Under review as a conference paper at ICLR 2026

LEARNING TO REASON ACROSS
PARALLEL SAMPLES FOR LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling test-time compute brings substantial performance gains for large language
models (LLMs). By sampling multiple answers and heuristically aggregate their
answers (e.g., either through majority voting or using verifiers to rank the answers),
one can achieve consistent performance gains in math domains. In this paper, we
propose a new way to leverage such multiple sample set. We train a compact
LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of
multiple samples and output the final answer, optimizing it for the answer accuracy
with reinforcement learning. Experiments on five reasoning datasets demonstrate
both the efficacy and efficiency of SSA. Notably, SSA improves over naive majority
voting by 8% pass@5 on MATH. Furthermore, our 3B SSA surpasses model-based
re-ranking with a much larger 72B process reward model. Our analysis also
shows promising generalization ability of SSA, across sample set sizes, base model
families and scales, and tasks. By separating LLMs to generate answers and LLMs
to analyze and aggregate sampled answers, our approach can work with the outputs
from premier black box models easily and efficiently.

Parallel Sample K answers and score independently, then Sequential LLM is trained to extend reasoning
select the highest-scoring one I path until reaching correct answer

Method | Method

.
.
.
.
.
s | LLM
.
.
. ,
.

&

Hybrid of Parallel & Sequential Method Frozen
Our Sample Set Aggregator (SSA) approach combines gn, Trainable

=E| parallel sampling with sequential reasoning
¥
L L M :@ SSA Y —— | Ans
+

Concatenate

Figure 1: Illustration of our approach (bottom), parallel method (top left), and sequential method
(top right). We train a compact LLM, called Sample Set Aggregator (SSA), to take a concatenated
sequence of multiple samples and output the final answer.

1 INTRODUCTION

Recent advances in large language models (LLMs) have significantly enhanced their ability to perform
complex reasoning tasks (EI-Kishky et al.| 2024; DeepSeek-Al et al.||2025)). Orthogonal to approaches
to improve training LL.Ms through better learning objectives (Ouyang et al.| 2022; Rafailov et al.|
2023)), architectures (Gu & Dao, [2024; [Peng et al., [2023) or training dataset composition (Gunasekar
et al.| [2023]; [Wettig et al.| [2025)), recent work (Snell et al.| [2025) explores a new dimension: test-time
scaling. While having the LLM fixed, by allocating more computation at inference time (e.g., through
repeated sampling and majority voting), one can improve the final task performance.

Under review as a conference paper at ICLR 2026

In general, test-time scaling methods fall into two paradigms. Parallel scaling generates multiple
reasoning paths independently and aggregates them via strategies such as majority voting or best-of-N
selection (Wang et al., 2023} |Uesato et al.,[2022; |[Lightman et al.| 2024). Sequential scaling, on the
other hand, iteratively refines a single solution, often through prompting-based self-reflection or by
incentivizing iterative computation (DeepSeek-Al et al., 2025 [Muennighoff et al., 2025}, [Kumar et al.}
2025). In this paper, we introduce a novel test-time scaling approach that leverages both parallel and
sequential scaling. Figure I]illustrates our approach in comparison with prior work.

We separately have an LM to draft multiple answers and another LM to combine multiple answers to
generate the final answer, naming the latter Sample Set Aggregator (SSA). SSA is optimized with
reinforcement learning (RL) to maximize final answer accuracy. Unlike parallel scaling approaches
that mostly view individual samples from LLMs in isolation, SSA can interpret multiple generations
as representations of the LM’s output distribution, thus directly optimizing the synthesis of the final
answer based on the landscape of the output distribution.

We conduct extensive experiments across five reasoning benchmarks under controlled test-time
compute budgets. Results show that SSA substantially narrows the gap between actual model
performance and oracle-best accuracy (pass@K), outperforming standard parallel strategies such
as reward-based reranking. Moreover, we demonstrate that a compact SSA model can match
the performance of reinforcement-trained larger models used in sequential scaling, suggesting the
effectiveness of SSA as a lightweight way for sequential scaling. Further analysis highlights the
generalization capabilities of SSA: SSA trained on one dataset for a particular model can successfully
synthesize outputs from different model families and sizes across different tasks.

We summarize our key contributions and findings as follows:

* SSA, alightweight LLM is introduced that concatenates K parallel candidates from a frozen base
model and then performs one sequential RL step to generate the final answer. This single pass
unifies the strengths of parallel and sequential test-time scaling, showing strong performance gain
while training only a small model.

* Conceptually, we propose to reason over the output distribution. Specifically, instead of training
the base LM, SSA optimizes over its sampled outputs. The base LM that produces answers remains
to be a black box; SSA is trained only with sampled answers from base LMs.

* We observe broad and consistent empirical gains across five math benchmarks, two LLM families
(Qwen 2.5, Llama 3.1) and three base sizes (7B, 14B, 32B), over strong baselines.

2 RELATED WORK

Scaling test-time compute in parallel. Recent research has established the effectiveness of increasing
compute used at inference time, known as test-time scaling (EI-Kishky et al.| 2024 |DeepSeek-Al
et al., 2025} |Snell et al., [2025; Brown et al.l 2025). A prominent approach for test-time scaling
focuses on parallel scaling, which samples multiple answers independently and aggregates them into
a single answer. This aggregation can be performed through majority voting (Wang et al., 2023;
2024a)) or more sophisticated selection mechanisms. For instance, some methods prompt language
models to select from one of the multiple samples (Chen et al.,[2024a), while others employ dedicated
verifier models to score potential solutions (Cobbe et al., 2021} [Uesato et al., 2022} |Lightman et al.,
2024; [Li et al.,|2023 |Wang et al.| 2024b)) and take a weighted majority solution.

Beyond naively sampling multiple answers with fixed decoding strategy, researchers have explored
advanced search strategies, such as beam search (Yao et al.| 2023; Xie et al., |2023)) and Monte-Carlo
tree search (MCTS) (Li et al.} 2025} Xie et al., |2024). These search-based methods typically rely
on verifiers (Xie et al.,|2023) or process reward models (Cobbe et al.,|2021; Wang et al., 2024b) to
guide the decoding process, while still evaluating different rollouts independently. In contrast to
these approaches that primarily assess samples in isolation, our approach learns to compare different
samples jointly to determine the final answer.

Scaling test-time compute sequentially. Another line of research focuses on sequential scaling,
which increases compute by iteratively updating and refining a solution. One way is to prompt or
train LLMs to self-refine their proposed solutions (Madaan et al.| [2023; [Kumar et al., 2025; |Qu et al.|
2024} |Chen et al.| 2024b) in an iterative manner. Recent work has demonstrated the possibility of
incentivizing LLMs to spend more tokens in a single completion through reinforcement learning

Under review as a conference paper at ICLR 2026

(DeepSeek-Al et al.l 2025 [Team et al., 2025) or by forcing LLMs to continue their reasoning
chains by appending "wait" token (Muennighoff et al.l 2025)). While sequential scaling often yields
performance improvements, recent studies debate on whether it outperforms simpler parallel scaling
when controlling for compute (Zeng et al.||2025b; |Hochlehnert et al.| [2025afb)). Our approach bridges
these paradigms by operating on parallel samples but treating them as a sequence rather than as
isolated instances. The growing length of CoT traces incurs substantial inference cost. Recent efforts
have sought to improve efficiency by introducing length penalties (Aggarwal & Welleckl 2025} [Sui
et al.,|2025), adaptive thinking (Fang et al., [2025} Zhang et al., 2025b} [Lou et al., 2025)), or applying
early stopping (Zhang et al.,2025a; |Yang et al., [2025b). In contrast, our approach trains a compact
aggregator that achieves both strong performance and efficiency.

Training language models for reasoning. More broadly, our work aims to enhance LLM perfor-
mance on reasoning tasks, which has been a central pursuit in LLM development. Substantial efforts
have been devoted to training LLMs as reasoning policies (distributions more likely to contain correct
answers) through supervised fine-tuning on collections of chain-of-thought (Azerbayev et al.|[2024;
Puerto et al.| 2024; |Luo et al.,[2023)), or through reinforcement learning with rewards on intermediate
steps (Uesato et al., [2022; [Wang et al.| [2024b; [Kazemnejad et al., [2025) or based solely on final
answer correctness (DeepSeek-Al et al., 2025). Our research is more closely aligned with work on
training LLMs as better verifiers for reasoning tasks and can complement solutions from any policy
models. Existing methods train LLM verifiers to assess individual solutions using human annotations
(Cobbe et al., 2021) or noisy labels derived from answer correctness (Wang et al., [2024bj |Hosseini
et al.}2024;|Liang et al.| 2024). Our approach differs in that we train LLMs to verify sequences of
solutions using reinforcement learning with a verifiable reward signal, the final answer correctness.

3 METHOD

3.1 PROBLEM FORMULATION

Our method assumes two models: (1) LM, a language model that generate a solution given an
input, and (2) LMssa: a language model that takes an input and multiple solutions and generates the
final solution.

Let x be an input problem token sequence drawn from a data distribution D, our method solves the
problem with the following two steps:

Step 1: Parallel answer set generation. In this step, we use the L M,,s, which defines a conditional
distribution L M,ps(y|x) over all possible tokens y € Y, to sample K candidate solution sequences
from L M,,s, and obtain

Y = {y1,¥2,---, ¥k}, Ui ~ LMyus(-|x)independently.

Step 2: Analyzing parallel answer set for the final answer. We use a separate trained language
model L Msgsa that takes sampled answer sequence as input to generate the final answer yipy.

Veinal ~ LMssa(- | %, Yi)

Crucially, we treat the LM, as a black-box sampler of potential solutions, and train a much smaller
model (L Mgga) to do a post hoc aggregation as opposed to performing reinforcement learning on
the answer model. Separating the answer generation model from the SSA introduces flexibility
in choosing a different generation model, and enable the use of larger models that are difficult to
fine-tune due to limited compute or are only accessible via APIs. Thus we essentially propose a
general conceptual framework for test-time computing.

To enable an LLM to function as SSA LMgga for synthesizing the final answer, we provide a natural
language instruction directing the model to “think carefully and thoroughly evaluate the proposed
answer, and identify one correct answer from the proposed candidates”. Following common practice
in prior work (DeepSeek-Al et al.,[2025), we specify a structured output format, which we use to
extract the final answer. Please refer to Appendix [B]Figure [§]for details of the prompt.

In the rest of this section, we will introduce how we train the L Mgga to maximize the correctness of
its final answer. We consider two ways of optimizing the SSA: reinforcement learning (§[3.2) and
supervised-finetuning (§ [3.3).

Under review as a conference paper at ICLR 2026

3.2 TRAINING SSA WITH REINFORCEMENT LEARNING

Let y* be the gold solution for x. For the final yg,, given by SSA LMssa(- | x, Yk), we design
a verifiable reward R(yﬁnal, y*) that mainly verifies the answer correctness, and update L Mgga to
maximize the expected reward:

1, if y; is correct,
E{(2,y*)~D, Yic ~ L Mans (-|2)] [R(LMssa (%, Y), y")]. R(ysina,¥") = 0.05, if only format is correct,

0, otherwise.

Following prior work (DeepSeek-Al et al.l 2025)), our reward also consider the format of the output
specified in the prompt. Specifically, we let the reward R to be 1.0 if the answer is correct; we let the
reward be 0.05 if the output follows the format and is incorrect; we let the reward to be 0.0 if the
output does not follow and format.

We use the Group-Relative Policy Optimization (GRPO (Shao et al., 2024)) as our optimization
algorithm, which simplified value function of PPO (Schulman et al., 2017) with a normalized
reward from a group. For the convention of notation, we use 7y for L Mgsa with parameter 6. For
completeness, we describe it here. It maximizes:

a lyil
LS SR, A, cli 1
Jareo(0) = E x~D a Z Tv.| [mln(Pi,t(e) Aie, clip(pie(0),1 = ¢, 1 +¢) Zt)}
Y~ L Maps (- |%) G i=1 |y1| t=1
yit~mogy (1% Yk)

— 6 Dx1, (7T9 || Wrcf):

o (Vit | X, Y, Yi <t)

7T901d(Yit | x, Yk, yi,<t)
Reward asr; = R(y;,y*), r =11,72,..., s, and €, 8 are hyperparameters. This policy gradient

method is to maximize the A; ; which translates to expected reward from r; = R(y;,y™*).

r; —mean(r)

with the advantage as Ai,t = "

with importance weight p; () =

Implementation We use a training set combining GSM8K and MATH (Cobbe et al.| 202 1;|Hendrycks
et al., 2021)). To prepare the dataset, we use Qwen2.5-7B-Instruct model as LM, to generate five
answers for each questions (Qwen et al., 2025). Then we concatenate the question and each answer
(ordered randomly) as input context of SSA LLM. We filter out instances where the combined answers
exceed 4000 tokens, or where fewer than three valid answers are available. This results a dataset with
a total size of 17.4k. We set the GRPO sample size to be 8, resulting in 8 x 17.4k ~ 140k during
training.

