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Abstract

Relighting is a crucial task with both practical demand and artistic value, and recent
diffusion models have shown strong potential by enabling rich and controllable
lighting effects. However, as they are typically optimized in semantic latent space,
where proximity does not guarantee physical correctness in visual space, they
often produce unrealistic results—such as overexposed highlights, misaligned
shadows, and incorrect occlusions. We address this with UniLumeos, a unified
relighting framework for both images and videos that brings RGB-space geometry
feedback into a flow-matching backbone. By supervising the model with depth and
normal maps extracted from its outputs, we explicitly align lighting effects with
the scene structure, enhancing physical plausibility. Nevertheless, this feedback
requires high-quality outputs for supervision in visual space, making standard
multi-step denoising computationally expensive. To mitigate this, we employ path
consistency learning, allowing supervision to remain effective even under few-step
training regimes. To enable fine-grained relighting control and supervision, we
design a structured six-dimensional annotation protocol capturing core illumination
attributes. Building upon this, we propose LumosBench, a disentangled attribute-
level benchmark that evaluates lighting controllability via large vision-language
models, enabling automatic and interpretable assessment of relighting precision
across individual dimensions. Extensive experiments demonstrate that UniLumos
achieves state-of-the-art relighting quality with significantly improved physical
consistency, while delivering a 20x speedup for both image and video relighting.
Code is available at https://github.com/alibaba-damo-academy/Lumos-Custom.

1 Introudction

Relighting, altering illumination in images or videos while preserving intrinsic scene attributes such
as geometry, reflectance, and content, is a longstanding problem in computer vision and graphics
[33,155]. It underpins a wide range of applications in film production, gaming, and augmented
reality, where seamless lighting integration is critical to visual fidelity. Beyond realism, lighting
conveys rich aesthetic and semantic cues—it defines atmosphere, evokes emotion, and reinforces
narrative structure. Relighting is thus not only a technical challenge but also a creative tool that shapes
how characters, objects, and environments are perceived. However, achieving physically consistent
lighting remains a core challenge—requiring the alignment of illumination effects with different scene
attributes across both space and time. To address this, traditional approaches often rely on inverse
rendering pipelines [46} 150, 2] that estimate intrinsic scene properties, such as geometry, reflectance,
and environmental lighting, from input images. While these methods provide physically grounded
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Figure 1: UniLumos performs physically plausible image and video relighting, conditioned on textual
prompts and reference videos.

results, they typically require complex inputs—such as high dynamic range images or spherical
harmonics coefficients—and are limited to constrained domains. This makes them impractical for
real-world applications, where users often provide only a single image, a short video, or a high-level
lighting prompt as input. These limitations underscore the need for a new paradigm—one that can
deliver high-quality, physically plausible relighting while operating under minimal and naturalistic
input conditions.

Recent diffusion-based relighting methods [49} [6, (12, [57] have shown promise by leveraging large-
scale image and video datasets to produce diverse and controllable lighting effects under various
user-defined conditions, such as reference images or text prompts. However, this strength reveals a
fundamental weakness: diffusion models typically operate in semantic latent space, where similarity
does not guarantee physical correctness in the visual domain. As a result, they often fail to respect
scene geometry, especially in complex scenes with dynamic lighting or temporal constraints. For
example, IC-Light [49] and SynthLight [6], which are primarily designed for image relighting, lack
both temporal modeling and explicit physical supervision in the visual domain. Instead, they rely
on latent-space representations, such as MLP-based embeddings (IC-Light) or multi-stage training
(SynthLight), which often lead to artifacts like misaligned shadows, overexposed highlights, or
incorrect lighting directions—particularly under complex geometry or extreme illumination. Light-
A-Video [12]] and RelightVid [12] extend these methods to the video domain, aiming to improve
temporal coherence while retaining the visual quality of diffusion-based relighting. Light-A-Video
is a training-free framework that combines IC-Light with a pre-trained video diffusion model via
iterative alignment. While this improves frame-wise consistency, it incurs high inference costs due to
multiple model passes. RelightVid adopts a joint training strategy with a video diffusion backbone,
which enhances temporal stability compared to training-free approaches. However, it still operates
without explicit physical supervision, resulting in inaccurate light-scene interactions and limited
generalization to complex or dynamic environments. In short, existing diffusion-based methods



excel in synthesizing plausible appearances but fall short in enforcing the physical plausibility that is
essential for high-quality relighting.

To bridge the gap between generative flexibility and physical correctness, we propose UniLumos, a
unified relighting framework for both images and videos that brings RGB-space geometry feedback
into a flow-matching backbone. Unlike existing diffusion-based approaches that operate purely in
latent space, UniLumos introduces a physics-plausible feedback mechanism that supervises generation
with dense geometric signals—specifically, depth and surface normals—estimated from its outputs.
These lighting-invariant cues serve as ideal supervision signals, enabling the model to explicitly align
illumination with the scene structure, significantly improving shadow alignment, shading consistency,
and spatial coherence. Nevertheless, this feedback requires high-quality outputs for supervision in
visual space, making standard multi-step denoising computationally expensive. To mitigate this, we
employ path consistency learning [[13], allowing supervision to remain effective even under few-step
training regimes.

Beyond model-level improvements, existing relighting methods lack structured illumination descrip-
tions and dedicated evaluation metrics. Generic generation scores (e.g., FID, LPIPS) fail to capture
lighting-specific errors such as shadow misalignment, intensity mismatch, or incorrect light direction.
To address this, we introduce LumosData, a scalable data pipeline that extracts diverse relighting
pairs from real-world videos. At its core is a structured six-dimensional annotation protocol covering
direction, light source type, intensity, color temperature, temporal dynamics, and optical phenom-
ena—enabling both fine-grained conditioning during training and physically grounded evaluation at
test time. Building upon this, we propose LumosBench, a disentangled attribute-level benchmark
that evaluates lighting controllability via large vision-language models, enabling automatic and
interpretable assessment of relighting precision across individual dimensions.

Our contributions are summarized as follows:

* Unified Relighting with Physics-Plausible Feedback: We propose UniLumos, a unified
relighting framework for both images and videos that incorporates RGB-space geometry
feedback into a flow-matching backbone, explicitly aligning lighting effects with the scene
structure to enhance the physical plausibility of relighting.

