
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEGS2: MEMORY-EFFICIENT GAUSSIAN SPLATTING
VIA SPHERICAL GAUSSIANS AND UNIFIED PRUNING

Anonymous authors
Paper under double-blind review

Ours: 117.4 FPS
3DGS(w SH): 27 FPS

Ours: 91.0 FPS
3DGS(w SH): 6.6 FPS

Ours: 34.9 FPS
3DGS(w SH): N/A

NVIDIA
GeForce RTX 3060 Laptop GPU

MediaTek
Dimensity 9400+

Qualcomm
Snapdragon 865

Figure 1: We present MEGS2, a memory-efficient framework designed to solve the rendering mem-
ory bottleneck of 3D Gaussian Splatting and enable high-quality, real-time rendering on edge de-
vices. As demonstrated in our WebGL-based viewer, 3D Gaussian Splatting(3DGS) with Spherical
Harmonics (SH) exhibits low frame rates on desktop GPU and fails to run on some mobile plat-
forms. In contrast, MEGS2 achieves interactive frame rates across all tested devices, significantly
expanding the applicability of 3DGS. The detailed result is in Appendix A.3 and A.4.

ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a dominant novel-view synthe-
sis technique, but its high memory consumption severely limits its applicability
on edge devices. A growing number of 3DGS compression methods have been
proposed to make 3DGS more efficient, yet most only focus on storage compres-
sion and fail to address the critical bottleneck of rendering memory. To address
this problem, we introduce MEGS2, a novel memory-efficient framework that
tackles this challenge by jointly optimizing two key factors: the total primitive
number and the parameters per primitive, achieving unprecedented memory com-
pression. Specifically, we fully replace the memory-intensive Spherical Harmon-
ics with lightweight, arbitrarily oriented and prunable Spherical Gaussian lobes
as our color representations. More importantly, we propose a unified soft prun-
ing framework that models primitive-number and lobe-number pruning as a sin-
gle constrained optimization problem. Experiments show that MEGS2 achieves a
50% static VRAM reduction and a 40% rendering VRAM reduction compared to
existing methods, while maintaining comparable rendering quality.

1 INTRODUCTION

Although 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has been rapidly replacing implicit
neural radiance fields (NeRF) (Mildenhall et al., 2020) as the dominant paradigm in neural rendering,
thanks to its fast reconstruction, real-time performance, and high-quality outputs, supporting its
application across devices with varying constraints has become increasingly important. As a result,
compression of 3DGS (Bagdasarian et al., 2025) is gaining significantly more attention, with the
goal of enabling real-world use cases on edge devices, such as mobile 3D scanning and previewing,
virtual try-on, and real-time rendering in video games.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Nevertheless, existing compression methods only focus on storage compression rather than memory
compression. While the former storage compression speeds up the one-time data transfer of 3DGS
files, the rendering memory dictates whether the 3DGS rendering process can run smoothly on edge
devices. This limits the applicability of 3DGS applications to low-end devices like cell phones.
For example, some methods based on neural compression, vector quantization, and hash grid com-
pression (Chen et al., 2024; Girish et al., 2024; Lee et al., 2024) achieve high storage compression
rates. However, these methods require decoding the full Gaussian parameters from a compressed
state before rendering, even resulting in a larger rendering memory than the 3DGS methods without
compression. Another branch of works, i.e., primitive pruning methods (Zhang et al., 2025b; Fang
& Wang, 2024), is effective at reducing both storage and rendering memory due to the reduced prim-
itives. However, these pruning methods still need to retain a substantial number of 3D Gaussians
for a reasonable rendering quality, which still consumes a large rendering memory. How to further
reduce the rendering memory of 3DGS-based rendering methods remains an open question.

In this paper, we observe that the overall memory consumption for 3DGS rendering is intrinsically
tied to two key factors: the total primitive count and the parameters per primitive. Thus, we propose
a novel framework that simultaneously reduces both factors, rather than only optimizing for the
primitive numbers in previous methods Zhang et al. (2025b); Fang & Wang (2024). Specifically,
the rendering VRAM can be divided into a static component and a dynamic component. The static
part relates directly to the total number of Gaussian primitives loaded into the renderer, which is a
product of the primitive count and the parameters per primitive. On the other hand, the dynamic
part, which consists of intermediate data like projected 2D Gaussian parameters and the tile-depth-
gaussian key-value table, is also related to the primitive count in the specific camera viewpoint. This
inherent relationship underscores that to reduce the overall memory footprint, we need to reduce
both the number of primitives and the per-primitive parameter size.

To address the memory bottleneck, we must reduce both primitive counts and per-primitive param-
eters. We first analyze the limitations of using Spherical Harmonics (SH) for color representation.
While effective for low-frequency lighting, SH functions are inherently global and require many
high-order coefficients to represent localized, high-frequency details like sharp highlights. This re-
sults in low parameter utilization and makes them difficult to compress due to the varying parameter
counts across different degrees. While SG-Splatting (Wang et al., 2024a) pioneered using Spheri-
cal Gaussians (SG) to mitigate these issues, they relied on a hybrid model combining SG with SH.
Advancing in this direction, we introduce fully standalone, arbitrarily-oriented, and prunable SG as
a more memory-efficient alternative. Such representation excel at modeling view-dependent signals
with very few parameters, and their complexity can be flexibly controlled by the number of lobes.
This inherent locality and sparsity make it a convenient and effective choice for compression.

Based on the SG-based representation, we further introduce a novel unified soft pruning frame-
work. We leverage the favorable properties of Spherical Gaussians to dynamically prune redun-
dant lobes for each primitive, thereby compressing the per-primitive parameter count. To achieve
a globally optimal memory footprint, our framework models the two traditionally separate pruning
problems—primitive-count pruning and per-primitive lobe pruning—as a single constrained opti-
mization problem, with the total parameter budget serving as a unified constraint. Extensive ex-
periments demonstrate that the proposed MEGS2 achieves an excellent balance between rendering
quality and VRAM efficiency.

Overall, our contributions can be summarized as follows:
• Advancing beyond the hybrid approach in SG-Splatting (Wang et al., 2024a), we introduce a

fully standalone color representation by replacing Spherical Harmonics entirely with arbitrarily-
oriented and prunable Spherical Gaussians. This significantly reduces the per-primitive parameter
count and thus lowers rendering VRAM with minimal impact on quality.

• We propose a unified soft pruning framework that models both primitive-count and lobe-count
as a memory-constrained optimization problem, which yields superior performance compared to
existing staged or hard-pruning methods.

• We achieve unprecedented memory compression for 3DGS, surpassing both vanilla and state-
of-the-art lightweight methods. Our method delivers over an 8× static VRAM compression and
nearly a 6× rendering VRAM compression compared to vanilla 3DGS, while maintaining or even
improving rendering quality. Furthermore, it still achieves a 2× static VRAM compression and a
40% rendering VRAM reduction over the SOTA method, GaussianSpa, with comparable quality.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 EVOLUTION OF SPLATTING-BASED SCENE REPRESENTATIONS

While Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) and their variants (Barron et al.,
2021; Müller et al., 2022; Barron et al., 2023) achieved excellent quality in novel view synthesis,
their slow rendering speeds precluded real-time applications. 3D Gaussian Splatting (3DGS) (Kerbl
et al., 2023) overcame this limitation by introducing a differentiable rasterizer for 3D Gaussians,
enabling unprecedented real-time performance with high visual fidelity. The success of 3DGS, how-
ever, highlighted its primary challenge: a substantial memory and storage footprint. This has directly
motivated the body of work on 3DGS compression and pruning that we discuss subsequently.

2.2 MEMORY ANALYSIS IN 3DGS RENDERING

In most 3DGS compression studies (Bagdasarian et al., 2025), the rendering memory footprint has
not been thoroughly analyzed or compared. Memory usage can be conceptualized into two main
components: a static portion, consisting of the total parameters of all loaded Gaussian primitives,
and a dynamic portion, representing the runtime overhead. The dynamic overhead, which is highly
dependent on a renderer’s implementation, includes the storage of preprocessed 2D Gaussian at-
tributes—an overhead that scales significantly with the number of rendering channels, as seen in
multi-channel applications like Feature Splatting (Qiu et al., 2024). Additionally, it includes data
structures required by tile-based renderers, an overhead first discussed and optimized by FlashGS
(Feng et al., 2024) for large-scale scenes.

