Under review as a conference paper at ICLR 2026

MEGS?: MEMORY-EFFICIENT GAUSSIAN SPLATTING
VIA SPHERICAL GAUSSIANS AND UNIFIED PRUNING

Anonymous authors
Paper under double-blind review

NVIDIA MediaTek Qualcomm
GeForce RTX 3060 Laptop GPU Dimensity 9400+ Snapdragon 865

souum

117.2fps

Ours: 117.4 FPS Ours: 91.0 FPS Ours: 34.9 FPS
3DGS(w SH): 27 FPS 3DGS(w SH): 6.6 FPS 3DGS(w SH): N/A

Figure 1: We present MEGS?, a memory-efficient framework designed to solve the rendering mem-
ory bottleneck of 3D Gaussian Splatting and enable high-quality, real-time rendering on edge de-
vices. As demonstrated in our WebGL-based viewer, 3D Gaussian Splatting(3DGS) with Spherical
Harmonics (SH) exhibits low frame rates on desktop GPU and fails to run on some mobile plat-
forms. In contrast, MEGS? achieves interactive frame rates across all tested devices, significantly
expanding the applicability of 3DGS. The detailed result is in Appendix [A.3|and[A.4]

ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a dominant novel-view synthe-
sis technique, but its high memory consumption severely limits its applicability
on edge devices. A growing number of 3DGS compression methods have been
proposed to make 3DGS more efficient, yet most only focus on storage compres-
sion and fail to address the critical bottleneck of rendering memory. To address
this problem, we introduce MEGS?, a novel memory-efficient framework that
tackles this challenge by jointly optimizing two key factors: the total primitive
number and the parameters per primitive, achieving unprecedented memory com-
pression. Specifically, we fully replace the memory-intensive Spherical Harmon-
ics with lightweight, arbitrarily oriented and prunable Spherical Gaussian lobes
as our color representations. More importantly, we propose a unified soft prun-
ing framework that models primitive-number and lobe-number pruning as a sin-
gle constrained optimization problem. Experiments show that MEGS? achieves a
50% static VRAM reduction and a 40% rendering VRAM reduction compared to
existing methods, while maintaining comparable rendering quality.

1 INTRODUCTION

Although 3D Gaussian Splatting (3DGS) (Kerbl et al., [2023) has been rapidly replacing implicit
neural radiance fields (NeRF) (Mildenhall et al.,[2020) as the dominant paradigm in neural rendering,

thanks to its fast reconstruction, real-time performance, and high-quality outputs, supporting its
application across devices with varying constraints has become increasingly important. As a result,
compression of 3DGS (Bagdasarian et al.l [2025)) is gaining significantly more attention, with the
goal of enabling real-world use cases on edge devices, such as mobile 3D scanning and previewing,
virtual try-on, and real-time rendering in video games.

Under review as a conference paper at ICLR 2026

Nevertheless, existing compression methods only focus on storage compression rather than memory
compression. While the former storage compression speeds up the one-time data transfer of 3DGS
files, the rendering memory dictates whether the 3DGS rendering process can run smoothly on edge
devices. This limits the applicability of 3DGS applications to low-end devices like cell phones.
For example, some methods based on neural compression, vector quantization, and hash grid com-
pression (Chen et al., [2024; |Girish et al., [2024} [Lee et al.l |2024)) achieve high storage compression
rates. However, these methods require decoding the full Gaussian parameters from a compressed
state before rendering, even resulting in a larger rendering memory than the 3DGS methods without
compression. Another branch of works, i.e., primitive pruning methods (Zhang et al.l 2025b; |[Fang
& Wang| 2024)), is effective at reducing both storage and rendering memory due to the reduced prim-
itives. However, these pruning methods still need to retain a substantial number of 3D Gaussians
for a reasonable rendering quality, which still consumes a large rendering memory. How to further
reduce the rendering memory of 3DGS-based rendering methods remains an open question.

In this paper, we observe that the overall memory consumption for 3DGS rendering is intrinsically
tied to two key factors: the total primitive count and the parameters per primitive. Thus, we propose
a novel framework that simultaneously reduces both factors, rather than only optimizing for the
primitive numbers in previous methods [Zhang et al.| (2025b)); [Fang & Wang| (2024). Specifically,
the rendering VRAM can be divided into a static component and a dynamic component. The static
part relates directly to the total number of Gaussian primitives loaded into the renderer, which is a
product of the primitive count and the parameters per primitive. On the other hand, the dynamic
part, which consists of intermediate data like projected 2D Gaussian parameters and the tile-depth-
gaussian key-value table, is also related to the primitive count in the specific camera viewpoint. This
inherent relationship underscores that to reduce the overall memory footprint, we need to reduce
both the number of primitives and the per-primitive parameter size.

To address the memory bottleneck, we must reduce both primitive counts and per-primitive param-
eters. We first analyze the limitations of using Spherical Harmonics (SH) for color representation.
While effective for low-frequency lighting, SH functions are inherently global and require many
high-order coefficients to represent localized, high-frequency details like sharp highlights. This re-
sults in low parameter utilization and makes them difficult to compress due to the varying parameter
counts across different degrees. While SG-Splatting (Wang et al. [2024a) pioneered using Spheri-
cal Gaussians (SG) to mitigate these issues, they relied on a hybrid model combining SG with SH.
Advancing in this direction, we introduce fully standalone, arbitrarily-oriented, and prunable SG as
a more memory-efficient alternative. Such representation excel at modeling view-dependent signals
with very few parameters, and their complexity can be flexibly controlled by the number of lobes.
This inherent locality and sparsity make it a convenient and effective choice for compression.

Based on the SG-based representation, we further introduce a novel unified soft pruning frame-
work. We leverage the favorable properties of Spherical Gaussians to dynamically prune redun-
dant lobes for each primitive, thereby compressing the per-primitive parameter count. To achieve
a globally optimal memory footprint, our framework models the two traditionally separate pruning
problems—primitive-count pruning and per-primitive lobe pruning—as a single constrained opti-
mization problem, with the total parameter budget serving as a unified constraint. Extensive ex-
periments demonstrate that the proposed MEGS? achieves an excellent balance between rendering
quality and VRAM efficiency.

Overall, our contributions can be summarized as follows:

e Advancing beyond the hybrid approach in SG-Splatting (Wang et al.l [2024a), we introduce a
fully standalone color representation by replacing Spherical Harmonics entirely with arbitrarily-
oriented and prunable Spherical Gaussians. This significantly reduces the per-primitive parameter
count and thus lowers rendering VRAM with minimal impact on quality.

* We propose a unified soft pruning framework that models both primitive-count and lobe-count
as a memory-constrained optimization problem, which yields superior performance compared to
existing staged or hard-pruning methods.

* We achieve unprecedented memory compression for 3DGS, surpassing both vanilla and state-
of-the-art lightweight methods. Our method delivers over an 8 static VRAM compression and
nearly a 6 x rendering VRAM compression compared to vanilla 3DGS, while maintaining or even
improving rendering quality. Furthermore, it still achieves a 2x static VRAM compression and a
40% rendering VRAM reduction over the SOTA method, GaussianSpa, with comparable quality.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 EVOLUTION OF SPLATTING-BASED SCENE REPRESENTATIONS

While Neural Radiance Fields (NeRF) (Mildenhall et al., [2020) and their variants (Barron et al.,
2021; Miiller et al., [2022; Barron et al., 2023)) achieved excellent quality in novel view synthesis,
their slow rendering speeds precluded real-time applications. 3D Gaussian Splatting (3DGS) (Kerbl
et al., [2023) overcame this limitation by introducing a differentiable rasterizer for 3D Gaussians,
enabling unprecedented real-time performance with high visual fidelity. The success of 3DGS, how-
ever, highlighted its primary challenge: a substantial memory and storage footprint. This has directly
motivated the body of work on 3DGS compression and pruning that we discuss subsequently.

2.2 MEMORY ANALYSIS IN 3DGS RENDERING

In most 3DGS compression studies (Bagdasarian et al., 2025), the rendering memory footprint has
not been thoroughly analyzed or compared. Memory usage can be conceptualized into two main
components: a static portion, consisting of the total parameters of all loaded Gaussian primitives,
and a dynamic portion, representing the runtime overhead. The dynamic overhead, which is highly
dependent on a renderer’s implementation, includes the storage of preprocessed 2D Gaussian at-
tributes—an overhead that scales significantly with the number of rendering channels, as seen in
multi-channel applications like Feature Splatting (Qiu et al., [2024). Additionally, it includes data
structures required by tile-based renderers, an overhead first discussed and optimized by FlashGS
(Feng et al.,[2024) for large-scale scenes.

