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ABSTRACT

Traditional stochastic sampling methods for open-ended neural text generation
focus on truncating the low-likelihood part of the predicted distribution. They
do not directly manipulate the high-likelihood part, which leads to the likelihood
trap that induces repetition and boredom. They also do not directly leverage that
human does not always favor high-likelihood texts. Inspired by these, we propose
a novel sampling method that rescales the high-likelihood part of the distribution
with inverse probability weighting. It increases the diversity by rescaling and
penalizing the high-likelihood words, and preserves the fluency by using multi-
filtering truncation on the low-likelihood words. We use pre-trained language
models to compare our algorithm with traditional sampling methods. Results show
that our algorithm can significantly increase the diversity and novelty of generated
texts without corrupting the fluency.

1 INTRODUCTION

Open-ended neural text generation is greatly affected by decoding methods. Counter-intuitively, the
quality-oriented decoding methods such as beam search, which maximizes the likelihood of decoded
texts, induces the well-known text degeneration (Holtzman et al., 2020; Welleck et al., 2020) and
likelihood trap (Zhang et al., 2021; Basu et al., 2021), that is, the high-likelihood texts are prone to be
repetitive and boring with low quality. As a result, many works have focused on stochastic sampling
method such as top-k sampling (Fan et al., 2018; Holtzman et al., 2018) or nucleus sampling (top-p
sampling, Holtzman et al., 2020). These methods first truncate the low-likelihood part of the language
model’s predicted distribution, then perform stochastic sampling on the truncated distribution for
all decoding time steps. Other methods, such as temperature sampling, rescale the log-likelihood
of all words to control the quality of generated texts. Recent works (Caccia et al., 2020; Nadeem
et al., 2020; Zhang et al., 2021) reveal that these methods achieve on-par performance regarding their
quality-diversity trade-off feature. Still, there exist undiscovered properties to understand better the
relationship between stochastic sampling algorithms and open-ended neural text generation (Nadeem
et al., 2020).

We note that none of the traditional sampling algorithms have directly manipulated the high-likelihood
part of the distribution since high-likelihood words are always considered to be “trustworthy”.
Essentially, the observed quality-likelihood curve by human judgment is inversely proportional to the
likelihood in the high-likelihood area (Zhang et al., 2021), which confirms the intuition that human
does not always favor high-likelihood words (Holtzman et al., 2020; Welleck et al., 2020). Inspired
by these, we propose a novel sampling method, namely the interquartile range inverse probability
(IQR-IP) sampling algorithm. It increases the diversity of generated texts by rescaling and penalizing
the high-likelihood part of the predicted distribution with inverse probability weighting and preserves
the fluency by using multi-filtering truncation on the low-likelihood. The rescaled distribution will
achieve a closer resemblance to the quality-likelihood curve (such as the human judgment of Figure 1
by Zhang et al., 2021), as is illustrated in Figure 1. Empirical results show that our algorithm can
increase the diversity and novelty of generated text without corrupting the fluency.
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The high-likelihood part (“head”) of the distribution is rescaled
by inverse probability weighting.

Closer to human judgement curve

Figure 1: Illustration of our algorithm. The high-likelihood part of the language model’s predicted
distribution on each sampling step is rescaled by inverse probability weighting to penalize the high-
likelihood words. The rescaled distribution (colored in red) will achieve a closer resemblance to the
quality-likelihood curve (see the human judgment curve of Figure 1 by Zhang et al., 2021).

2 THE LIKELIHOOD TRAP

2.1 TRAPPED TRAJECTORY INDUCED BY THE HIGH-LIKELIHOOD

Loop #1
repe��ve words have higher rank

Loop #2
repe��ve pa�ern grows stronger

Loop #3
get stuck in extreme distribu�on

Peaked distribu�on

Flat distribu�on

Extreme distribu�on
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Figure 2: The trajectory of predicted probability (“o” marker) and predicted distribution (heatmap
box beside each marker in “word-likelihood” format, with the sampled word marked by “*”) for
the first three repetition loops. It contains infinite repetitive loops of “She walks in beauty.” (with a
generated period). The trajectory of the repetitive word “She” is highlighted in shadow, which shows
the increase of predicted probability and the gradually peaked predicted distribution.
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Figure 3: Trajectories of repetitive words extracted from samples that contain repetition loops.
Repetitive words that appear more than 30 times are extracted and aligned to form their trajectories.
A few appearances of repetitive words quickly lead the model to extreme distribution that causes
repetition loops.