3.3 TRAINING SSA WITH SUPERVISED FINETUNING

We also explore the training of the SSA via supervised fine-tuning (SFT), leveraging a stronger
model to construct oracle reasoning paths across multiple sampled answers to identify correct final
answer. Once we constructed the oracle dataset, we use the standard language modeling objective,
but only training on the output part. We assume a dataset of oracle reasoning path that leads to y*. If

vy = (yi,vy5,...,y;) is tokenized into T tokens, the SFT loss is to minimize:
T
Es}'«"[‘(e) = — Z Z log |:LMSSA (y;tk ’ X, YK7 yit)i|)

(x,Yx,y*)€D t=1

Implementation We prompt Qwen 2.5 7B Instruct model for 5 candidate solutions per question in the
GSMBK dataset. Then, we provide concatenated candidate solutions to GPT-4.1 Nano model along
with the original question and ground-truth answer (The exact prompt is in Appendix [B). GPT-4.1
Nano then provides a step-by-step reasoning process to identify and generate the best final answer
from these candidates, yielding 7.47k training examples. Overall, this approach achieves a 96.24%
match rate with the original ground-truth answersm

'When we inspected the remaining cases, we find many ground-truth labels are incorrect.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. For evaluation, we use an array of commonly used math reasoning datasets: the test split
of GSM8K, MATH as the in-domain evaluation sets, and AIME 2024 (MAA, [2024), AMC 2023, and
Olympiad (He et al.,2024) as the test sets. We use the extracted answers and grade them against the
ground truth answers, using the library that has been used in prior work (Lightman et al., 2024)).

Base Models for Candidate Generation (LM,,s). We use the Qwen-2.5-Instruct model, with sizes
7B, 14B, and 32B to generate K of answers. We use a decoding temperature 0.5 to construct the
training and test dataset. In the training phase, we use k = 5 to train the SSA model. In the testing
phase, we evaluated the performance with k& = {5, 10, 15}.

Base Models for SSA (LMgsa). We use the Qwen-2.5-base model with sizes 0.5B, 1.5B, and 3B.
We chose the Qwen-2.5 model family due to its popularity and wide availability for PRM verifiers,
making it possible to compare against existing PRM verifiers from the same model family.

Training Implementation Details. For the training library, we use torchtune due to its efficient
VRAM management (torchtune maintainers & contributors), 2024). We use GRPO batch sample
group size 8, batch size 1, temperature 1.0, AdamW optimizer, KL coefficient 0.01, and learning rate
le-5. We trained all experiments one epoch. For hardware, we use 8*H100 80GB for training. For
shorter context, it is also possible to train with 48GB VRAM.

4.2 COMPARISON SYSTEMS

The following models are compared, including the proposed SSA with three variations.

Rule-based Baselines. We report pass @k, which reports the percentage of examples where any of k
number of solution is correct (Brown et al.| [2025). Pass@k also serves as the oracle performance
assuming we have an oracle verifier. We also report the majority vote (Wang et al.,|2023), counting
the most frequent answer among the answer set.

Outcome Reward Model (ORM). We use off the shelf Llama-3.1-8B ORM model trained with
RLHF-Reward Modeling (Xiong et al., [2024) to re-rank multiple samples, selecting the best one
scored by the reward. We will call it Llama-ORM (8B). It is trained with 273k data. For ORM
evaluations, it adds an evaluation token at the end of the answer and the model will provide a score.

Process Reward Model (PRM). One prominent way to leverage multiple parallel sample is using
process reward models. We use the Qwen-7B PRM (Qwen PRM) and Qwen-72B PRM model from
Zhang et al.| (2025c¢)) to re-rank the candidate solutions.

We note that compared to the PRM model, our SSA is trained with significantly less resources
regarding both model scale (0.5B - 3B vs 7B) and the amount of training data. Specifically, Qwen-7B
PRM is trained with more than 500,000 queries with 6 to 8 answers with step labels, resulting
over 3 million total training data (about 20 x larger than the training data size of SSA). For a more
fair comparison, we also include Shepherd PRM (Wang et al., [2024b), 7B model trained with
440k total step level data from their MCTS roll out. Additionally, Qwen PRM initialized from
Qwen2.5-Math-7B-Instruct (Yang et al., [2024), whereas we initialized from the Qwen 2.5 base
model.

For evaluation, we follow the training method of Qwen PRM (Zhang et al.| 2025c), and we separate
steps with \n\n’ delimiter. Then we use PRM model to compute a score for each step and use their
product to calculate the response score since this yielded the best performance in their experiments.

Universal Self Consistency (USC) (Chen et al.,[2024a). USC is a prompting-based method takes
a concatenation of the multiple parallel sample answers, and instructs a LM to generate the final
answer. The exact prompt can be found in Appendix [B| The task setting is equivalent to our SSA
method, but the LM is not trained to optimize for the final answer.

SSA and Varitions. We train three types of the SSA models, one trained with the SFT objective only
(SFT), one trained with SFT objective and then with the RL objective (SFT + RL), and one that is
trained with RL objective only (RL). For SFT objective, we use the dataset described in Section|3.3|to

Under review as a conference paper at ICLR 2026

Table 1: Results (accuracy %) with k£ = 5 candidate answers generated by Qwen2.5-7B-Instruct as
LLM,,s model. Aggregation overheads (seconds/question) is measured end to end with AMC23 40
questions with k=5.

Aggregation Datasets

Method Overhead (s) Avg
GSMSK MATH AIME24 AMC23 Olympiad
pass@1 - 89.01 64.00 10.00 37.50 27.00 45.50
pass@5 - 95.45 78.00 16.67 67.50 41.10 59.74
Majority Vote - 91.66 68.20 10.00 47.50 31.01 49.67
USC w/ Qwen 3B 8.48 61.18 42.80 6.67 17.50 15.43 28.72
USC w/ Qwen 7B 5.89 5.89 61.20 6.67 47.50 28.78 43.83
LLama ORM (8B) 0.61 93.1 67.40 13.33 47.50 28.64 49.99
Qwen PRM (7B) 0.64 92.57 69.40 13.33 57.50 32.05 52.97
Qwen PRM (72B) 5.86 92.87 69.6 13.33 57.50 33.68 53.40
Shepherd PRM (7B) 0.65 90.75 64.40 13.33 35.00 27.00 46.10
SSARL (0.5B) 0.20 92.65 75.40 10.00 57.50 37.98 54.71
SSA RL (1.5B) 0.33 92.49 76.60 10.00 52.50 38.72 54.06
SSA RL (3B) 0.55 93.25 76.80 13.33 57.50 39.76 56.13

finetune the model. We use learning rates Se-5, 2e-5, and le-5 for 0.5B, 1.5B, and 3B correspondingly.
For RL objective, we use GRPO method described in the Section[3.2] For SFT + RL objective, we
use the trained model from the SFT objective, then we continue to train the RL objective on top of it.
For each variant, we present models of three different sizes, trained from Qwen-0.5B, 1.5B, and 3B
base models checkpoint respectively.

As an ablation for the SSA (RL), we also present SSA trained on GSM8K data only. Another ablation
is to train the SSA RL version without thinking. It helps us to understand how each design decisions
affect the output and performance under controlled settings.

5 MAIN RESULTS

5.1 COMPARISON WITH PARALLEL SCALING BASELINES

Comparison of Different Methods Across Model Sizes

0o 7B LLM s 14B LLMans 32B LLMans
70.
X675 *,//’t
> 65.0 e——
9
© 62.5
=1
8 60.0 -’l‘-——_*‘
£ o+ *- R
0 575 / ————————x | | x— —+— SSARL3B
@ 55.0 +/ —¥— SSARL1.5B
B * SSARL 0.5B
> 525 Qwen PRM 7B
< 50.0 Majority
5 10 15 5 10 15 5 10 15
k = Number of Candidate Solutions k = Number of Candidate Solutions k = Number of Candidate Solutions

Figure 2: Compare the performance of SSA RL, PRM, and Majority Vote methods across Qwen 2.5
LLM,,s model sizes (7B, 14B, 32B) and number of candidate solutions k& = 5, 10, 15.

We report performances across GSM8K, MATH, AIME24, AMC23, Olympiad benchmark in Table
more detailed results can be seen in Table] Appendix [A]

Overall, the results suggest that SSA is highly effective at leveraging multiple sampled solutions.
In comparison to baseline methods, SSA substantially narrows the performance gap relative to the
oracle (pass@5). Notably, even the smallest SSA variant leads to strong gains. SSA (0.5B) achieves
an average performance of 54.7%, even outperforming the Qwen PRM (7B) baseline which uses
a much larger model. We focus on SSA RL results in this section and leave more detailed results
including SSA SFT and SSA SFT + RL in Appendix [A]

Under review as a conference paper at ICLR 2026

Table 2: Generalization results for different model families (accuracy %) with k = 5 candidate from
Llama 3.1 8B Instruct LLM,,; models. Aggregation overhead (seconds) is measured end to end with
AMC?23 40 questions with k=5.

Method gsg,gﬁg:(tluz;l) Datasets Avg
GSMSK MATH AIME24 AMC23 Olympiad
Majority Vote - 87.95 50.40 6.67 35.00 17.66 39.54
USC w/ Qwen 7B 5.89 84.15 51.6 6.67 37.5 19.29 39.84
LLama ORM (8B) 0.61 89.61 51.8 13.33 30.00 18.4 40.63
Qwen PRM (7B) 0.64 91.51 56.20 13.33 35.00 20.77 43.36
SSA RL (0.5B) 0.20 88.17 52.80 10.00 30.00 20.18 40.23
SSA RL (1.5B) 0.33 88.48 56.60 10.00 27.50 20.47 40.61
SSA RL (3B) 0.55 89.08 57.80 10.00 32.50 20.62 42.00

5.2 GENERALIZATION CAPABILITIES OF SSA.

Generalization across scales. SSA trained on outputs from a smaller answer model (Qwen 2.5 7B
Instruct) can generalize to outputs from larger answer models (14B, 32B). Figure [2] compare the
overall performance of SSA and the other baselines under different numbers of samples. We can
see that SSA RL consistently outperform the baselines under different number of candidate solution
samples across Qwen models with scales ranging from 7B to 32B. More SSA versions and results are
in Table {]in the Appendix [A]

Generalization across model families. In addition to the Qwen 2.5 7B Instruct model, we also
tested Llama 3.1 8B Instruct model for inference (Grattafiori et al., 2024]).

Results are in Table [2]| We can see the SSA method can also generalize well outside of the training
data distribution and outperforming Majority Vote, USC, and ORM methods. While Qwen PRM
performs slightly better than SSA RL 3B here (+1.36%), it requires substantially more training data
(over 3 million examples , x21 times) and a larger model (7B).

Generalization to harder datasets. In Table[I] while we have trained the SSA models with problems
only from GSM8K and MATH, we observe substantial performance gains on other harder datasets
(AMC23 and Olympiad). Such results indicate SSA can generalize to unseen test sets outside of the
training datasets.

