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ABSTRACT

Robotic taxonomies have appeared as high-level hierarchical abstractions that
classify how humans move and interact with their environment. They have proven
useful to analyse grasps, manipulation skills, and whole-body support poses. De-
spite the efforts devoted to design their hierarchy and underlying categories, their
use in application fields remains scarce. This may be attributed to the lack of
computational models that fill the gap between the discrete hierarchical structure
of the taxonomy and the high-dimensional heterogeneous data associated to its
categories. To overcome this problem, we propose to model taxonomy data via
hyperbolic embeddings that capture the associated hierarchical structure. To do
so, we formulate a Gaussian process hyperbolic latent variable model and en-
force the taxonomy structure through graph-based priors on the latent space and
distance-preserving back constraints. We test our model on the whole-body sup-
port pose taxonomy to learn hyperbolic embeddings that comply with the original
graph structure. We show that our model properly encodes unseen poses from ex-
isting or new taxonomy categories, it can be used to generate trajectories between
the embeddings, and it outperforms its Euclidean counterparts.

1 INTRODUCTION

Roboticists are often inspired by biological insights to create robotic systems that exhibit human- or
animal-like capabilities (Siciliano & Khatib, 2016). In particular, it is first necessary to understand
how humans move and interact with their environment to then generate biologically-inspired mo-
tions and behaviors of robotics hands, arms or humanoids. In this endeavor, researchers proposed to
structure and categorize human hand postures and body poses into hierarchical classifications known
as taxonomies. Their structure depends on the variables considered to categorize human motions and
their interactions with the environment, as well as on associated qualitative measures.

Different taxonomies have been proposed in the area of human and robot grasping (Cutkosky, 1989;
Feix et al., 2016; Abbasi et al., 2016; Stival et al., 2019). Feix et al. (2016) introduced a taxonomy
of hand grasps whose structure was mainly defined by the hand pose and the type of contact with
the object. Later, Stival et al. (2019) claimed that the taxonomy designed in (Feix et al., 2016)
heavily depended on subjective qualitative measures, and proposed a quantitative tree-like taxonomy
of hand grasps based on muscular and kinematic patterns. A similar data-driven approach was
used to design a grasp taxonomy based on sensed contact forces in (Abbasi et al., 2016). Robotic
manipulation also gave rise to various taxonomies. Bullock et al. (2013) introduced a hand-centric
manipulation taxonomy that classifies manipulation skills according to the type of contact with the
objects and the object motion imparted by the hand. A different strategy was developed in (Paulius
et al., 2019), where a manipulation taxonomy was designed based on a categorization of contacts
and motion trajectories. Humanoid robotics also made significant efforts to analyze human motions,
thus proposing taxonomies as high-level abstractions of human motion configurations. Borràs et al.
(2017) analyzed the contacts of the human limbs with the environment and designed a taxonomy of
whole-body support poses.

In addition to being used for analysis purposes in robotics or biomechanics, some of the afore-
mentioned taxonomies were leveraged for modeling grasp actions (Romero et al., 2010; Lin & Sun,
2015), for planning contact-aware whole-body pose sequences (Mandery et al., 2016), and for learn-
ing manipulation skills embeddings (Paulius et al., 2020). However, despite most taxonomies carry
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Figure 1: Left: Illustration of the Lorentz L2 and Poincaré P2 models of the hyperbolic manifold. The former
is depicted as the gray hyperboloid, while the latter is represented by the blue circle. Both models show a
geodesic ( ) between two points x1 ( ) and x2 ( ). The vector u ( ) lies on the tangent space of x1 such
that u = Logx1

(x2). Right: Subset of the whole-body support pose taxonomy (Borràs et al., 2017) used in
our experiments. Each node is a support pose defined by the type of contacts (foot F, hand H, knee K). The
lines represent graph transitions between the taxonomy nodes. Contacts are depicted by grey dots.

a well-defined hierarchical structure, it is often overlooked. First, these taxonomies are usually ex-
ploited for classification tasks whose target classes are mainly the tree leaves, disregarding the full
taxonomy structure (Feix et al., 2016; Abbasi et al., 2016). Second, the discrete representation of
the taxonomy categories hinders their use for motion generation (Romero et al., 2010).

We believe that the difficulty of leveraging robotic taxonomies is due to the lack of computational
models that exploit (i) the domain knowledge encoded in the hierarchy, and (ii) the information
of the high-dimensional data associated to the taxonomy categories. We tackle this problem from
a representation learning perspective by modeling taxonomy data as embeddings that capture the
associated hierarchical structure. Inspired by recent advances on word embeddings (Nickel & Kiela,
2017; 2018; Mathieu et al., 2019), we propose to leverage the hyperbolic manifold (Ratcliffe, 2019)
to learn such embeddings. An important property of the hyperbolic manifold is that distances grow
exponentially when moving away from the origin, and shortest paths between distant points tend to
pass through it, resembling a continuous hierarchical structure. Therefore, we hypothesize that the
geometry of the hyperbolic manifold allows us to learn embeddings that comply with the original
graph structure of robotic taxonomies.

Specifically, we propose a Gaussian process hyperbolic latent variable model (GPHLVM) to learn
embeddings of taxonomy data on the hyperbolic manifold. To do so, we impose a hyperbolic ge-
ometry to the latent space of the well-known GPLVM (Lawrence, 2003; Titsias & Lawrence, 2010).
This demands to reformulate the Gaussian distribution, the kernel, and the optimization process of
the vanilla GPLVM to account for the geometry of the hyperbolic latent space. To do so, we leverage
the hyperbolic wrapped Gaussian distribution (Nagano et al., 2019), and provide a positive-definite-
guaranteed approximation of the hyperbolic kernel proposed by McKean (1970). Moreover, we
resort to Riemannian optimization (Absil et al., 2007; Boumal, 2022) to optimize the GPHLVM
parameters. We enforce the taxonomy graph structure in the learned embeddings through graph-
based priors on the latent space and via graph-distance-preserving back constraints (Lawrence &
Quiñonero Candela, 2006; Urtasun et al., 2008). Our GPHLVM is conceptually similar to the
GPLVM for Lie groups introduced in (Jensen et al., 2020), which also imposes geometric properties
to the GPLVM latent space. However, our formulation is specifically designed for the hyperbolic
manifold and fully built on tools from Riemannian geometry. Moreover, unlike (Tosi et al., 2014)
and (Jørgensen & Hauberg, 2021), where the latent space was endowed with a pullback Riemannian
metric learned via the GPLVM mapping, we impose the hyperbolic geometry to the GPHLVM latent
space as an inductive bias adapted to our targeted applications.

We test our approach on graphs extracted from the whole-body support pose taxonomy (Borràs
et al., 2017). The proposed GPHLVM learns hyperbolic embeddings of the body support poses
that comply with the original graph structure, and properly encodes unseen poses from existing
or new taxonomy nodes. Moreover, we show how we can exploit the continuous geometry of the
hyperbolic manifold to generate trajectories between different embeddings pairs, which comply with
the taxonomy graph structure. To the best of our knowledge, this paper is the first to leverage the
hyperbolic manifold for robotic applications.
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2 BACKGROUND

Gaussian Process Latent Variable Models: A GPLVM defines a generative mapping from latent
variables {xn}Nn=1,xn ∈ RQ to observations {yn}Nn=1,yn ∈ RD by modeling the correspond-
ing non-linear transformation with Gaussian processes (GPs) (Lawrence, 2003). The GPLVM is
described as
yn,d ∼ N (yn,d; fn,d, σ

2
d) with fn,d ∼ GP(md(xn), kd(xn,xn)) and xn ∼ N (0, I), (1)

where yn,d denotes the d-th dimension of the observation yn, md(·) : RQ 7→ R and kd(·, ·) : RQ ×
RQ → R are the GP mean and kernel function, respectively, and σ2

d is a hyperparameter. Classically,
the hyperparameters and latent variables of the GPLVM were optimized using maximum likelihood
or maximum a posteriori (MAP) estimates. As this does not scale gracefully to large datasets,
contemporary methods use inducing points and variational approximations of the evidence (Titsias &
Lawrence, 2010). Compared to neural-network-based generative models, GPLVMs are data efficient
and provide automatic uncertainty quantification.

Riemannian geometry: To understand the hyperbolic manifold, it is necessary to first define some
basic Riemannian geometry concepts (Lee, 2018). To begin with, consider a Riemannian manifold
M, which is a locally Euclidean topological space with a globally-defined differential structure.
For each point x ∈M, there exists a tangent space TxM that is a vector space consisting of the
tangent vectors of all the possible smooth curves passing through x. A Riemannian manifold is
equipped with a Riemannian metric, which permits to define curve lengths in M. Shortest-path
curves, called geodesics, can be seen as the generalization of straight lines on the Euclidean space
to Riemannian manifolds, as they are minimum-length curves between two points inM. To operate
with Riemannian manifolds, it is common practice to exploit the Euclidean tangent spaces. To do
so, we resort to mappings back and forth between TxM and M, which are the exponential and
logarithmic maps. The exponential map Expx(u) : TxM → M maps a point u in the tangent
space of x to a point y on the manifold, so that it lies on the geodesic starting at x in the direction
u, and such that the geodesic distance dM between x and y equals the distance between x and u.
The inverse operation is the logarithmic map Logx(u) :M→ TxM. Finally, the parallel transport
Px→y

(
u
)
: TxM→ TyM operates with manifold elements lying on different tangent spaces.