We first study the likelihood trap in open-ended generation cases. Unlike existing works, we are
curious about the generation trajectory continued from a sharing context. So we use GPT-2 Small
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Radford et al. (2019) with nucleus sampling (p = 0.95) to generate 5,000 samples using the same
prompt. We choose the prompt “She walks in beauty” (from Lord Byron’s poetry) to set a high-
novelty reference. To detect trapped repetitions on the generated passages, we adopt the n-gram
entropy metric (Shannon & Weaver, 1963; Zhang et al., 2018; He & Glass, 2020) by calculating
the entropy of n-gram distribution in a fixed-length token window. Empirically, we found that the
entropy threshold of 2.0 for unigram on 200-length token windows is good enough to filter repetition.
We present a generated passage that contains infinite loops of the prompt, and the generation process
gets trapped in repeating the input prompt. The likelihood trajectory of first 3 loops is presented in
Figure 2. We report the following observations.

• Repetitive words always have high likelihood and high rank in the predicted distribution
(see “*” labeled words in each heatmap box in Figure 2).

• Repetition tendency grows stronger when more loops occur (due to a few sampling steps
that happen to pick repetitive token in non-extreme distribution, e.g, in Loop #2), as the flat
distribution in Loop #1 (e.g., “She” and “walks”) gradually becomes peaked distribution
in Loop #3, and peaked distribution in Loop #1 (e.g., “in” and “beauty”) becomes extreme
distribution in Loop #3, which reciprocally contributes to stronger repetition pattern in the
context.

• The predicted distribution got stuck in extreme distribution that assigns almost all probability
mass for repetitive words (e.g., “in” and “beauty” in Loop #3).

To further verify these phenomena, we extract and align the trajectories of each repetitive word
that occurs more than 30 times in the context from all generated passages to observe its overall
trajectory. Figure 3 presents the trajectories of likelihood, rank in predicted distribution, and entropy
of predicted distribution, where x axis is the number of the appearance of repetitive words. After
a few appearances of repetitive words, the predicted distribution will quickly get stuck in extreme
distribution where predicted probability approaches 1, rank approaches 1, and entropy approaches 0,
rendering infinite repetition loops. The undesired behavior of high-likelihood words on the predicted
distribution induces the likelihood trap and leads the model to exhibit repetition behavior.

2.2 IMPROVING DIVERSITY BY PENALIZING THE HIGH-LIKELIHOOD

Repetitive word often has a high rank.

Lower probability words on flat distributions are reasonable but more surprising.

Flat distribution
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Figure 4: Illustration of the high-likelihood “head”
on the flat distribution of the first sampling step
of Loop #1 from Figure 2. Besides “She” that has
the highest predicted probability, lower probabil-
ity words (“\n”, “He”, “I”, “The”, ...) are also
reasonable.

We present a detailed observation of the high-
likelihood words in Figure 4. It shows that lower-
likelihood words on a flat distribution are rea-
sonable choices. If we rescale the distribution
and emphasize these lower-likelihood words to
improve the diversity and novelty, the fluency
of generated passage will not be compromised.
Besides, it is proven beneficial to increase genera-
tion diversity by emphasizing less probable word-
s during training (Welleck et al., 2020). Further-
more, human judgment exhibits an inverse cor-
relation to the likelihood in the high-likelihood
part (Figure 1, Zhang et al., 2021). Inspired by
these, we adopt the inverse probability weighting
method that is commonly seen in causal inference
(see Chapter 2, Hernán MA, Robins JM, 2020).
We first identify a small subset of high-likelihood
words that contains all reasonable choices (such
as in Figure 4). Then adopt inverse probability
weighting to rescale the distribution of the “head” and penalize the high-likelihood, as is illustrated in
Figure 1.

3



Under review as a conference paper at ICLR 2023

3 INTERQUARTILE RANGE INVERSE PROBABILITY SAMPLING ALGORITHM

3.1 FINE-GRAINED FILTERING ON THE LOW-LIKELIHOOD

The primary difficulty in identifying the high-likelihood “head” to rescale is the variation of the
shape of the predicted distribution, i.e., the discrepancy between the flat distribution and the peaked
distribution (Holtzman et al., 2020). Intuitively, the interquartile range (IQR) can adapt to such
variation since it is based on quantile. Furthermore, we also need to leverage the traditional filtering
methods, which truncate low-likelihood words to preserve fluency and ensure that reliable words are
kept to calculate IQR. As a result, we propose to perform fine-grained filtering on the low likelihood.