2.3 PRUNING TECHNIQUES FOR 3DGS

Pruning unimportant primitives is a natural and widely explored approach for 3DGS compression.
Some work has focused on refining adaptive density control strategies to achieve more efficient
representations (Kheradmand et al.| |2025; |Cheng et al.| 2024} [Liu et al.| 2024aj Pateux et al.| 2025
Mallick et al.,|2024; Kim et al.,2024). Other research has concentrated on defining better importance
metrics to decide which primitives to remove, with notable examples including LP-3DGS (Zhang
et al., [2024), mini-splatting (Fang & Wang] 2024), and Reduced3DGS (Papantonakis et al., |[2024),
the latter of which also involves spherical harmonic pruning. A recent noteworthy development is
GaussianSpa (Zhang et al., 2025b), which models pruning as a constrained optimization problem,
offering a novel perspective and good compatibility with other pruning techniques. While effective
at reducing the number of primitives, these methods generally achieve a limited compression ratio
and are therefore often used as an initial step within a larger, integrated compression pipeline.

2.4 OTHER COMPRESSION SCHEMES FOR 3DGS

Besides pruning, researchers have applied common compression techniques like vector quantization,
scalar quantization, neural, and hash grid compression to 3DGS (Girish et al.| [2024; |Lee et al.,[2024;
Fan et al.| 2024} [Lee et al., 2025 [Liu et al., 2024b; [Navaneet et al.| [2024; Xie et al.,[2024; |Shin et al.,
2025). While methods with entropy encoding (Chen et al.l 2024; 2025; [Liu et al., 2025a; Wang
et al., 2024b) achieve the highest storage compression ratios, they are often limited to structured
(anchor-based) Gaussian representations (Lu et al. [2023] Ren et al.| 2024} [Zhang et al.| 2025a).
These techniques may drastically reduce file size, but they fail to deliver a comparable reduction in
rendering memory. This is because they cannot render directly from a compressed state; instead,
they must first decode the full Gaussian parameters. The resulting memory footprint is, therefore,
never smaller than that required for uncompressed Gaussian primitives, and the decoding process
itself, particularly when involving neural networks, can introduce significant additional memory
overhead.

3 METHOD

We present MEGS?, Memory-Efficient Gausian Splatting via Spherical Gaussian and Unified Prun-
ing, a novel Gaussian compression framework designed from a VRAM-centric perspective. Our

Under review as a conference paper at ICLR 2026

(A) Color Representation: Spherical Gaussian (B) Memory-contrained Optimization
Gaussian . . .
Attributes Vanilla 3DGS Spherical Gaussian Overall Objective
xe RS position ® Suface Lobes min£(0,5,0), st pofloll + pullsl < &
; o5, o
reR* rot:éz[zrrl P I - . / N total memory constraint
i s v S 3 % e Consumption] . o Origin var.

o€R opacity

c8 T 4 %

=] Base RGB € € R® / y\
e o N
5 oo € R4 COD@ODE | direction f; € $?
[E=Em=n-spr —
SH ¢ OOOO@ED sharpness S; € RY x 3 P
sEE I EEs OB CTD@EE SGRGB @ € R® Dual var. TOXy var.
0D dJ i
Aoy As | et { 0,58 }

(C) Post-processing Procedure

©n Num 0: Opacity Vector
8 = s: Sharpness Vector
[Primitive - - —> : Update Flow
3042VIB 5 Pruning € : Proximal Operation Flow
Opacity
Opacity Distribution Sharpness Distribution
5 7 Lobe : o Num g eyes e
’ V' Pruning . o
e o

Ours

ColorCompensatlonAcig/ €s Sharpness ' o o 0ol 1o 0 o001

Figure 2: Overview of our proposed MEGS?. (A) In Section we first replace the Spherical
Harmonics with arbitrarily-oriented and prunable Spherical Gaussians. (B) In Section [33.1] we
formulate the compression as a memory-constrained optimization problem, which is solved using
an ADMM-inspired approach (Section[3:3.2). (C) In Section[3.3.3] near-invalid primitives and low-
sharpness lobes are removed, and a color compensation term (Eq[I2) is introduced to recover the
energy of the removed lobes.

method achieves an excellent balance between rendering quality and memory footprint by simulta-
neously optimizing both the number of Gaussian primitives and the average parameters per primi-
tive.

3.1 PRELIMINARIES FOR 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al.| [2023) represents a scene using a set of 3D Gaussian
primitives. Each primitive is defined by a center u € R?, a covariance matrix X € R3*3, a scalar
opacity o, and a view-dependent color model. The color is determined by a function c(v) : S — R3,
which maps a viewing direction v to an RGB color. In the original work, this function is modeled
using Spherical Harmonics (SH).

To render an image, these 3D primitives are projected onto the 2D image plane. The final pixel color
is computed by alpha-blending the primitives that overlap with the pixel in front-to-back order,
according to the equation: C' =). c;; H;;ll (1 — «;). Here, the rendering opacity «; is a product
of the primitive’s scalar opacity o; and its 2D Gaussian value at the pixel location.

3.2 SPHERICAL GAUSSIANS

Although the original 3D Gaussian Splatting (3DGS) utilized Spherical Harmonics (SH) for color
modeling, as we discussed in Section[I] SH functions suffer from limitations in parameter efficiency
and the ability to model local and high-frequency signals.

In contrast, Spherical Gaussians (SG) offer a more compact representation, where the parameter
count can be controlled by adjusting the number of lobes. As we demonstrated in Figure 4] a three-
lobe SG requires only about half the parameters of a 3rd-order SH while achieving comparable
expressive power and superior high-frequency detail capture because, in most cases, we only need
to model highlights. Furthermore, as shown in Table 2} SG is more amenable to pruning than SH.

SG was first introduced in real-time rendering to support all-frequency shadows from both point
lights and environment lights (Wang et al.,2009). Specifically, a lobe of SG has the form

G(v; i, 8,a) = ae* V=1, (1)

where ;1 € S? is the unit-length lobe axis, s € R controls the sharpness, and a € R? is the RGB
amplitude vector, with v € S? being the viewing direction.

Under review as a conference paper at ICLR 2026

We use the sum of all lobes of SG for color modeling and introduce a diffuse term to model the
direction-independent component. The view-dependent color ¢(v) is thus computed as:

n

c(v) = co—i—ZG(v;,ui,si,ai). ()

i=1

where ¢(v) € R3 is the final color from the viewing direction v € S?, ¢y € R3 is the direction-
independent diffuse color, and the sum is over n all lobes of SG, with p; € S? being the lobe axis,
s; € RT the sharpness, and a; € R3 the RGB amplitude for the i-th spherical lobe.

Choice of arbitrarily-oriented SG lobes It is particularly notable that the lobe axes of different
SG are not constrained to be orthogonal, nor is any regularization term introduced to enforce or-
thogonality. Instead, each SG lobe is allowed to have an arbitrary direction. This flexibility grants
the SG model a higher degree of freedom, leading to greater representation capability compared to
models with fixed orthogonal axes. As shown in Figure] (in Appendix), SG-Splatting (Wang et al.l
20243a) with fixed orthogonal axes demonstrated significant rendering performance degradation, fur-
ther underscoring the importance of supporting arbitrarily oriented SG lobes.

3.3 UNIFIED SOFT-PRUNING FRAMEWORK

Benefiting from the property of Spherical Gaussians to control the number of parameters with the
number of lobes, they provide an ideal object for pruning. Given that most Gaussian primitives
in a scene require only a few lobes to effectively model their color, and that the number of Gaus-
sian primitives is itself often redundant, we propose a novel unified soft pruning framework. In
the framework, we first redefine the pruning of both Gaussian primitives and spherical lobes as a
unified optimization problem with a total memory-overhead constraint (Section [3.3.1). To handle
the non-differentiable nature of this constraint, we introduce an ADMM-inspired (Boyd et al.|[2011)
algorithm to efficiently solve the problem (Section [3.3.2). After optimization, the model enters a
post-processing procedure where the final primitives and spherical lobes are removed, with render-
ing quality subsequently recovered through a color compensation strategy and minor fine-tuning

(Section [3.3.3)).