Hyperbolic manifold: The hyperbolic space Hd is the unique simply-connected complete d-
dimensional Riemannian manifold with a constant negative sectional curvature (Ratcliffe, 2019).
There are several isometric models for the hyperbolic space, in particular, the Poincaré ball Pd and
the Lorentz (hyperboloid) model Ld (see Fig. 1-left). The latter representation is chosen here as it is
numerically more stable than the former, and thus better suited for Riemannian optimization. How-
ever, the Poincaré model provides a more intuitive representation and is here used for visualization.
This is easily achieved by leveraging the isometric mapping between both models (see App. A for
details). An important property of the hyperbolic manifold is the exponential rate of the volume
growth of a ball with respect to its radius. In other words, distances in Hd grow exponentially when
moving away from the origin, and shortest paths between distant points on the manifold tend to pass
through the origin, resembling a continuous hierarchical structure. Because of this, the hyperbolic
manifold is often exploited to embed hierarchical data such as trees or graphs (Nickel & Kiela, 2017;
Chami et al., 2020). Although its potential to embed discrete data structures into a continuous space
is well known in the machine learning community, its application in robotics is presently scarce.

Hyperbolic wrapped Gaussian distribution: Probabilistic models on Riemannian manifolds de-
mand to have probability distributions that consider the manifold geometry. We use the hyperbolic
wrapped distribution (Nagano et al., 2019), which builds on a Gaussian distribution on the tangent
space at the origin µ0 = (1, 0, . . . , 0)T of Hd, that is then projected onto the hyperbolic space
after transporting the tangent space to the desired location. Intuitively, the construction of this
wrapped distribution is as follows: (1) sample a point ṽ ∈ Rd from the Euclidean normal distribu-
tionN (0,Σ), (2) transform ṽ to an element of Tµ0Hd ⊂ Rd+1 by setting v = (0, ṽ)T, (3) apply the
parallel transport u = Pµ0→µ

(
v
)
, and (4) project u to Hd via Expµ(u). The resulting probability

density function is
logNHd(x;µ,Σ) = logN (v;0,Σ)− (d− 1) log (sinh(∥u∥L)/∥u∥L) , (2)

where v = Pµ→µ0

(
u
)
, u = Logµ(x), and ∥u∥L =

√
⟨u,u⟩µ. The hyperbolic wrapped distribu-

tion (Nagano et al., 2019) has a more general expression given in (Skopek et al., 2020).
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3 GAUSSIAN PROCESS HYPERBOLIC LATENT VARIABLE MODEL

We present the proposed GPHLVM, which extends GPLVM to hyperbolic latent spaces. A
GPHLVM defines a generative mapping from the hyperbolic latent space HQ to the observation
space, e.g. the data associated to the taxonomy, based on GPs. By considering independent GPs
across the observation dimensions, the GPHLVM is formally described as

yn,d ∼ N (yn,d; fn,d, σ
2
d) with fn,d ∼ GP(md(xn), k

HQ

d (xn,xn)) and xn ∼ NHQ(µ0, αI),
(3)

where yn,d denotes the d-th dimension of the observation yn ∈ RD and xn ∈ HQ is the correspond-
ing latent variable. Our GPHLVM is built on hyperbolic GPs, characterized by a mean function
md(·) : HQ → R (usually set to 0), and a kernel kH

Q

d (·, ·) : HQ ×HQ → R. These kernels encode
similarity information in the latent hyperbolic manifold and should reflect its geometry to perform
effectively, as detailed in §. 3.1. Also, the latent variable x ∈ HQ is assigned a hyperbolic wrapped
Gaussian prior NHQ(µ0, αI) based on Eq. 2, where µ0 is the origin of HQ, and the parameter α
controls the spread of the latent variables in HQ. As Euclidean GPLVMs, our GPHLVM can be
trained by finding a MAP estimate or via variational inference. However, special care must be taken
to guarantee that the latent variables belong to the hyperbolic manifold, as explained in §. 3.2.

3.1 HYPERBOLIC KERNELS

For GPs in Euclidean spaces, the squared exponential (SE) and Matérn kernels are standard
choices (Rasmussen & Williams, 2006). In the modern machine learning literature these were gen-
eralized to non-Euclidean spaces such as manifolds (Borovitskiy et al., 2020; Jaquier et al., 2021) or
graphs (Borovitskiy et al., 2021). The generalized SE kernels may be connected to the much studied
heat kernels. These are given (cf. Grigoryan & Noguchi (1998)) by

kH
2

(x,x′) =
σ2

C∞

∫ ∞

ρ

se−s2/(2κ2)

(cosh(s)− cosh(ρ))1/2
ds, kH

3

(x,x′) =
σ2

C∞

ρ

sinh ρ
e−ρ2/(2κ2), (4)

where ρ = distHd(x,x′) denotes the geodesic distance between x,x′ ∈ Hd, κ and σ2 are the kernel
lengthscale and variance, and C∞ is a normalizing constant. To the best of our knowledge, no closed
form expression for H2 is known. To approximate the kernel in this case, a discretization of the in-
tegral is performed. One appealing option is the Monte Carlo approximation based on the truncated
Gaussian density. Unfortunately, such approximations easily fail to be positive semidefinite if the
number of samples is not very large. We address this via an alternative Monte Carlo approximation

kH
2

(x,x′) ≈ σ2

C ′
∞

1

L

L∑
l=1

sl tanh(πsl)e
(2sli+1)⟨xP ,bl⟩e(2sli+1)⟨x′

P ,bl⟩, (5)

where ⟨xP , b⟩ = 1
2 log

1−|xP |2
|xP−b|2 is the hyperbolic outer product with xP being the representation of

x as a point on the Poincaré disk P2 = D, i, z denote the imaginary unit and complex conjugation,
respectively, bl

i.i.d.∼ U(T) with T the unit circle, and sl
i.i.d.∼ e−s2κ2/21[0,∞)(s). The distributions of

bl and sl are easy to sample from: The former is sampled by applying x → e2πix to x ∼ U([0, 1])
and the latter is (proportional to) a truncated normal distribution. Importantly, the right-hand side
of Eq. 5 is easily recognized to be an inner product in the space CL, which immediately implies its
positive semidefiniteness (see App. B for the development of Eq. 5). Note that hyperbolic kernels
for HQ with Q > 3 are generally defined as integrals of the kernels Eq. 4 (Grigoryan & Noguchi,
1998). Analogs of Matérn kernels for HQ are obtained as integral of the SE kernel of the same
dimension (Jaquier et al., 2021).

3.2 MODEL TRAINING

Similarly to the Euclidean case, training the GPHLVM is equivalent to finding an optimal set of
latent variables {xn}Nn=1 and hyperparameters Θ = {θd}Dd=1, with xn ∈ HQ and θd the hy-
perparameters of the d-th GP. For small datasets, the GPHLVM can be trained by maximizing
the log posterior of the model, i.e., LMAP = log

(
p(Y |X)p(X)

)
with Y = (y1 . . .yN )T and

X = (x1 . . .xN )T. For large datasets, the GPHLVM can be trained, similarly to the so-called
Bayesian GPLVM (Titsias & Lawrence, 2010), by maximizing the marginal likelihood of the data,
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i.e., LMaL = log p(Y ) = log
∫
p(Y |X)p(X)dX . As this quantity is intractable, it is approximated

via variational inference by adapting the methodology introduced in (Titsias & Lawrence, 2010) to
hyperbolic latent spaces, as explained next.

Variational inference: We approximate the posterior p(X|Y ) by a variational distribution q(X)
defined as a hyperbolic wrapped normal distribution over the latent variables, i.e.,

qϕ(X) =

N∏
n=1

NHQ(xn;µn,Σn), (6)

with variational parameters ϕ = {µn,Σn}Nn=1, with µn ∈ HQ and Σn ∈ Tµn
HQ. Similarly to the

Euclidean case (Titsias & Lawrence, 2010), this variational distribution allows the formulation of a
lower bound

log p(Y ) ≥ Eqϕ(X) [log p(Y |X)]− KL
(
qϕ(X)||p(X)

)
. (7)

The KL divergence KL
(
qϕ(X)||p(X)

)
between two hyperbolic wrapped normal distributions can

easily be evaluated via Monte-Carlo sampling (see App. C.1 for details). Moreover, the expectation
Eqϕ(X) [log p(Y |X)] can be decomposed into individual terms for each observation dimension as∑D

d=1 Eqϕ(X) [log p(yd|X)], where yd is the d-th column of Y . For large datasets, each term can
be evaluated via a variational sparse GP approximation (Titsias, 2009; Hensman et al., 2015). To do
so, we introduce M inducing inputs {zd,m}Mm=1 with zd,m ∈ HQ for each observation dimension
d, whose corresponding inducing variables {ud,m}Mm=1 are defined as noiseless observations of the
GP in Eq. 3, i.e, ud ∼ GP(md(zd), k

HQ

d (zd, zd)). Similar to (Hensman et al., 2015), we can write

log p(yd|X) ≥ Eqλ(fd)

[
logN (yd;fd(X), σ2

d)
]
− KL

(
qλ(ud)||p(ud|Zd)

)
, (8)

where we defined qλ(fd) =
∫
p(fd|ud)qλ(ud)dud with the variational distribution qλ(ud) =

N (ud; µ̃d, Σ̃d) and variational parameters λ = {µ̃d, Σ̃d}Dd=1. Remember that the inducing vari-
ables ud,m are Euclidean, i.e., the variational distribution qλ(ud) is a Euclidean Gaussian and the KL
divergence in Eq. 8 has a closed-form solution. In this case, the training parameters of the GPHLVM
are the set of inducing inputs {zd,m}Mm=1, the variational parameters ϕ and λ, and the hyperparam-
eters Θ (see App. C.2 for the full derivation of the GPHLVM variational inference process).