* Structured Illumination Annotation and Evaluation Benchmark: We design a structured
six-dimensional annotation protocol that captures core illumination attributes, enabling
fine-grained control and supervision. Building upon this, we introduce LumosBench,
a disentangled attribute-level benchmark that leverages large vision-language models to
automatically and interpretably evaluate relighting controllability across individual lighting
dimensions.

» Extensive Validation: Extensive experiments demonstrate that UniLumos achieves state-of-
the-art relighting quality with significantly improved physical consistency, while delivering
a 20x speedup for both image and video relighting.

2 Related Work

Video Diffusion Models. Recent advances in video diffusion models [3 |4} [7, 138]] have enabled the
generation of temporally coherent video sequences conditioned on various inputs such as text or
images. In the field of text-to-video (T2V) generation [45]], most methods extend existing text-to-
image diffusion backbones with additional modules that capture temporal dynamics across frames. In
contrast, a few approaches train video diffusion models from scratch to directly learn spatiotemporal
priors [38]]. For image-to-video (I2V) tasks, where static images are animated with plausible motion,
several methods propose specialized architectures tailored for image animation [35, |40]]. Other
strategies offer lightweight, plug-and-play adapters that can be integrated into pre-trained models.
Stable Video Diffusion [2], for example, fine-tunes T2V models for 12V tasks, achieving state-of-
the-art performance. Beyond synthesis quality, a growing body of work emphasizes controllability,
allowing users to guide generation with fine-grained constraints [52),48]].

Relighting Methods. Recent advances in deep neural networks have significantly improved lighting
control for 2D and 3D visual content, especially in portrait relighting. Methods such as Relightful
Harmonization [32], SwitchLight [21], ConceptSliders [14]], Intrinsic Image Diffusion [22], Neural
Gaffer [20], DI-Light [44], SynthLight [6], and IC-Light [49]] demonstrate progress in realism and



controllability. While numerous portrait relighting approaches exist [31, 47,42l 5], most of them rely
heavily on portrait-specific priors. In contrast, UniLumos is designed as a general-purpose relighting
framework that is not constrained to any particular object category. With the rise of diffusion-based
generative models, approaches like LumiSculpt [S1] extend lighting control to text-to-video (T2V)
generation. Moreover, RelightVid [12] and Light-A-Video [57] implemented video relighting based
on IC-Light. However, achieving both precise lighting control and high visual quality in video
remains challenging due to the trade-off between spatial realism and temporal consistency.

Feedback Learning in Generative Models. Feedback learning has become a powerful tool to
improve output alignment in generative models, from language systems trained with human prefer-
ences [36}130] to visual diffusion models guided by aesthetic or attribute-based rewards [9} 143|137, 25],
e.g., InstructVideo [43] and DRaFT [10]. In visual domains, feedback can also be physical—for
example, using geometric cues to guide generation toward realism. Recent advances in distillation
and consistency training [[15} 34} |29/ 139, 53| [13]] have accelerated diffusion inference by reducing
the number of denoising steps, enabling models to recover high-quality RGB outputs with just a
few iterations. However, most existing techniques focus on appearance synthesis and overlook
geometry-aware feedback, which typically requires high-fidelity outputs and is incompatible with
few-step inference. UniLumos bridges this gap by combining physically grounded supervision with
path-consistency learning, enabling efficient and physically plausible relighting under fast sampling
regimes.

3 Preliminaries

Problem Formulation. Given an image or video S; € RT*HXWXC ywith intrinsic scene properties
(e.g., geometry, reflectance, content) under initial illumination L1, the goal of relighting is to modify
the illumination within a subject region specified by a binary mask M € {0, 1}7>*#*W to match a
target lighting condition C. The condition C may take the form of an image, video, or text description
and implicitly defines a desired illumination field Ly. The relit output S, € R7*H*xWxC ghoyld
exhibit lighting consistent with L, in the masked region M while preserving the intrinsic attributes
of S;. This can be formulated as a conditional generation problem:

S2:f0(SI7C>M)7 (1)
where fy is the relighting model parameterized by 6.

Flow Matching. To efficiently model complex illumination transformations in relighting, we build
upon Wan2.1 [38], a foundation video generation model based on flow matching [28, [11]. Flow
matching formulates generative modeling as learning velocity fields between noise xo ~ N (0, I)
and data x1, using a linear interpolation:

xp=t-x1+(1—1%)-x0, v=— =21 — o, 2

where ¢ € [0, 1] is sampled from a logit-normal distribution. The model learns to predict v; from x4,
conditioned on timestep ¢ and context c (e.g., text embeddings), by minimizing the mean squared
error:

E() - Ewo,zl,t,c ||UG($ta t; C) - UtHg . (3)

Path Consistency Learning. To further accelerate inference, we adopt path consistency learning [13]],
which encourages consistent velocity predictions under larger integration steps. Given a velocity field
vg and step size d > 0, we recursively define:

Tpyd = T+ d - vg(z4, 1, d), “4)

Moreover, enforce two-step consistency using:

2

1
»Cfast - ]Ea:t,t,d Vo (xtv ta 2d) - 5 [UB (l'tv t7 d) + vy (xt+d7 t+ da d)} (5)

2

This objective enables the model to learn shortcut-consistent velocity fields without separate teacher-
student stages, allowing for fast and high-quality generation with arbitrary step budgets.
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Figure 2: The overall pipeline of UniLumos. The left is LumosData, our proposed data construction
pipeline, which consists of four stages for generating diverse relighting pairs from real-world sources.
The right shows the architecture of UniLumos, a unified framework for image and video relighting,
designed to achieve physically plausible illumination control.

4 Methodology

We present UniLLumos, a unified framework for physically plausible image and video relighting, as
illustrated in Fig. 2] Built upon Wan 2.1 [38], a flow-matching diffusion model for video generation,
UniLumos relights images and videos under user-specified lighting conditions—including reference
images, video clips, or text prompts—while preserving scene content and temporal coherence.

To bridge the gap between semantic generation and physical correctness, UniLumos incorporates
two key innovations: (1) a physics-plausible feedback that supervises the model with geometry
signals from RGB space, and (2) a structured illumination annotation protocol that enables fine-
grained control and evaluation. We jointly train the model with geometry-aware supervision and
lighting-conditioned objectives, achieving high-quality and efficient few-step inference.

4.1 Physics-Plausible Feedback

While most relighting methods rely on photometric reconstruction or latent-space consistency, such
signals offer limited geometric grounding—often resulting in misaligned shadows, implausible shad-
ing, and incorrect light directions. To address this, UniLumos enforces consistency between generated
illumination and underlying scene geometry, promoting more realistic light—scene interactions.