2.3 PRUNING TECHNIQUES FOR 3DGS

Pruning unimportant primitives is a natural and widely explored approach for 3DGS compression.
Some work has focused on refining adaptive density control strategies to achieve more efficient
representations (Kheradmand et al., 2025; Cheng et al., 2024; Liu et al., 2024a; Pateux et al., 2025;
Mallick et al., 2024; Kim et al., 2024). Other research has concentrated on defining better importance
metrics to decide which primitives to remove, with notable examples including LP-3DGS (Zhang
et al., 2024), mini-splatting (Fang & Wang, 2024), and Reduced3DGS (Papantonakis et al., 2024),
the latter of which also involves spherical harmonic pruning. A recent noteworthy development is
GaussianSpa (Zhang et al., 2025b), which models pruning as a constrained optimization problem,
offering a novel perspective and good compatibility with other pruning techniques. While effective
at reducing the number of primitives, these methods generally achieve a limited compression ratio
and are therefore often used as an initial step within a larger, integrated compression pipeline.

2.4 OTHER COMPRESSION SCHEMES FOR 3DGS

Besides pruning, researchers have applied common compression techniques like vector quantization,
scalar quantization, neural, and hash grid compression to 3DGS (Girish et al., 2024; Lee et al., 2024;
Fan et al., 2024; Lee et al., 2025; Liu et al., 2024b; Navaneet et al., 2024; Xie et al., 2024; Shin et al.,
2025). While methods with entropy encoding (Chen et al., 2024; 2025; Liu et al., 2025a; Wang
et al., 2024b) achieve the highest storage compression ratios, they are often limited to structured
(anchor-based) Gaussian representations (Lu et al., 2023; Ren et al., 2024; Zhang et al., 2025a).
These techniques may drastically reduce file size, but they fail to deliver a comparable reduction in
rendering memory. This is because they cannot render directly from a compressed state; instead,
they must first decode the full Gaussian parameters. The resulting memory footprint is, therefore,
never smaller than that required for uncompressed Gaussian primitives, and the decoding process
itself, particularly when involving neural networks, can introduce significant additional memory
overhead.

3 METHOD

We present MEGS2, Memory-Efficient Gausian Splatting via Spherical Gaussian and Unified Prun-
ing, a novel Gaussian compression framework designed from a VRAM-centric perspective. Our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Overall Objective

(B) Memory-contrained Optimization(A) Color Representation: Spherical Gaussian

(C) Post-processing Procedure

3
D

G
S

O
u

rs

Gaussian

Attributes

position

rotation

color

scale

opacity

Vanilla 3DGS

50% Attribute

Consumption↓

SH

𝒙 ∈ ℝ𝟑

𝒓 ∈ ℝ𝟒

𝒔 ∈ ℝ𝟑

𝒐 ∈ ℝ

𝒄 ∈ ℝ𝟒𝟖

Origin var.

Dual var. Proxy var.

𝒐: Opacity Vector

𝒔: Sharpness Vector

: Update Flow

: Proximal Operation Flow

Sharpness

Num

𝜖𝑠

Opacity

Num

𝜖𝑜
Primitive
Pruning

Lobe
Pruning

Color Compensation 𝛥𝑐0

Opacity Distribution Sharpness Distribution

270MB

3042MB

0.10 𝒐𝒐0

n n

0.10 𝒔1

n

0 𝒔

n

1

Spherical Gaussian

Base RGB

direction

sharpness

SG RGB

𝒄𝟎 ∈ ℝ𝟑

𝜶𝒊 ∈ ℝ𝟑
𝒔𝒊 ∈ ℝ+
𝝁𝒊 ∈ 𝕊𝟐

Surface Lobes

× 3

Figure 2: Overview of our proposed MEGS2. (A) In Section 3.2, we first replace the Spherical
Harmonics with arbitrarily-oriented and prunable Spherical Gaussians. (B) In Section 3.3.1, we
formulate the compression as a memory-constrained optimization problem, which is solved using
an ADMM-inspired approach (Section 3.3.2). (C) In Section 3.3.3, near-invalid primitives and low-
sharpness lobes are removed, and a color compensation term (Eq.12) is introduced to recover the
energy of the removed lobes.

method achieves an excellent balance between rendering quality and memory footprint by simulta-
neously optimizing both the number of Gaussian primitives and the average parameters per primi-
tive.

3.1 PRELIMINARIES FOR 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) represents a scene using a set of 3D Gaussian
primitives. Each primitive is defined by a center µ ∈ R3, a covariance matrix Σ ∈ R3×3, a scalar
opacity o, and a view-dependent color model. The color is determined by a function c(v) : S2 → R3,
which maps a viewing direction v to an RGB color. In the original work, this function is modeled
using Spherical Harmonics (SH).

To render an image, these 3D primitives are projected onto the 2D image plane. The final pixel color
is computed by alpha-blending the primitives that overlap with the pixel in front-to-back order,
according to the equation: C =

∑
i ciαi

∏i−1
j=1(1− αj). Here, the rendering opacity αi is a product

of the primitive’s scalar opacity oi and its 2D Gaussian value at the pixel location.

3.2 SPHERICAL GAUSSIANS

Although the original 3D Gaussian Splatting (3DGS) utilized Spherical Harmonics (SH) for color
modeling, as we discussed in Section 1, SH functions suffer from limitations in parameter efficiency
and the ability to model local and high-frequency signals.

In contrast, Spherical Gaussians (SG) offer a more compact representation, where the parameter
count can be controlled by adjusting the number of lobes. As we demonstrated in Figure 4, a three-
lobe SG requires only about half the parameters of a 3rd-order SH while achieving comparable
expressive power and superior high-frequency detail capture because, in most cases, we only need
to model highlights. Furthermore, as shown in Table 2, SG is more amenable to pruning than SH.

SG was first introduced in real-time rendering to support all-frequency shadows from both point
lights and environment lights (Wang et al., 2009). Specifically, a lobe of SG has the form

G(v;µ, s, a) = aes(µ·v−1), (1)

where µ ∈ S2 is the unit-length lobe axis, s ∈ R+ controls the sharpness, and a ∈ R3 is the RGB
amplitude vector, with v ∈ S2 being the viewing direction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We use the sum of all lobes of SG for color modeling and introduce a diffuse term to model the
direction-independent component. The view-dependent color c(v) is thus computed as:

c(v) = c0 +

n∑
i=1

G(v;µi, si, ai). (2)

where c(v) ∈ R3 is the final color from the viewing direction v ∈ S2, c0 ∈ R3 is the direction-
independent diffuse color, and the sum is over n all lobes of SG, with µi ∈ S2 being the lobe axis,
si ∈ R+ the sharpness, and ai ∈ R3 the RGB amplitude for the i-th spherical lobe.

Choice of arbitrarily-oriented SG lobes It is particularly notable that the lobe axes of different
SG are not constrained to be orthogonal, nor is any regularization term introduced to enforce or-
thogonality. Instead, each SG lobe is allowed to have an arbitrary direction. This flexibility grants
the SG model a higher degree of freedom, leading to greater representation capability compared to
models with fixed orthogonal axes. As shown in Figure 4 (in Appendix), SG-Splatting (Wang et al.,
2024a) with fixed orthogonal axes demonstrated significant rendering performance degradation, fur-
ther underscoring the importance of supporting arbitrarily oriented SG lobes.

3.3 UNIFIED SOFT-PRUNING FRAMEWORK

Benefiting from the property of Spherical Gaussians to control the number of parameters with the
number of lobes, they provide an ideal object for pruning. Given that most Gaussian primitives
in a scene require only a few lobes to effectively model their color, and that the number of Gaus-
sian primitives is itself often redundant, we propose a novel unified soft pruning framework. In
the framework, we first redefine the pruning of both Gaussian primitives and spherical lobes as a
unified optimization problem with a total memory-overhead constraint (Section 3.3.1). To handle
the non-differentiable nature of this constraint, we introduce an ADMM-inspired (Boyd et al., 2011)
algorithm to efficiently solve the problem (Section 3.3.2). After optimization, the model enters a
post-processing procedure where the final primitives and spherical lobes are removed, with render-
ing quality subsequently recovered through a color compensation strategy and minor fine-tuning
(Section 3.3.3).

3.3.1 PROBLEM FORMULATION

We unify primitive count pruning and spherical lobe pruning into a memory-constrained optimiza-
tion problem. The L0 norm of the opacity vector represents the number of active primitives, as
primitives with zero opacity do not contribute to rendering. Similarly, the L0 norm of the sharp-
ness vector denotes the number of active spherical lobes, since lobes with zero sharpness exhibit
no view-dependent effect and their color can be directly added to the diffuse term c0. Building
upon GaussianSpa (Zhang et al., 2025b)’s sparsification framework and our analysis, we extend the
pruning objective from primitive count optimization to total memory budget control, formalized as:

min
o,s,Θ

L(o, s,Θ), s.t. ρo∥o∥0 + ρs∥s∥0 ≤ κ︸ ︷︷ ︸
total memory constraint

(3)

where o ∈ RN×1 means opacity vector for N Gaussian primitives, s ∈ RN×3 means flattened
sharpness vector for N Gaussians, Θ ∈ RN×13 (other Gaussian variables), ρo = 11 and ρs = 7
count base parameters for a single Gaussian primitive and a single SG lobe respectively, and κ is the
total parameter budget. L(o, s,Θ) is the reconstruction loss function.