Optimization: As several training parameters of the GPHLVM belong to HQ, i.e., the latent vari-
ables xn for the MAP estimation, or the inducing inputs zd,m and means µn for variational in-
ference. To account for the hyperbolic geometry of these parameters, we leverage Riemannian
optimization methods (Absil et al., 2007; Boumal, 2022) to train the GPHLVM. Each step of first
order (stochastic) Riemannian optimization methods is generally of the form

ηt ← h
(
grad L(xt), τt−1

)
, xt+1 ← Expxt

(−αtηt), τt ← Pxt→xt+1

(
ηt

)
. (9)

The update ηt ∈ Txt
M is first computed as a function h of the Riemannian gradient grad of the loss

L(xt) and of τt−1, the previous update parallel-transported to the tangent space of the new estimate
xt. The estimate xt is then updated by projecting the update ηt scaled by a learning rate αt onto
the manifold using the exponential map. The function h is equivalent to computing the update of
the Euclidean algorithm, e.g., ηt ← grad L(xt) for a simple gradient descent. Notice that Eq. 9 is
applied on a product of manifolds when optimizing several parameters. In this paper, we used the
Riemannian Adam (Bécigneul & Ganea, 2019) implemented in Geoopt (Kochurov et al., 2020) to
optimize the GPHLVM parameters.

4 INCORPORATING TAXONOMY KNOWLEDGE INTO GPHLVM

While we are now able to learn hyperbolic embeddings of the data associated to a taxonomy using
our GPHLVM, they do not necessarily follow the graph structure of the taxonomy. In other words,
the manifold distances between pairs of embeddings do not need to match the graph distances. To
overcome this, we introduce graph-distance information as inductive bias to learn the embeddings.
To do so, we leverage two well-known techniques in the GPLVM literature: priors on the embed-
dings and back constraints (Lawrence & Quiñonero Candela, 2006; Urtasun et al., 2008). Both are
reformulated to preserve the taxonomy graph structure in the hyperbolic latent space as a function
of the node-to-node shortest paths.
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Graph-distance priors: As shown by Urtasun et al. (2008), the structure of the latent space can be
modified by adding priors of the form p(X) ∝ e−ϕ(X)/σ2

ϕ to the GPLVM, where ϕ(X) is a function
that we aim at minimizing. Incorporating such a prior may also be understood as augmenting the
GPLVM loss L with a regularization term −ϕ(X). Therefore, we propose to augment the loss of
the GPHLVM with a distance-preserving graph-based regularizer. Several such losses have been
proposed in the literature, see (Cruceru et al., 2021) for a review. Specifically, we define ϕ(X) as
the stress loss

Lstress(X) =
∑
i<j

(
distG(ci, cj)− distHQ(xi,xj)

)2
, (10)

where ci denotes the taxonomy node to which the observation yi belongs, and distG, distHQ are the
taxonomy graph distance and the geodesic distance on HQ, respectively. The loss Eq. 10 encourages
the preservation of all distances of the taxonomy graph in HQ. It therefore acts globally, thus al-
lowing the complete taxonomy structure to be reflected by the GPHLVM. Notice that Cruceru et al.
(2021) also survey a distortion loss that encourages the distance of the embeddings to match the
graph distance by considering their ratio. We notice, however, that this distortion loss is only prop-
erly defined when the embeddings xi and xj correspond to different classes ci ̸= cj . Interestingly,
our empirical results using this loss were lackluster and numerically unstable (see App. E).

Back-constraints: The back-constrained GPLVM (Lawrence & Quiñonero Candela, 2006) de-
fines the latent variables as a function of the observations, i.e., xn,q = gq(y1 . . . ,yn,wq) with
parameters {wq}Qq=1. It allows us to incorporate new observations in the latent space after train-
ing, while preserving local similarities between observations in the embeddings. To incorporate
graph-distance information into the GPHLVM and ensure that latent variables lie on the hyperbolic
manifold, we propose the back-constraints mapping

xn = Expµ0
(x̃n) with x̃n,q =

N∑
m=1

wq,mkR
D

(yn,ym)kG(cn, cm). (11)

The mapping Eq. 11 not only expresses the similarities between data in the observation space via
the kernel kR

J

, but encodes the relationships between data belonging to nearby taxonomy nodes via
kG. In other words, similar observations associated to the same (or near) taxonomy nodes will be
close to each other in the resulting latent space. The kernel kG is a Matérn kernel on the taxonomy
graph following the formulation introduced in (Borovitskiy et al., 2021), which accounts for the
graph geometry (see also App. D). We also use a Euclidean SE kernel for kR

D

. Notice that the back
constraints only incorporate local information into the latent embedding. Therefore, to preserve the
global graph structure, we pair the proposed back-constrained GPHLVM with the stress prior Eq. 10.
Note that both kernels are required in Eq. 11: By defining the mapping as a function of the graph
kernel only, the observations of each taxonomy node would be encoded by a single latent point.
When using the observation kernel only, dissimilar observations of the same taxonomy node would
be distant in the latent space, despite the additional stress prior, as kR

D

(yn,ym) ≈ 0.

5 EXPERIMENTS

We test the proposed GPHLVM to model data of the whole-body support pose taxonomy (Borràs
et al., 2017). Each node of the taxonomy graph (see Fig. 1-right) is a support pose defined by
its contacts, so that the distance between nodes can be viewed as the number of contact changes
required to go from a support pose to another. We use standing and kneeling poses of the datasets
in (Mandery et al., 2016) and (Langenstein, 2020). The former were extracted from recordings of a
human walking without hand support, or using supports from a handrail or from a table on one side
or on both sides. The latter were obtained from a human standing up from a kneeling position. Each
pose is identified with a node of the graph of Fig. 1-right. We test our approach on three different
datasets: an unbalanced dataset (i.e., 100 poses composed of 72 standing and 28 kneeling poses);
a balanced dataset (i.e., only 60 standing poses); and an joint-space dataset (i.e., same 60 standing
poses represented as joint configurations). For the first two datasets each pose is represented as a
vector yn = [yLF,yRF,yLH,yRH]

T ∈ R12 corresponding to the positions of the human’s feet and
hands. Instead, for the last dataset, each pose is represented by vector of joint angles yn ∈ R44.
Last but not least, we also test our approach on an augmented version of the whole-body support
pose taxonomy, which explicitly distinguishes between left and right contacts. The main results are
analyzed in the sequel, while additional experimental details and results are given in App. F and G.
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 2: The first and last two rows respectively show the latent embeddings and examples of interpolating
geodesics in P2 and R2, followed by pairwise distance matrices. Embeddings colors match those of Fig. 1-
right, and background colors indicate the GPLVM uncertainty. Added poses (d) and classes (e) are marked
with stars and highlighted with red in the distance matrices.

Hyperbolic embeddings of support poses: We embed the 100 standing and kneeling
poses into 2-dimensional hyperbolic and Euclidean spaces using GPHLVM and GPLVM.

Regularization Stress ±σ

R2
No reg. 2.15±2.92
Stress 0.86±2.18
BC+Stress 1.70±2.91
— ” —: unseen poses 0.53 ± 0.86
— ” —: unseen class 0.85±1.0

H2
No reg. 3.71±4.08
Stress 0.14±0.20
BC+Stress 0.21±0.34
— ” —: unseen poses 0.22±0.34
— ” —: unseen class 0.58±0.65

Table 1: Average stress per
geometry and regularization.

For each, we test the model without regularization, with stress prior,
and with back-constraints coupled with stress prior (see App. F.2 for
the training parameters). Figs. 2a-2c show the learned embeddings
alongside distance matrices, which are to be compared with the graph
distances in Fig. 3. As shown in Fig. 2a, the models without regu-
larization do not encode any meaningful distance structure in latent
space. In contrast, the models with stress prior result in embeddings
that comply with the taxonomy graph structure: The embeddings are
grouped and organized according to the taxonomy nodes, the geodesic
distances match the graph ones, and arguably more so in the hyperbolic
case (see Figs. 2b-2c). This is further reflected in the stress values of
the latent embeddings with respect to the graph distances (see Table 1). Interestingly, the hyper-
bolic models also outperform Euclidean models with 3-dimensional latent spaces (see App. G.1).

Figure 3: Graph dis-
tance between the poses
following Fig. 1-right.

This is due to the fact that the geometry of the hyperbolic manifold leads
to exponentially-increasing distances w.r.t the origin, which provides an in-
creased volume to match the graph structure when compared to Euclidean
spaces, thus resulting in better low-dimensional representations of taxon-
omy data. Our GPHLVM also outperformed vanilla and hyperbolic ver-
sions of variational autoencoders (VAE) to encode meaningful taxonomy
information in the latent space (see App. G.4). In general, the tested VAEs
only captured a global structure that separates standing from kneeling poses.
Moreover, the average stress of the VAEs’ latent embeddings is higher com-
pared to the GPHLVM’s. Finally, notice that the back constraints further or-

ganize the embeddings inside a class according to the similarity between their observations (Fig. 2c).
Taxonomy expansion and unseen poses encoding: An advantage of back-constrained GPLVMs
is their affordance to “embed” new observations into the latent space. We test the GPHLVM ability
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Figure 4: Motions obtained via geodesic interpolation in the back-constrained GPHLVM latent space. Left: F
to F2. Right: F to FK. The colorbars identify the support pose of the closest pose in the latent space.

to place unseen poses or taxonomy classes into the latent space, hypothesizing that their respective
embeddings would be placed at meaningful distances w.r.t. the rest of the latent points. First,
we consider a back-constrained GPHLVM with stress prior previously trained on example poses
from the taxonomy (i.e., the model of Fig. 2c) and embedded unseen poses. Fig. 2d shows how
these new poses land close to their respective class cluster. Second, we train a new GPHLVM while
withholding all poses corresponding to the F1H1 class. We then encode these poses and find that they
are located at sensible distance when compared to the model trained on the full dataset. Although
this is accomplished by both models, the GPHLVM displays lower stress values (see Table 1).
Trajectory generation via geodesics: The geometry of the GPHLVM latent space can also be
exploited to generate trajectories in the latent space by following the geodesic, i.e. the shortest path,
between two embeddings. In other words, our GPHLVM intrinsically provides a mechanism to plan
motions via geodesics in the low-dimensional latent space. Examples of geodesics between two
poses are shown in Figs. 2b-2c, with the colors along the trajectory matching the class corresponding
to the closest hyperbolic latent point. Importantly, the geodesics in our GPHLVM latent space follow
the transitions between classes defined in the taxonomy. In other words, the shortest paths in the
hyperbolic embedding correspond to the shortest paths in the taxonomy graph. For instance, the
geodesic from F to F2H2 follows F → F2 → F2H → F2H2, while the geodesic from FH to K2H
follows FH→ F2H→ FKH→ KH→ K2H. In contrast, straight lines in the Euclidean embeddings
often do not match the graph shortest path, resulting in transitions that do not exist in the taxonomy,
e.g., F→ F2H2, or F2 → FKH in the Euclidean latent space of Figs. 2b-2c (see also App. F.4).