In addition, we tested SSA on general tasks (specifically ARC-C, MMLU-Pro, and Truthful QA (Clark’
et al., [2018; |Wang et al.|[2024c; [Lin et al.,|2022)) without additional training. We observe minor gains
compared to majority vote, especially when using both SFT and RL, in ARC-C and MMLU-Pro
dataset, but very little for Truthful QA dataset. Further research is needed to study generalization
across different domains. More details can be found in Appendix [A.8]

5.3 COMPARISON WITH SEQUENTIAL TEST-TIME SCALING

Model Performance by Size

We have demonstrated the advantageous of SSA 7 Model
over diverse parallel scaling methods in early 70 ottt 55238
equential Scaling w/ RL
We now compare the performance on SSA g, LU,y Majority Vote 1)

and reasoning models that are enabled to spend
more test-time compute sequentially with an
RL-based approach as in (DeepSeek-Al et al.}
2025)). In particular, we use the results reported
by Simple-RL Zoo from Zeng et al.| (2025a)) be-
cause they also uses Qwen-series models and
train them on GSM8K and MATH dataset. In 7 148 528
our comparison, we match the test-time compu- Answer L Model Size

tation, specifically, our 3B SSA is trained with
Qwen-2.5-7B answers, but we apply it on top
of 7B, 14B, 32B LLM,,; models. We sample
8 candidate solutions from the LLM,,; model

Average Accuracy (¥
& « n Y
& 3 & g

IS
S

Figure 3: Performance comparison between se-
quential scaling with RL and our SSA

Under review as a conference paper at ICLR 2026

Table 3: Performance of SSA (accuracy, % averaged over 5 datasets) under increasing number of
samples K. * denote runs that use the adapted two-stage SSA (applied when K >=32). SSA at
K = 15, 64 even outperform majority voting and PRM at K = 128.

Answer K 15 32 64 128

Majority Vote 5473 54.07 54.43 55.11
Qwen PRM (7B) 56.02 55.37 58.49 56.58
SSA RL (3B) 59.12 58.42* 59.78" 58.68"

with a maximum token length of 1,024 per answer, roughly matching the maximal generation length,
8,192, of these reasoning models.

As shown in Figure [3| both the SSA and the RL training from sequential scaling improve over
majority voting. While SSA slightly underperforms sequential scaling with RL training, note that we
only optimize the 3B model as opposed to the 7B, 14B, and 32B model.

5.4 SCALING SSA TO HANDLE A LARGER SAMPLE SET

In this section, we study SSA performance at larger K values (){=32—128). So far, SSA considers
all K answers as a concatenated single input. However, concatenation at larger K quickly runs into
context length limitations, leading to performance degradation or failures in answer extraction. For
instance, with K = 32, the concatenated input length approaches ~30K tokens, nearly saturating
the 32K context window of our backbone model (Qwen-2.5-3B). Furthermore, prior work highlights
that the effective usable window is often shorter than the nominal size (Yang et al., 2025a; |Liu et al.,
2024 Hsieh et al., [2024; |Ye et al.| [2025)).

Two-Stage SSA To address this, we introduce a simple yet effective two-stage adaptation of SSA
for large K. In the first stage, we evenly split the K samples into [, groups of size /1, and run SSA
independently on each group to produce l5 intermediate candidates. In the second stage, SSA is
applied to aggregate these /5 candidates into a final answer. Instead of running SSA once, with
this two-stage adaptation, we run SSA for [; + 1 times, [» times to aggregate [; inputs, and once
to aggregate [o inputs. We include full descriptions of two stage SSA in Appendix For our
experiments, we set the hyperparameter {; = 15. This sets Iy = 3 for K = 32, and I, = 5 for
K =64andly, = 9 for K = 128.

Results Table [3] presents results of SSA under increasing K on Qwen-2.5-7B outputs, compared
against majority voting and PRM-7B. We find that SSA makes more efficient use of samples,
achieving strong performance. For example, SSA at K = 15 already surpasses both majority vote
and PRM at K = 128. By contrast, PRM shows less stable performance (with noticeable fluctuations
across K), as it operates by scoring individual answers without cross-sample aggregation, making it
more vulnerable to the noisy reward model.

6 ANALYSES

6.1 COMPARING RL vs SFT

As an alternative to RL, we can train the SSA via supervised fine-tuning (SFT). How would SFT
compare to RL? In our setup, we use the dataset described in Section @] and fine-tune 0.5B, 1.5B,
and 3B SSA models on this data for one epoch (learning rates Se-5, 2e-5, and 1e-5, respectively). For
comparison, we also train SSA models with only RL (on the same GSMS8K problems for SFT) for
controlled settings. Figure faand Table[6] (Appendix summarize the results.

We observe that SFT slightly outperforms RL in 0.5B, suggesting that direct supervision from
high-quality data can help small model. For larger models (1.5B, 3B), RL yields better accuracy
and robustness to larger k£ during inference. SFT trained on LLM,,s with k = 5 generalizes less
effectively to £ = 10. Overall, both SFT and RL can work well, but SFT’s performance relies heavily
on dataset quality and alignment. We also note that SFT tends to produce more readable reasoning
traces, whereas RL outputs are often minimal (example outputs can be found in Appendix [C).

Under review as a conference paper at ICLR 2026

Response Length Throughout Training by Model Size

Average Performance Across All Datasets by Model Size

60.0 250 f
m== RL No-Think (k=5) - 0.5B (Running Avg)
57.5 =mm RL No-Think (k=10) 2 1.5B (Running Avg)
Caso :t EE:i:)» 554 554 550 o0 % 200 —— 3B (Running Avg)
=7 SFT (k=5) 22 £
552‘5 SFT (k=10) . s 0 % 150
3 4908 50.4 50.0 c
§500 1 0 g
s ®347 @ 100
2475 2
g o
<450 § 50
o
42.5
40.0
0.58 158 38 0 500 1990 1500 2000
SSA Model Size Training Step
(a) Performance comparison of different training meth- (b) Response length evolution during training for dif-
ods (SFT, No-Think, RL) across model sizes. ferent model sizes.

Figure 4: Training method performance and response length analysis. (a) Average accuracy across
datasets shows RL method is more generalizable than SFT method, with performance improving for
larger models. (b) Response length trends during training show a rapid decrease of output length.

6.2 TO THINK OR NOT TO THINK

A distinct pattern we noted in our RL training is the reduction of the thinking tokens. Figure fb|shows
how response length quickly drops during training across all model sizes. The model often simply
repeats the provided instruction format for thinking (e.g., ‘<think>reasoning process here</think>")
followed immediately with the final answer. Examples are shown in Appendix [C|Figure[I4] This
contrasts with other RL-based reasoning models that generate longer explanations with more training
(DeepSeek-Al et al.| 2025} |Zeng et al.| [2025a). It is likely because our SSA is conditioned on multiple
candidate solutions, reducing the utility of detailed reasoning.

To assess the necessity of explicit reasoning tokens, we train an RL model variant without the
reasoning step (‘No Think’), where the model directly generates the answer (see Appendix [B|for
prompt and Appendix [C|Figure [I3]for example). Figure fa summarizes the results, and Table% in
Appendix [A.2] compares this variant with the original approach across three model sizes in details.
We observe minor performance degradation without explicit thinking, suggesting detailed reasoning
tokens might not substantially contribute to the final performance in our current setup.

7 CONCLUSION

We introduce SSA, a small LM trained with RL that can leverage outputs from a larger base LLM.
By decoupling RL training from base model, it suggests that the quality of the base model knowledge
is more important for performance. This novel hybrid approach, blending parallel and sequential
scaling methods, provides practical benefits for plug and play.

Limitations Across benchmarks, SSA succeeds mainly by picking an correct candidate among input
candidate answers. Failures happens mainly when the gold answer is absent among the candidates
(Appendix [A.6] quantifies this trend). We experimented with enabling SSA to generate new final
answers by cutting the last 10% of candidate answer tokens, but this does not yield better performance
(See Appendix [A.7]for details).

Future work We outline few possibilities for further improving and extending our approach.
Promising directions include scaling the number of outputs to be aggregated, as well as building SSA
that can incorporate outputs from multiple LLMs. Improving its performance for diverse application
beyond mathematical reasoning, as well as enhacing SSA’s new target answer synthesis ability can be
fruitful. Overall, we believe SSA’s hybrid approach offers a promising direction for future research in
LLM reasoning.

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Implementation details are describe in the Section[d] We also provide relevant code as supplementary
materials.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?1d=4WngRR915;j.

Bradley Brown, Jordan Juravsky, Ryan Saul Ehrlich, Ronald Clark, Quoc V Le, Christopher Re, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2025. URL https://openreview.net/forum?id=0xUEBQV54B.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
models. In ICML 2024 Workshop on In-Context Learning, 2024a. URL https://openreview.net/
forum?id=LjsjHF7/nAN.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=KuPixIqPiq.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yonggiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,

10

https://arxiv.org/abs/2503.04697
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=KuPixIqPiq

Under review as a conference paper at ICLR 2026

Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948|

Ahmed El-Kishky, Daniel Selsam, Francis Song, Giambattista Parascandolo, Hongyu Ren, Hunter
Lightman, Hyung Won Chung, Ilge Akkaya, Ilya Sutskever, Jason Wei, Jonathan Gordon, Karl
Cobbe, Kevin Yu, Lukas Kondraciuk, Max Schwarzer, Mostafa Rohaninejad, Noam Brown,
Shengjia Zhao, Trapit Bansal, Vineet Kosaraju, and Wenda Zhou. Learning to reason with Ilms,
Sep 2024. URL https://openai.com/index/learning-to-reason-with-1Ims/.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. ArXiv,
abs/2505.13379, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzman, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,

11

https://arxiv.org/abs/2501.12948
https://openai.com/index/learning-to-reason-with-llms/

Under review as a conference paper at ICLR 2026

Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shugiang Zhang,
Shugiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL |https://arxiv.org/abs/2407.21783.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=tEYskw1VY2|

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat
Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/abs/2306.11644.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

12

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2306.11644

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
reproducibility, 2025a. URL https://arxiv.org/abs/2504.07086.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
reproducibility, 2025b. URL https://arxiv.org/abs/2504.07086.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STar: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=stmgBSW2d V.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Unlocking RL potential for LLM reasoning
through refined credit assignment, 2025. URL https://openreview.net/forum?1d=5mJrGtXVwz,

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Igbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
Faust. Training language models to self-correct via reinforcement learning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=CjwERcAU7w.

Shuangtao Li, Shuaihao Dong, Kexin Luan, Xinhan Di, and Chaofan Ding. Enhancing reasoning
through process supervision with monte carlo tree search. arXiv preprint arXiv:2501.01478, 2025.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2023.

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang, Yingbo Zhou, and Semih Yavuz. Improving
LLM reasoning through scaling inference computation with collaborative verification, 2024. URL
https://openreview.net/forum?id=Qyile3DctL.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=v8LOpN6EO:1,

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qingping
Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
reinforcement learning. ArXiv, abs/2505.11896, 2025. URL https://api.semanticscholar.org/
CorpusID:278739729.

13

https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2504.07086
https://openreview.net/forum?id=stmqBSW2dV
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=5mJrGtXVwz
https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=Qyile3DctL
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2109.07958
https://aclanthology.org/2024.tacl-1.9/
https://api.semanticscholar.org/CorpusID:278739729
https://api.semanticscholar.org/CorpusID:278739729

Under review as a conference paper at ICLR 2026

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

MAA. American invitational mathematics examination - AIME. American Invitational Mathe-
matics Examination - AIME 2024, February 2024. URL https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime. Accessed: 2024-05-14.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534—46594, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with hu-
man feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 27730-27744.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
blefde53be364a73914158805a001731-Paper-Conference.pdf.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huangi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, Xingjian Du, Matteo Grella,
Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong,
Barttomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi
Saito, Guangyu Song, Xiangru Tang, Johan S. Wind, Stanistaw WozZniak, Zhenyuan Zhang,
Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=7SaXczaBpG.