Let pLM (xt|x1:t−1) denote the auto-regressive language model’s predicted probability of word xt
from vocabulary V given its context x1:t−1 on time step t (Bengio et al., 2003). All the following
manipulations are conducted across all possible t. For simplicity, we directly use p(x) to represent
pLM (xt|x1:t−1). We propose to jointly filter an initial subset Vfil out of V using top-k filtering (with
parameter k) and nucleus filtering (with parameter p).

Vfil = top-k(V ) ∩ nucleus-p(V ). (1)

Let pfil(x) denote the normalized distribution on Vfil. We propose to calculate IQR of pfil(x), that
is, calculate 75% percentile of pfil(x) as Q3, 25% percentile as Q1, let IQR = Q3 −Q1 (all scalar),
and divide Vfil into subsets by using likelihood threshold determined by IQR as follows.

IQR Subset Division of Vfil:

V V eryHigh : pfil(x) ≥ Q3 + ρ× IQR
V High : Q3 + ρ× IQR > pfil(x) ≥ Q3

VMedium : Q3 > pfil(x) ≥ Q1

V Low : Q1 > pfil(x) ≥ Q1 − ρ× IQR

, (2)

Q3+ρ×IQR

Q3

Q1

head (non-singleton)

(a) Flat distribution case.

Q3+ρ×IQR

Q3

Q1

head (singleton)

(b) Peaked distribution case.

Figure 5: Illustration of IQR subset division.
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Peaked distribution with more than 
one peak values

“Tail” that is out of scale with peak values.

Figure 6: Peaked distribution with two peaks.

where ρ is the hyperparameter for IQR coeffi-
cient with the typical value being 1.5. The di-
vision is illustrated in Figure 5. Considering
the outlier-identifying nature of IQR, V V eryHigh

can be regarded as the “head” part that we need to
rescale, which we expect that the likelihood of the
least probable word in V V eryHigh is still “high
enough” to be reasonable choices (Figure 5a). S-
ince IQR is based on the quantile, V V eryHigh

will be singleton on peaked distribution that con-
tains “unquestionably right” words (Figure 5b).
In that case, manipulating and redistributing the
probability mass of V V eryHigh does not have
any effect. It will not corrupt peaked distribution cases with “unquestionably right” words.
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We also consider a particular case of distribution. Figure 6 presents an example of peaked distribution
with more than one peak value. A small value of p for nucleus sampling will miss the second peak,
while a large value of p will let in low-likelihood words that are out of scale with peak values. We
note that it can be resolved by considering the scale constraint of likelihood. Concretely, we propose
a novel filtering method by defining a scale threshold as the fraction of the maximum likelihood of the
predicted distribution. We name it as the “Top-1 Controlled” (Top1CTRL) filtering with parameter n
as follows.

V n =
{
x | p(x) ≥ max p(x)/n, x ∈ V

}
. (3)

Vn
Case 1. Drop Medium and Low.

Vn Case 2. Drop V n below.

Figure 7: Illustration of Top1CTRL filtering.

Note that a small value of n might over-prune
the vocabulary and harm the diversity. As a re-
sult, we propose to use V n to prune Vfil in a
fine-grained manner, as is described in Equation
4 and Figure 7. Case 1 ensures that V n does not
over-prune words categorized as “Very High” or
“High” since they are identified by IQR and are
likely to contain reasonable words. Case 2 de-
scribes other cases where V n directly truncates
Vfil and works jointly with nucleus filtering and
top-k filtering. The pruned set is denoted by V ′fil.
Empirically, n can be set to a fixed value of 100
to achieve good performance.

V ′fil =

{
V V eryHigh ∪ V High, if V n ⊆

(
V V eryHigh ∪ V High

)
(Case 1)

Vfil ∩ V n, otherwise (Case 2)
. (4)

3.2 INVERSE PROBABILITY WEIGHTING ON THE HIGH-LIKELIHOOD

With V ′fil acquired, we propose to redistribute the probability mass for each word in V V eryHigh (i.e.,
the “head”) proportionally to its inverse probability while keeping the sum of probability mass in
V V eryHigh constant. Let p′fil(x) denote the normalized distribution on V ′fil. The transformation on
V V eryHigh is described in Equation 5 and Figure 1, where pinv(x) denotes the rescaled distribution.

pinv(x) =


( ∑

x∈V V eryHigh

p′fil(x)

)
×

p′fil(x)
−1∑

x∈V V eryHigh p′fil(x)
−1 , ∀x ∈ V V eryHigh

p′fil(x), otherwise

. (5)

Finally, the sampling is performed with pinv(x). We refer to the above algorithm as the interquartile
range inverse probability (IQR-IP) sampling algorithm. The main features of our algorithm are as
follows.