Fig. 4 shows examples of motions resulting from geodesic interpolation in the GPHLVM latent
space. As expected, the resulting trajectories do not correspond to direct interpolations between the
given initial and final poses. This is due to the lack of information about the objects location and the
type of contact in the considered poses. Therefore, poses with very different feet and hands positions
may belong to the same class, e.g., two-feet contact with a left hand contact on the handrail or a right
hand contact on the table both belong to F2H. This results in artifacts throughout the interpolations,
which are alleviated by augmenting the taxonomy to differentiate between left and right contacts,
as described next. However, it is interesting that the motions are still consistent with the observed
transitions, e.g., the hand positions vary little along a path involving only foot and knee contacts.
Augmented taxonomy for enhanced trajectory generation: Here, we aim at improving the qual-
ity of the generated motion by augmenting the whole-body support pose taxonomy with additional
contact information. To do so, we consider an augmented whole-body support pose taxonomy
which explicitly distinguishes between left and right contacts by adapting the nodes and transitions
of Fig. 1-right. For instance, the 1-foot contact (F) node is separated into left-foot (Fl) and right-foot
(Fr) contact nodes. To facilitate motion planning and to test the GPHLVM ability of dealing with
high-dimensional spaces, we represent each pose as a vector yn ∈ R44 of joint angles instead of a
vector of hands and feet positions. A video of the resulting motions accompanies this paper.

We embed the 60 standing poses described in App. G.2 into 3-dimensional hyperbolic and Euclidean
spaces using GPHLVM and GPLVM, respectively. For each approach, we test the model without
regularization, with stress prior, and with back-constraints coupled with stress prior (see App. G.3
and F.2 for detailed results and training parameters). Fig. 5 shows examples of motions planned by
following geodesics in the GPHLVM latent space. We observe that the motions generated by consid-
ering the augmented taxonomy result in more realistic interpolations between the given initial and
final poses than the trajectories of Fig. 4. Moreover, the previously-observed artifacts are drastically
reduced. This is due to the fact that the augmented taxonomy differentiates between left and right
contacts, thus allowing very different poses to be placed far apart in the latent space. For example,
poses corresponding to FlHr and FrHl in the augmented taxonomy belonged to the same FH node in
the original taxonomy, and were embedded close together. It is also interesting to notice that consid-
ering joint angles instead of end-effector positions results in more realistic poses. Such poses may
also be obtained by considering both end-effector positions and orientations as observations, which
would require an extension of the GPHLVM to handle observations on Riemannian manifolds.

8
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(a) Fl to F2H
r

(b) Fl to F2H2

(c) Fr to FrH2

(d) F2H
l to FlH2

Figure 5: Motions obtained via geodesic interpolation in the latent space of the back-constrained GPHLVM
trained on the augmented taxonomy (Fig. 10c). Contacts are denoted by gray circles. The colorbars identify
the support pose of the closest pose in the latent space.

6 CONCLUSIONS

Inspired by the recent developments of taxonomies in different robotics fields, we proposed a compu-
tational model GPHLVM that leveraged two types of domain knowledge: the structure of a human-
designed taxonomy and a hyperbolic geometry on the latent space which complies with the intrinsic
taxonomy’s hierarchical structure. Our GPHLVM allows us to learn hyperbolic embeddings of the
features of the taxonomy nodes while capturing the associated hierarchical structure. To achieve this,
our model exploited the curvature of the hyperbolic manifold and the graph-distance information, as
inductive bias. We showed that these two forms of inductive bias are essential to: learn taxonomy-
aware embeddings, encode unseen data, and potentially expand the learned taxonomy. Moreover,
we reported that vanilla Euclidean approaches underperformed on all the foregoing cases. Finally,
we introduced a mechanism to generate taxonomy-aware motions in the hyperbolic latent space.

It is important to emphasize that our geodesic motion generation does not use explicit knowledge
on how physically feasible the generated trajectories are. We plan to investigate how to include
physics constraints or explicit contact data into the GPHLVM to obtain physically-feasible motions
that can be executed on real robots. Moreover, we will work on alleviating the computational cost
of the hyperbolic kernel in Hd. This could be tackled by using a different sampling strategy: Instead
of sampling from a Gaussian distribution for the approximation Eq. 5, we could sample from the
Rayleigh distribution. This is because complex numbers, whose real and imaginary components
are i.i.d. Gaussian, have absolute value that is Rayleigh-distributed. As our current experimental
study focused on testing our model on different graphs extracted from the whole-body support pose
taxonomy (Borràs et al., 2017), we plan to test it with datasets used to design other robotic tax-
onomies. Finally, we plan to investigate other types of manifold geometries that may accommodate
more complex structures coming from highly-heterogeneous graphs (Giovanni et al., 2022).
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André Langenstein. Generating whole-body multi-contact motions between support poses using
dynamical movement primitives. Master’s thesis, Karlsruhe Institute of Technology, 2020.

Neil D. Lawrence. Gaussian process latent variable models for visualisation of
high dimensional data. In Neural Information Processing Systems (NeurIPS),
2003. URL https://proceedings.neurips.cc/paper/2003/file/
9657c1fffd38824e5ab0472e022e577e-Paper.pdf.
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A HYPERBOLIC MANIFOLD

A.1 EQUIVALENCE OF POINCARÉ AND LORENTZ MODELS

As pointed out in the main text (§ 2), it is possible to map points from the Lorentz model to the
Poincaré ball via an isometric mapping. Formally, such an isometry is defined as the mapping
function f : Ld → Pd such that

f(x) =
(x1, . . . , xd)

T

x0 + 1
, (12)

where x ∈ Ld with components x0, x1, . . . , xd. The inverse mapping f−1 : Pd → Ld is defined as
follows

f−1(y) =

(
1 + ∥y∥2, 2y1, . . . , 2yd

)T
1− ∥y2∥

, (13)

with y ∈ Pd with components y1, . . . , yd. Notice that we used the mapping Eq. 12 to represent the
hyperbolic embeddings in the Poincaré disk throughout the paper, as well as in the computation of
the kernel kH

2

Eq. 4.

A.2 MANIFOLD OPERATIONS

As mentioned in the main text (§ 2), we resort to the exponential and logarithmic maps to operate
with Riemannian manifold data. The exponential map Expx(u) : TxM→Mmaps a point u in the
tangent space of x to a point y on the manifold, while the logarithmic map Logx(u) :M→ TxM
performs the corresponding inverse operation. In some settings, it is necessary to work with data
lying on different tangent spaces of the manifold. In this case, one needs to operate with all data
on a single tangent space, which can be achieved by leveraging the parallel transport Px→y

(
u
)
:

TxM → TyM. All the aforementioned operators are defined in Table 2 for the Lorentz model
Ld. Moreover, we introduce the inner product ⟨u,v⟩x between two points on Ld, which is used to
compute the geodesic distance dM(u,v) and all the foregoing operations in the Lorentz model, as
shown in Table 2.

Operation Formula
⟨u,v⟩x −u0v0 +

∑d
i=1 uivi

dM(u,v) arcosh(−⟨u,v⟩x)
Expx(u) cosh(∥u∥L)x+ sinh(∥u∥L) u

∥u∥L
with ∥u∥L =

√
⟨u,u⟩x

Logx(y)
dM(x,y)√

α2−1
(y + αx) with α = ⟨x,y⟩x

Px→y

(
v
)

v + ⟨y,v⟩x
1−⟨x,y⟩x (x+ y)

Table 2: Principal operations on Hd for the Lorentz model. For more details, see (Bose et al., 2020) and (Peng
et al., 2021).

B HYPERBOLIC KERNELS

As mentioned in the main text (§ 3.1), following the developments on kernels on manifolds like
Borovitskiy et al. (2020); Jaquier et al. (2021), we may identify the generalized squared exponential
kernel with the heat kernel—an important object studied on its own in the mathematical literature.
Due to this, we can obtain the expressions Eq. 4. The expression for the case of H2 requires dis-
cretizing the integral, which may lead to an approximation that is not positive semidefinite. We
address this by suggesting another approximation guaranteed to be positive semidefinite.

Reversing the derivation in (Chavel, 1984, p. 246), we obtain

kH
2

∞,κ,σ2(x,x′) =
σ2

C ′
∞

∫ ∞

0

exp(−s2/(2κ2))P−1/2+is(cosh(ρ))s tanh(πs)ds, (14)
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where ρ = distHd(x,x′) denotes the geodesic distance between x,x′ ∈ H2, κ and σ2 are the kernel
lengthscale and variance, C ′

∞ is a normalizing constant and Pα are Legendre functions Abramowitz
& Stegun (1964). Now we prove that these Legendre functions are connected to the spherical
functions — special functions closely tied to the geometry of the hyperbolic space and possessing a
very important property.
Proposition. Assume the disk model of H2 (i.e. the Poincaré disk). Denote the disk by D and
its boundary, the circle, by T. Define the hyperbolic outer product by ⟨z, b⟩ = 1

2 log
1−|z|2
|z−b|2 for

z ∈ D, b ∈ T. Then

P−1/2+is(cosh(ρ)) =

∫
T
e(2si+1)⟨z,b⟩db︸ ︷︷ ︸

spherical function ϕ2s(z)

=

∫
T
e(2si+1)⟨z1,b⟩e(2si+1)⟨z2,b⟩db, (15)

where z ∈ D is such that ρ = distH2(z,0) and z1, z2 ∈ D are such that ρ = distH2(z1, z2). Here
i denotes the imaginary unit and z is the complex conjugation.