Haritz Puerto, Tilek Chubakov, Xiaodan Zhu, Harish Tayyar Madabushi, and Iryna Gurevych. Fine-
tuning with divergent chains of thought boosts reasoning through self-correction in language
models, 2024.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. ArXiv, abs/2407.18219, 2024. URL https://api.
semanticscholar.org/CorpusID:271432135|

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqgiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=HPuSIXJaa9.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

14

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://arxiv.org/abs/2501.19393
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=7SaXczaBpG
https://api.semanticscholar.org/CorpusID:271432135
https://api.semanticscholar.org/CorpusID:271432135
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2402.03300

Under review as a conference paper at ICLR 2026

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
AFWAwZtd2n.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on efficient
reasoning for large language models. ArXiv, abs/2503.16419, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

torchtune maintainers and contributors. torchtune: Pytorch’s finetuning library, April 2024. URL
https//github.com/pytorch/torchtune.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275|

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Soft self-consistency improves
language model agents, 2024a. URL https://arxiv.org/abs/2402.13212.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426-9439, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PLINIMMrw.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-task
language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024c. URL https://openreview.net/forum?
id=y10DMO6R2r3|

Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
Organize the web: Constructing domains enhances pre-training data curation, 2025. URL https:
/larxiv.org/abs/2502.10341.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Bw82hwg5Q3.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122,

15

https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https//github.com/pytorch/torchtune
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2402.13212
https://aclanthology.org/2024.acl-long.510/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://arxiv.org/abs/2502.10341
https://arxiv.org/abs/2502.10341
https://openreview.net/forum?id=Bw82hwg5Q3
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2409.12122

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388,

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. ArXiv, abs/2504.15895, 2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=5XclecxO1h.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation. In
Second Conference on Language Modeling, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025a.
URL https://arxiv.org/abs/2503.18892.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
test-time scaling of ol-like models: Do they truly possess test-time scaling capabilities?, 2025b.
URL https://arxiv.org/abs/2502.12215.

Angqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification. In Second Conference
on Language Modeling, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. ArXiv, abs/2505.13417, 2025b.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025¢c. URL https://arxiv.org/abs/2501.07301

16

https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2502.12215
https://arxiv.org/abs/2501.07301

Under review as a conference paper at ICLR 2026

A MORE RESULTS DETAILS
A.1 SSA RESULTS

We compared SSA performance across model size, number of candidate solution k size, subcategories,
and different version of SSAs.

SSA RL performance We can see SSA has strong performance gain in most of the sub categories
compared to other methods in Figure[3] In addition, we also see consistent performance gain from
0.5B, 1B, and 3B model across different LLM,, sizes, and from Figure|§|, we can see that LLM,,¢
has more effect over the performance gain than the SSA model size.

100
927 525 933 617 026 554 (0.58)
55A (1.58)
- S5A (38)
80 750 754 765 758 Majority Vote
o2 694 Quen PRM (76)
USC w/ Quen (78)
612

Ey
38

525
a5 75

N
&

0 387 398

Accuracy (%)

288

N
S

133 133
100 100 100
. -
0

GSMBK MATH AIME24 AMC23 Olympiad

Figure 5: Compare the performance of model based on Qwen 2.5 7B with k£ = 5. SSAs are in green.
We see SSA method is very effective against baseline methods.

In addition, we report all benchmark breakdon performance of SSA compared to the PRM 7B and
majority vote in Table 4]

0.5B SSA 1B SSA 3B SSA
70.0

67.5

.
fes0 Lo — e ___— - - i

Az x
> N
8625

5
9 60.0
<

8575
e

Y550
S —i— RL328 SFT+RL 328

525 RL 14B SFT+RL 148
RL7B SFT+RL 7B
50.0

5 10 15 20 5 10 15 20 5 10 15 20
k = Number of Candidate Solutions k = Number of Candidate Solutions k = Number of Candidate Solutions

Figure 6: Compare each SSA’s performance on the average of 5 benchmarks with both RL and
SFT+RL methods. SFT+RL details are in Section[A.3] The same SSAs are used on top of Qwen 2.5
7B, 14B, and 32B outputs. For each model, the parallel number of candidate solutions &k for SSAs are
k =5,10,15, 20.

We also report the statistical significance of all results in Table[3] For statistical testing, we employed
McNemar’s test, which is appropriate for paired binary outcomes. On our combined dataset analysis
(aggregating all 2563 test examples across five benchmarks), our improvements over the baseline are
statistically significant (p<0.05) for all configurations.

A.2 ABLATION ON SFT, NO THINK, AND RL RESULTS

We put a combined table of SFT, No Think and RL in Table|[6]

A.3 COMBINING SFT AND RL

Because we observe that the model does not give human interpretable reasoning process, we wonder
whether we can improve it. Understanding the model reasoning is important for the decision making
process. So we decided to use the SFT version to cold start the model behavior. We hope to have a
model to give reasoning process on why they select certain answers. We will call the cold started
model as SSA SFT+RL. The performance comparison is in Figure[6|and Table[7] Overall, we observe
1-2% drop of the performance with SSA SFT+RL. However, it gives us a stronger sense on the
model decision making process. In addition, SFT+RL version seems to have a better performance on
datasets outside of the math domain as our discussion in Section[A.§]

17

Under review as a conference paper at ICLR 2026

PI'S9 €L°S9 08P9 IL'E9 LY'SO SELY P099 THEO 0865 TOT9 bI'6S OSLS €509 ST09 P66S €685 06SS 89LS TESS T®YS 8L9S TI'6S €S58S €IS 0
0TY9 TTPY TEPY TO'EY 0199 8599 PSHO 8PHO I8 TR09 9T6S IH'8S LT6S L68S TT6S IELS LSS ILLS 19SS LLSS LIULS SVLS STLS 90FS a1
€169 LLYO STEO €8'€9 L8'E9 OVPO LSO PSPY SO009 66'6S PI'SS LOGS SLLS 60'6S TTSS 0TSS TTOS SYLS L9OS LY'SS 8SSS 0TSS SYLS ILHS 450
SPI9 [8'6S TRSS PELS SKTI9 L8'6S TSRS PELS T0LS T69S 1009S 10095 T0LS 169§ 109 1095 66'8S €T'8S SL'SS OV'ES 6685 €T8S SLSS OPES ATLINMA UMD sFerony
LY'6S 0865 VS6S SY6S LY'6S 08'6S PS6S SY6S TELS 60LS 009§ 6TSS TELS 60LS 0095 6TSS O1'9S TO9S SI'SS L6TS OI9S TO9S SI'SS L6TS €L NN UMD
LLTO €919 €979 T1S'6S. LLT9 €919 €979 IS6S YTLS 8LOS vTSS 10°€S. YTLS 8L9S. vTSS T0€S LOVS _ELYS 00TS. LO6h LOFS ELYS 00°TS. L9'6h. 0a Kiuofery
TI'EL SI'TL OE0L V899 <TI'EL 81TL OSOL $8'99 PrOL 8L89 HTLO T8T9 bWOL 8L +TL9 T8T9 €969 TE89 9679 PL'6S €969 CE89 9679 bL6S Yo@ssed
IS8y €LY 889y VPOV IS8y 1Yy TC8Y 8ILY T6EY LLEY €0 66'1F ISHh T6'€h €O0€h 88°TH STy S60v 9SOy €¥8E €¥Ty OI'ly S90P 9L6E 0
€Ly LLLY €LY €OLY TS8P T6Ly TUSy 889y ¥8Iv €LTh PITh 69'1r SISy Lb'Eh 88T E¥TH OL'6E 080v 16%6€ Ly6E 691¢ STIP Oy TLSE a5
889 6C9F €OLP STSK SS'Sy OL'Sy €O0LY SSSY €0€r 691r 0SOF S60 €LTH STTP 080v YSTP ITOr 16'6E LI'6E 86'LE TLBE 900F CTOGE S8GLE 450
YIY STIY S60r SO0 bSIy STIY S60v S90r ITOF OL6E 8S'8E OLSE ITOP OLGE 8S8E OLSE IESE I6SE OpSE $9EE I€SE 16GE OPSE S9EE HILWAAUMD Logugo
050y 16'6€ 19°%6E 19°%6E 0SOF 1665 1968 196€ +6'9€ 089 SEOE TIWE ¥69€ 08'9E SEOE TI'PE €8°€E 10SE ThPE SOTE €8'€E T0SE THYE SOTE L INAd UMD :
88Ty 8S'Th. 66:1%. 9L'6. 83T 8STH. 661%. OLGE. OLGE _19°6E. €IS SO'OE. OL'6E T9'6E. E€I'8E. . SO'OE. IESE OTSE. 6LTE. I0TE IESE. OU'SE 6LTE. T0TE 20 Auofery
1085 8€'9S SI'PS 0E0S 1085 8€9S SIPS 0£0S €C9S SI'PS 8FIS 69 €09 SI'vS 8IS 609y 8YIS SI0S 8I'Ly OI'ly 8FIS SI'0S 8ILp OI'y A@ssed
000L 00'SL 0SL9 000L 0STL OSLL 0STL 0STL 00S9 0SL9 0009 0009 O0SL9 0ST9 0STY 009 0STS 00S9 0STS 0STS 00SS 00€9 0009 0SLS 0
0S°L9 000L 0S'L9 00°S9 00SL O00SL 0SL9 000L 0009 00S9 O0SLS 0009 0ST9 00SS OSLS 00°SS 0STS 0009 O0SLS 0009 00SS O0SLS 00'SS 0STS a5
0STL 00SL 0SL9 00SL 0STL 0STL 0STL 00SL 0SL9 0069 0SLS 0STY OSLS 0STO OSLS OSLS 00°SS 0ST9 0009 0009 00SS 0009 0ST9 0SLS €50

€9 09 ST9 SLS 9 09 §T9 SLS 09 09 SLS €T9 09 09 SIS STO 0L O ST SLS OL OL ST SLS GTLINYd UMD J—
0ST9 009 0SL9 00°S9 0STY 009 0SLO 009 00S9 00S9 0009 0009 00S9 009 0009 0009 0009 0ST9 0STO 0SLS 0009 0ST9 0ST9 0SLS AL INNd UMD
00°S9..0S'L9._00°0L...0S'L. 009 0S'L9 _000L._0SLY. 00709 00°SS _00:SS 0005 0009 _00SS. 00SS . 000S. 0SLS 0SLS. 0STS. 0SLy. 0SLS. 0SLS. 0STS. 0§ Ly . 20A Kuofey
0006 O0S'L8 0ST8 00SL 0006 OSL8 0ST8 O00SL 0ST8 0008 0008 O0STL 0STS 0008 0008 OSTL 008 00S8 0008 OSL9 00S8 00S8 0008 0SL9 Y@ssed
L[99 1997 000E €E'€C L9'OT 000E 000S €E€C €€ LOOT L9OT 0001 €EE€T L9O1 L9OT 0001 €E€T 0007 €E€T €€ €€ L99T 000 €€ 0
L99T €E'€T 000E €E€€C L9OT 0005 L9OT L9OT EEEI €C€l €CEl 000C 000T €E€1 L9OT L9OT 0001 0001 L991 L99T 000 0001 a1
L[99 €€'€C E€'€C 000C SE'€T L9OT 000f €£€T EEET L99T €C€T L9991 L9'O1 L9'OT €C€T €€€T €E€T 0001 €E€T L99 L991 0001 450