3.3.2 MEMORY-CONSTRAINED OPTIMIZATION

In this subsection, we aim to solve the memory-constrained optimization defined in Section 3.3.1.
Due to the introduction of a non-differentiable component (the L0 norm) into the constraint, we can-
not directly optimize it with regularized stochastic gradient descent. Instead, we adopt an ADMM-
inspired approach by introducing proxy variables õ and s̃ for o and s, respectively. This decompo-
sition strategy enables us to split the original optimization problem into two tractable subproblems:

min
o,s,Θ

L(o, s,Θ) +
δ

2

(
ρo∥o− õ+ λo∥2 + ρs∥s− s̃+ λs∥2

)
(4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Memory-constrained optimizing
Require:

Initial parameters: Θ0, o0, s0

Proxy variables: õ0 = o0, s̃0 = s0

Dual variables: λ0
o = 0, λ0

s = 0
Learning rate η, penalty δo, δs, budget κ

Ensure:
Optimized parameters: ΘK , oK , sK

1: for k = 0 to K − 1 do
2: Gradient Step:
3: Θk+1 ← Θk − η∇ΘL(Θk,ok, sk)
4: ok+1 ← ok − η

[
∇oL(Θk,ok, sk) + δo(o

k − õk + λk
o)
]

5: sk+1 ← sk − η
[
∇sL(Θk,ok+1, sk) + δs(s

k − s̃k + λk
s)
]

6: Proximal Step:
7: (õk+1, s̃k+1)← proxh(o

k+1 + λk
o, s

k+1 + λk
s)

8: Dual Update:
9: λk+1

o ← λk
o + (ok+1 − õk+1)

10: λk+1
s ← λk

s + (sk+1 − s̃k+1)
11: end for
12: Return ΘK , oK , sK

min
õ,s̃

h(õ, s̃) +
δ

2

(
ρo∥o− õ+ λo∥2 + ρs∥s− s̃+ λs∥2

)
(5)

where h(·, ·) is an indicator function enforcing the sparsity constraint:

h(o, s) =

{
0 if ρo∥o∥0 + ρs∥s∥0 ≤ κ,

+∞ otherwise
(6)

and the proxy variables are updated via the proximal operator:

(õ, s̃) = proxh(o+ λo, s+ λs). (7)

Here, λo and λs denote the corresponding Lagrange multipliers for the constraints. The specific
algorithm flow can be found in Algorithm 1, and the detailed derivation is in Appendix A.1.1.

Proximal Operator Implementation The proximal operator projects o and s onto the constraint
ρo∥o∥0 + ρs∥s∥0 ≤ κ, compatible with any importance metric. To simplify the design and leverage
importance criteria from prior primitive-pruning research, we choose to factorize the projection:

õ = proxh(o+ λo), ∥õ∥0 < κo (8)

s̃ = proxh(s+ λs), ∥s̃∥0 < κs (9)

For opacity projection, Zhang et al. (2025b) has established multiple proximal operators that are
selected based on scene characteristics. Our approach reuses these operators (See Appendix A.2).

For sharpness projection, we project the attribute onto the constraint space by retaining only the κs

most important spherical lobes. This retention is based on a dynamic range metric, which quantifies
the view-dependent color change contributed by the i-th lobe:

Di = |max
v

(ci)−min
v

(ci)| = |ai|(1− e−2si) (10)

where ai is the RGB amplitude for the i-th spherical lobe, and κs controls the total number of active
lobes. The κs elements corresponding to the highest Di values in (s+ λs) are preserved.

Discussion: Sequential vs. Unified Pruning While sequential pruning tackles memory reduction
in a two-stage process—first reducing primitive count, then per-primitive parameters—our unified
framework jointly optimizes both factors as a single problem. This approach finds a better trade-off
between primitive count and per-primitive complexity, thus avoiding the sub-optimal solutions often
found by sequential methods. For a detailed experimental validation, please refer to Section 4.4.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3.3 POST-PROCESSING PROCEDURE

After completing the constrained optimization process, we obtain a large number of primitives and
spherical lobes with near-zero opacity and sharpness values, respectively. As the hard constraints
are enforced on the proxy variables rather than the original ones, these near-zero values must still
be pruned to achieve an actual memory and storage benefit. We address this with a three-step
post-processing strategy: first, we remove Gaussian primitives whose opacity falls below a certain
threshold. Then, for spherical lobes, we remove those with negligible sharpness and introduce a
simple color compensation method to minimize the average per-view color variation and mitigate
performance degradation caused by their removal.

This compensation is achieved by finding an optimal term, ∆c0, that minimizes the integral of the
squared color difference over all view directions on the unit sphere:

min
∆c0

∫
S2
((c0 +∆c0)− (c0 +G(v;µi, si, ai)))

2
dv (11)

Solving equation 11 yields an exact compensation term that preserves the color of the removed lobe:

∆c0 = ai ·
1− e−2si

2si
(12)

The diffuse term of the parent primitive is then updated with this value:

c′0 = c0 +∆c0 (13)

Finally, after removing some primitives and spherical lobes, we continue to fine-tune for a small
number of steps to recover the rendering quality. The detailed derivation is in Appendix A.1.2. Fig-
ure 5 presents the distribution of the spherical lobes after post-processing procedure across scenes.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics Following 3DGS (Kerbl et al., 2023), we evaluate the rendering perfor-
mance on real-world datasets, including all indoor scenes and outdoor scenes in Mip-NeRF360
(Barron et al., 2022), two scenes from Tanks & Temples (Knapitsch et al., 2017), and two scenes
from Deep Blending (Hedman et al., 2018). Additionally, we measure the VRAM overhead during
the Gaussian loading (static) and rendering stages on these scenes.

Baselines On all datasets, we benchmark our method against four categories of baselines: (1)
vanilla 3DGS (Kerbl et al., 2023) and SG-Splatting (Wang et al., 2024a); (2) lightweight 3DGS
methods based on primitive pruning: LP-3DGS (Zhang et al., 2024), Mini-Splatting (Fang & Wang,
2024), MaskGaussian (Liu et al., 2025b) and GaussianSpa (Zhang et al., 2025b); (3) lightweight
3DGS methods based on pruning spherical harmonic coefficients: Reduced3DGS (Papantonakis
et al., 2024); (4) 3DGS compression methods utilizing orthogonal techniques such as neural com-
pression and vector quantization: CompactGaussian (Lee et al., 2024), EAGLES (Girish et al.,
2024), LightGaussian (Fan et al., 2024), LocoGS (Shin et al., 2025) and MesonGS (Xie et al., 2024).

Experimental Setup To ensure a fair comparison, we follow the core training procedures estab-
lished by 3DGS (Kerbl et al., 2023) and GaussianSpa (Zhang et al., 2025b). We evaluate rendering
quality using PSNR, SSIM, and LPIPS, and measure efficiency via static and rendering VRAM con-
sumption. For a detailed description of our specific implementation, as well as the definitions and
measurement procedures for both static and rendering VRAM, please refer to Appendix A.2.

4.2 MAIN RESULTS AND ANALYSIS

The quantitative results are summarized in Table 1, comparing our approach with several existing
lightweight 3DGS methods. Overall, our method achieves comparable or slightly superior render-
ing quality to the current state-of-the-art lightweight 3DGS methods, while demonstrating signifi-
cantly lower VRAM overhead across all existing methods. Compared to vanilla 3DGS, our method
achieves a 0.4 dB PSNR improvement on the DeepBlending dataset and a 0.012 LPIPS reduction on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison across three datasets. Best results are in red region , second

best are in orange region . Memory (VRAM) values are in MB. HQ denotes the version prioritizing
high rendering quality, and LM denotes the version prioritizing lower VRAM consumption.

Method
Mip-NeRF 360 Tanks&Temples DeepBlending

PSNR↑ SSIM↑ LPIPS↓ VRAM↓ PSNR↑ SSIM↑ LPIPS↓ VRAM↓ PSNR↑ SSIM↑ LPIPS↓ VRAM↓
Stat. Rend. Stat. Rend. Stat. Rend.