A. We use fine-grained truncation on low-likelihood “tail” with 3 parameters (p, k, and n). It aims
to control the “tails” to preserve fluency and guarantee the correct identification of the “head”.
Empirically, these parameters can be fixed around the reference point to achieve good performance.

B. The distribution of the high-likelihood “head” identified by IQR is rescaled by inverse probability
weighting using Equation 5. It aims to improve diversity by penalizing the high-likelihood words,
resembling the quality-likelihood curve of human judgment.

4 EMPIRICAL RESULTS

To provide generalizable results, We use the pre-trained GPT-2 XL model released by Wolf et al.
(2019) (without any fine-tuning) for text generation and evaluation. We set the generation length to be
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200 tokens and generate 5,000 passages for each hyperparameter configuration using the same prompt
in Section 2.1. We choose the commonly used nucleus sampling, top-k sampling, and temperature
sampling as baseline methods. The following automatic metrics are considered.

Fluency. We calculate the averaged perplexity (PPL) of the generated passages (Ippolito et al., 2019;
Holtzman et al., 2020; Basu et al., 2021) to reflect fluency. Note that the metric does not equal quality
since low-perplexity passages might be repetitive and boring, while high-perplexity passages might
be unreasonable. Like most existing works, we compare the metric w.r.t the human-level metric.

Diversity. We first calculate the Self-BLEU (4 and 5) score (Zhu et al., 2018) that reflects the
overlapping between different generated samples. We then calculate n-gram entropy (Zhang et al.,
2018) that reflects the diversity of n-gram distribution and repetition tendency. We also calculate the
Zipf coefficient (Zipf, 1949; Newman, 2005), a linguistic feature that reflects the sloping tendency of
word frequency distribution on a corpus.

4.1 METRIC VARIATION WITH HYPERPARAMETERS

Figure 8: Results for the perplexity (PPL) of
generated texts. They show that our algorithm
achieves human-level fluency with less “tail” than
traditional sampling algorithms. The horizontal
line refers to human-level perplexity reported by
Radford et al. (2019).

We first present the results of metric variation by
tuning hyperparameters. As is shown in Figure
8, our algorithm achieves human-level PPL with
more strictly filtered vocabulary, which means
our algorithm truncates more low-likelihood “tail-
s” and still achieves equal fluency to human text.
It is a desirable feature since the “tails” that con-
tain unreasonable words will lower the quality of
the generated text.

As is shown in Figure 9, the Self-BLEU scores
achieved by our algorithm decrease significantly
faster than traditional methods, which indicates
great diversity gain. Note that it can achieve
almost the same score with “pure sampling” (near
nucleus sampling with p = 0.999, temperature
sampling with t = 1.0), representing the upper
bound of diversity for traditional methods. It
suggests that the diversity boundary of traditional
methods is limited, while our method effectively
expands the diversity boundary. Similarly, results for 3-gram entropy in Figure 10a show that the
entropy metric of our algorithm grows faster and achieves the human-level metric with less “tails”.
These results reveal that our algorithm achieves human-level diversity metrics by truncating more
“tails” than traditional methods and compensating the diversity loss by rescaling the high-likelihood.

(a) Self-BLEU 4. (b) Self-BLEU 5.

Figure 9: Results for self-BLEU 4 and 5. They also show that our algorithm achieves human-level
diversity with less “tail”. The horizontal line refers to human-level self-BLEU scores reported by
Holtzman et al. (2020).
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(a) 3-gram entropy. (b) Zipf coefficient.

Figure 10: Results for 3-gram entropy and Zipf coefficient. Figure 10a also shows that our algorithm
achieves human-level repetition entropy with less “tail”. Horizontal line (5.22) refers to the metric of
human text on the training dataset of WikiText-103 (Merity et al., 2017). Figure 10b shows that our
algorithm can achieve the human-level Zipf coefficient while traditional sampling algorithms can’t.
The horizontal line refers to the human-level Zipf coefficient reported by (Holtzman et al., 2020).

(a) Self-BLEU 4 against PPL. (b) Self-BLEU 5 against PPL.

Figure 11: Trade-off curve of self-BLEU against PPL. They show that all methods are on par
regarding the self-BLEU metric.

Results for the Zipf coefficient in Figure 10b are intriguing. They show that our algorithm can fit
identical Zipf coefficient to human-level metric, while traditional sampling methods can’t. It indicates
that the rescaling transformation of our algorithm renders flatter and less concentrated distribution
of words, which is closer to the human-level metric and unable to achieve by traditional sampling
methods.