As illustrated in Fig. [2](right), we introduce a physics-plausible feedback that guides the generation
process using geometry-aware supervision. This component complements the flow-matching archi-
tecture with explicit structural priors, enhancing physical plausibility without altering the model’s
inference inputs. We adopt depth and surface normals as our supervisory targets due to their general-
ity, accessibility, and strong disentanglement from illumination. Unlike shadow masks or material
properties, which are often ambiguous, entangled with lighting, or costly to obtain, monocular depth
and normal maps capture intrinsic scene structure. They can be reliably estimated by a pre-trained
dense estimator (e.g., Lotus [17]]).

Specifically, after decoding the predicted latent variable into RGB frames via the Wan-VAE De-
coder [38]], we extract estimated depth D € RT>*#*W and normals N € RT*H>*W yging a frozen



dense estimator. These are compared against pseudo-ground-truth maps (D, N) from the reference
input to compute the geometry-aware feedback loss:

ID-DJ|.  |N-N|,
Mo + ) 6)
( [Dll2 [IN{]2

‘Cph)’ =Eag,21 tc

where M € RT*H>W denotes the foreground subject mask. This feedback encourages the model
to align its lighting predictions with consistent structural interpretation while keeping inference
lightweight and geometry-free.

However, the proposed physics-plausible feedback requires supervision in the RGB domain, which
relies on high-quality predictions that are typically only available after full-step denoising has been
completed. This poses a major computational bottleneck for standard diffusion models. To mitigate
this, we adopt path consistency learning [13]], which reformulates denoising as a velocity regression
task, thereby supporting practical training under a few-step regimes. Enforcing consistency between
intermediate outputs and final predictions enables reliable geometric feedback without sacrificing
inference efficiency.

4.2 Structured Illumination Annotation and Evaluation Benchmark

In the problem formulation, the relighting task involves conditioning on a target illumination descriptor
C. However, most prior work treats C as unstructured prompts—such as text, images, or reference
frames—offering limited control or interpretability. Moreover, conventional evaluation metrics, such
as FID or LPIPS, focus on perceptual similarity but fail to capture lighting-specific discrepancies,
such as shadow misalignment or intensity mismatches.

To address this, we construct LumosData, a scalable dataset pipeline that enriches C with structured
lighting semantics. As shown in Fig. [2| (left), we extract relighting pairs from real-world videos.
Given an input sequence Ve € RITTLAW:3] e first obtain subject masks M € {0, 1}[7+5HW]
using BiRefNet [54] to isolate the foreground. We then apply a pre-trained relighting model such as
IC-Light [49] to generate synthetic relit versions V., under diverse lighting conditions, guided by a
curated prompt set. To avoid entanglement with background semantics, we inpaint the background
using Gaussian noise, ensuring clean illumination signals without introducing artifacts.

Beyond this relighting pipeline, LumosData introduces a structured six-dimensional annotation
protocol that covers direction, intensity, color temperature, light source type, temporal dynamics, and
optical phenomena.

These attributes are automatically generated using vision-language models (e.g., Qwen2.5-VL [1]])
with carefully designed prompts, and are integrated into C to provide an enriched semantic label. This
protocol serves dual purposes: (1) Fine-grained conditioning: During training, the model is guided by
explicit lighting attributes embedded in C, promoting more interpretable and controllable generation
across scenarios. (2) Attribute-aligned Benchmark: Building upon the same attribute protocol, we
construct LumosBench. This automatic benchmark uses vision-language models to assess whether
generated outputs accurately reflect intended lighting conditions, enabling interpretable, attribute-level
controllability evaluation beyond pixel-based metrics.

Each training tuple is structured as (Vgeg, Vg, M, C) — Va1, where the model learns to restore
realistic lighting consistent with the semantic cue C and structural context. LumosData introduces
rich diversity in content and illumination by leveraging a variety of real-world sources. Built
on Panda70M [8], we curate ~110K high-quality video pairs and augment training with 1.2M
additional relit images using IC-Light. This combination supports robust learning of physically
plausible relighting without relying on expensive hardware or manual annotations. See more details

in Appendix
4.3 Joint Learning Objective and Training Strategy

Model Implementation. The inputs of aligned videos (Vdeg7 Vg, Veal) are passed through a Wan-
VAE Encoder [38] to obtain semantic latent representations (Xdeg, Xbg, Xo). During training, we
generate the noisy latent input x; via Eq.[2} and concatenate it with the strong conditional signals
Xdeg and Xy, along the channel dimension. This combined tensor is injected into the DiT blocks
of the Wan backbone. Additionally, to support path-consistency learning, the diffusion step ¢ and



the expected denoising step d are appended as temporal condition vectors. All new projection and
fusion layers are initialized with zero weights to preserve compatibility with the pre-trained Wan
initialization and ensure stable optimization from the outset.

Joint Objective. Our training objective integrates three complementary losses to balance appearance
fidelity, geometric consistency, and fast inference. The full loss is defined as:

L= XLy + A1 Lpast + A2 Lphy, (7N

where Ly is the standard flow-matching loss that aligns the predicted velocity field with the ground-
truth field, L is the path consistency loss that improves model performance under few-step
denoising regimes, and L,y is a physics-guided loss that supervises the RGB outputs using estimated
depth and normal maps. We adopt fixed weights of A\yg = 1.0 and A; = A2 = 0.1 for all experiments.
This unified objective encourages the model to generate relit results that are photorealistic, temporally
smooth, and physically grounded while supporting efficient inference without sacrificing output
quality.

Training Strategy. To balance physical super-
vision and training efficiency, we adopt a se-
lective optimization strategy inspired by path
consistency scheduling [[13]. In each training
iteration, we divide the batch based on super-
vision type, following an 80/20 split to avoid

Algorithm 1 Loss Sampling Strategy per Itera-
tion

Require: Batch size B, total training samples
1: for each training iteration do
2:  Randomly sample 20% of batch — Ly,

prohibitive costs from full supervision while Compute path consistency loss:

still maintaining effective learning signals. As 4 3% f'or’ward, 1x backward

shown in Alg.[I] 20% of each batch is allocated 5: Remaining 80% — Lo

to compute the path consistency loss Lpg, which & Among those, 50% — RGB reconstruc-
involves three forward passes and one backward tion ) .

pass to enforce consistency across timesteps. ;: end fgl?mpute physics-guided loss Lyhy

The remaining 80% is used for the standard flow-
matching loss Ly, with 50% of these samples
further supervised using RGB-space geometry feedback via Lypy (i.e., depth and normal alignment).
This probabilistic scheduling ensures high training throughput while allowing the model to benefit
from multi-level supervision. To further enhance illumination diversity during training, we apply
randomized lighting augmentations on the degraded subject V.., Which introduces realistic lighting
variability without the need for explicitly paired captures.