3DGS 27.48 0.813 0.217 648 1717 23.68 0.849 0.171 370 1021 29.71 0.902 0.242 582 1569
SG-Splatting 27.27 0.813 0.218 416 1327 23.47 0.840 0.177 229 822 29.57 0.901 0.247 357 983

Reduced3DGS 27.21 0.810 0.225 191 493 23.51 0.839 0.187 90 252 29.60 0.902 0.248 121 340

CompactGaussian 27.08 0.798 0.247 267 838 23.32 0.831 0.201 177 469 29.79 0.901 0.258 187 532
EAGLES 27.23 0.810 0.240 – – 23.37 0.840 0.200 333 965 29.86 0.910 0.250 510 1550
LightGaussian 27.13 0.806 0.237 290 640 23.44 0.832 0.202 168 437 – – – – –
LocoGS 27.28 0.809 0.231 609 994 23.62 0.846 0.182 458 732 30.05 0.905 0.247 643 1040
MesonGS-FT 26.98 0.801 0.233 709 1336 23.32 0.837 0.193 424 783 29.51 0.901 0.251 656 1202

LP-3DGS 27.12 0.805 0.239 420 1239 23.41 0.834 0.198 251 769 – – – – –
Mini-Splatting 27.40 0.821 0.219 125 477 23.45 0.841 0.186 72 253 30.05 0.909 0.254 89 324
MaskGaussian 27.43 0.811 0.227 271 799 23.72 0.847 0.181 132 517 29.69 0.907 0.244 156 501
GaussianSpa 27.56 0.824 0.215 115 448 23.73 0.857 0.162 106 336 30.00 0.912 0.239 104 372

Ours(HQ) 27.54 0.824 0.209 55 265 23.45 0.853 0.159 51 211 30.17 0.912 0.233 54 243
Ours(LM) 27.21 0.814 0.227 40 224 23.27 0.851 0.167 37 163 30.01 0.908 0.246 33 193

the Tanks & Temples dataset. Furthermore, it achieves more than an 8× compression rate for static
VRAM and nearly a 6× compression rate for rendering VRAM across all datasets. Even when com-
pared to the current state-of-the-art lightweight 3DGS method, GaussianSpa (Zhang et al., 2025b),
we still achieve a nearly 2× compression rate for static VRAM on the Mip-NeRF360 dataset and
reduce rendering VRAM by approximately 40% with comparable rendering quality.

Analysis on Existing Compression Methods Many recent methods achieve high storage com-
pression but fail to reduce VRAM. Techniques based on hash grid compression, vector quantization
or neural networks (e.g., CompactGaussian (Lee et al., 2024), EAGLES (Girish et al., 2024)) must
first decompress their parameters into a renderable state. This requirement, coupled with the decod-
ing process itself, results in a VRAM footprint that can exceed even vanilla 3DGS (Appendix, Tab.
3). Similarly, HAC++ (Chen et al., 2025), a SOTA method designed specifically for anchor-based
3DGS, is not a general solution and offers minimal VRAM reduction for the same reason. In con-
trast, our method achieves superior perceptual quality (SSIM/LPIPS) with 50-60% less VRAM and
a 1.5-1.7x rendering speedup.

Analysis on Pruning-based Methods Pruning-based methods (Zhang et al., 2025b; Fang &
Wang, 2024; Zhang et al., 2024) effectively reduce VRAM but face a bottleneck, as aggressively
reducing primitive count degrades quality. Our method overcomes this by not only pruning prim-
itives but also reducing per-primitive costs. When compared to methods that also compress color,
such as Reduced3DGS (Papantonakis et al., 2024) which prunes SH coefficients, our advantage is
twofold: the superior amenability of our Spherical Gaussians to pruning, and our more effective
unified soft pruning framework, as validated in Section 4.4.

4.3 QUALITATIVE RESULTS

Figure 3 presents a qualitative comparison of MEGS2 against baselines, including GaussianSpa and
3DGS on various scenes. In Bicycle and Truck, our method accurately recovers specular reflections
on smooth surfaces and mirrors, details that other methods fail to fully capture. In Bonsai, MEGS2

faithfully captures high-contrast lighting in both contours and brightness. Furthermore, MEGS2 de-
livers a cleaner and more complete reconstruction in Playroom. Notably, MEGS2 achieves these
high-quality results with a VRAM footprint of only 50-60% compared to GaussianSpa, demonstrat-
ing a substantial enhancement in memory efficiency. These visual results indicate that our Spherical
Gaussian based representation has a stronger capability for fitting local view-dependent signals than
Spherical Harmonics, leading to sharper and more photorealistic images. More qualitative results
are in Appendix, Figure 7.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

G
ro

un
d

Tr
ut

h
O

ur
s

G
au

ss
ia

nS
pa

3D
G

S

250MB

420MB

845MB

301MB

443MB

1272MB

370MB

1279MB

344MB

1313MB

182MB 194MB270MB

491MB

3042MB

Figure 3: Qualitative results on the Bicycle, Bonsai, Kitchen, Playroom and Truck scenes comparing
to previous methods and the corresponding ground truth images from test views. The rendering
VRAM consumption for the corresponding method is annotated at the bottom of each image.

4.4 ABLATION STUDIES

In this section, we conduct a series of ablation studies to validate the effectiveness of our proposed
designs and answer two key questions: 1. Is the replacement of spherical harmonics with spherical
Gaussians necessary? And why not use the orthogonal-axis spherical variants (fixed-axis SG) ?
(Section 4.4.1) 2. Is our proposed unified soft pruning framework effective? And does it offer a
significant advantage over simply combining existing pruning methods? (Section 4.4.2)

4.4.1 ABLATION ON COLOR MODELING

To validate our color model, we replace the spherical harmonics (SH) in 3DGS with our arbitrarily-
oriented spherical Gaussians (SG) while keeping training settings identical. Our SG model achieves
a superior quality-VRAM trade-off (see Figure 4). Furthermore, we show that the fixed-axis SG
from SG-Splatting (Wang et al., 2024a) struggles to capture complex view-dependent effects, lead-
ing to a sharp quality drop (about 0.6 dB PSNR). This rigidity also makes it incompatible with our
lobe-pruning strategy.

4.4.2 ABLATION ON PRUNING STRATEGIES

Table 2: Ablation studies for different pruning
strategies on Mip-NeRF360 dataset.

Method PSNR↑ SSIM↑ LPIPS↓ VRAM↓
Spa+Redu. 26.05 0.776 0.280 402
Spa(SH→ SG) 27.01 0.808 0.230 339

soft→ hard 27.23 0.814 0.228 288
unified→ seq. 27.33 0.818 0.222 328
w/o color comp. 27.46 0.822 0.213 265
full model 27.54 0.824 0.209 265

We evaluate our unified soft pruning framework
against several ablations and baselines, with re-
sults in Table 2. First, replacing our soft prun-
ing with a hard-pruning variant (soft → hard)
that only optimizes opacity results in a signif-
icant performance drop. Second, performing
primitive and lobe pruning sequentially (unified
→ sequential) is inferior to our joint optimiza-
tion, confirming the advantage of a unified ap-
proach. We also found that removing our color
compensation harms performance (w/o color
comp.). Finally, we test two naive baselines. Combining GaussianSpa with Reduced3DGS leads
to severe quality degradation, showing that existing SH pruning metrics fail on fewer primitives.
Simply replacing SH with SG in GaussianSpa is also outperformed by our method. This demon-
strates that our pruning strategy not only reduces memory but also acts as a regularizer, improving
rendering quality. Visual comparison are in Appendix, Figure 9.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 20 30 40 50
Number of Parameters for Color Modeling

26.6

26.8

27.0

27.2

27.4

27.6
PS

N
R

 (d
B

)
VRAM: 928MB

#G: 2.69M
LPIPS: 0.221

VRAM: 1078MB
#G: 2.70M

LPIPS: 0.219

VRAM: 1180MB
#G: 2.69M

LPIPS: 0.218

VRAM: 984MB
#G: 2.71M

LPIPS: 0.223

VRAM: 1289MB
#G: 2.72M

LPIPS: 0.219

VRAM: 1717MB
#G: 2.72M

LPIPS: 0.217

VRAM: 1432MB
#G: 3.67M
LPIPS: 0.229

Arbitrarily-oriented SG (Ours, lobe=1,2,3):
Spherical Harmonics (SH, degree=1,2,3):
Fixed-axis SG (a.k.a. Ortho-axis SG, lobe=3):

Figure 4: Comparison of different 3DGS color representations on Mip-NeRF360 dataset.

