$80,000, and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nNext, we need to determine the new value of the house after it increased by 150%.
An increase of 150% means the value of the house becomes 250% (or 2.5 times) its original purchase price. So, the new value
of the house is:\n\n\\[80,000 \\times 2.5 = 200,000 \\]\n\nNow, we can find out how much profit Josh made by subtracting his
total cost from the new value of the house:\n\n\\[200,000 - 130,000 = 70,000 \\]\n\nTherefore, the profit Josh made is:\n\n####
$70,000\n\n

Answer 5:\nFirst, we need to determine the new value of the house after the repairs. The original cost of the house was
$80,000, and Josh spent an additional $50,000 on repairs. Therefore, the total cost before any increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nThe problem states that the value of the house increased by 150% due to the
repairs. An increase of 150% means the value of the house became 250% (or 2.5 times) its original cost after repairs. So, the
new value of the house is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nTo find the profit, we subtract the total cost from the new
value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\]\n\nTherefore, the profit Josh made is:\n\n#### $195,000.

Assistant: <think>reasoning process here</think> <answer>195000</answer>",

Figure 14: SSA RL Example. We can see the response reasoning process is just a copy of the
instruction template. There are no meaningful content there

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant answer the question
based on the proposed answers. The answer is enclosed within <answer></answer> tag, i.e., <answer>answer here</answer>.

User: Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form
$(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\\theta\\).\n\n1. **Calculate \\(r\\):**\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y =
3\\):\n \\[\n r = \\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Determine \\(\\theta\\):**\n The angle \\(\\theta\\) can be found using the
arctangent function:\n \\[\n \\theta = \\tan^{-1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this results in an
undefined value for \\(\\tan^{-1}\\). Instead, we consider the position of the point in the coordinate plane. The point \\((0,3)\\) lies on the
positive \\(y\\)-axis.\n\n On the positive \\(y\\)-axis, the angle \\(\\theta\\) is:\n \\[\n \\theta = \\frac{\\pi}{2}\n \\]\n\nThus, the polar
coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 2:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\\theta\\).\n\n1. **Calculate \\(r\\):**\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y =
3\\):\n \\[\n r = \\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta =
\\tan^{-1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this point lies on the positive \\(y\\)-axis. Therefore,
\\(\\theta\\) should be \\(\\frac{\\pi}{2}\\).\n\nThus, the polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3,
\\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 3:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find \\(r\\) and \\(\\theta\\).\n\n1.
Calculate \\(r\\):\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y = 3\\):\n \\[\n r =
\\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta = \\tan^{-
1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this results in an undefined value for \\(\\tan^{-1}\\). Instead, we
consider the position of the point in the coordinate plane. The point \\((0,3)\\) lies on the positive \\(y\\)-axis.\n\n On the \\(y\\)-axis, the
angle \\(\\theta\\) is \\(\\frac{\\pi}{2}\\) (or 90 degrees).\n\nTherefore, the polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3,
\\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 4:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\\theta\\).\n\n1. **Calculate \\(r\\):**\n The formula for \\(r\\) is given by:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\)
and \\(y = 3\\):\n \\[\n r = \\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Determine \\(\\theta\\):**\n The angle \\(\\theta\\) can be found
using the arctangent function:\n \\[\n \\theta = \\tan^{-1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this
directly places the point on the positive \\(y\\)-axis. Therefore, the angle \\(\\theta\\) is:\n \\[\n \\theta = \\frac{\\pi}{2}\n \\]\n\nThus, the
polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\)\n\n

Answer 5:\nTo convert the point \\((0, 3)\\) from rectangular coordinates to polar coordinates, we need to find \\(r\\) and \\(\\theta\\).\n\n1.
Calculate \\(r\\):\n The formula for \\(r\\) is:\n \\[\n r = \\sqrt{x^2 + y^2}\n \\]\n Substituting \\(x = 0\\) and \\(y = 3\\):\n \\[\n r =
\\sqrt{0^2 + 3^2} = \\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta = \\tan^{-
1}\\left(\\frac{y}{x}\\right)\n \\]\n However, since \\(x = 0\\), \\(\\tan^{-1}\\left(\\frac{3}{0}\\right)\\) is undefined. This indicates that the
point lies on the positive \\(y\\)-axis. Therefore, \\(\\theta\\) must be \\(\\frac{\\pi}{2}\\).\n\nPutting it all together, the polar coordinates
are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi}{2})\n\\]\n\n#### \\((3, \\frac{\\pi}{2})\\).

Assistant: <answer>3, pi/2</answer>

Figure 15: SSA No Think Example. We can see the Assistant output answer directly

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLM to polish our writing. In addition, LLM also assist our coding and visualization.

30

	Introduction
	Related Work
	Method
	Problem Formulation
	Training SSA with Reinforcement Learning
	Training SSA With Supervised Finetuning

	Experiments
	Experimental Settings
	Comparison Systems

	Main Results
	Comparison with Parallel Scaling Baselines
	Generalization Capabilities of SSA.
	Comparison with Sequential Test-time Scaling
	Scaling SSA to handle a larger sample set

	Analyses
	Comparing RL vs SFT
	To think or not to think

	Conclusion
	Reproducibility Statement
	More results details
	SSA Results
	Ablation on SFT, No Think, and RL Results
	Combining SFT and RL
	Increasing k during training
	Scaling K during inference and Two-stage SSA
	Error Analysis
	Copy or Synthesize?
	Generalization to other tasks
	Efficiency Evaluation
	Stability Analyses
	Effect of Candidate Ordering
	Training different random seed

	Training Data Statistics

	Prompt Details
	Example Results
	The Use of Large Language Models (LLMs)