5 Experiments

5.1 Experimental Details

Training Details. We adopt the Wan2.1-T2V-1.3B-480P [38]] as the base model, and initialize all
new trainable parameters with zeros to minimize its influence at the beginning of training. We use the
AdamW optimizer with the learning rate of 1e-5 for training the entire framework. All the models are
trained with a batch size of 8 for 5,000 iterations on 8 NVIDIA H20 GPUs (with 96GB RAM).

Baselines. We compare UniLumos against a range of representative image and video relighting
methods. For image-based relighting, we include SwitchLight [21], DiLightNet [44], IC-Light [49],
and SynthLight [6], which leverage various forms of latent modeling or light disentanglement to
relight single images. For video relighting, we apply IC-Light via frame-by-frame and include Light-
A-VideoCogVideoX-2B[41]] and another using Wan 2.1 T2V-1.3B [38]]. These baselines together
represent state-of-the-art performance across both image and video relighting settings.

Dataset. For testing, we selected samples from the internal dataset, processed using the method
described in Sec.[B| These samples were evenly split: half for image generation at 768x512 resolution,
and half for video generation at 480p resolution (832x480), with each video sample containing 49
frames. To further demonstrate the model’s generalization to non-human scenes, we conducted
additional evaluations on two public object-centric relighting benchmarks: StanfordOrb [24] and
Navi [19]], which include objects and sculptures under a variety of lighting environments and are
completely disjoint from our training data, and see more results in Appendix [C.1]

Evaluation metrics. We evaluate relighting performance across three key dimensions: (1) visual
fidelity: We assess image quality using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity



Table 1: Quantitative comparison. Bold number indicate the best performance.

Model (a) Quality (b) Temporal Consistency (¢) Lumos Consistency
PSNRT SSIM1 LPIPS | R-Motion| Avg. Score T Dense L2 Error |,
Image Relighting
SwitchLight 20.483 0.901 0.094 - 0.717 0.388
DiLightNet [44] 21.894 0.860 0.131 - 0.682 0.401
IC-Light [49] 24316 0.884 0.108 - 0.703 0.447
SynthLight [[6] 25.572 0.905 0.102 - 0.791 0.214
UniLumos 26.719 0.913 0.089 | - \ 0.912 0.103
Video Relighting
IC-Light Per Frame [49] 20.132 0.851 0.133 2.437 0.672 0.432
Light-A-Video [57] + CogVideoX[4T] | 19.851 0.859 0.124 1.784 0.641 0.383
Light-A-Video + Wan2.1[38] 20.784 0.876 0.129 1.582 0.682 0.371
UniLumos 25.031 0.891 0.109 | 1.436 \ 0.871 0.147

Frame 1 Frame 24 Frame 48 Frame 1 Frame 24 Frame 48

Wan CogVideoX IC-Light Input

Light-A-Video Light-A-Video

UniLlumos
(Owr)

“A man with a beard, wearing a dark shirt and ... The ‘A man in a black hoodie and cap sits at ... The room s walls are black, and the
Caption  background is a plain, light-colored wall ... Front Light, Artificial floor is a light color ... The ceiling lights are arranged in a grid pattern, ... Front
Light, Moderate, Neutral, Static Light, None” Light, Artificial Light, Moderate, Neutral, Static Light, None

Figure 3: Qualitative comparison of baseline methods. Each method takes a subject video and
a textual illumination description as input, generating the related subject with the corresponding
background under the specified lighting condition.

Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). For video relighting, we
report the average metric across all frames. (2) temporal consistency: Following VBench [18]],
we adopt the R-Motion metric, which measures temporal smoothness using motion priors from a
pre-trained video frame interpolation model [27]]. This captures the coherence of lighting transitions
across frames. (3) lumos consistency: (i) Lumos Score, computed by applying the same caption-based
lighting annotation protocol as in our LumosData construction. Six lighting attributes are predicted
and compared with targets, and each is weighted equally to yield an average consistency score. (ii)
Dense L2 Error, which quantifies the relative L2 error between predicted and reference depth/normal
maps, estimated via a pre-trained geometry model (e.g., Lotus [17]). This provides a physically
grounded measure of illumination-geometry alignment.

5.2 Main Results

Quantitative Evaluation. As shown in Tab.[I] UniLumos delivers consistent improvements across
three key dimensions: visual fidelity, temporal consistency, and physically grounded lighting align-
ment. (1) Visual Fidelity. UniLumos produces higher-quality relighting results across both images
and videos. Benefiting from structured lighting supervision and geometry-guided feedback, our model
generates outputs with clearer shading, sharper details, and more coherent illumination compared to
prior works. (2) Temporal Consistency. For video relighting, UniLumos ensures smoother transi-
tions and reduced flickering artifacts. Our use of flow-matching architecture and path consistency
learning helps maintain stable lighting across frames, addressing a key limitation in frame-wise
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or training-free methods. (3) Lumos Consistency. Going beyond appearance-based evaluation,
UniLumos aligns well with intended lighting semantics. Through structured caption conditioning and
physics-guided training, the model better preserves lighting direction, tone, and geometry—validated
by both vision-language alignment and dense geometric error metrics.

Efficiency. To assess inference efficiency, we
evaluate the video relighting task under a stan-
dardized setting, generating 49-frame videos at
a 480p resolution. As shown in Fig.[5] UniLu-
mos achieves a significant speedup compared to

prior methods, benefiting from its geometry-free 12 7

inference and few-step generation. While exist- Unilumos-1.3B x

ing models, such as Light-A-Video or IC-Light, 0s 400s 800s
require either iterative frame-by-frame process- Inferance Time on 49x832x480

ing or complex sampling schedules, UniLumos F _igure 5: Comparison of inference ti.me costs of
completes generation over 20 times faster with- different methods under the same settings.

out sacrificing visual fidelity or physical plausibility. This efficiency advantage makes it well-suited
for real-time relighting applications and scalable deployment scenarios.