Bicycle Stump Garden Flowers Treehill Bonsai Counter Kitchen Room
Scenes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
um

be
r

of
 G

au
ss

ia
ns

 (M
)

40.8%
36.4% 25.1%

43.6%
40.7%

43.6% 37.9% 31.6% 38.5%

19.7%

17.7%
27.3%

16.6%

17.3%

20.6%
20.7% 25.5%

27.7%

19.7%

22.7%

27.6%
17.8%

20.8%

16.3% 22.5%

27.5%

21.7%

19.7%

23.1%

20.0%

22.0%

21.3%

19.6% 18.9%

15.4%

12.1%

1.183

1.328

1.426

1.183

1.225

1.116 1.224

1.267

1.072

Lobe Type
0-Lobes
1-Lobes
2-Lobes
3-Lobes

Figure 5: Distribution of Gaussian lobes across scenes. We report the distribution of Gaussians
using 0 to 3 lobes for each scene in the Mip-NeRF 360 dataset. The value above each bar represents
the average lobe count per Gaussian.

5 CONCLUSION

We introduced MEGS2, a framework that addresses the 3D Gaussian Splatting memory bottle-
neck by jointly optimizing primitive count and per-primitive parameters. Our approach combines a
lightweight spherical Gaussian color representation with a unified soft pruning method to achieve
state-of-the-art memory compression. MEGS² shifts the focus of 3DGS compression towards ren-
dering VRAM efficiency, paving the way for high-quality rendering on edge devices.

Limitation Our method focuses on compressing static memory for broad, renderer-agnostic ap-
plicability. We leave the optimization of implementation-specific dynamic VRAM for future work,
and note that the model’s performance on highly complex highlights warrants further investigation.

ETHICS STATEMENT

Our work presents no direct ethical concerns. The primary application of our method is for novel
view synthesis from captured data.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility: (1) While not included with this submission, our full project (including
the WebGL renderer, training, and evaluation scripts) will be released on GitHub upon publication.
(2) All experimental details, including our VRAM measurement protocol, are provided in Appendix
A.2. (3) Our data and preprocessing follow the official 3DGS implementation. (4) Derivations and
proofs for our core algorithms are in Appendix A.1.1 and A.1.2.

REFERENCES

Milena T. Bagdasarian, Paul Knoll, Yi-Hsin Li, Florian Barthel, Anna Hilsmann, Peter Eisert, and
Wieland Morgenstern. 3dgs.zip: A survey on 3d gaussian splatting compression methods, 2025.
URL https://arxiv.org/abs/2407.09510.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,
2021. URL https://arxiv.org/abs/2103.13415.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. CVPR, 2022.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-
nerf: Anti-aliased grid-based neural radiance fields, 2023. URL https://arxiv.org/abs/
2304.06706.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1–122, January 2011. ISSN 1935-8237. doi: 10.1561/2200000016. URL
https://doi.org/10.1561/2200000016.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid as-
sisted context for 3d gaussian splatting compression, 2024. URL https://arxiv.org/
abs/2403.14530.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac++: Towards
100x compression of 3d gaussian splatting, 2025. URL https://arxiv.org/abs/2501.
12255.

Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and
Xuejin Chen. Gaussianpro: 3d gaussian splatting with progressive propagation, 2024. URL
https://arxiv.org/abs/2402.14650.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2024. URL https:
//arxiv.org/abs/2311.17245.

Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians, 2024. URL https://arxiv.org/abs/2403.14166.

Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang, Tao Liu, Zhilin Pei, Hengjie Li,
Xingcheng Zhang, and Bo Dai. Flashgs: Efficient 3d gaussian splatting for large-scale and high-
resolution rendering, 2024. URL https://arxiv.org/abs/2408.07967.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings, 2024. URL https://arxiv.org/abs/2312.04564.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. 37(6):257:1–257:15, 2018.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.
URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

11

https://arxiv.org/abs/2407.09510
https://arxiv.org/abs/2103.13415
https://arxiv.org/abs/2304.06706
https://arxiv.org/abs/2304.06706
https://doi.org/10.1561/2200000016
https://arxiv.org/abs/2403.14530
https://arxiv.org/abs/2403.14530
https://arxiv.org/abs/2501.12255
https://arxiv.org/abs/2501.12255
https://arxiv.org/abs/2402.14650
https://arxiv.org/abs/2311.17245
https://arxiv.org/abs/2311.17245
https://arxiv.org/abs/2403.14166
https://arxiv.org/abs/2408.07967
https://arxiv.org/abs/2312.04564
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Jeff Tseng, Hossam Isack, Ab-
hishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain
monte carlo, 2025. URL https://arxiv.org/abs/2404.09591.

Sieun Kim, Kyungjin Lee, and Youngki Lee. Color-cued efficient densification method for 3d gaus-
sian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 775–783, June 2024.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

Kevin Kwok and Haoyang Ye. splat, 2023. URL https://github.com/antimatter15/
splat.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 21719–21728, 2024.

Soonbin Lee, Fangwen Shu, Yago Sanchez, Thomas Schierl, and Cornelius Hellge. Compression
of 3d gaussian splatting with optimized feature planes and standard video codecs, 2025. URL
https://arxiv.org/abs/2501.03399.

Lei Liu, Zhenghao Chen, Wei Jiang, Wei Wang, and Dong Xu. Hemgs: A hybrid entropy model
for 3d gaussian splatting data compression, 2025a. URL https://arxiv.org/abs/2411.
18473.

Rong Liu, Rui Xu, Yue Hu, Meida Chen, and Andrew Feng. Atomgs: Atomizing gaussian splatting
for high-fidelity radiance field, 2024a. URL https://arxiv.org/abs/2405.12369.

Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
3d scene representation via compressed gaussian splatting, 2024b. URL https://arxiv.
org/abs/2404.09458.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks, 2025b. URL https://arxiv.org/abs/
2412.20522.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-
gs: Structured 3d gaussians for view-adaptive rendering, 2023. URL https://arxiv.org/
abs/2312.00109.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Stein-
berger, and Fernando De La Torre. Taming 3dgs: High-quality radiance fields with limited re-
sources, 2024. URL https://arxiv.org/abs/2406.15643.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
https://arxiv.org/abs/2003.08934.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, July
2022. ISSN 1557-7368. doi: 10.1145/3528223.3530127. URL http://dx.doi.org/10.
1145/3528223.3530127.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compgs: Smaller and faster gaussian splatting with vector quantization, 2024. URL https:
//arxiv.org/abs/2311.18159.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Dret-
takis. Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(1), May 2024. URL https://repo-sam.
inria.fr/fungraph/reduced_3dgs/.

12

https://arxiv.org/abs/2404.09591
https://github.com/antimatter15/splat
https://github.com/antimatter15/splat
https://arxiv.org/abs/2501.03399
https://arxiv.org/abs/2411.18473
https://arxiv.org/abs/2411.18473
https://arxiv.org/abs/2405.12369
https://arxiv.org/abs/2404.09458
https://arxiv.org/abs/2404.09458
https://arxiv.org/abs/2412.20522
https://arxiv.org/abs/2412.20522
https://arxiv.org/abs/2312.00109
https://arxiv.org/abs/2312.00109
https://arxiv.org/abs/2406.15643
https://arxiv.org/abs/2003.08934
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
https://arxiv.org/abs/2311.18159
https://arxiv.org/abs/2311.18159
https://repo-sam.inria.fr/fungraph/reduced_3dgs/
https://repo-sam.inria.fr/fungraph/reduced_3dgs/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Stéphane Pateux, Matthieu Gendrin, Luce Morin, Théo Ladune, and Xiaoran Jiang. Bogauss: Better
optimized gaussian splatting, 2025. URL https://arxiv.org/abs/2504.01844.

Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
physics-based scene synthesis and editing, 2024. URL https://arxiv.org/abs/2404.
01223.

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-gs:
Towards consistent real-time rendering with lod-structured 3d gaussians, 2024. URL https:
//arxiv.org/abs/2403.17898.

Seungjoo Shin, Jaesik Park, and Sunghyun Cho. Locality-aware gaussian compression for fast and
high-quality rendering, 2025. URL https://arxiv.org/abs/2501.05757.

Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo. All-frequency rendering
of dynamic, spatially-varying reflectance. ACM Trans. Graph., 28(5):1–10, December 2009.
ISSN 0730-0301. doi: 10.1145/1618452.1618479. URL https://doi.org/10.1145/
1618452.1618479.

Yiwen Wang, Siyuan Chen, and Ran Yi. Sg-splatting: Accelerating 3d gaussian splatting with
spherical gaussians, 2024a. URL https://arxiv.org/abs/2501.00342.

Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex C. Kot, and Bihan Wen. Con-
textgs: Compact 3d gaussian splatting with anchor level context model, 2024b. URL https:
//arxiv.org/abs/2405.20721.

Shuzhao Xie, Weixiang Zhang, Chen Tang, Yunpeng Bai, Rongwei Lu, Shijia Ge, and Zhi Wang.
Mesongs: Post-training compression of 3d gaussians via efficient attribute transformation, 2024.
URL https://arxiv.org/abs/2409.09756.

Jiahui Zhang, Fangneng Zhan, Ling Shao, and Shijian Lu. Sogs: Second-order anchor for advanced
3d gaussian splatting, 2025a. URL https://arxiv.org/abs/2503.07476.

Yangming Zhang, Wenqi Jia, Wei Niu, and Miao Yin. Gaussianspa: An ”optimizing-sparsifying”
simplification framework for compact and high-quality 3d gaussian splatting. In Proceedings of
the Computer Vision and Pattern Recognition Conference (CVPR), pp. 26673–26682, June 2025b.

Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li Yang, Cheng Peng, Rama Chellappa, and Deliang
Fan. Lp-3dgs: Learning to prune 3d gaussian splatting, 2024. URL https://arxiv.org/
abs/2405.18784.

13

https://arxiv.org/abs/2504.01844
https://arxiv.org/abs/2404.01223
https://arxiv.org/abs/2404.01223
https://arxiv.org/abs/2403.17898
https://arxiv.org/abs/2403.17898
https://arxiv.org/abs/2501.05757
https://doi.org/10.1145/1618452.1618479
https://doi.org/10.1145/1618452.1618479
https://arxiv.org/abs/2501.00342
https://arxiv.org/abs/2405.20721
https://arxiv.org/abs/2405.20721
https://arxiv.org/abs/2409.09756
https://arxiv.org/abs/2503.07476
https://arxiv.org/abs/2405.18784
https://arxiv.org/abs/2405.18784

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHMIC DERIVATION

A.1.1 DERIVATION FOR MEMORY-CONSTRAINED OPTIMIZING

This appendix provides the detailed derivation of Algorithm 1 presented in the main text. The
algorithm solves the memory-constrained optimization problem with L0 norm constraints using an
ADMM-inspired approach.

Problem Formulation Consider the constrained optimization problem:

min
o,s,Θ

L(o, s,Θ)

s.t. ρo∥o∥0 + ρs∥s∥0 ≤ κ
(A.1)

where L is the loss function, ∥ · ∥0 denotes the L0 norm (count of non-zero elements), and κ repre-
sents the memory budget.

Augmented Lagrangian Formulation Introduce proxy variables õ, s̃ to reformulate the problem:

min
o,s,Θ,õ,s̃

L(o, s,Θ)

s.t. o = õ, s = s̃

ρo∥õ∥0 + ρs∥s̃∥0 ≤ κ

(A.2)

The augmented Lagrangian function is constructed as:

Lδ(o, s,Θ, õ, s̃,λo,λs) =L(o, s,Θ)

+ λ⊤
o (o− õ) + λ⊤

s (s− s̃)

+
δ

2

(
ρo∥o− õ∥2 + ρs∥s− s̃∥2

) (A.3)

where λo and λs are Lagrange multipliers, and δ > 0 is the penalty parameter.

ADMM Alternating Minimization The ADMM framework decomposes the optimization into
three subproblems:

Primal Variables Update With proxy variables and multipliers fixed, update the primal variables:

(Θk+1,ok+1, sk+1) = arg min
Θ,o,s

L(o, s,Θ)

+
δ

2

[
ρo∥o− õk + λk

o∥2 + ρs∥s− s̃k + λk
s∥2

] (A.4)

Using gradient descent approximation:

Θk+1 = Θk − η∇ΘL(Θk,ok, sk)

ok+1 = ok − η
[
∇oL(Θk,ok, sk) + δo(o

k − õk + λk
o)
]

sk+1 = sk − η
[
∇sL(Θk,ok+1, sk) + δs(s

k − s̃k + λk
s)
] (A.5)

where δo = δρo, δs = δρs.

Proxy Variables Update With primal variables and multipliers fixed, update the proxy variables:

(õk+1, s̃k+1) = argmin
õ,s̃

h(õ, s̃) +
δ

2

[
ρo∥ok+1 − õ+ λk

o∥2 + ρs∥sk+1 − s̃+ λk
s∥2

]
(A.6)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where h(õ, s̃) is the indicator function enforcing the sparsity constraint:

h(õ, s̃) =

{
0 if ρo∥õ∥0 + ρs∥s̃∥0 ≤ κ

+∞ otherwise
(A.7)

The solution is given by the proximal operator:

(õk+1, s̃k+1) = proxh(o
k+1 + λk

o, s
k+1 + λk

s) (A.8)

Dual Variables Update Update the Lagrange multipliers:

λk+1
o = λk

o + (ok+1 − õk+1)

λk+1
s = λk

s + (sk+1 − s̃k+1)
(A.9)

A.1.2 DERIVATION FOR COLOR COMPENSATION

min
∆c0

∫
S2
((c0 +∆c0)− (c0 +G(v;µi, si, ai)))

2
dv (A.10)

where G(v;µ, s, a) = aes(µ·v−1), µ ∈ S2 is the unit-length lobe axis, s ∈ R+ controls the sharp-
ness, and a ∈ R3 is the RGB amplitude vector, with v ∈ S2 being the viewing direction.

Simplifying the objective function:

min
∆c0

∫
S2
(∆c0 −G(v;µi, si, ai))

2
dv (A.11)

Expanding the squared term:

min
∆c0

∫
S2

(
∆c20 − 2∆c0G(v;µi, si, ai) +G(v;µi, si, ai)

2
)
dv (A.12)

Taking derivative with respect to ∆c0 and setting to zero:
∂

∂∆c0
= 2

∫
S2
(∆c0 −G(v;µi, si, ai)) dv = 0 (A.13)

Solving for the optimal ∆c0:

∆c0 =

∫
S2 G(v;µi, si, ai)dv∫

S2 dv
=

1

4π

∫
S2
G(v;µi, si, ai)dv (A.14)

Evaluating the spherical Gaussian integral. Without loss of generality, align µi with the z-axis:∫
S2
G(v;µi, si, ai) dv = ai

∫ 2π

0

∫ π

0

esi(cos θ−1) sin θ dθ dϕ

= 2πai

∫ π

0

esi(cos θ−1) sin θ dθ

(substitute u = cos θ, du = − sin θdθ)

= 2πai

∫ 1

−1

esi(u−1) du

= 2πai ·
1− e−2si

si
.

Substituting back:

∆c0 =
1

4π
· 2πai ·

1− e−2si

si
= ai ·

1− e−2si

2si
(A.15)

The diffuse term is updated as:
c′0 = c0 +∆c0 (A.16)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 EXPERIMENTAL DETAILS

Implementation Details Our experiments are conducted on a single NVIDIA RTX 3090 GPU
(24GB). For a fair comparison, we adopt the same hyperparameters and optimizer used by vanilla
3DGS (Kerbl et al., 2023) on all datasets. In terms of the hyperparameters for our unified soft prun-
ing framework, we conduct the memory-constrained optimization for a total of 10,000 iterations, ap-
plied at an interval of 50 iterations. We set the penalty parameter δ to 0.0005. For the post-processing
procedure defined in Section 3.3.3, we set the sharpness threshold to 1 to prune spherical lobes with
negligible contribution. Regarding the training strategy, we employ the same densification, pruning,
and fine-tuning procedures as GaussianSpa, conducting densification training, sparse training, and
fine-tuning for the same number of steps. To ensure the accuracy of our VRAM measurements, we
reproduce 3DGS, GaussianSpa (Zhang et al., 2025b), EAGLES (Girish et al., 2024), CompactGaus-
sian (Lee et al., 2024), LightGaussian (Fan et al., 2024), LocoGS (Shin et al., 2025), MesonGS (Xie
et al., 2024), and Reduced3DGS (Papantonakis et al., 2024) for direct VRAM measurement. For
other pruning-based methods, we utilize both the rendering quality metrics and primitive counts re-
ported in the GaussianSpa paper. We then estimate their corresponding VRAM consumption based
on our own VRAM measurements for 3DGS and GaussianSpa. EAGLES cannot be trained on a
single NVIDIA RTX 3090 GPU with 24GB on some scenes in Mip-NeRF360, so we do not report
VRAM consumption. For fairness, MesonGS uses the version that continues fine-tuning after com-
pression, and LocoGS utilizes point clouds from COLMAP for initialization to maintain consistency
with other methods.