4.2 METRIC TRADE-OFF

Many existing works have investigated the metric trade-off curve to evaluate sampling algorithms. For
example, Nadeem et al. (2020) state that violating the entropy reduction property or slope preservation
property will result in drastic performance degradation on the quality-diversity plane (see Figure 3,
Nadeem et al., 2020). Since our method violates them, we investigate the metric trade-off behavior by
aligning each diversity metric (self-BLEU, Zipf coefficient, and 3-gram entropy) against the fluency
metric (PPL) on the 2D plane. Results are shown in Figure 11 and Figure 12. Clearly, although our
algorithm does violate all three properties by Nadeem et al. (2020), it still achieves on-par trade-off
performance to traditional methods regarding self-BLEU and entropy. More importantly, Figure 12b
shows that the Zipf coefficient trade-off curve of our method is considerably closer to the human-level
point than all baseline methods, which can be inferred from the previous metric variation results. We
boldly hypothesize that the properties by Nadeem et al. (2020) might not be necessary to design novel
sampling methods. Instead, they might be boundaries to break for higher novelty, as our method
rescales the high-likelihood “head” but achieves on-par or even better performance than baseline
methods.
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(a) 3-gram entropy against PPL. (b) Zipf coefficient against PPL.

Figure 12: Trade-off curve of 3-gram entropy / Zipf coefficient against PPL. While all methods are
on par regarding the entropy metric, the Zipf coefficient curve of our method is considerably closer to
the human-level point than all baseline methods.

4.3 HUMAN EVALUATION

Figure 13: The estimated probability density func-
tion of PPL’s distribution for selected parameter
configurations. To cancel the impact of quality
variation, we propose to use pre-defined PPL fil-
ters (colored in red vertical lines) to collect gener-
ated passages with PPL around these filters (PPL
±0.5 on each level) in a post-decoding manner.

It is noteworthy that the quality of generated texts
can be highly variable regarding the hyperparam-
eter space as well as the stochastic nature of the
sampling process. With a fixed sampling param-
eter, the generated texts yield a distribution of
PPL with variational quality, as is shown in Fig-
ure 13. Such variation demands a large number
of samples that sufficiently cover and represen-
t the distribution, which requires an extremely
high monetary cost to achieve meaningful result-
s. Instead, we adopt an on-equal-footing fluen-
cy evaluation paradigm similar to Zhang et al.
(2021). We set five pre-defined targets of PPL
and filter the generated passages near these tar-
gets from all hyperparameter configurations for
all sampling algorithms in a post-decoding man-
ner. In that case, we can collect an equal number
of filtered passages per PPL level per method,
measured to be similarly fluent. We argue that it
helps to cancel the quality variation issue for hu-
man evaluation. We also decompose the quality
(overall) metric into the fluency metric and the
novelty metric for human evaluation since high-
likelihood passages with low quality are expected
to be still fluent but boring. See Appendix A for
details.

Following commonly paradigm (Ippolito et al.,
2019; Nadeem et al., 2020; Zhang et al., 2021),
we use Amazon Mechanical Turk for human eval-
uation. Results are shown in Table 1, which indi-
cates that our algorithm achieves both higher flu-
ency and novelty than traditional methods. They
also revisit the conclusion that the three baselines
achieve on-par performance. We present gener-
ated samples with PPL near the reference text in
Table 2. Under the same PPL level, traditional
methods favor creating comparatively plain and
narrative passages, while our algorithm favors
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creating novel and surprising passages. We relate these results to automatic results of diversity
metrics by aggregating the filtered passages from all PPL levels per sampling algorithm to report their
overall diversity metrics in Table 1. They show that under the on-equal-footing fluency paradigm,
all methods are on par with each other regarding self-BLEU and 3-gram entropy. However, our
method achieves a significantly lower Zipf coefficient, which confirms previous results. It reveals the
nature of our method. Compared to traditional methods, our method dramatically flattens the word
distribution of the generated passages (with a lower Zipf coefficient) by penalizing the high-likelihood
words, which achieve similar fluency but exhibit higher diversity and novelty.