3.3.1 PROBLEM FORMULATION

We unify primitive count pruning and spherical lobe pruning into a memory-constrained optimiza-
tion problem. The Ly norm of the opacity vector represents the number of active primitives, as
primitives with zero opacity do not contribute to rendering. Similarly, the Ly norm of the sharp-
ness vector denotes the number of active spherical lobes, since lobes with zero sharpness exhibit
no view-dependent effect and their color can be directly added to the diffuse term cy. Building
upon GaussianSpa (Zhang et al., 2025b)’s sparsification framework and our analysis, we extend the
pruning objective from primitive count optimization to total memory budget control, formalized as:

min £(0,s,0), st polloflo+ psllsllo < & (3)

o,s,

total memory constraint

RNXI RNXS

where o € means opacity vector for N Gaussian primitives, s € means flattened
sharpness vector for N Gaussians, © € RN*13 (other Gaussian variables), po = 1l and ps = 7
count base parameters for a single Gaussian primitive and a single SG lobe respectively, and « is the
total parameter budget. £(o, s, O) is the reconstruction loss function.

3.3.2 MEMORY-CONSTRAINED OPTIMIZATION

In this subsection, we aim to solve the memory-constrained optimization defined in Section [3.3.1]
Due to the introduction of a non-differentiable component (the Ly norm) into the constraint, we can-
not directly optimize it with regularized stochastic gradient descent. Instead, we adopt an ADMM-
inspired approach by introducing proxy variables o and s for o and s, respectively. This decompo-
sition strategy enables us to split the original optimization problem into two tractable subproblems:

0 - -
mi% L(o,s,0) + 3 (pollo — 8+ Xol® + pslls — 8+ As?) 4)

Under review as a conference paper at ICLR 2026

Algorithm 1 Memory-constrained optimizing

Require:
Initial parameters: ©°, o°, s°
Proxy variables: 6° = 0°, §° = s°
Dual variables: A2 = 0, A2 =0
Learning rate 7, penalty J,, J5, budget K
Ensure:
Optimized parameters: ©%, 0, s
l: fork=0to K —1do
2: Gradient Step:
3 OF eF —nVeL(6F, o",sF)
4: oftl o —p [Voﬁ(Gk, o”,s") 4 6,(o* — 6" +)\f,)]
50 s P [VaL(OF, 051 sF) 4+ 6,(s" — 87 + AD)]
6.
7
8

K

Proximal Step:
("1 881y « prox,, (oF 1 4+ AE s" 1 4 AF)

: Dual Update:
9: AT AG 4 (oM =6
10: AFFL e AF 4 (sF T - gF Y
11: end for

12: Return ©X, o s¥

., 0 - <
min 7(0,s) + 92 (pOHO — 0+ }‘0”2 + pslls — s+ }‘SHQ) ®)
0,5

where A(-, -) is an indicator function enforcing the sparsity constraint:

0 ifpoHOHO +PsHS||o < K,
h = 6
(0,5) {—i—oo otherwise ©

and the proxy variables are updated via the proximal operator:

(6,8) = prox; (0 + Ao, s + As). 7

Here, A, and Ag denote the corresponding Lagrange multipliers for the constraints. The specific
algorithm flow can be found in Algorithm|[T] and the detailed derivation is in Appendix

Proximal Operator Implementation The proximal operator projects o and s onto the constraint
pollollo + pslsllo < k, compatible with any importance metric. To simplify the design and leverage
importance criteria from prior primitive-pruning research, we choose to factorize the projection:

0 = prox, (0 + Xo), [|0]|, < ko ¥
§ = prox, (s + As), |IS]y < ks &)

For opacity projection, |[Zhang et al.| (2025b) has established multiple proximal operators that are
selected based on scene characteristics. Our approach reuses these operators (See Appendix [A.2).

For sharpness projection, we project the attribute onto the constraint space by retaining only the r
most important spherical lobes. This retention is based on a dynamic range metric, which quantifies
the view-dependent color change contributed by the i-th lobe:

D; = |max(¢;) — min(¢;)| = |a;|(1 — 67251') (10)

where a; is the RGB amplitude for the -th spherical lobe, and ks controls the total number of active
lobes. The k elements corresponding to the highest D; values in (s + Ag) are preserved.

Discussion: Sequential vs. Unified Pruning While sequential pruning tackles memory reduction
in a two-stage process—first reducing primitive count, then per-primitive parameters—our unified
framework jointly optimizes both factors as a single problem. This approach finds a better trade-off
between primitive count and per-primitive complexity, thus avoiding the sub-optimal solutions often
found by sequential methods. For a detailed experimental validation, please refer to Section

Under review as a conference paper at ICLR 2026

3.3.3 POST-PROCESSING PROCEDURE

After completing the constrained optimization process, we obtain a large number of primitives and
spherical lobes with near-zero opacity and sharpness values, respectively. As the hard constraints
are enforced on the proxy variables rather than the original ones, these near-zero values must still
be pruned to achieve an actual memory and storage benefit. We address this with a three-step
post-processing strategy: first, we remove Gaussian primitives whose opacity falls below a certain
threshold. Then, for spherical lobes, we remove those with negligible sharpness and introduce a
simple color compensation method to minimize the average per-view color variation and mitigate
performance degradation caused by their removal.

This compensation is achieved by finding an optimal term, Acy, that minimizes the integral of the
squared color difference over all view directions on the unit sphere:

IEin/ ((co + Aco) — (co + G(v; i, 86, a3)))* dv (11)
Co Js2
Solving equation[TT]yields an exact compensation term that preserves the color of the removed lobe:
1— —2s;
Aco = a5 - ———o (12)
25,‘

The diffuse term of the parent primitive is then updated with this value:
¢y = co + Acy (13)

Finally, after removing some primitives and spherical lobes, we continue to fine-tune for a small
number of steps to recover the rendering quality. The detailed derivation is in Appendix Fig-
ure [5] presents the distribution of the spherical lobes after post-processing procedure across scenes.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics Following 3DGS (Kerbl et al., |2023), we evaluate the rendering perfor-
mance on real-world datasets, including all indoor scenes and outdoor scenes in Mip-NeRF360
(Barron et al.| [2022)), two scenes from Tanks & Temples (Knapitsch et al.| |2017), and two scenes
from Deep Blending (Hedman et al., | 2018). Additionally, we measure the VRAM overhead during
the Gaussian loading (static) and rendering stages on these scenes.

Baselines On all datasets, we benchmark our method against four categories of baselines: (1)
vanilla 3DGS (Kerbl et al) [2023) and SG-Splatting (Wang et al.l 2024a)); (2) lightweight 3DGS
methods based on primitive pruning: LP-3DGS (Zhang et al.,[2024), Mini-Splatting (Fang & Wang,
2024), MaskGaussian (Liu et al.| [2025b)) and GaussianSpa (Zhang et al., |2025b); (3) lightweight
3DGS methods based on pruning spherical harmonic coefficients: Reduced3DGS (Papantonakis
et al.| [2024)); (4) 3DGS compression methods utilizing orthogonal techniques such as neural com-
pression and vector quantization: CompactGaussian (Lee et al. [2024), EAGLES (Girish et al.|
2024), LightGaussian (Fan et al.;,[2024), LocoGS (Shin et al.,[2025)) and MesonGS (Xie et al.|, [2024)).

Experimental Setup To ensure a fair comparison, we follow the core training procedures estab-
lished by 3DGS (Kerbl et al |2023)) and GaussianSpa (Zhang et al.,[2025b). We evaluate rendering
quality using PSNR, SSIM, and LPIPS, and measure efficiency via static and rendering VRAM con-
sumption. For a detailed description of our specific implementation, as well as the definitions and
measurement procedures for both static and rendering VRAM, please refer to Appendix [A.2]

4.2 MAIN RESULTS AND ANALYSIS

The quantitative results are summarized in Table [T} comparing our approach with several existing
lightweight 3DGS methods. Overall, our method achieves comparable or slightly superior render-
ing quality to the current state-of-the-art lightweight 3DGS methods, while demonstrating signifi-
cantly lower VRAM overhead across all existing methods. Compared to vanilla 3DGS, our method
achieves a 0.4 dB PSNR improvement on the DeepBlending dataset and a 0.012 LPIPS reduction on

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison across three datasets. Best results are in red region , second

best are in orange region . Memory (VRAM) values are in MB. HQ denotes the version prioritizing
high rendering quality, and LM denotes the version prioritizing lower VRAM consumption.

Mip-NeRF 360 Tanks&Temples DeepBlending
Method VRAM| VRAM| VRAM|
PSNR1 SSIM?t LPIPS| Stat. Rend. PSNR? SSIM? LPIPS| Stat. Rend. PSNR? SSIM? LPIPS| Stat. Rend.