06 L99T 0T 0T Of [99C 0T 0T €€l EUEL EEED €EEl ECEI ECEl EEEC 0T L991 ECEl EEET 0T L991 ECEl HILWMAUMD oo
€CE€T ECEC 000 EE€C EEEC €EEC 000C €EET EEEl €CEl €€l €EEl €EEl €C°€C 000C L9991 €EE€l €E€C 000C L9O1 €EEl €LINYd UMD
000 £9'9T 000 00107 00105 L9°9T _000E. 000T L991 000 €E'EL 0001 L991 0007 €CEL_ 000L L9OT L99T €EET 000I L99L [99L €E'E€l000L a0 Amofery
€EEE EEEE EEEE 000E €EE€E €CEE €E€E 0005 0005 L9OT €E€C L99T 000E L99T €€€C L9991 000E L99T 000C L9OT 0005 L99T 000 L99T Yossed
0978 09°€8 Ov'€8 088 00°€8 OFE8 OTES 0878 00T8 OFZ8 OFI8 0808 O0vT8 0978 0978 00T8 OT6L OT6L OFLL OTLL 08'6L OT6L 08'8L 08'9L 0
00€8 08'€8 08'€8 09€8 00F8 09€8 00F8 088 0018 0918 0818 0CTS O0yT8 0918 OCIS OvI8 Oy8L 008L O09LL 089L OF6L 09'SL 09'LL 09°9L a7
0r'€3 008 O0vT8 00°€8 OF18 0908 0TT8 0P8 0918 0878 OIS 0908 O0r08 0v08 OTT8 0908 09°6L 098L 00'8L 089L 0TSL 08'9L 0TIL OF'SL €50
9pL SL 9FL 8TL 9vL SL 9vL 8T TSL SL 9vL 8TL TSL SL 9PL 8T TIL FIL FOL 969 TTL PIL YOL 969 HTLINY UMD HIVIY
0TYL 00PL 00WL OTEL OTPL O00FL O00FL OTEL OTSL OTYL OV¥L O09'€EL OTSL OTYL OvbL 09°EL 000L 0T69 0069 OF69 000L 0T69 0069 069 L INAd UMD
00'SL..OF'SL.__OY'SL.00SL._00SL._ OY'SL__OFSL. O0SL. OFSL._00'SL. 0TSL. Okl OF'SL._00SL. OTSL._ OvPL. OTIL. 091L. OF69. 0TS9. 0TIL. 09TL . 0F69. 0T89. . 20a Auofery
0r'98 08'S8 0078 0818 0F98 0%'S8 00F8 0818 088 0968 OTY8 00T8 08'S3 09S8 OCF8 008 00°S8 OFE8 OFI8 008L 0068 OF'E8 OIS 00'8L A@ssed
1656 90196 1796 86S6 O€96 ¥¥96 6T96 696 LLY6 6976 TOV6 6976 T6Y6 LOS6 T6F6 LLY6 S6T6 STE6 S6T6 S9T6 €E'E6 €96 81'€6 STE6 0
1796 1796 8656 €196 6T96 9€96 6T96 9096 66 LLV6 V8P6 P8Y6 T6V6 LLY6 YSH6 6EF6 +0T6 OI'S6 €0'€6 LST6 016 ST'E6 TLT6 6V'T6 a5
1796 1296 €196 166 6296 1596 €196 P¥'96 LLY6 LLY6 TOH6 TOH6 LLY6 TOV6 T6H6 6976 S6T6 08T6 L8T6 LST6 SIT6 6YT6 L8T6 S9T6 450
€196 796 9096 SL'S6 €196 K96 9096 SL'S6 6796 ¥F96 9096 896 6T96 ¥¥96 9096 896 60T6 98'€6 L6 LST6 60T6 986 L6 L8T6 HILWAAUMD gl
7896 YL'96 6596 €196 TS'96 PL'96 6596 €196 €196 €196 16S6 S8E'S6 €196 €196 1666 8€'S6 €£€6 OFE6 8I'€6 LST6 EEE6 OFE6 SI'E6 LST6 AL NN UMD
86'S6.. 86'S6. SL'S6.0E'S6.. 86'S6. 86'S6. SL'S6._0£S6. 6E76 _1E€H6. Y6 TOV6. 6€6 1EY6. ¥ST6. TOY6_ S97T6. TLT6. 96169916 S9T6. TLT6. 9616 99°16 . 210A Auofey
88'L6 88'L6 O0SL6 TI'L6 $'L6 88'L6 OSL6 CI'L6 SIL6 O0SL6 61'L6 9996 S9L6 0SL6 61L6 9996 9996 9£96 1T96 St'S6 9996 9596 1096 SP'S6 Y@ssed

oc st ol S 0c st ol S 0c st ol S oc st ol S 0c st ol S 0c st ol S

LAS+TA T LAS+TY T LIS+ T R ——
qze a1 a

"LAS + T 10 T YIIM pauren) Sopoul 9dUIJUL ¢ Pue g 41 ‘g £ 10J SYIBWYOUQ [EONBWAYJBU AT UO (9,) 9OUBWIONI] 1 9[qeL,

18

Under review as a conference paper at ICLR 2026

(d2€ ‘db1 “dL) SOZIS [opOUl AOUAIQJUI [[8 SSOIOE SAUI[ASEq JAd Pue 910A KLIofejy
10q 1040 JuswdAoidwr jueoyruSis moys (g¢ ‘g1 ‘dS 0) S[epowt VSS [V "(S0°0 > d) 9ouroyruSis [eo1)s1e)s SoJedIpul 4, UL, "SSIeWYOUaq ¢ [[8 JO PAUIqUOD 9Y) UO Ik SYNSAI [[Y 20N

% CIOLT % GI96¢C % GI96C % 809269 x 80°0C x €IPCT « 0I9CY « 80T x 01201 NV sA g€ 4L INYd Wm0
% €IPLT % SIPCT % €1R0T % 90206 o« 90°I'8 o« 0I°€6 x 80PLT o« 90°CT x 90°I'l INYd sa g1
L0999 % TI98C & €I9CC o« €0 o« VOO8T o« 80T % ¥099FY « POO0T x 90°L9 INYUd SA LSO
= SIPP8 % GI90°C « 0CT90T o« VIPEY o« VYIRS o« LIPIE ok SIS w0 €CPE9 k. S§CO8C feN "sA ¢ 9J0A Ayaofely
w0 91991 % LIS™ST o« 8I9™YT « CI™YL % 60°€T « CI9CT x ¥I1996 « 8I9°0T « LIFCTY feIN "sA €[
% 90°CT % 0I999°€ &« 9I9CT x 90°CY x 90T x TI90L % S09°6T =« PVIOGCE VIS feJN "sA G670
Sis qea-d Sis qea-d Sis ea-d Sis qea-d Sis rea-d 31 rea-d 3is rea-d 3is rea-d 3is rea-d
0c or S 0c 01 S 0c 01 S POYRIN aurpseq
! (4% avl dL

"SYTBUIYOURQ [EOT)BWAYJEUI UO SAUI[SE] “SA S[OpPOW Y'SS Jo uostreduroo [eonsnels g o[qer,

19

Under review as a conference paper at ICLR 2026

Table 6: Ablation of different training methods. Including SFT method, No Thinking Method, and
RL methods trained with LLM,,s £ = 5 on GSMSK train data only. We report LLM,,s k£ = 5, 10
results as accuracy (%)

GSMSK MATH AIME24 AMC23 Olympiad Average
Model k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10
Baseline ‘
Majority Vote 91.66 91.96 ‘ 68.20 69.40 ‘ 10 13.33 ‘ 47.50 52.50 ‘ 31.01 32.79 ‘ 49.67 52.0
PRM 92.57 93.18 69.4 69.00 13.33 16.67 57.5 62.5 32.05 34.42 52.97 55.15
we | | | | | |
SFT 91.51 92.04 66.0 66.6 10.0 10.0 57.5 50.0 30.86 33.38 51.17 50.4
RL No-Think 91.43 91.58 62.4 61.2 10.0 10.0 52.5 47.5 28.49 28.19 48.96 47.69
RL 92.42 93.1 58.6 57.2 10.0 13.33 60.0 50.0 28.04 27.89 49.81 483
1.5B
SFT 91.51 91.66 724 70.4 10.0 10.0 50.0 425 36.05 30.56 51.99 49.02
RL No-Think 92.65 93.1 63.2 63.2 10.0 16.67 52.5 52.5 31.75 32.94 50.02 51.68
RL 92.65 93.1 71.6 73.0 10.0 20.0 47.5 55.0 34.57 3591 51.26 55.4
3B
SFT 91.13 91.58 68.4 66.6 6.67 10.0 45.0 40.0 29.38 31.31 48.12 47.9
RL No-Think 92.8 93.25 72.6 72.8 10.0 20.0 57.5 52.5 36.8 38.28 53.94 55.37
RL 93.18 93.1 75.0 74.8 13.33 16.67 60.0 52.5 34.57 37.69 55.22 54.95

Table 7: Average Performance (%) of SSA RL and SSA SFT+RL over five benchmarks. The answers
are generated with Qwen 32B models. The second row indicates the number of sampled answers (k).

RL SFT + RL
Method 5 0 15 20 5 0 15 20
Pass@k 6684 7030 7218 7312 6684 7030 7218 73.12

Majority vote 59.51 62.63 61.63 61.77 59.51 62.63 61.63 61.77
Qwen PRM 5945 5954 5980 5947 5945 59.54 59.80 59.47
SSA (0.5B) 64.54 6557 6440 63.87 6383 6328 6477 65.13
SSA (1.5B) 6448 6454 6658 66.10 63.02 6492 6422 64.20
SSA (3B) 6442 66.04 6735 6547 6371 6480 65.73 65.14

A.4 INCREASING k DURING TRAINING

We see that the inference k could lead to the potential improvements of the performance. Would
the same hold if we improve the k during training. For the original design, we use k = 5 for the
training. For comparison, we train the model with k£ = 8 to see its performance. The results are
presented in Figure[7] We see that training longer context does not help with the performance. In fact
it has lower performance on average for the dataset. It might due to longer context creates more same
answers, and it would make the model to choose more depends on the majority vote than distinguish
the differences.

0.5B SSA Performance 1B SSA Performance 3B SSA Performance
59 Model Configuration /.
-@®- 5-answer GRPO °
8-answer GRPO
58
g - .
IS o
857 °
3 °
< /
& 56 ¢
8
g \ /0
< [

«
o

' /

«
S

6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
Inference k Inference k Inference k

Figure 7: Compare training k and their effect. It seems that increasing context length to longer k
during training does not out perform the shorter context.

20

Under review as a conference paper at ICLR 2026

Table 8: Aggregation overhead per question

Answer K 32 64 128

Qwen PRM (7B) 525 541 5.80
SSA RL (3B) 928 794 17.02

A.5 SCALING K DURING INFERENCE AND TWO-STAGE SSA

To handle large K under context limits, we use a simple two-stage adaptation of SSA.

Stage 1. We form /5 overlapping groups by taking evenly spaced, cyclic windows of length {1 over

2

the K candidates. Concretely, with start indices s; = LEJ fori =0,...,¢; — 1, the i-th group

. £—1 . . .
1s.Gi = [a(siﬂ) mod K] tlzo . We run SSA independently on each G; to produce one intermediate
winner.

Stage 2. We concatenate the /5 intermediate winners and run SSA once more to produce the final
answer.

This makes /5+1 SSA calls: /5 calls on inputs of size /1, then one call on /5. We use ¢;=15 in
all experiments; thus fo=[K/¢1] gives £3=3 for K=32, {3=5 for K=64, and ¢,=9 for K=128.
By construction, groups overlap whenever {1 > K /{5 (our default), yielding a replication factor
(¢1£2)/ K that adds controlled redundancy for robustness at modest extra compute. The details are in
Algorithm T}

In addition to the performance reported in the Table [3] we also report the aggregation overhead over
the AMC23 dataset. The results are in Table [8l

Algorithm 1 Two-stage SSA

Require: Question x; K candidates A = {ay, ..., ax_1}; group size £1; group count ¢,
1: if K < /; then
2: return SSA(z, A)

3: end if

4: stagel «+ [] > will hold ¢5 winners (full CoTs)
5: fori =0to/ly — 1do > Stage 1: /5 calls, each on ¢; answers
6: 8; \‘Z KKJ evenly spaced starts

2

7: G; +— [a((sﬁt) mod k) © t=0,...,01 — 1] cyclic window (overlap-allowed)
8: 7; < SSA(z, G;) infer the group’s final answer
9: ag, <+ MapBack(y;, G;) pick the chosen candidate’s full CoT
10: stagel.append(ag,)
11: end for
12: return SSA(z, stagel) > Stage 2: aggregate {5 winners

A.6 ERROR ANALYSIS

We conduct error analysis of the SSA outputs. We use SSA 3B model with five answer samples.
Across all datasets the vast majority of correct cases are simply copied from a candidate that already
contains the ground-truth answer. Hence the main value of SSA lies in finding the right candidate.
When the ground-truth answer is absent from the sample set, SSA fails in two ways: it either chooses
the majority wrong answer (y* ¢ C' copied) or try to come up a new but still wrong answer (y* ¢ C
synthesized). While SSA sometimes come up with the correct answer even the ground truth are not
provided in the inference, when we manually examine the answers in this category most are in wrong
format that extraction failed. It confirms an input quality bottleneck: if no correct candidate exists,
the policy has difficulty to recover it. Conversely, errors with a correct candidate present (y* € C'/
copied wrong or y* € C'/ synthesized wrong) are much smaller, showing that SSA rarely mis-ranks
truly correct answers. In order to understand whether SSA can synthesize new answers, we designed
addition experiments to cut off last 10% of the answers, and our results are in Appendix It

21

Under review as a conference paper at ICLR 2026

Table 9: Accuracy and error composition for the 3 B SSA (k=5). Columns are percentages of the
whole dataset. y* € C' means ground-truth answer y* included among the 5 candidates C.