Proof. Let θ denote the angle between z and b, and note the following simple identities
|z − b|2 = |z|2 + 1− 2|z| cos(θ) = tanh(ρ)2 + 1− 2 tanh(ρ) cos(θ), (16)

1− |z|2 = 1− tanh(ρ)2 = cosh(ρ)−2. (17)
Then, we write

e(2si+1)⟨z,b⟩ =

(
|z − b|2

1− |z|2

)−si−1/2

=
(
cosh(ρ)2(tanh(ρ)2 + 1− 2 tanh(ρ) cos(θ))

)−si−1/2
,

(18)

=
(
sinh(ρ)2 + cosh(ρ)2 − 2 sinh(ρ) cosh(ρ) cos(θ)

)−si−1/2
,

(19)

= (cosh(2ρ) + sinh(2ρ) cos(θ))
−si−1/2

. (20)

On the other hand, by (Lebedev et al., 1965, Eq. 7.4.3), we have Pa(cosh(x)) =
1
π

∫ π

0
(cosh(x) +

sinh(x) cos(θ))adθ, hence

P−1/2+is(cosh(2ρ)) =
1

π

∫ π

0

(cosh(2ρ) + sinh(2ρ) cos(θ))−1/2+isdθ, (21)

=
1

2π

∫ π

−π

(cosh(2ρ) + sinh(2ρ) cos(θ))−1/2+isdθ, (22)

=

∫
T
e(−2si+1)⟨z,b⟩db = ϕ−2s(z). (23)

This computation roughly follows Cohen & Lifshits (2012, Section 4.3.4). Now, by Cohen & Lif-
shits (2012, Section 3.5), we have ϕ−2s(z) = ϕ2s(z) which proves the first identity. Finally, Lemma
3.5 from Cohen & Lifshits (2012) proves the second identity.

By combining expressions Eq. 14 and Eq. 15, we get the following Monte Carlo approximation

kH
2

∞,κ,σ2(x,x′) ≈ σ2

C ′
∞

1

L

L∑
l=1

sl tanh(πsl)e
(2sli+1)⟨xP ,bl⟩e(2sli+1)⟨x′

P ,bl⟩, (24)

where bl
i.i.d.∼ U(T) and sl

i.i.d.∼ e−s2κ2/21[0,∞)(s). This gives the approximation used in the main
text (see § 3.1).

Having established a way to evaluate or approximate the heat kernel, analogs of Matérn kernels can
be defined by

kν,κ,σ2(x,x′) =
σ2

Cν

∫ ∞

0

uν−1e−
2ν
κ2 uk̃∞,

√
2u,σ2(x,x

′)du, (25)

where k̃∞,
√
2u,σ2 is the same as k∞,

√
2u,σ2 but with the normalizing constant σ2/C∞ dropped for

simplicity. Here Cν is the normalizing constant ensuring that kν,κ,σ2(x,x) = σ2 for all x.
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C GPHLVM VARIATIONAL INFERENCE

As mentioned in § 3.2, when training our GPHLVM on large datasets, we resort to variational
inference as originally proposed in (Titsias & Lawrence, 2010). Here we provide the mathematical
details about the changes that are needed to train our model via variational inference.

C.1 COMPUTING THE KL DIVERGENCE BETWEEN TWO HYPERBOLIC WRAPPED NORMAL
DISTRIBUTIONS

As mentioned in § 3.2, we approximate the KL divergence between two hyperbolic wrapped distri-
butions via Monte-Carlo sampling. Namely, given two hyperbolic wrapped distributions qϕ(x) and
p(x), we write

KL
(
qϕ(x)||p(x)

)
=

∫
qϕ(x) log

qϕ(x)

p(x)
dx ≈ 1

K

K∑
k=1

log
qϕ(xk)

p(xk)
, (26)

where we used K independent Monte-Carlo samples drawn from qϕ(x) to approximate the KL
divergence. These samples are obtained via the procedure described in § 2, i.e., by sampling an
element on the tangent space of the origin µ0 = (1, 0, . . . , 0)T of Hd, via a Euclidean normal
distribution, and then applying the parallel transport operation and the exponential map to project it
onto Hd.

C.2 DETAILS OF THE VARIATIONAL PROCESS

As mentioned in the main text, the marginal likelihood p(Y ) is approximated via variational in-
ference by approximating the posterior p(X|Y ) with the hyperbolic variational distribution qϕ(X)
as defined by Eq. 6. The lower bound Eq. 7 is then obtained, similarly as in (Titsias & Lawrence,
2010), as

log p(Y ) = log

∫
p(Y |X)p(X)dX (27)

= log

∫
p(Y |X)p(X)

qϕ(X)

qϕ(X)
dX = logEqϕ(X)

[
p(Y |X)p(X)

qϕ(X)

]
(28)

≥ Eqϕ(X)

[
log

p(Y |X)p(X)

qϕ(X)

]
=

∫
qϕ(X) log

p(Y |X)p(X)

qϕ(X)
dX (29)

=

∫
qϕ(X) log p(Y |X)dX −

∫
qϕ(X) log

qϕ(X)

p(X)
dX (30)

= Eqϕ(X) [log p(Y |X)]− KL
(
qϕ(X)||p(X)

)
, (31)

following Jensen’s inequality in Eq. 29. As mentioned in § 3.2, the expectation
Eqϕ(X) [log p(Y |X)] can be decomposed into individual terms for each observation dimension as∑D

d=1 Eqϕ(X) [log p(yd|X)], where yd is the d-th column of Y . We then define the inducing in-
puts Zd and inducing variables ud the same way as the noiseless observations fd, so that the joint
distribution of fd and ud can be written as

p(fd,ud) =

(
fd

ud

)
= N

((
md(X)

md(Zd)

)
,

(
kd(X,X) kd(X,Zd)

kd(Zd,X) kd(Zd,Zd)

))
. (32)
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The lower bound Eq. 8 is then obtained for each dimension, similarly as in (Hensman et al., 2015),
as

log p(yd|X) =

∫
log p(yd|X,ud)p(ud)dud (33)

= log

∫
p(yd|X,ud)p(ud)

qλ(ud)

qλ(ud)
dud = logEqλ(ud)

[
p(yd|X,ud)p(ud)

qλ(ud)

]
(34)

≥ Eqλ(ud)

[
log

p(yd|X,ud)p(ud)

qλ(ud)

]
=

∫
qλ(ud) log

p(yd|X,ud)p(ud)

qλ(ud)
dud (35)

=

∫
qλ(ud) log p(yd|X,ud)dud −

∫
qλ(ud) log

qλ(ud)

p(ud)
dud (36)

= Eqλ(ud) [log p(yd|X,ud)]− KL
(
qλ(ud)||p(ud)

)
(37)

≥ Eqλ(ud)

[
Ep(fd|ud) [log p(yd|fd(X))]

]
− KL

(
qλ(ud)||p(ud)

)
(38)

= Eqλ(fd) [log p(yd|fd(X))]− KL
(
qλ(ud)||p(ud|Zd)

)
(39)

= Eqλ(fd)

[
logN (yd;fd(X), σ2

d)
]
− KL

(
qλ(ud)||p(ud|Zd)

)
, (40)

where we defined qλ(fd) =
∫
p(fd|ud)qλ(ud)dud with the Euclidean variational distribution

qλ(ud) = N (ud; µ̃d, Σ̃d), and wrote p(ud|Zd) = p(ud) for simplicity. The inequality Eq. 35
corresponds to Jensen’s inequality, while Eq. 38 is shown in (Titsias, 2009).

Finally, substituting Eq. 40 in Eq. 31 results in the following bound on the marginal likelihood

log p(Y ) ≥
N∑

n=1

D∑
d=1

Eqϕ(xn)

[
Eqλ(fn,d)

[
logN (yn,d; fn,d(xn), σ

2
d)
]]

−
D∑

d=1

KL
(
qλ(ud)||p(ud|Zd)

)
−

N∑
n=1

KL
(
qϕ(xn)||p(xn)

)
. (41)

D MATÉRN KERNELS ON TAXONOMY GRAPHS

As explained in § 4 of the main paper, we leverage the Matérn kernel on graphs proposed by Borovit-
skiy et al. (2021) to design a kernel for our back-constrained GPHLVM that accounts for the geome-
try of the taxonomy graph. Here we provide the main equations of such a kernel, and refer the reader
to (Borovitskiy et al., 2021) for further details. Formally, let us define a graph G = (V,E) with ver-
tices V and edges E and the graph Laplacian as ∆ = D −W , where W is the graph adjacency
matrix and D its corresponding diagonal degree matrix, with Dii =

∑
j Wij . The eigendecom-

position UΛUT of the Laplacian ∆ is then used to formulate both the SE and Matérn kernels on
graphs, as follows,

kG∞,κ(cn, cm) = U
(
e−

κ2

2 Λ
)
UT, and kGν,κ(cn, cm) = U

(
2ν

κ2
+Λ

)−ν

UT, (42)

where κ is the lengthscale (i.e., it controls how distances are measured) and ν is the smoothness pa-
rameter determining mean-squared differentiability of the associated Gaussian process (GP). Note
that the graph kernel expressions in Eq. 42 are obtained by considering the connection between
Matérn kernel GPs and stochastic partial differential equations, originally proposed by Whittle
(1963) and later extended to Riemannian manifolds in (Borovitskiy et al., 2020). This connection
establishes that SE and Matérn GPs satisfy

e−
κ2

4 ∆f = W , and
(
2ν

κ2
+∆

) ν
2

f = W , (43)

where W ∼ N (0, I) and f : V → R, which lead to definition of graph GPs (Borovitskiy et al.,
2021).
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(a) Reg. with Ldistortion (b) Distances for 6a. (c) Reg. with L̃distortion (d) Distances for 6c.