Evaluation Details For rendering performance, we report the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), and learned perceptual image patch similarity(LPIPS). For VRAM
consumption, we report both static VRAM overhead and rendering VRAM overhead. The former
refers to the VRAM required to load all 3DGS primitives into the renderer and dequantize or decode
them into a ready-to-render state. This is not necessarily equal to the file size, as some methods
might represent Gaussian attributes in a more compact or lower-precision data format but still require
restoring them to full, 32-bit precision Gaussian attributes before rendering. The latter denotes the
peak VRAM usage during the rendering process, which is typically larger than the static VRAM
due to the introduction of intermediate variables (e.g., projected 2D Gaussian attributes, key-value
tables for tile-based rendering) during rendering. We measure this value across all test viewpoints
and report the average. To exclude the overhead introduced by the framework itself and the impact of
memory fragmentation, we note that the memory allocation and management of the official 3DGS
implementation’s renderer are almost entirely handled by PyTorch. Therefore, all VRAM-related
metrics are reported using the values provided by the PyTorch framework.

Proximal Operators Implementation As mentioned in the main text, for opacity projection, we
reuse the two proximal operators from GaussianSpa (Zhang et al., 2025b). These operators select
κo primitives to preserve based on different importance criteria. The first is a Magnitude-Based
Selection, which sorts the input vector (o+λo) and preserves the κo elements with the highest
magnitudes. The second operator employs an Importance-Based Selection, adopting the impor-
tance score metric from MiniSplatting (Fang & Wang, 2024). The importance score Ii for the i-th
Gaussian is the sum of its blending weights across all intersecting camera rays seen during training:

Ii =

K∑
j=1

wij (A.17)

where the blending weight wij is the product of the Gaussian’s opacity αi, its projected 2D value
G2D

i , and the accumulated transmittance Tij along the j-th ray. Here, K is the total number of inter-
sected rays. The operator then preserves the κo primitives with the highest importance scores. While
GaussianSpa selects the specific operator based on scene characteristics (e.g., indoor vs. outdoor),
we simplify the overall framework by consistently adopting the Importance-Based Selection as our
unified approach across all scenes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 MORE QUANTITIVE RESULTS

Table 3: Average parameter costs for the color model per Gaussian primitive. Storage and
Rendering costs are measured in the number of float32 parameters. Decode Overhead indicates
whether a method introduces significant additional VRAM during calculating color. The values of
our method are calculated on the DeepBlending dataset.

Method Storage Rendering Decode Overhead

3DGS 48 48 No
EAGLES < 1 > 48 Yes
CompactGaussian < 1 > 32 Yes
ours w/o lobe-pruning 24 24 No
ours 9.7 9.7 No

Table 4: Comparison of anchor-based 3DGS and specialized SOTA compression schemes on
the Mip-NeRF360 dataset. The best result is shown in bold.

Method PSNR↑ SSIM↑ LPIPS↓ VRAM↓ FPS↑
Scaffold-GS 27.74 0.811 0.226 612 123

HAC++ (highrate) 27.81 0.811 0.231 637 115
HAC++ (lowrate) 27.60 0.803 0.253 514 132

Ours 27.54 0.824 0.209 265 200

Table 5: Mip-NeRF360 Indoor per scene results. Best results are in red region , second best are

in orange region . Memory (VRAM) values are in MB.

Scene Method PSNR↑ SSIM↑ LPIPS↓ Static VRAM↓ Rendering VRAM↓

Bonsai

3DGS 32.23 0.940 0.205 393 798
Reduced3DGS 31.44 0.933 0.214 66 276
GaussianSpa 31.76 0.943 0.198 146 420

Ours(HQ) 31.95 0.943 0.192 44 266
Ours(LM) 31.51 0.937 0.205 28 227

Counter

3DGS 29.09 0.906 0.201 393 893
Reduced3DGS 28.57 0.899 0.212 67 331
GaussianSpa 28.98 0.911 0.191 175 518

Ours(HQ) 28.78 0.906 0.195 44 326
Ours(LM) 28.35 0.892 0.220 25 272

Kitchen

3DGS 31.24 0.925 0.126 581 1197
Reduced3DGS 31.03 0.921 0.133 118 428
GaussianSpa 31.50 0.929 0.127 163 443

Ours(HQ) 31.51 0.927 0.127 51 309
Ours(LM) 31.27 0.923 0.133 36 275

Room

3DGS 31.55 0.918 0.220 474 1007
Reduced3DGS 31.03 0.914 0.227 68 310
GaussianSpa 31.61 0.922 0.211 141 401

Ours(HQ) 31.56 0.923 0.207 36 250
Ours(LM) 31.16 0.915 0.226 22 214

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Tanks&Temples per scene results. Best results are in red region , second best are in

orange region . Memory (VRAM) values are in MB.

Scene Method PSNR↑ SSIM↑ LPIPS↓ Static VRAM↓ Rendering VRAM↓

Train

3DGS 21.97 0.818 0.198 397 773
Reduced3DGS 21.74 0.804 0.219 74 227
GaussianSpa 21.81 0.826 0.197 164 339

Ours(HQ) 21.52 0.820 0.197 49 208
Ours(LM) 21.32 0.818 0.205 35 160

Truck

3DGS 25.39 0.881 0.143 752 1268
Reduced3DGS 25.28 0.875 0.154 105 276
GaussianSpa 25.65 0.887 0.126 115 448

Ours(HQ) 25.37 0.886 0.121 54 214
Ours(LM) 25.23 0.883 0.130 39 167

Table 7: Mip-NeRF360 Outdoor per scene results. Best results are in red region , second best are

in orange region . Memory (VRAM) values are in MB.

Scene Method PSNR↑ SSIM↑ LPIPS↓ Static VRAM↓ Rendering VRAM↓

Bicycle

3DGS 25.20 0.764 0.210 1794 2955
Reduced3DGS 25.10 0.763 0.219 314 686
GaussianSpa 25.43 0.779 0.222 240 491

Ours(HQ) 25.34 0.782 0.206 63 248
Ours(LM) 25.16 0.771 0.226 48 205

Stump

3DGS 26.61 0.769 0.217 1585 2487
Reduced3DGS 26.75 0.778 0.218 318 663
GaussianSpa 27.07 0.802 0.207 222 460

Ours(HQ) 27.19 0.803 0.198 60 233
Ours(LM) 27.04 0.797 0.213 47 198

Garden

3DGS 27.36 0.863 0.108 1494 2449
Reduced3DGS 27.14 0.858 0.116 303 684
GaussianSpa 27.22 0.854 0.140 227 460

Ours(HQ) 27.17 0.858 0.127 78 273
Ours(LM) 26.62 0.846 0.143 63 240

Flowers

3DGS 21.49 0.602 0.338 1066 1716
Reduced3DGS 21.37 0.598 0.345 221 497
GaussianSpa 21.60 0.624 0.332 209 451

Ours(HQ) 21.65 0.625 0.331 66 255
Ours(LM) 21.37 0.609 0.344 48 203

Treehill

3DGS 22.58 0.633 0.328 1192 1947
Reduced3DGS 22.41 0.630 0.337 241 563
GaussianSpa 22.84 0.655 0.312 226 471

Ours(HQ) 22.74 0.649 0.313 59 233
Ours(LM) 22.44 0.640 0.335 43 188

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: DeepBlending per scene results. Best results are in red region , second best are in

orange region . Memory (VRAM) values are in MB.

Scene Method PSNR↑ SSIM↑ LPIPS↓ Static VRAM↓ Rendering VRAM↓

Playroom

3DGS 30.00 0.903 0.244 678 1197
Reduced3DGS 29.96 0.904 0.248 90 276
GaussianSpa 30.48 0.914 0.239 137 320

Ours(HQ) 30.77 0.914 0.229 52 218
Ours(LM) 30.58 0.912 0.243 30 167

DrJohnson

3DGS 29.41 0.902 0.239 1129 1941
Reduced3DGS 29.24 0.901 0.247 152 404
GaussianSpa 29.50 0.910 0.239 184 424

Ours(HQ) 29.56 0.909 0.237 56 269
Ours(LM) 29.45 0.904 0.250 37 219

Table 9: Real-time rendering performance comparison of different methods across various
desktop and mobile devices in Bicycle scene. All tests were conducted using a WebGL-based
viewer, which we modified from the repository (Kwok & Ye, 2023) to support both Spherical Gaus-
sians and 3rd-order Spherical Harmonics. Performance measured in FPS. ”cannot render” indicates
that the device’s browser crashed or showed a black screen, while ”render error” signifies incorrect
rendering, such as color display issues.The best result is shown in bold.