3DGS 2748 0.813 0.217 648 1717| 23.68 0.849 0.171 370 1021| 29.71 0.902 0.242 582 1569
SG-Splatting 27.27 0.813 0.218 416 1327| 23.47 0.840 0.177 229 822 | 29.57 0.901 0.247 357 983

Reduced3DGS | 27.21 0.810 0.225 191 493 | 2351 0.839 0.187 90 252 |29.60 0.902 0248 121 340
CompactGaussian| 27.08 0.798 0.247 267 838 | 23.32 0.831 0.201 177 469 | 29.79 0.901 0.258 187 532
EAGLES 2723 0.810 0240 - - |2337 0840 0.200 333 965 | 29.86 0.910 0.250 510 1550
LightGaussian 27.13 0.806 0.237 290 640 | 23.44 0.832 0.202 168 437 - - - - -
LocoGS 27.28 0.809 0.231 609 994 | 23.62 0.846 0.182 458 732 | 30.05 0.905 0.247 643 1040
MesonGS-FT 2698 0.801 0.233 709 1336| 23.32 0.837 0.193 424 783 | 29.51 0.901 0.251 656 1202
LP-3DGS 27.12 0.805 0.239 420 1239|2341 0.834 0.198 251 769 - - - -

Mini-Splatting 27.40 0.821 0.219 125 477 | 2345 0.841 0.186 72 253 | 30.05 0.909 0.254 89 324
MaskGaussian 2743 0.811 0.227 271 799 | 23.72 0.847 0.181 132 517 | 29.69 0.907 0.244 156 501

GaussianSpa 27.56 0.824 0.215 115 448 | 23.73 0.857 0.162 106 336 | 30.00 0.912 0.239 104 372
Ours(HQ) 27.54 0.824 0.209 55 2652345 0.853 0.159 51 211 |30.17 0912 0233 54 243
Ours(LM) 2721 0.814 0.227 40 224 |23.27 0851 0.167 37 163 | 30.01 0908 0246 33 193

the Tanks & Temples dataset. Furthermore, it achieves more than an 8 x compression rate for static
VRAM and nearly a 6 x compression rate for rendering VRAM across all datasets. Even when com-
pared to the current state-of-the-art lightweight 3DGS method, GaussianSpa (Zhang et al., [2025b)),
we still achieve a nearly 2x compression rate for static VRAM on the Mip-NeRF360 dataset and
reduce rendering VRAM by approximately 40% with comparable rendering quality.

Analysis on Existing Compression Methods Many recent methods achieve high storage com-
pression but fail to reduce VRAM. Techniques based on hash grid compression, vector quantization
or neural networks (e.g., CompactGaussian (Lee et al., 2024), EAGLES (Girish et al., | 2024))) must
first decompress their parameters into a renderable state. This requirement, coupled with the decod-
ing process itself, results in a VRAM footprint that can exceed even vanilla 3DGS (Appendix, Tab.
[3). Similarly, HAC++ (Chen et al [2025)), a SOTA method designed specifically for anchor-based
3DGS, is not a general solution and offers minimal VRAM reduction for the same reason. In con-
trast, our method achieves superior perceptual quality (SSIM/LPIPS) with 50-60% less VRAM and
a 1.5-1.7x rendering speedup.

Analysis on Pruning-based Methods Pruning-based methods (Zhang et al.| 2025b; Fang &
Wang], 2024} [Zhang et al., [2024) effectively reduce VRAM but face a bottleneck, as aggressively
reducing primitive count degrades quality. Our method overcomes this by not only pruning prim-
itives but also reducing per-primitive costs. When compared to methods that also compress color,
such as Reduced3DGS (Papantonakis et al., 2024) which prunes SH coefficients, our advantage is
twofold: the superior amenability of our Spherical Gaussians to pruning, and our more effective
unified soft pruning framework, as validated in Section 4.4]

4.3 QUALITATIVE RESULTS

Figure presents a qualitative comparison of MEGS? against baselines, including GaussianSpa and
3DGS on various scenes. In Bicycle and Truck, our method accurately recovers specular reflections
on smooth surfaces and mirrors, details that other methods fail to fully capture. In Bonsai, MEGS?
faithfully captures high-contrast lighting in both contours and brightness. Furthermore, MEGS? de-
livers a cleaner and more complete reconstruction in Playroom. Notably, MEGS? achieves these
high-quality results with a VRAM footprint of only 50-60% compared to GaussianSpa, demonstrat-
ing a substantial enhancement in memory efficiency. These visual results indicate that our Spherical
Gaussian based representation has a stronger capability for fitting local view-dependent signals than
Spherical Harmonics, leading to sharper and more photorealistic images. More qualitative results
are in Appendix, Figure 7]

Under review as a conference paper at ICLR 2026

. Ground
GaussianSpa Ours Truth

3DGS

= 3042MB

Figure 3: Qualitative results on the Bicycle, Bonsai, Kitchen, Playroom and Truck scenes comparing
to previous methods and the corresponding ground truth images from test views. The rendering
VRAM consumption for the corresponding method is annotated at the bottom of each image.

4.4 ABLATION STUDIES

In this section, we conduct a series of ablation studies to validate the effectiveness of our proposed
designs and answer two key questions: 1. Is the replacement of spherical harmonics with spherical
Gaussians necessary? And why not use the orthogonal-axis spherical variants (fixed-axis SG) ?
(Section 241 2. Is our proposed unified soft pruning framework effective? And does it offer a
significant advantage over simply combining existing pruning methods? (Section4.4.2))

4.4.1 ABLATION ON COLOR MODELING

To validate our color model, we replace the spherical harmonics (SH) in 3DGS with our arbitrarily-
oriented spherical Gaussians (SG) while keeping training settings identical. Our SG model achieves
a superior quality-VRAM trade-off (see Figure [). Furthermore, we show that the fixed-axis SG
from SG-Splatting (Wang et al| 20244d) struggles to capture complex view-dependent effects, lead-
ing to a sharp quality drop (about 0.6 dB PSNR). This rigidity also makes it incompatible with our
lobe-pruning strategy.

4.4.2 ABLATION ON PRUNING STRATEGIES

We evaluate our unified soft pruning framework Table 2: Ablation studies for different pruning
against several ablations and baselines, withre- strategies on Mip-NeRF360 dataset.

sults in Table [2] First, replacing our soft prun-

ing with a hard-pruning variant (soft — hard) _Method PSNRT SSIMT LPIPS| VRAM{
that only optimizes opacity results in a signif- Spa+Redu. 26.05 0.776 0.280 402
icant performance drop. Second, performing Spa(SH —SG) 27.01 0.808 0.230 339
primitive and lobe pruning sequentially (unified ¢op s hard 2723 0814 0228 288

— sequential) is inferior to our joint optimiza- ynified — seq. 27.33 0.818 0.222 328
tion, confirming the advantage of a unified ap- w/o color comp. 27.46 0.822 0.213 265
proach. We also found that removing our color full model 27.54 0.824 0.209 265

compensation harms performance (w/o color
comp.). Finally, we test two naive baselines. Combining GaussianSpa with Reduced3DGS leads
to severe quality degradation, showing that existing SH pruning metrics fail on fewer primitives.
Simply replacing SH with SG in GaussianSpa is also outperformed by our method. This demon-
strates that our pruning strategy not only reduces memory but also acts as a regularizer, improving
rendering quality. Visual comparison are in Appendix, Figure [0}

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

VRAM: 1180MB

VRAM: 1078MB #G: 2.69M
#G: 2.70M LPIPS: 0.218
27.6 VRAM: 928MB .
RAM: 9281 LPIPS: 0.219
LPIPS: 0.221
27.4 A VRAM: 1717MB
™ #G: 2.72M
= VRAM: 1289MB LPIPS: 0.217
Z 272 #G: 2.72M
~ LPIPS: 0.219
% RAM: 984
] VRAM: 984MB
& 270 BGZTIM VRAM: 1432MB
LPIPS: 0223 B #G:3.6M —@— Arbitrarily-oriented SG (Ours, lobe=1,2,3):
26.8 1 LPIFS: 0:229 —— Spherical Harmonics (SH, degree=1,2,3):
6.6 [l Fixed-axis SG (a.k.a. Ortho-axis SG, lobe=3):
10 20 30 40 50

Number of Parameters for Color Modeling

Figure 4: Comparison of different 3DGS color representations on Mip-NeRF360 dataset.