Method SB-4 ↓ SB-5 ↓ ZC ↓ Ent-3 ↑ Fluency ↑ Novelty ↑ Overall ↑

Nucleus 0.31 0.18 1.49 5.24 3.70 3.59 3.65

Top-k 0.30 0.17 1.39 5.24 3.79 3.49 3.64

Temperature 0.32 0.19 1.60 5.23 3.74 3.53 3.64

IQR-IP (ours) 0.31 0.18 1.19 5.25 3.83 3.67 3.75

Table 1: Human evaluation results and corresponding automatic diversity metrics of the filtered
passages with on-equal-footing fluency. Abbreviations of metrics include self-BLEU 4/5 (SB-4/5),
Zipf coefficient (ZC), and 3-gram entropy (Ent-3)

Human,
PPL

=28.25

She walks in beauty, like the night \n Of cloudless climes and starry skies; \nAnd all that’s best of dark and bright \n Meet 

in her aspect and her eyes; \n Thus mellowed to that tender light \n Which heaven to gaudy day denies. \n One shade the 

more, one ray the less, \n Had half impair'd the nameless grace  \n Which waves in every raven tress, \n Or softly 

lightens o'er her face; \n Where thoughts serenely sweet express \n How pure, how dear their dwelling-place. (…)

Nucleus
p=0.9,
PPL

=28.22

She walks in beauty and strength and dresses all in white. Though her face may be so dry, it has not failed her either." \n At 
10:30 p.m. Jack out in the deep blue area, pursued by shadow. \n B: You know this has been the same thing going on since 

the Lord was slain. His face always looks so brittle and breakable. He's so magnificent, like a hurricane of sorts; like glass and 
everything breaking into fragments around him. Still, I keep hoping to see his face, (…)

Top-k
k=200,

PPL
=28.32

She walks in beauty though she seems to bear a burden. \n\n Empire has no great enthusiasm for anything, but whenever 

our people wish to change their country's system, there is no rest for the wicked. So shall we then, being guilty of an error, 
even though it be wrong? We shall not then be blamed; there is no shame in what we try to do. These are all the laws that we 
invented by ourselves. From the beginning they proceeded independently. (…)

Temp.
t=1.0,
PPL

=28.11

She walks in beauty. "Love," some old man says, "Belongs to two constant as those two stars." Beautiful diagonal line. So 
beautiful, the trees try to straighten it. "Wait a second," Peter says. "Is this exactly the last one?" For an example, let's suppose 
it's the last blue smoke. "Our Remains," Peter says. "How in the Hell's name is that supposed to be a song, though . . . " Won't
this just be boring, you ask. Sure, says Peter, (…)

IQR-IP
p=0.8, 
k=640,

PPL
=28.27
(ours)

She walks in beauty through all things good, as though a prince in the bloom of youth were ever born in any city. For this I 
would never forget the time I had spent with her, when we went through this temple. The perfume, the beautiful woman, the 
silence, the strange shadows, the pleasant voice, the flower of every description, were like those which now from her new cell 
perfume the fair shrine of Venus." \n And his memory fades into sleep, for at this very moment Venus rises from her silent 

chamber. The Roman fable has the goddess emerging from her palace in an instant from the black night of death. When the 
men are searching for her she rises from her throne, where the eyes of Death watch her silently, to welcome them. And from 
her presence a tumult is born, a struggle in darkness, a terrible din, of discordant cries. For this reason it was always sung, that 
if any were in a black room they should hear the shrill sound

Table 2: Examples with PPL near the reference passage (Lord Byron’s poetry). These passages have
similar PPL and can be viewed as similarly fluent. While traditional methods favor creating plain and
narrative passages, our method generates novel and surprising passages on the same fluency level.

5 CONCLUSION

We propose the interquartile range inverse probability (IQR-IP) sampling algorithm. It rescales
the high-likelihood part of the predicted distribution with inverse probability weighting to increase
diversity and conducts multi-filtering truncation on the low-likelihood to preserve fluency. Results
show that our algorithm can significantly increase the diversity and novelty of the generated text
without corrupting the fluency. Our results suggest a method of manipulating the high-likelihood part
of the predicted distribution to increase diversity and novelty. It might be beneficial for high-novelty
cases such as poetry or music generation. Although superior to baselines, our method may be far
from the optimal sampling algorithm regarding diversity and novelty issues. We believe there still
exist undiscovered and better sampling algorithms for diverse open-ended neural text generation.
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A DETAILS OF HUMAN EVALUATION