Acc.t Correct Wrong

y eC y¢C y¢gC y¢gC yeC yecC
copied synthesized copied synthesized copied synthesized

GSMBK 93.3 87.7 5.5 33 1.0 23 0.2
MATH 79.2 75.6 3.6 9.4 3.6 6.6 1.2
AMC23 57.5 52.5 5.0 12.5 7.5 12.5 10.0
AIME24 133 133 0.0 233 50.0 33 10.0
Olympiad 39.8 349 4.9 27.6 24.6 5.6 2.4

shows that the SSA has synthesize ability when answers are all removed, and the accuracy has some
degradation.

A.7 COPY OR SYNTHESIZE?

Our error analysis reveals that the majority of correct answers are copied from the provided responses.
To test whether the SSA can synthesize answers, we created a variant of the dataset where the last
10% of every answer is cut off. This ensures that the final answers are not directly available in the
input, requiring the model to synthesize them.

Table 10: Performance comparison between original responses and those with last 10% removed.

Method Datasets Avg

GSMSK MATH AIME24 AMC23 Olympiad

Original (complete answers)
SSA 9325 76.80 13.33 57.50 39.76 56.13

Truncated (last 10% removed)
SSA +RL 7422 52.80 0.00 22.50 23.00 34.50
SSA +RL+SFT 89.99 67.80 6.67 40.00 31.01 47.09

As shown in Table[I0} performance significantly drops when answers must be synthesized rather than
copied. The RL method alone achieves only 34.50% average accuracy, while combining RL with
SFT improves this to 47.09%. Notably, the RL+SFT approach recovers much of the performance gap,
particularly on GSMS8K (89.99% vs. original 93.25%), suggesting effective synthesis capabilities for
easy problems. However, since pure copy would only result 0%, this suggests that SSA is not just
copy but able to synethize correct results.

A.8 GENERALIZATION TO OTHER TASKS

Table |11| reports accuracy on three general tasks benchmarks. On ARC-C and MMLU-Pro the
SFT +RL SSA mostly beats the majority-vote baseline (Clark et al., 2018}, [Wang et al.,[2024c). Pure
RL SSAs give smaller (sometimes negative) gains, suggesting that an SFT warm-start improves out-
of-domain transfer. Pure SFT SSAs exhibit varied performance: strong at 3B scale but significantly
weaker at smaller scales (0.5B and 1.5B), suggesting SFT’s generalization capability strongly depends
on model capacity for out domain generalization. On Truthful QA (truthfulness/adversarial) none
of the SSAs can consistently outperform majority voting, suggesting that truthfulness might not be
beneficial from answer selection. Tackling truthfulness might require different goal than reasoning
among answers.

Table 11: Model evaluation results on ARC, MMLU-PRO, Truthful QA benchmarks

Metric Qwen2.5-7B-Instruct SSARL SSA SFT + RL SSA SFT
pass@1 Majority Vote (5) 0.5B 1.5B 3B 0.5B 1.5B 3B 0.5B 1.5B 3B
ARC-C 88.65 91.38 88.05 91.3 88.99 91.72 91.38 91.81 69.88 90.02 92.06
MMLU-PRO 43.63 49.24 33.19 43.09 39.84 46.28 48.01 50.37 25.76 43.93 51.41
TruthfulQA 62.43 66.23 66.52 67.11 64.62 66.08 64.47 63.89 49.85 63.89 66.23

22

Under review as a conference paper at ICLR 2026

Table 12: Efficiency Evaluation. We report end-to-end runtime on one RTX 6000 Ada.

Method Base-LM passes Aggregator time Total time (s) | Overall Accuracy (%) T
Qwen2.5-7B 1 - 556.12 455
Majority vote (k=5) 5xQwen2.5-7B - 2780.6 49.67
Qwen PRM 7B (k=5) 5xQwen2.5-7B 21.9 2780.6 +21.9 =2802.5 52.97
SSA RL 3B (k=5, ours) 5XxQwen2.5-7B 25.7 2780.6 +25.7=2806.3 56.13
SimpleRL 7B (seq. RL) 1 pass - 32732 58.56

“Base-LM passes” = number of forward decodes of Qwen-2.5-7B-Instruct (556.12 s per pass). Aggregator time
is measured separately.

A.9 EFFICIENCY EVALUATION

We now evaluate the amount of compute required for each aggregation strategy. Compared to other
methods which considers each sample independently, our method considers them jointly, generating
longer sequence which can incur high computation cost.

Compute Cost (Wall-clock) For more details, we conduct an actual measure based on the real
settings. The results are in Table[T2] All measurements were taken on a single NVIDIA RTX 6000
Ada with the AMC23 benchmark (40 questions). In practice, parallelized sampling from the LLM
can significantly speed up the time required.

Inference Cost To measure raw compute (flops), we follow the formula from Kaplan et al.|(2020).
It uses roughly Crorwara = 2N, and the backward pass is about 2 times which is 4/V. So the total is
C =~ 6N FLOPs per training token, with N as the model parameter and C' as the non embedding
training compute. We use D as token length.

For inference cost we will use Cforwara = 2N D per query. For k = 5, input context D ~ 5 * 1000.
So the SSA method needs a 7B base model with inference cost 2N D = 2 7 % 10° (1000 * 5) =
70T FLOPs. SSA itself has a constant compute overhead of 2N D = 2 % 3 x 10? x (5000 + 60) ~
30T F LOPs since SSA’s compute cost depends on the input token length not the inference model
size. The total for SSA would be 70 + 30 = 100I'FLOPs. In comparison, the sequential RL
approach would result 2N D = 2 % 7 * 10° * 8000 ~ 1107 F LOPs. This method scales favourably
to larger bases (SSA 350 TFLOPs vs Sequential RL 512 TFLOPs on a 32B model).

A.10 STABILITY ANALYSES
A.10.1 EFFECT OF CANDIDATE ORDERING

A potential concern for methods that concatenate K candidates is that the relative order of those
candidates might influence the SSA’s decision. To test this, we evaluate the 3B SSA (RL) under
three independent random permutations of the K responses of 7B answer model at inference time,
holding everything else fixed. As shown in Table[I3] we do not observe meaningful differences when
changing the order.

A.10.2 TRAINING DIFFERENT RANDOM SEED

Reinforcement learning can exhibit sensitivity to initialization. We therefore train SSA 3B (RL) with
another seed 16 using identical data and hyperparameters, and evaluate the resulting checkpoints
under the same protocol as the main results of 7B answer model. Table[I4]reports per-K accuracy.
We do not see significant differences.

A.11 TRAINING DATA STATISTICS

Table[I5] summarizes the distribution of instance-level correctness in the raw training pool prior to
filtering. For each question we sampled K =5 candidate solutions using top-k sampling. “m/5”
indicates that exactly m of the five candidates match the reference answer.

Filtering and preprocessing. We apply two light filters before RL training:

23

Under review as a conference paper at ICLR 2026

Table 13: Ordering sensitivity. SSA 3B (RL)
evaluated with the original concatenation order
vs. three random permutations at inference time.
Values are accuracy (%).

Table 14: Training-seed sensitivity.SSA 3B
(RL) trained with different random seeds. Values
are accuracy (%).

Metri 5 1 15 2

Metric 5 10 15 20 _etri 0 0
. Original Random Seed 42(%) 56.13 58.53 59.12 56.78

Original (%) 56.13 5853 59.12 56.78 pandom Seed 16 (%) 56.09 5727 5949 56.64

Avg. over 3 random permutations (%) 56.06 58.70 59.40 58.47

Table 15: Correctness distribution in the raw training pool (five sampled responses per question).
Counts and column percentages are shown.

Correct GSMSK MATH Combined
0/5 618 (8.3%) 3170 (26.4%) 3788 (19.5%)
1/5 218 (2.9%) 1007 (8.4%) 1225 (6.3%)
2/5 198 (2.6%) 841 (7.0%) 1039 (5.3%)
3/5 268 (3.6%) 881 (7.3%) 1149 (5.9%)
4/5 477 (6.4%) 1157 (9.6%) 1634 (8.4%)
5/5 5694 (76.2%) 4944 (41.2%) 10638 (54.6%)

Total 7473 (100.0%) 12000 (100.0%) 19473 (100.0%)

* Validity filter. We discard instances where more than one of the five samples is NULL (un-
parsable/empty). This removes ~0.4% of GSM8K and ~9.8% of MATH instances.

* Length filter. Answer sets exhibit a long-tailed length distribution; some concatenations exceed
8k tokens due to looping or unbounded reasoning. To control VRAM and remove pathological
traces, we drop instances whose concatenated prompt + answers exceed 4k tokens. This reduces
the pool from ~19k to ~17k instances and slightly denoises the supervision.

These filters are minimal (no step-level labeling) and aimed purely at stabilizing training; we did not
tune them for accuracy.

24

Under review as a conference paper at ICLR 2026

B PROMPT DETAILS

For SSA method, we trained and evaluate it with the following prompt:

SSA Prompt: A conversation between User and Assistant. The user provide a question and some
proposed answers. The Assistant first evaluate each answers individually,check whether each answer
directly addresses the original question, assess the correctness of each answer based on logical reasoning,
calculations, and accuracy relative to the question. After thorough evaluation, identify one correct answer.
If the correct answer is not in the provided proposed answers, the Assistant will combine the correct
answer with the proposed answers and provide the correct answer. The reasoning process and answer
are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning
process here</think> <answer>answer here</answer>.

Figure 8: Example prompt for SSA. For reward extraction, we will use rule based extraction to extract
anything inside <think></think> and <answer></answer>. If the output matches the structure and
able to extract some values we will provide minimal format reward.

SSA No-Think Prompt:A conversation between User and Assistant. The user provide a question and
some proposed answers. The Assistant answer the question based on the proposed answers. The answer is
enclosed within <answer></answer> tag, i.e., <answer>answer here</answer>.

Figure 9: Example prompt for SSA

USC Prompt: You are a helpful assistant. The user provide a question and some proposed answers. The
Assistant first evaluate each answers individually,check whether each answer directly addresses the original
question, assess the correctness of each answer based on logical reasoning, calculations, and accuracy
relative to the question. After thorough evaluation, identify one correct answer based on majority consensus.
The reasoning process and answer are enclosed within <think></think> and <answer></answer> tags,
respectively, i.e., <think>reasoning process here</think> <answer>answer here</answer>.

Figure 10: Example prompt for USC prompt to the Instruct model

SFT Data Construction Prompt: Here is a question and some proposed answers. You need to evaluate
each answers individually, check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question.
After thorough evaluation, identify one correct answer. If the correct answer is not in the provided proposed
answers, the Assistant will combine the correct partial responses to proposed answers and provide the
correct answer. Make the reasoning process concise and to the point. The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively,i.e., <think>reasoning process
here</think> <answer>answer here</answer>. Here is the Question and proposed answers: Question and
5 Answers.

Here is the labeled answer with answer tags *<answer>Ground Truth Answer</answer>’, and most likely
the correct answer. If none of the proposed answers is correct, come up with the reasoning process to arrive
at the actual correct final answer. **Attention: Do not ever mention the answer is given in the response,
but you need to justify it from the problem and proposed answers!**

Figure 11: Example prompt for constructing SFT dataset

25

Under review as a conference paper at ICLR 2026

C EXAMPLE RESULTS

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first evaluate each answers individually,check
whether each answer directly addresses the original question, assess the correctness of each answer based on logical reasoning, calculations, and accuracy relative to
the question. After thorough evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will combine the
correct answer with the proposed answers and provide the correct answerThe reasoning process and answer are enclosed within <think></think> and

tags,) i.e., <this ing process here</think> <answer>answer here</answer>.