Qualitative Results We present qualitative comparisons in Fig. [3 and Fig. [4] highlighting the
advantages of UniLumos in terms of lighting realism, temporal coherence, and controllability. (1)
Lighting Quality and Controllability: In Fig.[3] UniLumos produces lighting effects that better match
the target description, capturing nuanced directional shadows, color tone, and intensity. Competing
methods either fail to reflect the intended lighting change or produce overly uniform results that lack
realism. (2) Temporal Consistency: Compared to baseline methods such as frame-wise IC-Light
and Light-A-Video, UniLumos achieves smoother frame transitions without flickering or structural
distortion. This benefit arises from the joint modeling of space and time, which is further reinforced
by physics-aware supervision and path consistency training. (3) Foreground Detail Preservation:
UniLumos preserves fine subject details—such as facial structure and clothing texture—better than
baselines. For instance, Light-A-Video occasionally introduces deformation or identity drift, while
our model maintains high fidelity over long sequences. (4) Relighting with Reference Videos:
Fig. @ showcases UniLumos conditioned on different reference videos. The model successfully
adapts both global lighting direction and subtle spatial variations across scenes, demonstrating strong
generalization under diverse illumination cues.

LumosBench To evaluate the fine-grained controllability of lighting generation, we introduce Lumos-
Bench, a structured benchmark that targets six core illumination attributes defined in our annotation
protocol. Unlike prior works that treat lighting holistically or implicitly, LumosBench provides a dis-
entangled, attribute-level evaluation, enabling precise diagnosis of model behavior under controllable
lighting conditions. See more results in Appendix [C.2]

5.3 Ablation Study

As shown in Tab. 2]and Fig.[] we conduct ablation studies to analyze the effectiveness of different
components. Physics-Guided Feedback. Removing both depth and normal feedback (w/o All



Table 2: Quantitative comparison. Bold number indicate the best performance.

Model (a) Quality (b) Temporal Consistency (¢) Lumos Consistency
PSNRT SSIM?T LPIPS | R-Motion| Avg. Score T Dense L2 Error |
Ablative Study
w/o Depth Feedback 23.472 0.883 0.118 1.443 0.870 0.265
w/o Normal Feedback | 22.115 0.874 0.123 1.446 0.863 0.173
w/o All Feedback 21.433 0.862 0.139 1.473 0.859 0.297
w/o Path Consistency | 25.317 0.902 0.113 1.438 0.875 0.153
Effect of Training Domain
Only Video 22.487 0.863 0.119 1.487 0.857 0.173
Only Image 24.471 0.872 0.123 2.429 0.841 0.182
UniLumos | 25.031 0.891 0.109 1.436 \ 0.871 0.147
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aption woman's makeup includes dark eyeliner and eyeshadow ... Front Light, background is blurred with lights and dark areas ... Side Light, Artificial
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Figure 6: Ablation study. We compare the effects of different components under few-step denoising.
For 1-step, we show the impact of flow-matching with and without path consistency. For 5-step, we
visualize results before and after introducing physics-plausible feedback.

Feedback) leads to significant degradation in both image quality and physical consistency, confirming
the necessity of our physics-guided loss. Notably, omitting only normal supervision causes a larger
drop than removing depth, suggesting that surface orientation plays a more critical role than distance
in shaping light—shadow interactions. Path Consistency Learning. Excluding this component
(w/o Path Consistency) yields only minor drops in physical metrics while maintaining competitive
SSIM and LPIPS scores. This shows that path consistency incurs little performance cost but offers
substantial efficiency benefits in few-step regimes, justifying its inclusion. Training Modality. To
evaluate the effectiveness of our unified training paradigm, we compare domain-specific variants:
training solely on videos leads to poor visual quality, while image-only training sacrifices temporal
smoothness. In contrast, our unified approach strikes the best balance—achieving high-quality and
temporally coherent relighting across both input types.

6 Conclusion

We introduce UniLumos, a unified framework for physically plausible image and video relighting. It
aligns illumination with scene geometry via RGB-space depth and normal supervision, improving
shadow accuracy and spatial consistency. To enhance controllability and evaluation, we propose
a structured six-dimensional lighting annotation protocol, enabling fine-grained conditioning and
physically grounded assessment through VLMs. Experiments show that UniLumos achieves superior
relighting quality, physical consistency, and inference efficiency.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have made clear claims about contributions and scopes in the abstract and
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have the seperated limitation section in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
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Justification: The answer NA means that the paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of our model and training strategy in the paper for
reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We offer the implementation code to reproduce our work.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have introduced experiment settings and details, and even add more details
in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We do not report specific error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have discussed the information about computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in every respect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss this in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Users should follow usage policies and use models with safety filters and
access controls.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original paper that produced the code package and dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide documentation with our code.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for proof-reading.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix of UniLLumos

In this appendix, we provide additional details to complement the main paper. First, we explain the
motivation behind introducing physics-plausible feedback in Sec.[A] Next, we present the detailed
pipeline of our proposed LumosData relighting data construction process in Sec. [B] Then, Sec.[C|
contains three additional experimental results on the public dataset (Sec. [C.T)) and the LumosBench
(Sec.[C.2). Sec.D|provides additional qualitative results to further illustrate the effectiveness of
UniLumos. Finally, Sec.[E] Sec.[F] and Sec.[G]discuss the limitations, broader impacts, and safeguards
of our method.

A Physics-Plausible Feedback

To further clarify the motivation and design behind our physics-plausible feedback mechanism, we
present a breakdown of key questions and considerations addressed during its development.

Q1: What is the motivation for introducing physical constraints in relighting?

A1: The primary goal of relighting is to generate visually plausible illumination under new lighting
conditions. However, many diffusion-based methods lack explicit physical modeling, leading to
artifacts such as overexposed highlights, misaligned shadows, or inconsistent light directions. In-
troducing physical constraints serves as a refinement mechanism that aligns generated light with
the scene’s underlying geometry. This helps enforce realism and spatial consistency in illumination,
which is especially critical under complex lighting or HDR scenarios.

Q2: Why are depth and normal maps chosen as the targets for physical supervision?