We use the following steps to construct Amazon Mechanical Turk (MTurk) human intelligence tasks
(HITs). We first generate 5,000 passages following the same prompt ”She walks in beauty“ on all
sampling parameter configurations for our algorithm and three baseline methods. Then we set five
pre-defined PPL filters evenly distributed on the logarithmic PPL space since the quality judgment
by the human is nearly linear to logarithmic PPL (Zhang et al., 2021; Basu et al., 2021). We ensure
that the golden human-level PPL locates in the middle of the filters, and the PPL of Lord Byron’s
poetry locates in the rightmost. We also filter out passages that contain toxic words, non-English
letters, or unreadable symbols. It results in 144 passages per PPL level per sampling algorithms,
which makes 144×5×4=2,880 passages in total for evaluation. We shuffle and split them into chunks
containing ten passages as one HIT and set each HIT to be assigned to five different MTurk workers.
The workers are asked to rate each passage on its fluency and novelty on a 1-5 scale (larger/better)
within 10 minutes. The interface of the HIT is shown in Figure 14 and 15.

For quality control, we set the requirements for MTurk workers to be located in the US and have
an acceptance rate no lower than 95%. We exclude responses from workers who spent less than
350 seconds on the HIT, i.e., less than 35 seconds on each passage. Following methods by Nadeem
et al. (2020), we observe the convergence of the average human rate when pushing more HITs to
MTurk. Under the proposed on-equal-footing fluency paradigm, we found that the average human
rate converges quickly after 100 samples are evaluated, as is shown in Figure 16. We stop pushing
HITs to MTurk shortly after the convergence of the human rate. In total, we collect annotations from
100 HITs by 500 workers, among which 166 workers’ responses are included to report the human
evaluation results in Table 1. The acceptance rate of MTurk workers’ responses is 33%.
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Figure 14: Instruction of the Amazon Mechanical Turk (MTurk) human intelligence tasks (HITs) for
our human evaluation experiment.

Interestingly, we find that the threshold of workers’ time consumption on the HIT affects the
prominence of advantage for our method. As is shown in Figure 17, a lower and less strict threshold
of 250 seconds diminishes the gap between our method and baseline methods, while a higher and
more strict threshold of 350 seconds (which is the case in Table 1) brings more prominence to the
advantage of our method. It reveals that the high-quality annotations by workers who spend more
time working on the task favor our method over baseline methods.
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Figure 15: An example questions from the HIT.

Figure 16: Convergence of average human rate when increasing the number of samples evaluated by
MTurk workers.

We further illustrate the details by aligning human rates against PPL in Figure 18. The results show
that our method has a great advantage for the fluency metric on the highest PPL level and has stable
advantages for the novelty metric on most PPL levels, which results in the highest overall rate. It
could be explained that the high PPL of our algorithm could possibly be contributed by the rescaled
high-likelihood words on the “head” rather than filtered-in low-likelihood words on the “tail”, which
results in a higher fluency rate on the high PPL level. On the other hand, since the rendered word
distribution of our method is always flatter than baseline methods, the passages on each PPL level
can always achieve a high novelty rate.
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Figure 17: Human evaluation results are slightly different by tuning the filtering thresholds of time
consumption on the HIT responses (from left to right are 250, 300, and 350 in seconds). Increasing
the threshold (lowering the acceptance rate of MTurk workers’ response) brings more prominence to
the advantage of our method and vice versa. Abbreviations of metrics include fluency (F) and novelty
(N).

Figure 18: Results of human rate for fluency/novelty/overall against PPL.

B THE EXTENDED DIVERSITY BOUNDARY

We provide total variance analysis to explain the expansion of the diversity boundary of our algorithm.
Following proposition by Kang & Hashimoto (2020), we can evaluate the upper bound of total
variance between pinv(x) and reference distribution pref (x) with the following corollary.

Corollary 1. Upper bound of total variance between pinv and pref satisfies

|pinv − pref |2 ≤
1

2
KL(pref ||p′fil) + 2m+m2, (6)

where
m = max

x∈V V eryHigh
|p′fil −

Zp

p′fil
|, (7)

Zp =

∑
x∈V V eryHigh p′fil∑

x∈V V eryHigh p′fil
−1 . (8)

Proof. First, with Pinsker’s inequality (Csiszár & Körner, 2011), the total variance between the
original filtered distribution pfil and the reference distribution pref satisfies

|p′fil − pref |2 ≤
1

2
KL(pref ||p′fil). (9)

Then we may use similar methods by Kang & Hashimoto (2020) to derive the new bound as follows.

|pinv − pref |2 ≤ (|pinv − p′fil|+ |p′fil − pref |)2 (10)

By definition of pinv in Equation 5, we have

|pinv − p′fil|2 ≤ max
x∈V V eryHigh

|p′fil −
Zp

p′fil
|. (11)

Then expand Equation 10, and use m defined in Equation 7 and 11 to bound |pinv − p′fil|, and use
Equation 9 to bound |p′fil − pref |, the inequality is proved.
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Equation 6 reveals an additional term controlled by m besides the original bound 1
2KL(pref ||pfil)

(achieved by p′fil without inverse probability weighting). Since m contains a value of inverse
probability, the new upper bound will change dramatically, which provides a diversity enhancement
measure.