1.426

08 Lobe Type
: B 0-Lobes
1.183 20.0% 1.183 mmm 1-Lobes
0.7 s 2-Lobes
DT 1.328 22.0% 1.225 mm 3-Lobes
0.6
g 23.1% 21.3%
05 19.7% 17.8% 1.116 1.224
2
3 o o o
¢ 0.4 - - o
-he > 16.6% 27.5% fiid
g e U 22.5%
i 27.3% 17.3% 21.7%
503
’ -

I
>

e 25.5%
20.7% 5% T

31.6%

40.7%
0.1

0.0+

Bicycle Stump Garden Flowers Treehill Bonsai Counter Kitchen Room
Scenes

Figure 5: Distribution of Gaussian lobes across scenes. We report the distribution of Gaussians
using 0 to 3 lobes for each scene in the Mip-NeRF 360 dataset. The value above each bar represents
the average lobe count per Gaussian.

5 CONCLUSION

We introduced MEGS?, a framework that addresses the 3D Gaussian Splatting memory bottle-
neck by jointly optimizing primitive count and per-primitive parameters. Our approach combines a
lightweight spherical Gaussian color representation with a unified soft pruning method to achieve
state-of-the-art memory compression. MEGS? shifts the focus of 3DGS compression towards ren-
dering VRAM efficiency, paving the way for high-quality rendering on edge devices.

Limitation Our method focuses on compressing static memory for broad, renderer-agnostic ap-
plicability. We leave the optimization of implementation-specific dynamic VRAM for future work,
and note that the model’s performance on highly complex highlights warrants further investigation.

ETHICS STATEMENT

Our work presents no direct ethical concerns. The primary application of our method is for novel
view synthesis from captured data.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility: (1) While not included with this submission, our full project (including
the WebGL renderer, training, and evaluation scripts) will be released on GitHub upon publication.
(2) All experimental details, including our VRAM measurement protocol, are provided in Appendix
[A.2] (3) Our data and preprocessing follow the official 3DGS implementation. (4) Derivations and

proofs for our core algorithms are in Appendix and

REFERENCES

Milena T. Bagdasarian, Paul Knoll, Yi-Hsin Li, Florian Barthel, Anna Hilsmann, Peter Eisert, and
Wieland Morgenstern. 3dgs.zip: A survey on 3d gaussian splatting compression methods, 2025.
URLhttps://arxiv.org/abs/2407.09510.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,
2021. URL https://arxiv.org/abs/2103.13415.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. CVPR, 2022.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-
nerf: Anti-aliased grid-based neural radiance fields, 2023. URL https://arxiv.org/abs/
2304.06706.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1-122, January 2011. ISSN 1935-8237. doi: 10.1561/2200000016. URL
https://doi.org/10.1561/2200000016.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid as-
sisted context for 3d gaussian splatting compression, 2024. URL https://arxiv.org/
abs/2403.14530.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac++: Towards
100x compression of 3d gaussian splatting, 2025. URL https://arxiv.org/abs/2501.
12255,

Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and
Xuejin Chen. Gaussianpro: 3d gaussian splatting with progressive propagation, 2024. URL
https://arxiv.org/abs/2402.14650.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2024. URL https:
//arxiv.org/abs/2311.17245.

Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians, 2024. URL https://arxiv.org/abs/2403.14166.

Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang, Tao Liu, Zhilin Pei, Hengjie Li,
Xingcheng Zhang, and Bo Dai. Flashgs: Efficient 3d gaussian splatting for large-scale and high-
resolution rendering, 2024. URL https://arxiv.org/abs/2408.07967.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings, 2024. URL https://arxiv.org/abs/2312.04564,

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. 37(6):257:1-257:15, 2018.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.
URL https://repo—-sam.inria.fr/fungraph/3d-gaussian—-splatting/.

11

https://arxiv.org/abs/2407.09510
https://arxiv.org/abs/2103.13415
https://arxiv.org/abs/2304.06706
https://arxiv.org/abs/2304.06706
https://doi.org/10.1561/2200000016
https://arxiv.org/abs/2403.14530
https://arxiv.org/abs/2403.14530
https://arxiv.org/abs/2501.12255
https://arxiv.org/abs/2501.12255
https://arxiv.org/abs/2402.14650
https://arxiv.org/abs/2311.17245
https://arxiv.org/abs/2311.17245
https://arxiv.org/abs/2403.14166
https://arxiv.org/abs/2408.07967
https://arxiv.org/abs/2312.04564
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Under review as a conference paper at ICLR 2026

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Jeff Tseng, Hossam Isack, Ab-
hishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain
monte carlo, 2025. URL https://arxiv.org/abs/2404.09591.

Sieun Kim, Kyungjin Lee, and Youngki Lee. Color-cued efficient densification method for 3d gaus-
sian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 775-783, June 2024.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

Kevin Kwok and Haoyang Ye. splat, 2023. URL https://github.com/antimatterl5/
splat.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 21719-21728, 2024.

Soonbin Lee, Fangwen Shu, Yago Sanchez, Thomas Schierl, and Cornelius Hellge. Compression
of 3d gaussian splatting with optimized feature planes and standard video codecs, 2025. URL
https://arxiv.org/abs/2501.03399.

Lei Liu, Zhenghao Chen, Wei Jiang, Wei Wang, and Dong Xu. Hemgs: A hybrid entropy model
for 3d gaussian splatting data compression, 2025a. URL https://arxiv.org/abs/2411.
18473

Rong Liu, Rui Xu, Yue Hu, Meida Chen, and Andrew Feng. Atomgs: Atomizing gaussian splatting
for high-fidelity radiance field, 2024a. URL https://arxiv.org/abs/2405.12369.

Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
3d scene representation via compressed gaussian splatting, 2024b. URL https://arxiv.
org/abs/2404.09458.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks, 2025b. URL https://arxiv.org/abs/
2412.20522.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-
gs: Structured 3d gaussians for view-adaptive rendering, 2023. URL https://arxiv.org/
abs/2312.00109.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Stein-
berger, and Fernando De La Torre. Taming 3dgs: High-quality radiance fields with limited re-
sources, 2024. URL https://arxiv.org/abs/2406.15643.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
https://arxiv.org/abs/2003.08934.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1-15, July
2022. ISSN 1557-7368. doi: 10.1145/3528223.3530127. URL http://dx.doi.org/10.
1145/3528223.3530127.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compgs: Smaller and faster gaussian splatting with vector quantization, 2024. URL https:
//arxiv.org/abs/2311.18159.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Dret-
takis. Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(1), May 2024. URL https://repo-sam.
inria.fr/fungraph/reduced_3dgs/.

12

https://arxiv.org/abs/2404.09591
https://github.com/antimatter15/splat
https://github.com/antimatter15/splat
https://arxiv.org/abs/2501.03399
https://arxiv.org/abs/2411.18473
https://arxiv.org/abs/2411.18473
https://arxiv.org/abs/2405.12369
https://arxiv.org/abs/2404.09458
https://arxiv.org/abs/2404.09458
https://arxiv.org/abs/2412.20522
https://arxiv.org/abs/2412.20522
https://arxiv.org/abs/2312.00109
https://arxiv.org/abs/2312.00109
https://arxiv.org/abs/2406.15643
https://arxiv.org/abs/2003.08934
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
https://arxiv.org/abs/2311.18159
https://arxiv.org/abs/2311.18159
https://repo-sam.inria.fr/fungraph/reduced_3dgs/
https://repo-sam.inria.fr/fungraph/reduced_3dgs/

Under review as a conference paper at ICLR 2026

Stéphane Pateux, Matthieu Gendrin, Luce Morin, Théo Ladune, and Xiaoran Jiang. Bogauss: Better
optimized gaussian splatting, 2025. URL https://arxiv.org/abs/2504.01844.

Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
physics-based scene synthesis and editing, 2024. URL https://arxiv.org/abs/2404.
01223

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-gs:
Towards consistent real-time rendering with lod-structured 3d gaussians, 2024. URL https:
//arxiv.org/abs/2403.17898.

Seungjoo Shin, Jaesik Park, and Sunghyun Cho. Locality-aware gaussian compression for fast and
high-quality rendering, 2025. URL https://arxiv.org/abs/2501.05757,

Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo. All-frequency rendering
of dynamic, spatially-varying reflectance. ACM Trans. Graph., 28(5):1-10, December 2009.
ISSN 0730-0301. doi: 10.1145/1618452.1618479. URL https://doi.orqg/10.1145/
1618452.1618479.