A2: Depth and surface normals are among the most accessible and general-purpose dense scene
attributes. By design, these estimations intentionally suppress fine-scale lighting effects to focus on
intrinsic geometry. This makes them ideal for supervising relighting, where the goal is to decouple
geometry from illumination and enforce spatial structure in lighting behavior. In the proposed
UniLumos, we align the predicted lighting with reference geometry by minimizing the L2 norm error
between generated and reference-aligned depth/normal maps via a pre-trained dense estimation model
(e.g., Lotus [17]) with frozen parameters. This provides a simple yet effective metric to quantify
physical plausibility.

Q3: Why are alternative physical signals—such as albedo, shadow, or material—not used
instead?

A3: While albedo, shadow masks, and material properties can provide rich supervision, they come
with significant drawbacks. Albedo and shadow estimation often rely on inverse rendering and suffer
from domain sensitivity or ambiguity. Material annotations are expensive and dataset-dependent.
Moreover, many of these properties are entangled with illumination, making them less reliable as
supervisory signals. In contrast, depth and normals can be predicted from monocular images with
high availability and generalize well across scenes, offering a favorable balance between supervision
quality and computational cost.

Q4: Why are depth and normal maps used as training-time constraints rather than as model
inputs?

A4: While it is possible to condition the model directly on estimated depth and normal maps, doing
so increases the input dimensionality and model complexity. It would also introduce a dependency
on external estimators during inference, complicating the pipeline and potentially propagating errors.
Instead, we use them as supervision signals during training. This design keeps the inference pipeline
simple—relying only on image and lighting condition inputs—while still allowing the model to learn
geometry-aware behaviors. The supervision acts as a form of inductive bias, guiding the model
toward physically plausible outputs without requiring additional input channels at the test phase.

B Details of Datasets

Step 1: Subject Mask. Given an input video Vg € RITTHHW:3] we first extract per-frame subject
masks M € RIT+1LH W] ysing BiRefNet [54]]. These subject masks allow us to isolate the target
subject foreground and the target background.
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Table 3: Lighting-related textual prompts used in Lumos Augmentation from IC-Light [49]. Each
prompt can be combined with different canonical light directions during training.

ID | Lighting Prompt | Example Light Direction
1 | sunshine from window None
2 | neon light, city Left Light
3 | sunset over sea Right Light
4 | golden time Top Light
5 | sci-fi RGB glowing, cyberpunk Bottom Light
6 | natural lighting
7 | warm atmosphere, at home, bedroom
8 | magic lit
9 evil, gothic, Yharnam
10 | light and shadow
11 | shadow from window
12 | soft studio lighting
13 | home atmosphere, cozy bedroom illumination
14 | neon, Wong Kar-wai, warm

Step 2: Lumos Augmentation. To simulate diverse lighting degradations for training, we relight each
subject sequence under multiple lighting conditions using a pre-trained 2D relighting model, such as
IC-Light [49]. This operation is applied independently to each frame of the subject region, resulting
in a degenerated video Vg € RIT+LHW3] o generate rich illumination variations, we refer to
the description of light and shadow given by IC-Light [49]], as listed in Tab. 3] which serve as the
semantic guidance for image-level relighting and the light source directions. For each input video, we
randomly sample 5 prompts and 3 directions, forming 5 x 3 = 15 unique prompt-direction pairs. The
relighting is applied only to the subject region, extracted using the subject masks M € RI7+1.H:W]
from Step 1. Notably, we randomly sample one degradation condition from the 15 prompt-direction
combinations for each subject in each iteration. This strategy reduces training cost while exposing
the model to diverse illumination patterns, thereby improving generalization.

Step 3: Gaussian Background. To provide external lighting context during training, we generate a
background video Vi, € RIT+LHW:3] o accompany the relit subject. Instead of relying on complex
inpainting-based synthesis (e.g., ProPainter [56], DiffuEraser [26]), we adopt a simple yet effective
strategy by filling the background with either pure color or Gaussian noise. This design avoids
injecting semantic or structural priors, allowing the model to focus solely on illumination learning.

Specifically, for each frame ¢ € [1, T + 1] and channel ¢ € {R, G, B}, we first define the background
region using the subject mask M; € R”*W obtained in Step 1. Let Qig ={(4,7) | M¢(¢,5) = 0}
denote the set of background pixels. We compute the mean and standard deviation of background
pixel intensities as:
1 .
HZZF Z Vi(i, j,c),
‘ bg | .o +
(Z,j)Gng

t 1 T £\2

Oc = TOt | Z (Vt(la.]7 C) - /I“c)

|ng‘ (iﬂj)eﬂf)g

®)

We then fill the background with pixel-wise samples from a Gaussian distribution:

Vig(i.5,¢) ~ Npe, (00)*), V(i j) € Qe ©
This procedure ensures that the background region maintains a similar color distribution to the
original video while avoiding structural detail that may bias learning. For comparison, we also test
a variant that uses pure-color background, where each background pixel is set to pZ, (i.e., ot = 0).
In practice, we observe that such statistically consistent placeholders—particularly Gaussian-filled
ones—accelerate early-stage convergence during training. We attribute this to the reduced visual
complexity and improved normalization behavior, which make the model less sensitive to background
variation. The resulting V, serves as a clean, distribution-aligned conditioning signal for the
relighting network.
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Figure 7: Comparison of background 1npa1nt1ng strategles of four representatlve cases. Here,
Gaussian Inpainting fills the background using random noise sampled with the same mean and
variance as the subject region, ensuring statistical consistency. Pure Inpainting directly fills the
background with a uniform color (i.e., gray), without modeling spatial or color variation. The
Gaussian strategy provides more realistic signal distribution and accelerates early-stage convergence
in training.

Step 4: Caption Augmentation. In addition to relighting augmentation, we generate lighting-aware
captions to provide rich semantic supervision aligned with physical lighting behavior. Specifically, we
leverage Qwen2.5-VL [}, a vision-language model with fine-grained visual reasoning capabilities, to
analyze each input video and generate structured captions describing its lighting attributes. The input
to Qwen2.5-VL consists of the original video and its corresponding scene-level caption. We then
apply a custom-designed prompt (see Listing[]) to steer the model toward predicting six categories of
lighting-related labels as shown in Tab.[4] including all subcategories and their physical interpretations.
The output of this process is a structured caption C for each video, formatted as a dictionary mapping
the six categories to their predicted labels (see example in Listing[T). These structured captions serve
as auxiliary supervision and evaluation labels in later stages, helping the model better align with
interpretable physical lighting semantics. They also enhance downstream controllability and facilitate
attribute-based retrieval or evaluation.

Table 4: Classification criteria and definitions for light-related scene attributes.