Figure 6: Embeddings learned with distortion regularization. (a) and (c) display the latent embeddings after
training our GPHLVM model with an added distortion loss Ldistortion as it was originally defined, and with our
modified distortion loss L̃distortion, respectively. These embeddings indeed show that our regularizations failed
to encode the distances in the graph (comparing the distances provided in (b) and (d) with Fig. 3).

E DISTORTION LOSS

As explained in the paper, we focus on two ways of embedding the graph in the hyperbolic space:
a global approach using a stress regularization which matches graph distances with geodesic dis-
tances, and a combination between this stress regularization and the use of back constraints (see
§ 4). However, the literature on graph embeddings also surveys a distortion loss (Cruceru et al.,
2021) given by

Ldistortion(X) =
∑
i<j

∣∣∣∣distHQ(xi,xj)
2

distG(ci, cj)2
− 1

∣∣∣∣2 , (44)

which tries to match the graph and manifold distances by minimizing their ratio’s distance to 1.

We found that our problem is more subtle than usual graph embeddings, given that several points
in our dataset may correspond to the same graph node (e.g., two different poses in which the left
foot is the only limb in contact). Indeed, notice that Eq. 45 is ill-defined for the case i = j (or
equivalently distG(ci, cj)

2 = 0). This is because all nodes xi are assumed to be different from each
other. However, in our setup, several xi may correspond to the exact same class in the taxonomy.

Our first attempt to remediate this was to add a simple regularizer ε = 10−1 to the denominator.
However, this caused the loss to give more weight to the points where distG(ci, cj)2 = 0 (see Fig. 6a-
6b for the outcome of training a GPHLVM with this type of regularization). We then considered an
alternate definition of distortion in which the term inside the sum is given by

L̃distortion(xi,xj) =

{
λ1 distHQ(xi,xj) if xi and xj’s classes are identical
λ2Ldistortion(xi,xj) otherwise

(45)

where λ1, λ2 ∈ R+ are hyperparameters. λ1 governs how much we encourage latent codes of
the same class to collapse into a single point, while λ2 weights how much the geodesic distance
should match the graph distance. After manual hyperparameter tuning, we obtained the latent space
and distance matrix portrayed in Figs. 6c-6d. As can be seen in both accounts, the distortion loss
produced lackluster results and failed to properly match the latent space distances with that of the
graph. For these experiments, we used a loss scale of 50, λ1 = 0.01 and λ2 = 10, meaning that we
strongly encouraged the distances between non-identical classes to match in ratio.

F ADDITIONAL DETAILS ON THE EXPERIMENTS OF § 5

F.1 DATA

Table 3 describes the data of the whole-body support pose taxonomy used in the experiments re-
ported in § 5. Each pose is identified with a support pose category, i.e., a node of the graph in
Fig. 1-right, and with a set of associated contacts. As shown in the table, some support poses in-
clude several sets of contacts. For example, the support pose F groups all types of support poses
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where only one foot is in contact with the environment. Notice that some sets of contacts are not
represented in the data and thus do not appear in Table 3.

Support pose Contacts Number

F
Left foot 7

Right foot 6

FH

Left foot, left hand 5
Right foot, right hand 6
Left foot, right hand 5
Right foot, left hand 6

F2 Left foot, right foot 6

FH2
Left foot, left hand, right hand 6

Right foot, left hand, right hand 6

F2H
Left foot, right foot, left hand 5

Left foot, right foot, right hand 7
F2H2 Left foot, right foot, left hand, right hand 7

K
Left knee 1

Right knee 1

FK
Left foot, right knee 2
Right foot, left knee 3

KH
Left knee, left hand 4

Right knee, right hand 1
K2 Left knee, right knee 1

FKH
Right foot, left knee, left hand 5

Left foot, right knee, right hand 2
KH2 Left knee, left hand, right hand 1

K2H
Left knee, right knee, left hand 2

Left knee, right knee, right hand 1
FKH2 Right foot, left knee, left hand, right hand 2
K2H2 Left knee, right knee, left hand, right hand 2

Table 3: Poses description extracted from the whole-body support pose taxonomy (Borràs et al., 2017) used in
§ 5 and App. G.

F.2 TRAINING PARAMETERS AND PRIORS

Table 4 describes the hyperparameters used for the experiments reported in § 5 and App. G. We
used the hyperbolic kernels defined in § 3.1 for the GPHLVMs, and the classical SE kernel for
the Euclidean models. For the back-constraints mapping Eq. 11, we defined kR

D

(yn,ym) as the
product of a Euclidean SE kernel with lengthscale κRD , and kG(cn, cm) as a graph Matérn kernel
with smoothness ν = 2.5 and lengthscale κG. We additionally scaled the product of kernels with
a variance σRD,G. For training the back-constrained GPHLVM and GPLVM, we used a Gamma
prior Gamma(α, β) with shape α and rate β on the lengthscale κ of the kernels. The embeddings
of the Euclidean models were initialized with PCA. For the GPHLVMs, the initial embeddings
ṽ obtained via PCA were transformed to elements of the tangent space Tµ0

HQ at the origin µ0

by setting v = (0, ṽ)T and then projected to the hyperbolic manifold using the exponential map.
All models were trained by maximizing the loss L = LMAP − γLstress, where LMAP denotes the
log posterior of the model, Lstress is the stress-based regularization loss defined in Eq. 10, and γ
is a parameter balancing the two losses. The optimization was conducted using the Riemannian
Adam optimizer (Bécigneul & Ganea, 2019) implemented in Geoopt (Kochurov et al., 2020) with a
learning rate of 0.05.

For the first part of the experiments on taxonomy expansion, we encoded unseen poses of each
class for the back-constrained GPLVM and GPHLVM with a stress regularization using the models
presented in Table 4. For the second part of the experiments, we left the class FH out during training
and we “embedded” it using the back-constraints mapping. The newly-trained models also followed
the same hyperparameters presented in Table 4.
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Experiment Model Regularization Loss scale γ Prior on κH/RQ κRD κG σRD,G

Hyperbolic embeddings
of support poses (§ 5)

GPLVM on R2
No regularizer 0 None - - -
Stress 6 None - - -
BC + Stress 1.3 Gamma(2, 2) 0.9 0.6 2

GPHLVM on H2
No regularizer 0 None - - -
Stress 6 None - - -
BC + Stress 1.3 Gamma(2, 2) 0.9 0.6 2

Hyperbolic embeddings
in H3 (App. G.1)

GPLVM on R3
No regularizer 0 None - - -
Stress 10 None - - -
BC + Stress 1.5 Gamma(2, 2) 0.9 0.6 2

GPHLVM on H3
No regularizer 0 None - -
Stress 10 None - - -
BC + Stress 1.5 Gamma(2, 2) 0.9 0.6 2

Hyperbolic embed-
dings of standing poses
(App. G.2)

GPLVM on R2
No regularizer 0 None - - -
Stress 5 None - - -
BC + Stress 0.7 Gamma(2, 2) 0.9 0.6 2

GPHLVM on H2
No regularizer 0 None - - -
Stress 5 None - - -
BC + Stress 0.7 Gamma(2, 2) 0.9 0.6 2

Hyperbolic embeddings
of standing poses with
an augmented taxonomy
(App. G.3)

GPLVM on R3
No regularizer 0 None - - -
Stress 5 None - - -
BC + Stress 1.5 Gamma(2, 2) 2.0 0.8 2

GPHLVM on H3
No regularizer 0 None - - -
Stress 5 None - - -
BC + Stress 1.5 Gamma(2, 2) 2.0 0.8 2

Table 4: Summary of experiments and list of hyperparameters.

F.3 MARGINAL LOG-LIKELIHOODS OF TRAINED MODELS

Regularization MLL

R2
No reg. -27.57
Stress -55.33
BC+Stress 5.43

Regularization MLL

H2
No reg. -24.37
Stress -49.20
BC+Stress 7.67

Table 5: Marginal log-likelihood per geometry and regularization.

Table 5 shows the marginal log-
likelihood (MLL) of the GPHLVM
and GPLVM described in § 5. We
observe that the hyperbolic models
achieve a higher likelihood that their
Euclidean counterparts.

F.4 FURTHER DETAILS ON TRAJECTORY GENERATION VIA GEODESICS

Table 6 describes the transitions between support poses obtained by following the geodesic trajecto-
ries of the back-constrained GPHLVM and GPLVM with stress prior depicted in Fig. 2c. In contrast
to GPHLVM, the Euclidean GPLVM often results in transitions that do not exist in the taxonomy.
Interestingly, it also often uses more transitions than those originally needed. Notice that similar
results are observed for the GPHLVM and GPLVM with stress prior depicted in Fig. 2b.

Start End Transitions in H2 Transitions in R2

F F2H F→ FH→ F2H F→FH2 → FH→ F2H

F F2H2 F→ FH→ F2H→ F2H2 F→FH2 → F2H2

F FH2 F→ FH→ FH2 F→FH2

F2H FH2 F2H→ FH→ FH2 F2H→ FH→ FH2

F FK F→ F2 → FK F→FH2 → FH→ F2H→ F2→FKH→ FK

F2 K2 F2 → FK→ K2 F2→FKH→ FK→ FKH→ FKH2 → KH2→K2

FH K2H FH→ F2H→FH2→FKH→ KH→ K2H FH→ F2H→ F2→FKH→ FK→ FKH→ FKH2→K2H

Table 6: Transitions (→) between classes of the taxonomy obtained by following the geodesic trajectories
depicted in Fig. 2c. The classes and transitions correspond to the colors along the trajectories and match the
class corresponding to the closest embedding at each point along the geodesic. Transitions that do not exist in
the taxonomy are denoted as →.
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 7: The first and last two rows respectively show the latent embeddings and examples of interpolating
geodesics in P3 and R3, followed by pairwise distance matrices. Embeddings colors match those of Fig. 1-
right. Added poses (d) and classes (e) are marked with crosses and highlighted with red in the distance matrices.