User: Question: What is the value of\n\\[2"3 - 1"3 + 43 - 3"3 + 6”3 - 5"3 + \\dots + 18”3 - 17*3?\\]\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo solve the given expression \\(2°3 - 143 + 413 - 3°3+ 63 - 53 + \\dots + 18”3 - 17°3\\), we can observe that it consists of pairs of terms where each pair is
of the form \\((2k)"3 - (2k-1)*3 \.\n\nLet's simplify the general term in the series:\M\\[\n(2k)"3 - (2k-1)*3\n\J\m\nUsing the binomial expansion for cubes, we
have:An\[\na*3 - b~3 = (a - b)(a*2 + ab + b*2)\n\\\nwhere \\(a = 2k\\) and \\(b = 2k-1\\). Substituting these values, we get:An\\n(2k)~3 - (2k-1)*3 = [(2K) - (2k-1)][(2k)"2 +
(2K)(2k-1) + (2k-1)"2]\M\\nSimplifying inside the brackets:\nW\[\n(2k - (2k-1)) = T\"\I\nSo\n\[\n(2K)"3 - (2k-1)"3 = 1 \\edot [(2K)"2 + (2k)(2k-1) + (2k-1)*2]\\\\nNow, let's
expand the quadratic expression:\n\(\n(2k)"2 = 4k* 2\ M\ (2k)(2k-1) = 4k*2 - 2kAMNAI\N(2k-1)"2 = 4k"2 - 4k + T\M\\nAdding these together:\nW[\n4k"2 + (4k"2 -
2K) + (k"2 - 4k + 1) = 12k"2 - 6k + T\n\I\nThus, \"\[\n(2K)*3 - (2k-1)3 = 12k"2 - 6k + T\nWJ\n\nNext, we need to sum this expression from \(k=1\\) to W(k=9\\) (since the
sequence goes up to 18, which corresponds to \W(k=9\):\M\\n\\sum_{k=1}"{9} (12k"2 - 6k + I\n\\n\nWe can split this into three separate sums:\n\\\nW\sum_{k=1}"{9}
12k"2 - \sum_{k=1}"{9} 6k + \\sum_{k=1}*{9} 1\n\\n\nCalculating each sum n1. Sum of squares:\n\[\n\\sum_{k=1}"{9} k2 = \\frac{9 \\cdot 10 \\cdot 196}
= 285\n\\nMultiplying by 12:\"\\n12 Wsum_{k=1}*{8} k*2 = 12 \\edot 285 = 3420\M\\\n\n2. Sum of integers:\n\\n\sum_{k=1}*{8} k = \\frac{9 \\cdot 1042} =
45\\\\nMultiplying by 6:\"\\[\n6 \\sum_{k=1}*{9} k = 6 \\cdot 45 = 270AM\\n\n3\mn

Answer 2:\nTo find the value of the expression \\(2*3 - 173 + 43 - 33 + 63 - 53 + \\dots + 183 - 17"3\\), we can observe that it is a sum of differences of cubes in
pairs. Let's break it down step by step.\n\nFirst, consider the general term in the sequence:\n\[(2k)3 - (2k-1)"3 Wnfor W\ k = 1, 2, 3, \Wldots, 9 \\).\m\nWe need to
simplify the expression \\((2k)*3 - (2k-1)*3\\). Using the identity for the difference of cubes, \\(a"3 - b3 = (a-b)(a"2 + ab + b"2)\\), where \\(a = 2k\\) and \\(b = 2k-1\\), we
getANW\N(2K)"3 - (2k-1)~3 = (2K - (2k-1)) Wleft((2K)"2 + (2k)(2k-1) + (2k-1)~2 Wright \m\\\nSimplifying inside the parentheses:\m\[\n= 1 \\eft(4k*2 + 4k"2 - 2k + 4k~2 - 4k +
1 \\right)\n= 4k"2 + 4k~2 - 2k + 4k"2 - 4k + 1\n= 12k*2 - 6k + T\"WJ\n\nNow, we need to sum this expression from W\(k=1\) to \W(k=9\):\n\\[\n\sum_{k=1}*{9} (12k"2 - 6k +
1)\M\\m\nWe can split this into three separate sums:\n\[\\\sum_{k=1}*{9} 12k"2 - \sum_{k=1}*{9} 6k + \\sum_{k=1}*{9} \n\\\n\nUsing the formulas for the sum of
squares and the sum of the first \(n\\) natural numbers:\n\[\i\\sum_{k=1}"{n} k*2 = \\frac{n(n+1)(2n+1){EAM\N\nW\n\\sum_{k=1}"{n} k =
\Wrac{n(n+1){2ZNnWA\AWARWsum_{k=1}*{n} 1 = mn\\m\nFor \\(n = 9W):\n\[\n\\sum_{k=1}*{9} k"2 = \\frac{9 \\cdot 10 \\cdot 19}6} = 285\M\\\W\nW\sum_{k=1}"{9} k =
\\frac{9 \\cdot 10){2} = 45\n\\n\\\n\\sum_{k=1}*{9} 1 = S\n\\]\n\nSubstituting these values back into our expression:\n\[\n12 \sum_{k=1}"{9} k2 - 6 \sum\n\n

Answer 3:\nTo find the value of the expression \\(2*3 - 1%3 + 43 - 3°3 + 673 - 5°3 + \\dots + 183 - 17"3\\), we can observe that it consists of pairs of terms where each
pair is of the form \\((2n)"3 - (2n-1)*3 \\.\n\nFirst, let's simplify the general term in the sequence:\n\[\n(2n)"3 - (2n-1)*3\n\\nUsing the binomial expansion for cubes,
We have\n\[\na*3 - b"3 = (a - b)(@*2 + ab + b*2)\n\J\nHere, \\(a = 2n\\) and W\(b = 2n-1\Y). So\nM\[\n(2n)*3 - (2n-1)"3 = (2n - (2n-1))((2n)*2 + (2n)(2n-1) + (2n-
1)*2)\n\\\nSimplifying inside the M\(\n=1\\edot ((2n)*2 + 2n(2n-1) + (2n-1)*2\nN\MW(\n= (4n~2 + 402 - 2n + 4n~2 - 4n + ININ\NW(\n= 4n~2 + 4n"2 - 2n +
4n"2- 4n + \AWANW(\n= 1202 - 6n + T\nW\n\inNow, we need to sum these simplified terms from \(n=1\) to W(n=9\):A\n\\nW\sum_{n=1}*{8} (12n"2 - 6n + T\n"\\n\nWe
can split this into three separate sums:\n\\n\sum_{n=1}*{8} 1202 - Wsum_{n=1}*9} 6n + \sum_{n=1}*(9} 1\n\J\n\nCalculating each sum separately:\n1. Sum of
squares:\n\\n\sum_{n=1}"{9} n"2 = \\frac{9 \\cdot 10 \\cdot 1946} = 285\"\[\nSo,\n\[\n12 \\sum_{n=1}*{9} n"2 = 12 \\cdot 285 = 3420\n\\M\n2. Sum of
integers:\n\[\n\sum_{n=1}{9} n = \\frac{9 \\cdot 10§2} = 45\"\\nSo,\n\[\n6 \\sum_{n=1}*{9} n = 6 \\cdot 45 = 270\\\n\n3. Sum of ones:\nW\n\sum_{m\mn

Answer 4:\nTo find the value of the expression \(243 - 143 + 4°3 - 33 + 623 - 5°3 + \\dots + 183 - 17"3\\), we can observe that it is a sum of differences of cubes in
pairs. Specifically, it can be written as:\n\i\\[\n(2+3 - 1°3) + (43 - 3+3) + (6°3 - 5*3) + \\dots + (18*3 - 17*3)\n\\n\nWe can use the identity for the difference of cubes,
which states \\(@*3 - b3 = (a - b)(a*2 + ab + b"2)\\). For each pair \((2k)"3 - (2k-1)*3 \W:\Mn\\n(2K)"3 - (2k-1)"3 = (2K - (2k-1))((2K)2 + (2k)(2k-1) + (2k-1) "2\ A\ [\n=
1 \eft(4k2 + 4k"2 - 2k + 4k~2 - 4k + T\right\nWAR\[\n= 1 (12k*2 - 6k + TNAWAR\[\n= 12k*2 - 6k + T\"W\n\nSo, the expression simplifies to:AMAN\N(243 - 143) + (473 -
373) +(6°3-5°3) + \dots + (18"3 - 173) = (12 \\cdot 172 - 6 \\cdot 1 + 1) + (12 \\cdot 22 - 6 W\edot 2 + 1) + \\dots + (12 \edot 9°2 - 6 \edot 9 + T\nW\m\rThis can be
written as:\mn\\n\\sum_{k=1}"{9} (12k"2 - 6k + I\n\J\n\nWe can split this sum into three separate sums:\m\n\[\n12 Wsum_{k=1}*{9} k"2 - 6 \\sum_{k=1}*{9} k
\\sum_{k=1}"{9} \n\J\n\nUsing the formulas for the sum of the first \(n\\) squares and the sum of the first W(n\\) integers, we get:\mm\\\n\\sum_{k=1}*{9} k"2 = \frac{9
\\cdot 10 \\edot 1946} = 285\n\I\nW\\n\\sum_{k=1}*{9} k = \\frac{9 \\cdot 102} = 45\n\\n\\[\nWsum_{k=1}*{9} 1 = S\n\\\n\nSubstituting these val\n\n

Answer 5:\nTo solve the expression \\(2"3 - 173+ 4°3- 33 + 63 - 5°3 + \\dots + 18"3 - 17"3\\), we can observe that it consists of pairs of terms where each pair s of the
form \\((2n)*3 - (2n-1)*3 \\)An\nFirst, let's simplify the general term \\((2n)*3 - (2n-1)*3 \):AM\[\n(2n)*3 - (2n-1)~3 = 8n"3 - (8n*3- 1202 + 6n - 1) = 1202 - 6n +
1.An\\]\n\nNow, we need to sum this expression for \\(n = 1\\) to \\(n = 9\\) (since the sequence goes up to 18 and 17, which correspond to\\(n=1\\)to\\(n=9
W)ANWAnWsum_{n=1}*9} (12n2 - 6n + 1).A"\\\m\nWe can split this sum into three separate sums:AM\\\\sum_{n=1}*{9} 12n*2 - \sum_{n=1}"{9} 6n + \\sum_{n=1}*{9}
1.An\\]\n\nUsing the formulas for the sum of squares and the sum of the first \\(n \\) natural numbers:\n\[\n\\sum_{n=1}"*{9} n*2 = \\frac{9 \\cdot 10 \\cdot 19}{6} =
285,\M\\nW\[\nW\sum_{n=1}"9} n = W\frac{9 \\cdot 10K2} = 45,\m\\An\\[\n\\sum_{n=1}*{9} 1 = 9.\n\\\n\nSubstituting these values back in, we get:\n\(\n12 \sum_{n=1}*{8}
n*2-6\sum_{n=1}*{9} n + \\sum_{n=1}*{9} 1 = 12 \\cdot 285 - .

Assistant: <thi answer simplifies the general term and sums the series. The key is to recognize that the series is composed of pairs of cubes, and each
pair simplifies to \\(12n"2 - 6n + 1\\). The sums of squares and integers from 1 to 9 are well-known and can be calculated directly. The total sum is the sum of these three
parts: \\(12 \\cdot 285 - 6 \\cdot 45 + 9\\). Calculating each part: \(12 \\cdot 285 = 3420\\), \\(6 \\cdot 45 = 270\), and \\(9 = 9\\). Summing these: \\(3420 - 270 +9 =

3159\). All answers arrive at the same total, confirming the of the fon.</think> <answer>31 "

Figure 12: Example output when we cut off the last 10% of all answers to test whether SSA can
synthesize. SSA SFT+RL 3B can synthesize and continue to get the final correct answer from
AMC23 data. We can see the final answer 3159 does not appear anywhere in the provided solutions.

26

Under review as a conference paper at ICLR 2026

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first
evaluate each answers individually,check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question. After thorough
evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will
combine the correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning process here</think>
<answer>answer here</answer>. User: Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many
bolts in total does it take?\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo determine the total number of bolts needed for the robe, we start by identifying the amount of each type of fiber
required:\n\n- The robe requires 2 bolts of blue fiber.\n- It requires half as much white fiber as blue fiber, which means it needs
\\(\\frac{1{2} \\times 2 = 1 \\) bolt of white fiber.\n\nAdding these together gives us the total number of bolts:\n\n\\[2

\\text{ (blue)} + 1 \\text{ (white)} = 3 \\text{ bolts} \\]\n\n#### 3\n\n

Answer 2:\nTo determine the total number of bolts needed for the robe, we start by identifying the amount of each type of fiber
required:\n\n1. The robe requires 2 bolts of blue fiber.\n2. The amount of white fiber required is half the amount of blue fiber,
which is \\(\\frac{2}{2} = 1 \\) bolt.\n\nAdding these together gives the total number of bolts needed:\n\\[2 \\text{ (blue)} + 1
\\text{ (white)} = 3 \\text{ bolts} \\]\n\n#### 3\n\n

Answer 3:\nTo determine the total number of bolts of fiber needed for the robe, we start by identifying the amount of each type
of fiber required.\n\n1. The robe requires 2 bolts of blue fiber.\n2. The amount of white fiber required is half that of the blue
fiber. Therefore, the amount of white fiber needed is:\n \\[\n \\frac{2}{2} = 1 \\text{ boltj\n \\]\n\nNext, we add the bolts of
blue fiber and white fiber together to find the total number of bolts needed:\n\\[\n2 \\text{ (blue)} + 1 \\text{ (white)} = 3

\\text{ bolts\n\\]\n\nThus, the total number of bolts of fiber needed for the robe is:\n#### 3\n\n

Answer 4:\nA robe takes 2 bolts of blue fiber and half that amount in white fiber, which means it takes 1 bolt of white fiber
(since half of 2 is 1). Therefore, the total number of bolts needed is 2 (blue) + 1 (white) = 3 bolts.\n\n#### 3\n\n

Answer 5:\nA robe takes 2 bolts of blue fiber and half that amount in white fiber, which means it takes 1 bolt of white fiber
(since half of 2 is 1). \n\nIn total, the robe takes 2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts.\n\n#### 3.