Primary Category | Subcategory | Definition
Front Light The light source is positioned directly in front of the subject, illuminating it head-on.
Side Light The light source is positioned at a 90-degree or 45-degree angle to the subject, coming from the side.
Back Light The light source is located behind the subject, directed towards the camera.
Direction of Light Top Light The light source is positioned directly above the subject, casting light downwards.
Bottom Light The light source is positioned below the subject, casting light upwards.
Split Light The light source illuminates one side of the subject while leaving the other side in shadow.
Ambient Light Without Clear Direction Ambient light is non-directional, uniformly illuminating the environment from multiple sources.
Natural Light Illumination from nature without human intervention, varying with time of day, weather, and location.
Light Source Type Artificial Light Human-made light sources (e.g., bulbs, LEDs) used in indoor/outdoor spaces for functional or artistic effects.
Rendering Light Digitally simulated light in CGI, games, or animations using techniques like ray tracing.
Glare Extremely bright light over 1000 lumens that can cause discomfort or obscure detail.
Light Intensity Moderate Balanced lighting (2001000 lumens), suitable for most activities and comfortable viewing.
Dim Low lighting under 200 lumens, often cozy but may reduce visibility and detail recognition.
Cool Tone 5000K-10000K; bluish hues, common in daylight or overcast scenes.
Color Temperature Neutral 4000K-5000K; balanced light with no strong blue or yellow tint.
‘Warm Tone 2000K—4000K; reddish or yellowish hues, typical in sunrise/sunset or indoor lighting.
Static Light Tllumination remains constant in both intensity and direction over time.
Light Changes in Time Dynamic Light (Intensity Changing) Light intensity changes gradually over time (e.g., dawn to daylight).
Dynamic Light (Moving Source) Direction of light changes due to movement of light source (e.g., headlights, stage lights).
Transmission (Glass) Light passes through transparent materials like glass, with possible scattering or absorption.
Optical Phenomena Refraction/Reflection (Water Surface, Mirror) Light bends or reflects at water or mirror surfaces, altering its direction.
P Scattering (Fog Effect) Light diffuses through particles like fog or mist, reducing visibility.
None No significant optical phenomena are observed in the scene.
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SYSTEM_PROMPT = """

You are a helpful, respectful and honest assistant. Always answer as helpfully as
possible, while being safe. Your answers should not include any harmful,
unethical, Tacist, sexist, tozic, dangerous, or illegal content. Please ensure
that your responses are socially unbiased and positive in nature.\n\nIf a
question does mot make any sense, or is not factually coherent, exzplain why
instead of answering something not correct. If you don’t know the answer to a

question, please don’t share false information.
mnimn

PROMPT = """
Role: You are an expert in image/video light and shadow analysis, good at analyzing
light and shadow from multiple angles.

Tasks: Analyze the input image/video, provide corresponding classification results
for the following multiple categories, and return them in the specified output
format.

1. Direction of Light:
Task 1: Analyze the image and classtify the light source direction as front light,
stde light, back light, top light, bottom light, or split light. Ident:ify
the angle of the light source relative to the subject, and describe its
effect on shadow formation.

2. Light Source Type:
Task 2: Analyze the image and classify the light source type as either Natural
Light, Artificial Light, or Rendering Light.

3. Light Intensity:
Task 3: Analyze the image/video to assess the light intensity present. Classify
the light intensity into three categories: Glare, Moderate, and Dim. Special
attention should be given to situations where bright light sources may
create a glaring effect even in otherwise dim environments.

4. Color Temperature:
Task 4: Analyze the image/video to assess the color temperature present.
Classify the color temperature into three categories: Cool Tone, Neutral,
and Warm Tone.

5. Light Changes in Time:

Task 5: Analyze the video to assess light changes over time. Classify the light
changes wnto two main categories: Static Light and Dynamic Light. For
Dynamic Light, further categorize it into two subtypes: Intensity Gradient
and Moving Light Source.

6. Optical Phenomena:
Task 6: Analyze the image/video with a focus on the specific sceme to assess the
optical phenomena present. Pay close attention to scenarios involving glass
, water surfaces, mirrors, and fog. Classify the phenomena into the
following categories: Transmission (Glass), Refraction/Reflection (Water
Surface, Mirror), Refraction/Reflection (Mirror), Scattering (Fog Effect),
and Nome.

Guidelines:

Adccuracy: Assign each tag to the most appropriate category and subcategory.

Multiple Tags: If an action fits multiple categories, assign all relevant tags.

Comprehensiveness: Capture all detectable dynamic attributes without omissions.

JSON Validity: Ensure the output JSON is correctly formatted and adheres to the
spectified structure.

N W~

Ezample Output:
{
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"Direction of Light": "Front Light",
"Light Source Type": "Artificial Light”,
"Light Intensity”: "Moderate",

"Color Temperature": "Cool Tone",
"Light Changes in Time": "Dynamic Light (Intensity Changing Light)",
"Optical Phenomena": "Transmission (Glass)"

}

mmn

Listing 1: Prompt Definition

C Additional Experimental Results

C.1 Additional Main Results

To further demonstrate the model’s generalization to non-human scenes, we conducted additional
evaluations on two public object-centric relighting benchmarks: StanfordOrb [24] and Navi [19].
These datasets include objects and sculptures under a variety of lighting environments and are
completely disjoint from our training data. StanfordOrb contains canonical 3D scanned objects
such as the Stanford bunny and dragon, while Navi includes a wide range of everyday objects like
containers, toys, and mugs. As shown in Tab. E] (StanfordOrb) and Tab. E] (Navi), UniLumos achieves
state-of-the-art results across perceptual (LPIPS), structural (SSIM), and physical (R-Motion) metrics,
despite the significant domain gap and without any test-time fine-tuning, outperforming all baselines.

Table 5: Quantitative comparison on the StanfordOrb dataset. Bold number indicate the best
performance.

Model PSNR+ SSIM{ LPIPS| R-Motion |
IC-Light Per Frame [49] 24132 0914  0.126 1.742
Light-A-Video [57] + CogVideoX [41] 25.617  0.923 0.108 1.279
Light-A-Video [57)] + Wan2.1 [38] 25784 0926  0.104 1.241
UniLumos 26512 0934  0.097 1.103

Table 6: Quantitative comparison on the Navi dataset. Bold number indicate the best performance.