G ADDITIONAL EXPERIMENTS

G.1 HYPERBOLIC EMBEDDINGS OF SUPPORT POSES IN H3

In this section, we embed the 100 poses used in § 5 into 3-dimensional hyperbolic and Euclidean
spaces to analyze the performance of the proposed models in higher-dimensional latent spaces.

Regularization Stress ±σ

R3
No regularizer 4.04±4.38
Stress 0.18±0.34
BC+Stress 1.59±1.99
— ” —: unseen poses 0.16±0.25
— ” —: unseen class 0.99±0.74

H3
No regularizer 3.83±4.17
Stress 0.15±0.22
BC+Stress 0.19±0.28
— ” —: unseen poses 0.18±0.26
— ” —: unseen class 0.68±0.74

Table 7: Average stress per geome-
try and regularization.

Namely, we test the GPHLVM and GPLVM without regulariza-
tion, with stress prior, and with back-constraints coupled with
stress prior, similarly to the experiments on 2-dimensional latent
spaces reported in the paper. Figs. 7a-7c show the learned embed-
dings alongside the corresponding distance matrices, which are to
be compared with the graph distances in Fig. 3. As expected, and
similarly to the 2-dimensional embeddings of Fig. 2a, the mod-
els without regularization do not encode any meaningful distance
structure in the latent spaces (see Fig. 7a). In contrast, the models
with stress prior result in embeddings that comply with the tax-
onomy graph structure, and the back constraints further organize
the embeddings inside a class according to the similarity between
their observations (see Figs. 7b-7c).

We observed a prominent stress reduction for the Euclidean 3-
dimensional latent spaces compared to the 2-dimensional ones
(see Table 7), as well as a reduction of non-existing transitions
when following geodesic trajectories (see Table 8). This is due to the increase of volume avail-
able to match the graph structure in R3 relatively to R2. However, all Euclidean models are still
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outperformed by the 2-dimensional hyperbolic embeddings presented in § 5 (see Table 1). This is
due to the fact that the volume of balls in hyperbolic space increases exponentially with respect to
the radius of the ball rather than polynomially as in Euclidean space. In other words, the geometry
of the hyperbolic manifold increases the volume available to match the graph structure compared to
Euclidean spaces, thus resulting in better low-dimensional representations of taxonomy data. Notice
that the GPHLVM models with 3-dimensional hyperbolic latent space result in a similar or slightly
reduced stress compared to their 2-dimensional counterparts (presented in § 5). This indicates that
the volume of the 2-dimensional hyperbolic latent space is sufficient to represent the considered data.
Moreover, similarly as for the 2-dimensional cases, the back-constrained GPHLVM and GPLVM al-
low us to properly place unseen poses or taxonomy classes into the latent space (see Figs. 7d-7e).

Start End Transitions in H3 Transitions in R3

F F2H F→ FH→ F2H F→ FH→ F2H

F F2H2 F→ FH→ F2H→ F2H2 F→ FH→F2H2

F FH2 F→ FH→ FH2 F→ FH→ FH2

F2H FH2 F2H→ FH→ FH2 F2H→ FH→ FH2

F FK F→ F2 → FK F→ F2 → FK

F2 K2 F2 → FK→ K2 F2 → FK→ K2

FH K2H FH→ F2H→ FKH→ KH→ K2H FH→ F2H→ FKH→ FKH2→K2H

Table 8: Transitions (→) between classes of the taxonomy obtained by following the geodesic trajectories
depicted in Fig. 7c. The classes and transitions correspond to the colors along the trajectories and match the
class corresponding to the closest embedding at each point along the geodesic. Transitions that do not exist in
the taxonomy are denoted as →.

G.2 HYPERBOLIC EMBEDDINGS OF STANDING POSES

In this section, we consider a different subset of the whole-body support pose taxonomy, leading
to a different graph. Namely, we use 60 standing poses of the dataset in (Mandery et al., 2016)
and (Langenstein, 2020), which correspond to graph nodes of standing support poses (left side of
the graph in Fig. 1). Specifically, we use a balanced dataset composed of 5 poses for each of the
contact sets of the standing support poses described in Table 3. We embed the 60 poses into 2-
dimensional hyperbolic and Euclidean spaces using GPHLVM and GPLVM. For each approach, we
test the model without regularization, with stress prior, and with back-constraints coupled with stress
prior using the parameters described in App. F.2 and Table 4.

Figs. 8a-8c show the learned embeddings alongside their corresponding distance matrices, which
are to be compared with the graph distances in Fig. 9a. As for the previous experiments, the models
with stress prior result in embeddings that comply with the taxonomy graph structure, with addi-
tional intra-class organizations for the back-constrained models. It is worth noticing that, despite
the fact that the considered taxonomy graph is smaller than for the previous experiments, all Eu-
clidean GPLVMs remain outperformed by the hyperbolic models, which better match the taxonomy
structure (see also Table 9b). Similarly to the experiments reported in § 5, the back-constrained
GPHLVM and GPLVM allow us to properly place unseen poses or taxonomy classes into the latent
space (see Figs. 8d-8e). As mentioned in the main text, our GPHLVM intrinsically provides a mech-
anism to plan motions via geodesics in the low-dimensional latent space. Examples of geodesics
between two standing poses are shown in Figs. 8b-8c, where the trajectory color matches the class
corresponding to the closest latent point. The transitions between standing support poses obtained
by following these geodesic trajectories are also described in Table 9. As for our previous experi-
ments, the geodesics, i.e., shortest paths, in the GPHLVM latent space correspond to shortest paths
in the taxonomy graph. Due to the size of the taxonomy graph, we observe fewer forbidden (i.e.
nonexistent) transitions than for the previous experiments in the Euclidean models. However, as
their latent space does not match the taxonomy structure, they often require additional transitions
and thus do not follow shortest paths in the taxonomy graph.
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 8: Embeddings of standing poses: The first and last two rows respectively show the latent embeddings
of bipedal poses and examples of interpolating geodesics in P2 and R2, followed by pairwise distance matrices.
Embeddings colors match those of Fig. 1-right, and background colors indicate the GPLVM uncertainty. Added
poses (d) and classes (e) are marked with stars and highlighted with red in the distance matrices.

(a) Graph distance between the standing poses.

Regularization Stress ±σ

R2
No regularizer 1.69±1.96
Stress 0.62±1.41
BC+Stress 0.68±0.96
— ” —: unseen poses 0.61±0.84
— ” —: unseen class 0.47±0.38

H2
No regularizer 1.66±1.95
Stress 0.07±0.09
BC+Stress 0.15±0.18
— ” —: unseen poses 0.17±0.20
— ” —: unseen class 0.22±0.31

(b) Average stress per geometry and regularization.

Figure 9: Embeddings of standing poses: (a) shows the graph distance following the left part of Fig. 1-right.
(b) shows the stress resulting from the different embeddings of standing poses.
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Start End Transitions in H2 Transitions in R2

F F2H F→ FH→ F2H F→ F2 → F→ F2 → FH→ F2H

F F2H2 F→ FH→ F2H→ F2H2 F→ F2 → F→FH2 → F2H2

F FH2 F→ FH→ FH2 F→ F2 → F→FH2

F2H FH2 F2H→ FH→ FH2 F2H→ FH→ F2 → F→ F2 → F→FH2 → F2H2 → FH2

Table 9: Embeddings of standing poses: Transitions (→) between classes of the taxonomy obtained by fol-
lowing the geodesic trajectories depicted in Fig. 8c. The classes and transitions correspond to the colors along
the trajectories and match the class corresponding to the closest embedding at each point along the geodesic.
Transitions that do not exist in the taxonomy are denoted as →.

G.3 HYPERBOLIC EMBEDDINGS OF STANDING POSES WITH AN AUGMENTED TAXONOMY
FOR IMPROVED TRAJECTORY GENERATION

As shown in § 5, geodesics in the hyperbolic latent space of our GPHLVM intrinsically provide
a mechanism to plan motions accounting for the underlying taxonomy. However, as discussed in
§ 5, the whole-body support pose taxonomy (Borràs et al., 2017) lacks information about the type
of contact in the considered poses, thus leading to artifacts in the geodesic-generated motions. In
the main paper, we showed that the quality of the generated motion is improved by augmenting the
whole-body support pose taxonomy with additional contact information. To do so, we considered an
augmented whole-body support pose taxonomy which explicitly distinguishes between left and right
contacts. In other words, the nodes and transitions of Fig. 1-right are adapted to consider left and
right contacts. For instance, the 1-foot contact (F) node is separated into left-foot (Fl) and right-foot
(Fr) contact nodes. To facilitate motion planning and to test the GPHLVM ability of dealing with
high-dimensional spaces, we represent each pose as a vector yn ∈ R44 of joint angles instead of a
vector of hands and feet positions.

We embed the 60 standing poses described in App. G.2 into 3-dimensional hyperbolic and Euclidean
spaces using GPHLVM and GPLVM, respectively. For each approach, we test the model without
regularization, with stress prior, and with back-constraints coupled with stress prior using the pa-
rameters described in App. F.2 and Table 4. Figs. 10a-10c show the learned embeddings alongside
their corresponding distance matrices, which are to be compared with the graph distances of the aug-
mented taxonomy in Fig. 11a. Similarly to previous experiments, the models with stress prior result
in embeddings complying with the taxonomy graph structure (Fig. 10b), with additional intra-class
organizations for the back-constrained models (Fig. 10c). Notice that the embeddings differentiate
between left and right contacts according to the augmented taxonomy: For instance, we observe
four clusters of orange embeddings corresponding to FlHl, FlHr, FrHl, and FrHr. As shown in Ta-
ble 11b, the hyperbolic models better represent the taxonomy structure and outperform the Euclidean
models. Similarly to previous experiments, the back-constraint mapping introduced in § 4 allows us
to properly place unseen poses or taxonomy classes into the latent space (see Figs. 10d-10e).