Yiwen Wang, Siyuan Chen, and Ran Yi. Sg-splatting: Accelerating 3d gaussian splatting with
spherical gaussians, 2024a. URL https://arxiv.org/abs/2501.00342,

Yufei Wang, Zhihao Li, Lanqging Guo, Wenhan Yang, Alex C. Kot, and Bihan Wen. Con-
textgs: Compact 3d gaussian splatting with anchor level context model, 2024b. URL https:
//arxiv.org/abs/2405.20721.

Shuzhao Xie, Weixiang Zhang, Chen Tang, Yunpeng Bai, Rongwei Lu, Shijia Ge, and Zhi Wang.
Mesongs: Post-training compression of 3d gaussians via efficient attribute transformation, 2024.
URLhttps://arxiv.org/abs/2409.09756.

Jiahui Zhang, Fangneng Zhan, Ling Shao, and Shijian Lu. Sogs: Second-order anchor for advanced
3d gaussian splatting, 2025a. URL https://arxiv.org/abs/2503.07476,

Yangming Zhang, Wengqi Jia, Wei Niu, and Miao Yin. Gaussianspa: An “optimizing-sparsifying”
simplification framework for compact and high-quality 3d gaussian splatting. In Proceedings of
the Computer Vision and Pattern Recognition Conference (CVPR), pp. 26673-26682, June 2025b.

Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li Yang, Cheng Peng, Rama Chellappa, and Deliang
Fan. Lp-3dgs: Learning to prune 3d gaussian splatting, 2024. URL https://arxiv.org/
abs/2405.18784.

13

https://arxiv.org/abs/2504.01844
https://arxiv.org/abs/2404.01223
https://arxiv.org/abs/2404.01223
https://arxiv.org/abs/2403.17898
https://arxiv.org/abs/2403.17898
https://arxiv.org/abs/2501.05757
https://doi.org/10.1145/1618452.1618479
https://doi.org/10.1145/1618452.1618479
https://arxiv.org/abs/2501.00342
https://arxiv.org/abs/2405.20721
https://arxiv.org/abs/2405.20721
https://arxiv.org/abs/2409.09756
https://arxiv.org/abs/2503.07476
https://arxiv.org/abs/2405.18784
https://arxiv.org/abs/2405.18784

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHMIC DERIVATION
A.1.1 DERIVATION FOR MEMORY-CONSTRAINED OPTIMIZING

This appendix provides the detailed derivation of Algorithm (1| presented in the main text. The
algorithm solves the memory-constrained optimization problem with Ly norm constraints using an
ADMM-inspired approach.

Problem Formulation Consider the constrained optimization problem:
min £L(o,s,)

0.5.0 (A.1)
s.t. polloflo + psllsllo < &

where L is the loss function,
sents the memory budget.

- |0 denotes the Ly norm (count of non-zero elements), and x repre-

Augmented Lagrangian Formulation Introduce proxy variables o, s to reformulate the problem:

st. 0=0, s=35 (A2)
p0||6||0 =+ ps||§||0 S K
The augmented Lagrangian function is constructed as:
£6(07 S’ 67 65 §7 AO? As) :£(07 S7 6)
+A5(0—8)+A](s—8) (A3)

o . -
+5 (pollo = 8]1* + pslls — 511%)

where A, and Ag are Lagrange multipliers, and § > 0 is the penalty parameter.

ADMM Alternating Minimization The ADMM framework decomposes the optimization into
three subproblems:

Primal Variables Update With proxy variables and multipliers fixed, update the primal variables:
(©FF1 oF 1 1) —arg min L(o,s, ©)

O,0,s

(A4)

) L) -
+ 5 [pollo = 8" + AG|* + pslls — 8% + AL|”]

Using gradient descent approximation:

OF1 = @F — Ve L(6F, oF, sF)
o' = oF — 9 [VoL(0F, 0%, s%) +6,(0" — 6" + A)] (A.5)
s"T = 8% —) [VL(0F, 0" %) + 6,(s" —§F + AF)]

where §, = dp,, 05 = dps.

Proxy Variables Update With primal variables and multipliers fixed, update the proxy variables:

1. . .. 0 - -
(6k+1,sk+1) = argmin h(0,8) + B [po||okJrl —o+)\f,||2 + ,osHs]CJrl — S+ A§||2] (A.6)

14

Under review as a conference paper at ICLR 2026

where h(0, §) is the indicator function enforcing the sparsity constraint:

~ o~ f o 0 s S S
h(O,S) — {0 1 p ||O||0 + p ||S||O K (A7)
400 otherwise
The solution is given by the proximal operator:
(6", 851) = prox,, (oFt1 + Ak sF 1 4 AF) (A8)
Dual Variables Update Update the Lagrange multipliers:
Ak-‘rl _ Ak + Ok-‘rl _ 6k+1
. o () (A.9)
AS+1 — A]; + (Sk+1 _ §k+1)
A.1.2 DERIVATION FOR COLOR COMPENSATION
Iélin/ ((co + Aco) — (co + G(v; i, 51, a:)))° dv (A.10)
o J§2

where G (v; i, s,a) = ae*®V=1 1 € S? is the unit-length lobe axis, s € R* controls the sharp-
ness, and a € R? is the RGB amplitude vector, with v € S? being the viewing direction.

Simplifying the objective function:

min/ (Aco — G(v; s, S, ai))Q dv (A.11)
Aco Jg2
Expanding the squared term:
rélin/ (Acg —2AcoG(v; i, Siya;) + G(v; g,y si,ai)Q) dv (A.12)
o J§2
Taking derivative with respect to Acg and setting to zero:
0
=2 A — G(v; is Siy Ay dv=20 A.13
Tae =2 [(8 = Glvipisica) v (A13)

Solving for the optimal Acy:

G(v; pi, si,a;)d 1
ISQ (vi pi, 53, a)dv = — G(v; iy 8, a5)dv (A.14)

A =
o Jsz dv A7 oo

Evaluating the spherical Gaussian integral. Without loss of generality, align p; with the z-axis:
2T ™
G(v; i, 8iya;) dv = a; / / e%1(€0s0=1) ¢in 9 4 d¢
s? o Jo

= 2ma; / e%1(0s0=1) in 9 4o
0

(substitute u = cos 0, du = — sin 8d6)
1
= 27Tai/ e (=1 gy
-1
1— —2s;
—omg;
S;
Substituting back:
1 1— —2s; 1— —2s;
Acy = — - 2ma; - = = [‘ (A.15)
47 S; 2s;
The diffuse term is updated as:
¢y = co + Acy (A.16)

15

Under review as a conference paper at ICLR 2026

A.2 EXPERIMENTAL DETAILS

Implementation Details Our experiments are conducted on a single NVIDIA RTX 3090 GPU
(24GB). For a fair comparison, we adopt the same hyperparameters and optimizer used by vanilla
3DGS (Kerbl et al.|[2023)) on all datasets. In terms of the hyperparameters for our unified soft prun-
ing framework, we conduct the memory-constrained optimization for a total of 10,000 iterations, ap-
plied at an interval of 50 iterations. We set the penalty parameter ¢ to 0.0005. For the post-processing
procedure defined in Section[3.3.3] we set the sharpness threshold to 1 to prune spherical lobes with
negligible contribution. Regarding the training strategy, we employ the same densification, pruning,
and fine-tuning procedures as GaussianSpa, conducting densification training, sparse training, and
fine-tuning for the same number of steps. To ensure the accuracy of our VRAM measurements, we
reproduce 3DGS, GaussianSpa (Zhang et al.|[2025b)), EAGLES (Girish et al.,|2024)), CompactGaus-
sian (Lee et al.,|2024), LightGaussian (Fan et al.,2024), LocoGS (Shin et al., |2025), MesonGS (Xie
et al., [2024), and Reduced3DGS (Papantonakis et al.| [2024) for direct VRAM measurement. For
other pruning-based methods, we utilize both the rendering quality metrics and primitive counts re-
ported in the GaussianSpa paper. We then estimate their corresponding VRAM consumption based
on our own VRAM measurements for 3DGS and GaussianSpa. EAGLES cannot be trained on a
single NVIDIA RTX 3090 GPU with 24GB on some scenes in Mip-NeRF360, so we do not report
VRAM consumption. For fairness, MesonGS uses the version that continues fine-tuning after com-
pression, and LocoGS utilizes point clouds from COLMAP for initialization to maintain consistency
with other methods.