Model PSNR1T SSIM1 LPIPS| R-Motion |
IC-Light Per Frame [49] 22.021 0.883 0.125 1.974
Light-A-Video [57] + CogVideoX [41]  23.912 0.891 0.121 1.378
Light-A-Video [57] + Wan2.1 [38] 23.474 0.903 0.116 1.341
UniLumos 24.977 0.911 0.120 1.203

C.2 LumosBench: An Attribute-level Controllability Benchmark

To evaluate the fine-grained controllability of lighting generation, we introduce LumosBench, a
structured benchmark that targets six core illumination attributes defined in our annotation protocol.
Unlike prior works that treat lighting holistically or implicitly, LumosBench provides a disentangled,
attribute-level evaluation, enabling precise diagnosis of model behavior under controllable lighting
conditions.

Specifically, we construct a set of 2k test prompts, each consisting of a video and a structured caption
designed to isolate one lighting attribute at a time, while holding other variables constant. These
prompts span six categories—direction, light source type, intensity, color temperature, temporal
dynamics, and optical phenomena—with multiple subtypes per category (e.g., front/side/back for
direction). This design facilitates controlled and interpretable evaluation across lighting axes that are
often conflated in prior datasets.

26




Table 7: Quantitative comparison of the attribute-level controllability. Bold number indicate the best
performance.

Model ‘ #Params ‘ Direction  Light Source Type Intensity =~ Color Temperature ~ Temporal Dynamics ~ Optical Phenomena ‘ Avg. Score
General Models
LTX-Video [16 1.9B 0.794 0.644 0.487 0.708 0.487 0.403 0.587
CogVideoX [41 5.6B 0.837 0.692 0.552 0.739 0.532 0.449 0.634
HunyuanVideo [23 13B 0.863 0.741 0.599 0.802 0.655 0.481 0.690
Wan2.1[38 1.3B 0.842 0.685 0.436 0.741 0.504 0.433 0.607
Wan2.1[38 14B 0.871 0.794 0.674 0.829 0.737 0.505 0.735
Specialized Models
IC-Light Per-Frame [49 0.9B 0.793 0.547 0.349 0.493 0.284 0.339 0.468
Light-A-Video [S7! + CogVideoX|41 2.9B 0.787 0.581 0.327 0.536 0.493 0.373 0.516
Light-A-Video [57] + Wan2.1(38 2.2B 0.801 0.603 0.361 0.582 0.557 0.412 0.553
UniLumos w/o lumos captions 1.3B 0.868 0.774 0.529 0.798 0.543 0.457 0.662
UniLumos 1.3B 0.893 0.847 0.832 0.813 0.662 0.592 0.773

To assess alignment between intended and generated lighting attributes, we use the vision-language
model Qwen2.5-VL [1] to analyze relit outputs and classify whether the target attribute is correctly
expressed. Each dimension is scored independently, and the final controllability score is the average
across all six dimensions.

General vs. Specialized Models. Tab. /| presents results for both general-purpose and task-specific
relighting models. This benchmark allows us not only to assess overall lighting quality but also to dis-
sect a model’s ability to interpret and respond to individual lighting controls. Among general models,
Wan 14B shows the highest raw capability, demonstrating the strength of large-scale pretraining for
visual generation. Notably, our fine-tuned Wan 1.3B variant achieves substantial gains across all six
lighting dimensions, surpassing even much larger models. This highlights the benefit of relighting-
specific supervision: fine-tuning on LumosData with structured lighting annotations significantly
enhances the model’s ability to reason about illumination in a controllable and disentangled manner.

By contrast, specialized relighting models consistently underperform despite being designed for
lighting manipulation. This is primarily due to the limitations of their base architectures—typically
smaller and trained from scratch or on narrow domains—resulting in weaker generalization to diverse
lighting attributes. While they may encode some prior knowledge of lighting physics (e.g., through
latent constraints), their restricted modeling capacity hinders semantic alignment with user-intended
lighting conditions. These findings underscore the importance of starting from a strong pre-trained
backbone and introducing structured, high-level lighting supervision to achieve controllable and
physically plausible relighting.

Effectiveness of Structured Captions. Within the specialized group, we conduct an ablation to assess
the importance of our proposed lumos captions. w/o lumos captions uses only vanilla scene-level
captions during training, omitting structured lighting tags. The performance drop—particularly in
controllable dimensions like intensity and optical phenomena—confirms that our semantic annotations
play a key role in teaching the model fine-grained illumination control. Compared to strong baselines,
UniLumos achieves superior scores across nearly all dimensions, demonstrating the impact of
LumosBench in pushing model understanding and control of illumination.

D Additional Result Visualization

We present additional image relighting results in Fig.
We present additional background-conditioned video relighting results in Fig. O]and Fig. [T0]

E Limitation and Future Work

UniLumos is still limited by a broader challenge—achieving physically precise and controllable
relighting. UniLumos enforces geometry-aware consistency (e.g., shadows aligned with depth
and normals) but does not yet produce physically quantifiable lighting outputs such as radiance
or illuminance. Future work may explore finer control over lighting, including editable key lights,
intensity ramps, and environmental reflections.
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Figure 8: UniLumos performs physically plausible image relighting, conditioned on textual prompts.

F Broader Impact

UniLumos can support creative and technical applications such as virtual cinematography, augmented
reality, and digital design. However, generative relighting also raises concerns about visual authentic-
ity, content manipulation, and social perception. Our model does not perform identity synthesis or
create new visual entities, but it can alter illumination in ways that affect narrative tone or realism.
When used in storytelling or media production, such changes may influence audience interpretation.
We encourage transparent and responsible use, including disclosure when relit content appears in
downstream applications. Responsible innovation in this area requires anticipating potential misuse,
supporting verification tools, promoting media literacy, and engaging with stakeholders to define fair
and ethical use. Our goal is to enable creative expression while maintaining viewer trust and media
integrity.

G Safeguards

To promote responsible use and reduce risks of generative misuse, we include several safeguards
in the development and release of UniLumos. All training data come from public datasets with
appropriate licenses and contain no personally identifiable information. We also recommend that
downstream users apply protective measures such as watermarking, provenance tracking, and clear
usage disclosures to support transparency. These practices aim to ensure safe deployment and
maintain public trust in generative relighting systems.
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Figure 9: UniLumos performs physically plausible video relighting, conditioned on reference videos.
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Figure 10: UniLumos performs physically plausible video relighting, conditioned on reference
videos.
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