The corollary has the same form as Kang & Hashimoto (2020), although with a different constant
m, which corresponds to the truncation ratio c of their proposition. In our work, m is controlled
by inverse probability weighting and can be reasonably large, while the truncation ratio c satisfies
0 ≤ c ≤ 1. In this way, it can be regarded as an extension of the proposition by Kang & Hashimoto
(2020) with unbounded c.

Note that since 0 < Zp ≤ 1, max |p′fil −
Zp

p′
fil
| can only be achieved on the largest or smallest value

of p′fil in V V eryHigh, i.e., on the first or last word of V V eryHigh. As a result, m is controlled by
ρ in Equation 2 and filtering parameters in Equation 4. For example, with a loosely filtered V ′fil,
V V eryHigh might contain the last word with a too-small probability and render a too-large value of
m. Hence the total variance will become too large and corrupt the fluency. However, with carefully
chosen parameters, m may provide reasonable diversity enhancement without hurting the fluency, as
is shown in the evaluation results.

C METRIC VARIATION FOR IQR COEFFICIENT AND TOP1CTRL FILTERING

Method PPL SB-4 ↓ SB-5 ↓ ZC ↓ Ent-3 ↑

IQR-IP, n = 100, ρ = 1.5 16.77 0.47 0.29 1.17 5.24

ρ = 3.0 14.90 0.50 0.32 1.22 5.22

ρ = 5.0 12.76 0.52 0.34 1.26 5.19

ρ = 10.0 11.57 0.53 0.36 1.39 5.18

ρ = 50.0 9.62 0.55 0.39 1.54 5.09

n = 10 13.39 0.53 0.35 1.22 5.21

n = 50 16.50 0.48 0.30 1.17 5.23

n = 200 19.48 0.45 0.28 1.15 5.24

n = 1000 20.52 0.44 0.27 1.15 5.24

Table 3: Metric variation for IQR coefficient ρ and Top1CTRL filtering parameter n.

We present the metric variation by tuning the IQR coefficient and Top1CTRL filtering. We choose to
start from the sampling parameter configuration with k = 640, p = 0.8 (fixed) which locates nearest
to the reference point on the Q-D plane, then tune ρ and n away from their originally fixed values to
observe the variation of automatic metrics, as is shown in Table 3. When ρ in Equation 2 increases, it
shortens the identification range of V V eryHigh. Hence it decreases the intensity of inverse probability
weighting, lowering the diversity metric. If ρ is increased to infinity, there will be no V V eryHigh and
our algorithm will degrade to plain stochastic sampling filtered by Equation 1 to 4.

For Top1CTRL filtering, Table 3 shows that loosening n exhibits the same behavior to loosening
p and k. Note that the metric does not significantly vary when n ≥ 100, since the scale constraint
becomes weak. On the other hand, our fine-grained mechanism in Equation 4 ensures that a small
value of n does not over-prune the vocabulary, which is reflected by the smooth variation of metrics
when n ≤ 100.

We argue that the sampling parameters (p, k, n, ρ) can be fixed around the reference point since the
fixed parameters already yield a distribution of PPL that is very close to human-level metrics, as is
shown in Figure 13. We also argue that controlling the PPL of generated passages can be handled
using either the post-decoding filtering method in our experiment or the dynamic parameter methods
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such as MIROSTAT (Basu et al., 2021), rather than cumbersome hyper-parameter tuning. This is an
orthogonal topic, so we leave it for future work.

One issue to clarify is that by the definition of IQR, there should be a V V eryLow that locates
symmetrically to V V eryHigh on the identification range in Figure 5. Our experiment suggests that
this boundary is always below 0, i.e., V V eryLow is always an empty set during IQR calculation. As a
result, we omit the description for V V eryLow in Equation 2.

Note that one may even design different rescaling strategies besides Equation 5, e.g., evenly redis-
tributing V V eryHigh, or add some noise on V V eryHigh, to achieve a less severe variation bounded
by Equation 11. In that case, our algorithm is an extreme case that we try to leverage the human
judgment quality-likelihood curve by Zhang et al. (2021) and re-order V V eryHigh entirely with
inverse probability weighting.
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