Evaluation Details For rendering performance, we report the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), and learned perceptual image patch similarity(LPIPS). For VRAM
consumption, we report both static VRAM overhead and rendering VRAM overhead. The former
refers to the VRAM required to load all 3DGS primitives into the renderer and dequantize or decode
them into a ready-to-render state. This is not necessarily equal to the file size, as some methods
might represent Gaussian attributes in a more compact or lower-precision data format but still require
restoring them to full, 32-bit precision Gaussian attributes before rendering. The latter denotes the
peak VRAM usage during the rendering process, which is typically larger than the static VRAM
due to the introduction of intermediate variables (e.g., projected 2D Gaussian attributes, key-value
tables for tile-based rendering) during rendering. We measure this value across all test viewpoints
and report the average. To exclude the overhead introduced by the framework itself and the impact of
memory fragmentation, we note that the memory allocation and management of the official 3DGS
implementation’s renderer are almost entirely handled by PyTorch. Therefore, all VRAM-related
metrics are reported using the values provided by the PyTorch framework.

Proximal Operators Implementation As mentioned in the main text, for opacity projection, we
reuse the two proximal operators from GaussianSpa (Zhang et al., 2025b). These operators select
Ko, primitives to preserve based on different importance criteria. The first is a Magnitude-Based
Selection, which sorts the input vector (o+ A,) and preserves the «, elements with the highest
magnitudes. The second operator employs an Importance-Based Selection, adopting the impor-
tance score metric from MiniSplatting (Fang & Wang| 2024). The importance score I; for the ¢-th
Gaussian is the sum of its blending weights across all intersecting camera rays seen during training:

K
Ii=> wy (A.17)
j=1

where the blending weight w;; is the product of the Gaussian’s opacity «;, its projected 2D value
G?D , and the accumulated transmittance 75; along the j-th ray. Here, K is the total number of inter-
sected rays. The operator then preserves the x,, primitives with the highest importance scores. While
GaussianSpa selects the specific operator based on scene characteristics (e.g., indoor vs. outdoor),
we simplify the overall framework by consistently adopting the Importance-Based Selection as our
unified approach across all scenes.

16

Under review as a conference paper at ICLR 2026

A.3 MORE QUANTITIVE RESULTS

Table 3: Average parameter costs for the color model per Gaussian primitive. Storage and
Rendering costs are measured in the number of float32 parameters. Decode Overhead indicates
whether a method introduces significant additional VRAM during calculating color. The values of
our method are calculated on the DeepBlending dataset.

Method Storage Rendering Decode Overhead
3DGS 48 48 No
EAGLES <1 > 48 Yes
CompactGaussian <1 > 32 Yes
ours w/o lobe-pruning 24 24 No
ours 9.7 9.7 No

Table 4: Comparison of anchor-based 3DGS and specialized SOTA compression schemes on
the Mip-NeRF360 dataset. The best result is shown in bold.

Method PSNRt SSIM{ LPIPS] VRAMJ| FPSt
Scaffold-GS 27.74 0.811 0.226 612 123

HAC++ (highrate) 27.81 0.811 0.231 637 115
HAC++ (lowrate) 27.60 0.803 0.253 514 132

Ours 27.54 0.824 0.209 265 200

Table 5: Mip-NeRF360 Indoor per scene results. Best results are in red region , second best are

in orange region . Memory (VRAM) values are in MB.

Scene | Method | PSNRT SSIMT LPIPS| Static VRAM| Rendering VRAM|

3DGS 3223 0940 0.205 393 798

Reduced3DGS | 3144 0.933 0.214 66 276

Bonsai | GaussianSpa | 3176 0943 0.198 146 420
Ours(HQ) 31.95 0.943 0.192 44 266

Ours(LM) 31.51 0.937 0.205 28 227

3DGS 29.09 0.906 0.201 393 893

Reduced3DGS | 28.57 0.899 0.212 67 331

Counter | GaussianSpa | 2898 0911 0.191 175 518
Ours(HQ) 28.78 0.906 0.195 44 326

Ours(LM) 28.35 0.892 0.220 25 272
3DGS 31.24 0925 0.126 581 1197
Reduced3DGS | 31.03 0.921 0.133 118 428

Kitchen | GaussianSpa | 3150 0929 0.127 163 443
Ours(HQ) 31.51 0.927 0.127 51 309

Ours(LM) 31.27 0923 0.133 36 275
3DGS 31.55 0918 0.220 474 1007

Reduced3DGS | 31.03 0914 0.227 68 310

Room GaussianSpa 31.61 0.922 0.211 141 401
Ours(HQ) 31.56 0.923 0.207 36 250

Ours(LM) 31.16 0915 0.226 22 214

17

Under review as a conference paper at ICLR 2026

Table 6: Tanks&Temples per scene results. Best results are in red region , second best are in

orange region . Memory (VRAM) values are in MB.

Scene\ Method \PSNRT SSIM1 LPIPS| Static VRAM| Rendering VRAM|

3DGS 21.97 0.818 0.198 397 773
Reduced3DGS | 21.74 0.804 0.219 74 227

Train GaussianSpa 21.81 0.826 0.197 164 339
Ours(HQ) 21.52 0.820 0.197 49 208

Ours(LM) 21.32 0.818 0.205 35 160

3DGS 25.39 0.881 0.143 752 1268
Reduced3DGS | 25.28 0.875 0.154 105 276

Truck | GaussianSpa 25.65 0.887 0.126 115 448
Ours(HQ) 25.37 0.886 0.121 54 214

Ours(LM) 25.23 0.883 0.130 39 167

Table 7: Mip-NeRF360 Outdoor per scene results. Best results are in red region , second best are

in orange region . Memory (VRAM) values are in MB.

Scene | Method | PSNRT SSIMT LPIPS| Static VRAM| Rendering VRAM|
3DGS 25.20 0.764 0.210 1794 2955
Reduced3DGS | 25.10 0.763 0.219 314 686
Bicycle GaussianSpa 25.43 0.779 0.222 240 491
Ours(HQ) 25.34 0.782 0.206 63 248
Ours(LM) 25.16 0.771 0.226 48 205
3DGS 26.61 0.769 0.217 1585 2487
Reduced3DGS | 26.75 0.778 0.218 318 663
Stump GaussianSpa 27.07 0.802 0.207 222 460
Ours(HQ) 27.19 0.803 0.198 60 233
Ours(LM) 27.04 0.797 0.213 47 198
3DGS 27.36 0.863 0.108 1494 2449
Reduced3DGS | 27.14 0.858 0.116 303 684
Garden GaussianSpa 27.22 0.854 0.140 227 460
Ours(HQ) 27.17 0.858 0.127 78 273
Ours(LM) 26.62 0.846 0.143 63 240
3DGS 21.49 0.602 0.338 1066 1716
Reduced3DGS | 21.37 0.598 0.345 221 497
Flowers | (aussianSpa 21.60 0.624 0.332 209 451
Ours(HQ) 21.65 0.625 0.331 66 255
Ours(LM) 21.37 0.609 0.344 48 203
3DGS 22.58 0.633 0.328 1192 1947
Reduced3DGS | 2241 0.630 0.337 241 563
Treehill | GaussianSpa 22.84 0.655 0.312 226 471
Ours(HQ) 22.74 0.649 0.313 59 233
Ours(LM) 22.44 0.640 0.335 43 188

18

Under review as a conference paper at ICLR 2026

Table 8: DeepBlending per scene results. Best results are in red region , second best are in

orange region . Memory (VRAM) values are in MB.

Scene \ Method | PSNRT SSIMtT LPIPS| Static VRAM| Rendering VRAM/|
3DGS 30.00 0.903 0.244 678 1197
Reduced3DGS | 29.96 0.904 0.248 90 276
Playroom GaussianSpa 30.48 0914 0.239 137 320
Ours(HQ) 30.77 0914 0.229 52 218
Ours(LM) 30.58 0.912 0.243 30 167
3DGS 29.41 0.902 0.239 1129 1941
Reduced3DGS | 29.24 0.901 0.247 152 404
Drlohnson | GaussianSpa 29.50 0.910 0.239 184 424
Ours(HQ) 29.56 0.909 0.237 56 269
Ours(LM) 29.45 0.904 0.250 37 219

Table 9: Real-time rendering performance comparison of different methods across various
desktop and mobile devices in Bicycle scene. All tests were conducted using a WebGL-based
viewer, which we modified from the repository (Kwok & Ye,|2023)) to support both Spherical Gaus-
sians and 3rd-order Spherical Harmonics. Performance measured in FPS. “cannot render” indicates
that the device’s browser crashed or showed a black screen, while “render error” signifies incorrect
rendering, such as color display issues.The best result is shown in bold.