Method RTX3060 Dimensity 9400+ Snapdragon 8+ Gen 1 Snapdragon 888

3DGS 26.3 6.6 cannot render connot render
GaussianSpa 165.0 31.4 render error render error
Ours 165.0 91.0 120.9 60.1

Table 10: Storage Size Comparison. We compare the storage size (MB) of our method against
pruning-based methods (MaskGaussian, GaussianSpa) and the compact Gaussian approach (EA-
GLES). Our method not only surpasses pruning baselines but also achieves superior storage effi-
ciency compared to EAGLES, even without employing explicit compression techniques.

Method Storage on Storage on
MipNeRF 360 (MB) ↓ DeepBlending (MB) ↓

MaskGaussian 271 156
GaussianSpa 115 104
EAGLES 54 52

Ours (HQ) 55 54
Ours (LM) 40 33

Table 11: Quantitative comparison on the Shiny Blender Real dataset. Bold figures indicate the
best results.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Mean Garden Sedan Toycar Mean Garden Sedan Toycar Mean Garden Sedan Toycar

Ref-NeRF 23.62 22.01 25.21 23.65 0.646 0.584 0.720 0.633 0.264 0.251 0.234 0.231
ENVIDR 23.00 21.47 24.61 22.92 0.606 0.561 0.707 0.549 0.332 0.263 0.387 0.345
3DGS 23.85 21.75 26.03 23.78 0.662 0.571 0.771 0.637 0.230 0.248 0.206 0.237
2DGS 24.15 22.53 26.23 23.70 0.661 0.609 0.778 0.597 0.292 0.254 0.225 0.396
GShader 23.46 21.74 24.89 23.76 0.647 0.576 0.728 0.637 0.254 0.274 0.259 0.239
R3DG 21.98 21.92 21.18 22.83 0.619 0.556 0.643 0.657 0.349 0.354 0.380 0.312
3DGS-DR 24.00 21.82 26.32 23.83 0.664 0.581 0.773 0.639 0.230 0.247 0.208 0.231
Ref-Gaussian 24.61 22.97 26.60 24.27 0.685 0.617 0.777 0.660 0.246 0.256 0.245 0.256

Ours 24.44 23.01 25.93 24.38 0.695 0.631 0.788 0.666 0.230 0.256 0.175 0.259

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Comparison of training time across different datasets and hardware configurations.
We report the training duration (in minutes and seconds) for MEGS2 on both RTX 3090 and RTX
4090 GPUs, and compare it with GaussianSpa and 3D Gaussian Splatting (3DGS) on an RTX 4090.

Dataset Scene Ours GaussianSpa 3DGS

RTX 3090 RTX 4090 RTX 4090 RTX 4090

Mip-NeRF360

Bicycle 37min51s 23min20s 27min57s 25min28s
Stump 34min09s 22min34s 26min18s 20min48s
Garden 38min23s 22min56s 29min21s 24min06s
Flowers 39min12s 26min57s 30min13s 17min08s
Treehill 37min34s 24min53s 28min38s 18min43s
Bonsai 51min49s 28min19s 44min14s 16min36s
Counter 51min22s 32min06s 51min25s 19min20s
Kitchen 50min33s 33min17s 49min36s 22min59s
Room 41min05s 28min53s 44min41s 20min23s

Tanks&Temples Train 28min39s 19min08s 28min45s 11min06s
Truck 29min59s 20min22s 27min03s 13min21s

DeepBlending Playroom 33min01s 22min33s 31min32s 18min21s
DrJohnson 38min28s 24min57s 36min26s 24min31s

Table 13: Comparison of the number of Gaussian primitives. We report the total number of
Gaussians (in millions) across three benchmark datasets.

Method Mip-NeRF360 Tanks & Temples DeepBlending
3DGS 2.718 1.568 2.461
LP-3DGS 1.866 1.116 -
Mini-splatting 0.559 0.320 0.397
MaskGaussian 1.205 0.590 0.694
GaussianSpa 0.528 0.447 0.409

Ours(HQ) 0.611 0.618 0.598
Ours(LM) 0.462 0.437 0.411

60% 65% 70%

s

24.50

25.00

25.50

26.00

26.50

27.00

PS
N

R
(d

B)

o = 65%
o = 68%
o = 70%

Figure 6: Sensitivity analysis of pruning hyperparameters. We investigate the impact of varying
the lobe budget κs (x-axis) and the primitive budget κo (represented by different colored lines) on
rendering quality (PSNR) and memory consumption on the garden scene. The values annotated in
the boxes indicate the specific rendering VRAM usage for each configuration.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.4 MORE QUALITATIVE RESULTS

G
ro

un
d

Tr
ut

h
O

ur
s

G
au

ss
ia

nS
pa

3D
G

S

208MB

339MB

773MB

250MB

401MB

1007MB

326MB

518MB

893MB

218MB

320MB

1197MB

Figure 7: More qualitative results on Train, Room, Kitchen, Counter and Playroom scenes com-
paring to previous methods and the corresponding ground truth images. The rendering VRAM
consumption for the corresponding method is annotated at the bottom of each image.

Success Cases Failure Cases

 S
pe

cu
la

r H
ig

hl
ig

ht
s

 D
en

se
 T

ra
ns

pa
re

nc
y

Figure 8: Visualizations of success and failure cases under challenging material conditions.
The left column demonstrates successful reconstructions of scenes containing specular highlights
and transparency. Conversely, the right column illustrates specific failure cases where we observe
reconstruction artifacts under conditions of highly specular highlights or dense transparency.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Sp
a+

R
ed

u.
so

ft→
ha

rd
un

ifi
ed

→
se

q.
w

/o
 c

ol
or

co

m
p.

fu
ll

m
od

el

384MB

258MB

302MB

401MB 499MB 388MB

288MB366MB276MB

319MB 400MB 326MB

248MB 255MB 326MB 250MB

250MB326MB255MB248MB

Figure 9: Qualitative ablation results on the Bicycle, Flowers, Counter and Room scenes. The
rendering VRAM consumption for the corresponding method is annotated at the bottom of each
image.

Figure 10: Real-time rendering performance of MEGS2 on various scenes, showcased via a WebGL-
based viewer on OnePlus Ace 5 Ultra with MediaTek Dimensity 9400+. The live frame rate (FPS)
for each view is annotated in the imagery.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 11: Real-time rendering performance of MEGS2 on various scenes, showcased via a WebGL-
based viewer on a lenovo laptop with NVIDIA GeForce RTX3060 Laptop GPU. The live frame
rate (FPS) for each view is annotated in the imagery.

Figure 12: Real-time rendering performance of MEGS2 on various scenes, showcased via a WebGL-
based viewer on Huawei MatePad Air with Qualcomm Snapdragon 888. The live frame rate (FPS)
for each view is annotated in the imagery.

Figure 13: Real-time rendering performance of MEGS2 on various scenes, showcased via a WebGL-
based viewer on RedMi K60 with Qualcomm Snapdragon 8+ Gen 1. The live frame rate (FPS)
for each view is annotated in the imagery.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Ground Truth 3DGS 3DGS with SG

GaussianSpa GaussianSpa with SG Ours

Figure 14: Visual comparison in the Playroom scene. ”With SG” indicates the variant where
Spherical Harmonics (SH) are replaced by Spherical Gaussians (SG). As observed in the figure,
the speckled texture stems from the Ground Truth, which exhibits actual shadow regions alongside
inherent image roughness that complicates training. While most methods smooth this detail out
entirely, both GaussianSpa and MEGS² (Ours) manage a rough reconstruction.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The article was refined using Gemini 2.5 Pro / Gemini 2.5 Flash / DeepSeek R1 to improve phrasing
for natural English expression and correct grammatical errors.

24

	Introduction
	Related work
	Evolution of Splatting-Based Scene Representations
	Memory Analysis in 3DGS Rendering
	Pruning Techniques for 3DGS
	Other Compression Schemes for 3DGS

	Method
	Preliminaries for 3D Gaussian Splatting
	Spherical Gaussians
	Unified soft-pruning framework
	Problem Formulation
	Memory-constrained Optimization
	Post-Processing Procedure

	Experiments
	Experimental Settings
	Main Results and Analysis
	Qualitative Results
	Ablation Studies
	Ablation on Color Modeling
	Ablation on Pruning Strategies

	Conclusion
	Appendix
	Algorithmic Derivation
	Derivation for Memory-constrained optimizing
	Derivation for Color Compensation

	Experimental Details
	More Quantitive Results
	More Qualitative results
	The Use of Large Language Models (LLMs)