Assistant: <think>Each proposed answer correctly identifies that the robe requires 2 bolts of blue fiber and half that amount in
white fiber, which is 1 bolt. The total bolts needed are then 2 (blue) + 1 (white) = 3 bolts. All answers arrive at the same
conclusion through correct reasoning and calculations. Since all answers are consistent and correct, the most straightforward
and clear answer is the one that explicitly states the total as 3 bolts, which is Answer 5. Therefore, the correct answer is 3
bolts.</think> <answer>3</answer>

Figure 13: SSA SFT Example. We can see there is a more clear reasoning on the response on the
decision process.

27

Under review as a conference paper at ICLR 2026

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant first
evaluate each answers individually,check whether each answer directly addresses the original question, assess the
correctness of each answer based on logical reasoning, calculations, and accuracy relative to the question. After thorough
evaluation, identify one correct answer. If the correct answer is not in the provided proposed answers, the Assistant will
combine the correct answer with the proposed answers and provide the correct answer.The reasoning process and answer are
enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning process here</think>
<answer>answer here</answer>.

User: Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much profit did he make?\n\nBelow are the proposed answers:\n\n

Answer 1:\nFirst, we need to calculate the new value of the house after the repairs. The original cost of the house was $80,000,
and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value

is:\n\n\\[80,000 + 50,000 = 130,000 \\\n\nThe repairs increased the value of the house by 150%. To find the new value of the
house, we need to calculate 150% of the original purchase price ($80,000) and add it to the original purchase

price.\n\n\\[150\\% \\text{ of } 80,000 = 1.5 \\times 80,000 = 120,000 \\\n\nAdding this to the original purchase price gives us
the new value of the house:\n\n\\[80,000 + 120,000 = 200,000 \\]\n\nNow, we subtract the total amount Josh spent (the initial
purchase price plus the repair costs) from the new value of the house to determine his profit:\n\n\\[200,000 - 130,000 =
70,000 \\\n\nTherefore, Josh made a profit of $70,000.\n\n#### $70,000\n\n

Answer 2:\nFirst, we need to calculate the new value of the house after the repairs. The original cost of the house was $80,000,
and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value

is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nNext, we know that the repairs increased the value of the house by 150%. An
increase of 150% means the value of the house became 250% (or 2.5 times) its original value before the repairs. So, the new
value of the house is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nNow, to find the profit, we subtract the total cost from the
new value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\]\n\nTherefore, the profit Josh made is:\n\n#### $195,000\n\n

Answer 3:\nFirst, let's calculate the new value of the house after the repairs. The original cost of the house was $80,000, and
Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value is:\n\n\\[80,000
+ 50,000 = 130,000 \\]\n\nNext, we need to determine the new value of the house after the 150% increase in value. A 150%
increase means the value of the house becomes 250% (100% original value + 150% increase) of its pre-repair value. The pre-
repair value of the house is $130,000, so the new value is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nNow, to find the profit,
we subtract the total cost from the new value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\\n\nTherefore, the profit Josh
made is:\n\n#### $195,000\n\n

Answer 4:\nFirst, let's calculate the new value of the house after the repairs. The original purchase price of the house was
$80,000, and Josh spent an additional $50,000 on repairs. Therefore, the total cost before considering the increase in value
is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nNext, we need to determine the new value of the house after it increased by 150%.
An increase of 150% means the value of the house becomes 250% (or 2.5 times) its original purchase price. So, the new value
of the house is:\n\n\\[80,000 \\times 2.5 = 200,000 \\]\n\nNow, we can find out how much profit Josh made by subtracting his
total cost from the new value of the house:\n\n\\[200,000 - 130,000 = 70,000 \\]\n\nTherefore, the profit Josh made is:\n\n####
$70,000\n\n

Answer 5:\nFirst, we need to determine the new value of the house after the repairs. The original cost of the house was
$80,000, and Josh spent an additional $50,000 on repairs. Therefore, the total cost before any increase in value

is:\n\n\\[80,000 + 50,000 = 130,000 \\]\n\nThe problem states that the value of the house increased by 150% due to the
repairs. An increase of 150% means the value of the house became 250% (or 2.5 times) its original cost after repairs. So, the
new value of the house is:\n\n\\[130,000 \\times 2.5 = 325,000 \\]\n\nTo find the profit, we subtract the total cost from the new
value of the house:\n\n\\[325,000 - 130,000 = 195,000 \\\n\nTherefore, the profit Josh made is:\n\n#### $195,000.

Assistant: <think>reasoning process here</think> <answer>195000</answer>",

Figure 14: SSA RL Example. We can see the response reasoning process is just a copy of the
instruction template. There are no meaningful content there

28

Under review as a conference paper at ICLR 2026

A conversation between User and Assistant. The user provide a question and some proposed answers. The Assistant answer the question
based on the proposed answers. The answer is enclosed within <answer></answer> tag, i.e., <answer>answer here</answer>.

User: Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form
$(r,\\theta),$ where $r > 0% and $0 \\le \\theta < 2 \\pi.$\n\nBelow are the proposed answers:\n\n

Answer 1:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\theta\\).\n\n1. **Calculate \\("\\):**\n The formula for \\(r\\) is:\n \\[\n r=\\sqrt{x*2 +y~*27\n \\]\n Substituting \\(x = 0\\) and \\(y =
3\W\):\n W[\n r=\\sqrt{0"2 + 372} = \\sqrt{9} = 3\n \\]\n\n2. **Determine \\(\\theta\\):**\n The angle \\(\\theta\\) can be found using the
arctangent function:\n \\[\n \\theta = \\tan"{-1\left(\\frac{y{x\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this results in an
undefined value for \\(\\tan*{-1}\\). Instead, we consider the position of the point in the coordinate plane. The point \\((0,3)\\) lies on the
positive \\(y\\)-axis.\n\n On the positive \\(y\\)-axis, the angle \\(\\theta\\) is:\n \\[\n \\theta = \\frac{\\pi{2\n \\]\n\nThus, the polar
coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi{2)\n\\[\n\n#### \\((3, \\frac{\\pi{2})\\)\n\n

Answer 2:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\\theta\\).\n\n1. **Calculate \\(r\\):**\n The formula for \\(r\\) is:\n \\[\n r=\\sqrt{x"2 +y*2)\n \\]\n Substituting \\(x = 0\\) and \\(y =
3\):\n W\n r=\\sqrt{0"2 + 372} = \\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\) is:\n \\[\n \\theta =
\\tan”{-1\\left(\\frac{yK{xN\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this point lies on the positive \\(y\\)-axis. Therefore,
\\(\theta\\) should be \\(\\frac{\\pi{2}\\).\n\nThus, the polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3,
\frac{\pi{2I\MN\M\n## \\((3, \\frac{\piK2)\W)\mn

Answer 3:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find \\(r\\) and \\(\\theta\\).\n\n1.
Calculate \\('\\):\n The formula for \\(r\\) is:\n \[\n r=\\sqrt{x*2 + y*2\n \\]\n Substituting \\(x = 0\\) and \\(y = 3\\):\n \[\n r=
\\sqrt{0”2 + 372} =\\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta =\\tan"{-
TN\left(\frac{yHxN\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this results in an undefined value for \\(\\tan*{-1}\\). Instead, we
consider the position of the point in the coordinate plane. The point \\((0,3)\\) lies on the positive \\(y\\)-axis.\n\n On the \\(y\\)-axis, the
angle \\(\\theta\\) is \\(\\frac{\\pi{2}\\) (or 90 degrees).\n\nTherefore, the polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3,
\\frac{\\pi{2})\n\I\n\n#### \\((3, \\frac{\pi{2})\\)\mn

Answer 4:\nTo convert the point \\((0,3)\\) from rectangular coordinates to polar coordinates, we need to find the values of \\(r\\) and
\\(\theta\\).\n\n1. **Calculate \\('\\):**\n The formula for \\(r\\) is given by:\n \\[\n r=\\sqrt{x*2 +y~2/\n \\]\n Substituting \\(x = O\\)
and \\(y =3\):\n \[\n r=\\sqrt{0*2 + 372} =\\sqrt{9} = 3\n \\]\n\n2. **Determine \\(\\theta\\):**\n The angle \\(\\theta\\) can be found
using the arctangent function:\n \\[\n \\theta = \\tan"{-1\left(\\frac{y{x}\\right)\n \\]\n However, since \\(x = 0\\) and \\(y = 3\\), this
directly places the point on the positive \\(y\\)-axis. Therefore, the angle \\(\\theta\\) is:\n \\[\n \\theta = \\frac{\\pi{2\n \\]\n\nThus, the
polar coordinates of the point \\((0,3)\\) are:\n\\[\n(r, \\theta) = (3, \\frac{\\pi{2})\n\\]\n\n#### \\((3, \\frac{\\pi{2})\\)\n\n

Answer 5:\nTo convert the point \\((0, 3)\\) from rectangular coordinates to polar coordinates, we need to find \\(r\\) and \\(\\theta\\).\n\n1.
Calculate \\(r'\\):\n The formula for \\(r\\) is:\n \\[\n r=\\sqrt{x*2 +y*2\n \\]\n Substituting \\(x = 0\\) and \\(y = 3\\):\n \\[\n r=
\\sqrt{0”~2 + 372} =\\sqrt{9} = 3\n \\]\n\n2. **Calculate \\(\\theta\\):**\n The formula for \\(\\theta\\) is:\n \\[\n \\theta =\\tan"{-
IN\left(\frac{yHxN\right)\n \\]\n However, since \\(x = 0\\), \\(\tan*{-1)\left(\\frac{8{ON\right)\\) is undefined. This indicates that the
point lies on the positive \\(y\\)-axis. Therefore, \\(\\theta\\) must be \\(\\frac{\\pi{2}\\).\n\nPutting it all together, the polar coordinates
are:\n\[\n(r, \\theta) = (3, \\frac{\\pi {2})\n\\[\n\n##### \\((3, \\frac{\\pi{2})\\).

Assistant: <answer>3, pi/2</answer>

Figure 15: SSA No Think Example. We can see the Assistant output answer directly

29

Under review as a conference paper at ICLR 2026

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLM to polish our writing. In addition, LLM also assist our coding and visualization.

30

	Introduction
	Related Work
	Method
	Problem Formulation
	Training SSA with Reinforcement Learning
	Training SSA With Supervised Finetuning

	Experiments
	Experimental Settings
	Comparison Systems

	Main Results
	Comparison with Parallel Scaling Baselines
	Generalization Capabilities of SSA.
	Comparison with Sequential Test-time Scaling
	Scaling SSA to handle a larger sample set

	Analyses
	Comparing RL vs SFT
	To think or not to think

	Conclusion
	Reproducibility Statement
	More results details
	SSA Results
	Ablation on SFT, No Think, and RL Results
	Combining SFT and RL
	Increasing k during training
	Scaling K during inference and Two-stage SSA
	Error Analysis
	Copy or Synthesize?
	Generalization to other tasks
	Efficiency Evaluation
	Stability Analyses
	Effect of Candidate Ordering
	Training different random seed

	Training Data Statistics

	Prompt Details
	Example Results
	The Use of Large Language Models (LLMs)