Examples of motions planned by following geodesics between two standing poses in the hyperbolic
latent space are displayed in the main paper (Fig. 5). The corresponding geodesics are shown in
Fig. 10c, with the colors along the trajectory matching the class corresponding to the closest hy-
perbolic latent point. The resulting transitions are given in Table 10. As mentioned in the main
paper, we observe that, in contrast to the trajectories of Fig. 4, the motions generated by considering
the augmented taxonomy (Fig. 5) result in more realistic – human-like – interpolations between the
given initial and final poses. Moreover, these motions look more realistic than the motions obtained
via linear interpolation in the Euclidean latent space of the vanilla back-constrained GPLVM. As
shown in Fig. 12, the motions planned in the Euclidean latent space sometimes result in unrealistic
joint configurations and the same posture is associated with different types of contacts (see middle
part of the motions). As shown in Table 10, non-existing transitions arise more frequently when
following trajectories generated by the Euclidean model.
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(a) Vanilla (b) Stress prior (c) BC + stress prior (d) Adding poses (e) Adding a class

Figure 10: Embeddings of standing poses considering the augmented whole-body support pose taxonomy: The
first and last two rows respectively show the latent embeddings and examples of interpolating geodesics in P3

and R3, followed by pairwise distance matrices. Embeddings colors match those of Fig. 1-right. Added poses
(d) and classes (e) are marked with crosses and highlighted with red in the distance matrices.

(a) Graph distance between the standing poses.

Regularization Stress ±σ

R3
No regularizer 3.85±3.63
Stress 0.31±0.31
BC+Stress 4.92±7.60
— ” —: unseen poses 1.93±2.34
— ” —: unseen class 2.31±3.24

H3
No regularizer 4.05±3.77
Stress 0.23±0.34
BC+Stress 1.25±2.14
— ” —: unseen poses 1.60±2.21
— ” —: unseen class 3.20±4.59

(b) Average stress per geometry and regularization.

Figure 11: Embeddings of standing poses considering the augmented whole-body support pose taxonomy:
(a) shows the graph distance (colors follow Fig. 1-right). (b) shows the stress resulting from the different
embeddings of standing poses.
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(a) Fl to F2H
r

(b) Fl to F2H2

(c) Fr to FrH2

(d) F2H
l to FlH2

Figure 12: Motions obtained via linear interpolation in the latent space of the vanilla Euclidean back-
constrained GPHLVM trained on the augmented taxonomy (Fig. 10c). Contacts are denoted by gray circles.
The colorbars identify the support pose of the closest pose in the latent space.

Start End Transitions in H3 Transitions in R3

Fl F2H
r Fl→F2H

r Fl → FlHl → F2H
l→F2H

r

Fl F2H2 Fl→F2H
l → F2H2 Fl → FlHl → F2H

l→F2H
r → F2H2

Fr FrH2 Fr → FrHr → FrH2 Fr → FrHl→FrHr → FrH2

F2H
l FlH2 F2H

l → F2H2 → FlH2 F2H
l→F2H

r → FlHr → FlH2

Table 10: Embeddings of standing poses considering the augmented whole-body support pose taxonomy: Tran-
sitions (→) between classes of the taxonomy obtained by following the geodesic trajectories depicted in Fig. 10.
The classes and transitions correspond to the colors along the trajectories and match the class corresponding
to the closest embedding at each point along the geodesic. Transitions that do not exist in the taxonomy are
denoted as →.

G.4 COMPARISON AGAINST VARIATIONAL AUTOENCODERS

Hyperbolic embeddings of support poses: In this section, we compare the trained GPHLVMs
of Fig. 2 with two additional baselines: a vanilla variational autoencoder (VAE) and a hyperbolic
variant of this VAE in which the latent space is the Lorentz model of hyperbolic geometry (akin
to Mathieu et al. (2019)). Both VAEs are designed with 12 input nodes, 6 hidden nodes, a 2-
dimensional latent space, and a symmetric decoder. Their encoder specifies the mean and standard
deviation of a normal distribution (resp. wrapped normal for the hyperbolic VAE), and their decoder
specifies the mean and standard deviation of the normal distribution that governs the reconstructions.
Both models are trained by maximizing an Evidence Lower Bound (ELBO) under similar regimes as
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(a) P2 Vanilla (b) R2 Vanilla (c) P2 Stress (d) R2 Stress

Figure 13: Embeddings of the VAE baselines: The first and second rows show the latent spaces of the (hy-
perbolic) VAE and the distance matrix between the latent codes, respectively. When comparing these distance
matrices and encodings with that of our GPHLVMs (see Fig. 2), we notice that our proposed model is better
able to preserve the graph distance structure. We argue this is because VAEs enforce latent spaces that follow a
unit Gaussian, which is an opposite goal to ours.

the GPHLVMs, i.e., 1000 epochs with a learning rate of 0.05. The KL divergence for the hyperbolic
VAE is computed using Monte Carlo estimates.

Regularization Stress ±σ

R2 No reg. 1.88±2.57
Stress 0.59±0.89

H2 No reg. 3.96±4.22
Stress 0.52±0.71

Table 11: Average stress per
geometry and regularization
for VAE baselines.

Importantly, the VAE models only seem to capture a global structure
that separates standing from kneeling poses (except the vanilla hyper-
bolic VAE in Fig. 13a). Although adding a stress regularization with
the same scale as for the GPHLVM (γ = 6) helps preserve the graph
distance structure, the embeddings organization is still not competitive
with the one achieved by our GPHLVM models (see Fig. 2). Moreover,
when compared to our proposed GPHLVM, all VAE models provide a
subpar uncertainty modeling in their latent spaces.

Table 11 shows that the average stress of the latent embeddings for the
VAE baselines (trained with and without stress regularization) is higher than the average stress of
our models (see Table 1). Overall, our proposed GPHLVM consistently outperforms all VAEs to
encode meaningful taxonomy information in the latent space. We argue that VAEs are not the right
tool for our target applications. When training VAEs, the Kullback-Leibler term in the ELBO tries
to regularize the latent space to match a unit Gaussian. This regularization is in stark contrast with
our goal of separating the embeddings to preserve the taxonomy graph distances.

Hyperbolic embeddings of standing poses with an augmented taxonomy: We further com-
pare our GPHLVM model against the vanilla and hyperbolic VAEs in the experiment described in
Sec. G.3. Namely, we consider the augmented whole-body support pose taxonomy which explicitly
distinguishes between left and right contacts and we represent each pose as a vector of joint angles.
This increases the dimensionality of the data to 44.

Regularization Stress ±σ

R3 No reg. 2.33±3.10
Stress 0.34±0.37

H3 No reg. 3.01±3.13
Stress 0.44±0.63

Table 12: Average stress per
geometry and regularization
for VAE baselines trained on
the augmented taxonomy (see
App. G.3).

We tested the vanilla and hyperbolic VAEs without regularization and
with a stress regularization with the same scale as for the GPHLVM
(γ = 1.5). Fig. 14 shows the learned embeddings alongside dis-
tance matrices, which are to be compared with the GPHLVM model of
Figs. 10b-10c and with the ground-truth graph distances of Fig. 11a.
Despite the stress regularization, the VAEs’ tendency to have unit-
normally distributed latent representations hinders the distance match-
ing. This is further quantified by the mean stress presented in Table 12,
which show a higher mean stress (0.34 and 0.44) than our model in the
same taxonomy (0.23, see Table 11b).
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(a) H3 Vanilla (b) R3 Vanilla (c) H3 Stress (d) R3 Stress

Figure 14: Embeddings of the VAE baselines considering the augmented whole-body support pose taxonomy:
The first and second rows show the latent spaces of the (hyperbolic) VAE and the distance matrix between the
latent codes, respectively.

GPHLVM Q = 2 GPHLVM Q = 3 GPLVM Q = 2 GPLVM Q = 3

Training 2.5× 103 8.91 5.9 6.3

Decoding 1.33× 10−2 1.57× 10−5 1.16× 10−5 1.22× 10−5

Table 13: Average runtime (in seconds) for training and decoding phases of our GPHLVM and vanilla GPLVM
over 5 experiments, using 2 and 3-dimensional latent spaces for both models. Training time was measured over
500 iterations for both models. The implementations are fully developed on Python, and runtime measurements
were taken using a standard laptop with 32 GB RAM, Intel Xeon CPU E3-1505M v6 processor and Ubuntu
20.04 LTS.

Fig. 15 shows examples of motions planned by following geodesics between two standing poses
in the hyperbolic VAE latent space. Similarly as the motions generated in the latent space of the
proposed GPHLVM (Fig. 5), these motions result in realistic interpolations between the given initial
and final poses.

G.5 RUNTIME

In order to show the computational cost of our approach, we ran a set of experiments to measure the
average runtime for the training and decoding phases, using 2 and 3-dimensional latent spaces. As a
reference, we added the runtime measurements of Euclidean counterpart, that is, the vanilla GPLVM.
Table 13 shows the runtime measurements. Note that the main computational burden arises in our
GPLHVM with a 2-dimensional latent space, which is in sharp contrast with the experiments using
a 3-dimensional latent space. As discussed in the main paper, this increase in computational cost is
mainly attributed to the 2-dimensional hyperbolic kernel.
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(a) Fl to F2H
r

(b) Fl to F2H2

(c) Fr to FrH2

(d) F2H
l to FlH2

Figure 15: Motions obtained via geodesic interpolation in the latent space of the hyperbolic VAE trained on the
augmented taxonomy (Fig. 14c). Contacts are denoted by gray circles. The colorbars identify the support pose
of the closest pose in the latent space.
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