Method | RTX3060 Dimensity 9400+ Snapdragon 8+ Gen I ~ Snapdragon 888
3DGS 26.3 6.6 cannot render connot render
GaussianSpa 165.0 314 render error render error
Ours 165.0 91.0 120.9 60.1

Table 10: Storage Size Comparison. We compare the storage size (MB) of our method against
pruning-based methods (MaskGaussian, GaussianSpa) and the compact Gaussian approach (EA-
GLES). Our method not only surpasses pruning baselines but also achieves superior storage effi-
ciency compared to EAGLES, even without employing explicit compression techniques.

Storage on Storage on
Method MipNeRF 360 (MB) | DeepBlending (MB) |
MaskGaussian 271 156
GaussianSpa 115 104
EAGLES 54 52
Ours (HQ) 55 54
Ours (LM) 40 33

Table 11: Quantitative comparison on the Shiny Blender Real dataset. Bold figures indicate the
best results.

PSNR 1 SSIM 1 LPIPS |
Mean Garden Sedan Toycar Mean Garden Sedan Toycar Mean Garden Sedan Toycar
Ref-NeRF 23.62 2201 2521 2365 0646 0584 0720 0.633 0264 0251 0234 0.231

Method

ENVIDR 23.00 2147 2461 2292 0606 0.561 0707 0.549 0332 0263 0.387 0.345
3DGS 2385 21.75 2603 2378 0662 0571 0771 0.637 0230 0.248 0206 0.237
2DGS 24.15 2253 2623 2370 0.661 0.609 0.778 0597 0292 0254 0.225 0.396
GShader 2346 21.74 2489 2376 0.647 0576 0.728 0.637 0254 0274 0259 0.239
R3DG 2198 2192 21.18 2283 0.619 0556 0.643 0.657 0349 0354 0380 0.312

3DGS-DR 2400 21.82 2632 2383 0664 0581 0773 0.639 0230 0.247 0208 0.231
Ref-Gaussian 24.61 2297 26.60 2427 0685 0.617 0.777 0.660 0246 0256 0245 0.256

Ours 2444 23.01 2593 2438 0.695 0.631 0.788 0.666 0.230 0.256 0.175 0.259

19

Under review as a conference paper at ICLR 2026

Table 12: Comparison of training time across different datasets and hardware configurations.
We report the training duration (in minutes and seconds) for MEGS? on both RTX 3090 and RTX
4090 GPUs, and compare it with GaussianSpa and 3D Gaussian Splatting (3DGS) on an RTX 4090.

Ours GaussianSpa 3DGS
RTX 3090 RTX 4090 RTX 4090 RTX 4090

Bicycle 37min51s 23min20s 27min57s 25min28s
Stump 34min09s 22min34s 26minl8s 20min48s
Garden 38min23s 22min56s 29min21s 24min06s
Flowers 39minl2s 26min57s 30minl13s 17min08s
Mip-NeRF360 Treehill 37min34s 24min53s 28min38s 18min43s
Bonsai 51min49s 28minl9s 44minl4s 16min36s
Counter 51min22s 32min06s 51min25s 19min20s
Kitchen 50min33s 33minl7s 49min36s 22min59s

Dataset Scene

Room 41min05s 28min53s 44min41s 20min23s

Tanks& Temples Train 28min39s 19min08s 28min45s 11min06s
p Truck 29min59s 20min22s 27min03s 13min21s
DeepBlending Playroom 33min0ls 22min33s 31min32s 18min21s

DrJohnson 38min28s 24minS57s 36min26s 24min31s

Table 13: Comparison of the number of Gaussian primitives. We report the total number of
Gaussians (in millions) across three benchmark datasets.

Method Mip-NeRF360 Tanks & Temples DeepBlending
3DGS 2.718 1.568 2.461
LP-3DGS 1.866 1.116 -
Mini-splatting 0.559 0.320 0.397
MaskGaussian 1.205 0.590 0.694
GaussianSpa 0.528 0.447 0.409
Ours(HQ) 0.611 0.618 0.598
Ours(LM) 0.462 0.437 0.411

27.00 -

26.50

26.00 -

PSNR (dB)

25.00 -

—e— Ko = 65%
Ko = 68%

—— Ko = 70%

24.50

60‘% GS‘% 70‘%
Ks
Figure 6: Sensitivity analysis of pruning hyperparameters. We investigate the impact of varying
the lobe budget x, (x-axis) and the primitive budget «, (represented by different colored lines) on
rendering quality (PSNR) and memory consumption on the garden scene. The values annotated in
the boxes indicate the specific rendering VRAM usage for each configuration.

20

Under review as a conference paper at ICLR 2026

A.4 MORE QUALITATIVE RESULTS

. Ground
GaussianSpa Ours Truth

3DGS

1007MB : o 1197MB

Figure 7: More qualitative results on Train, Room, Kitchen, Counter and Playroom scenes com-
paring to previous methods and the corresponding ground truth images. The rendering VRAM
consumption for the corresponding method is annotated at the bottom of each image.

Success Cases Failure Cases

Specular Highlights

Dense Transparency

Figure 8: Visualizations of success and failure cases under challenging material conditions.
The left column demonstrates successful reconstructions of scenes containing specular highlights
and transparency. Conversely, the right column illustrates specific failure cases where we observe
reconstruction artifacts under conditions of highly specular highlights or dense transparency.

21

Under review as a conference paper at ICLR 2026

/o col
wo cotor unified—seq. soft—hard Spa+Redu.

full model

Figure 9: Qualitative ablation results on the Bicycle, Flowers, Counter and Room scenes. The
rendering VRAM consumption for the corresponding method is annotated at the bottom of each
image.

%% % @

287 @ SR @D

Figure 10: Real-time rendering performance of MEGS? on various scenes, showcased via a WebGL-
based viewer on OnePlus Ace 5 Ultra with MediaTek Dimensity 9400+. The live frame rate (FPS)
for each view is annotated in the imagery.

22

Under review as a conference paper at ICLR 2026

Figure 11: Real-time rendering performance of MEGS? on various scenes, showcased via a WebGL-
based viewer on a lenovo laptop with NVIDIA GeForce RTX3060 Laptop GPU. The live frame
rate (FPS) for each view is annotated in the imagery.

Figure 12: Real-time rendering performance of MEGS? on various scenes, showcased via a WebGL-
based viewer on Huawei MatePad Air with Qualcomm Snapdragon 888. The live frame rate (FPS)
for each view is annotated in the imagery.

Figure 13: Real-time rendering performance of MEGS? on various scenes, showcased via a WebGL-
based viewer on RedMi K60 with Qualcomm Snapdragon 8+ Gen 1. The live frame rate (FPS)
for each view is annotated in the imagery.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Ground Truth 3DGS 3DGS with SG
GaussianSpa GaussianSpa with SG Ours

Figure 14: Visual comparison in the Playroom scene. “With SG” indicates the variant where
Spherical Harmonics (SH) are replaced by Spherical Gaussians (SG). As observed in the figure,
the speckled texture stems from the Ground Truth, which exhibits actual shadow regions alongside
inherent image roughness that complicates training. While most methods smooth this detail out
entirely, both GaussianSpa and MEGS? (Ours) manage a rough reconstruction.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The article was refined using Gemini 2.5 Pro / Gemini 2.5 Flash / DeepSeek R1 to improve phrasing
for natural English expression and correct grammatical errors.

	Introduction
	Related work
	Evolution of Splatting-Based Scene Representations
	Memory Analysis in 3DGS Rendering
	Pruning Techniques for 3DGS
	Other Compression Schemes for 3DGS

	Method
	Preliminaries for 3D Gaussian Splatting
	Spherical Gaussians
	Unified soft-pruning framework
	Problem Formulation
	Memory-constrained Optimization
	Post-Processing Procedure

	Experiments
	Experimental Settings
	Main Results and Analysis
	Qualitative Results
	Ablation Studies
	Ablation on Color Modeling
	Ablation on Pruning Strategies

	Conclusion
	Appendix
	Algorithmic Derivation
	Derivation for Memory-constrained optimizing
	Derivation for Color Compensation

	Experimental Details
	More Quantitive Results
	More Qualitative results
	The Use of Large Language Models (LLMs)

