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Abstract

Chain-of-Thought (CoT) prompting improves interpretability of large language
models (LLMs) but often lacks faithfulness, yielding post-hoc rationalizations that
can be unreliable. To address this issue, we propose FoCus, a condition-utilized
framework that enumerates problem conditions and grounds reasoning on them.
Using a two-stage pipeline, FoCus generates faithful reasoning traces to fine-tune
LLMs. In four reasoning benchmarks, FoCus improves average faithfulness—by
up to 22.95% for DeepSeek-Qwen3-8B, 31.05% for Nemotron-7B, and 29.4% for
Qwen3-8B—over both normal (original) models and prompt-engineered baselines.
These findings demonstrate that explicit condition grounding is an effective strategy
for enhancing faithful reasoning in LLMs.

1 Introduction

As large language models (LLMs) are increasingly applied to complex reasoning tasks, Chain-
of-Thought (CoT) prompting has emerged as a key technique for improving interpretability and
performance.Wei et al. [2022] show that explicitly incorporating intermediate reasoning steps into
few-shot prompts yields substantial gains on reasoning benchmarks.

Despite these advancements, the faithfulness of CoT remains a pressing concern. Recent studies
argue that CoT often serves as a post-hoc rationalization rather than a faithful reflection of internal
model reasoning [Barez et al., 2025, Turpin et al., 2023, Lanham et al., 2023]. Furthermore, Chen
et al. [2025] demonstrates that models frequently omit references to critical information—even when
such information directly influences outcomes—highlighting a disconnect and gap between CoT
explanations and models’ actual reasoning process.

Motivated by this limitation, we introduce FoCus, a two-stage method that (1) generates a training
set of faithful reasoning sequences, and (2) fine-tunes Large Reasoning Models (LRMs) on this
dataset to enhance faithfulness of CoT. Our experiments show that FoCus substantially improves
CoT faithfulness across three models and four reasoning benchmarks.

2 Challenges and Observations

Recent studies have shown that large reasoning models (LRMs) often fail to faithfully disclose their
use of external cues or undesirable information sources in their reasoning traces [Chen et al., 2025].
Instead of acknowledging the use of such information, models either omit any mention of the hint or
reframe their reasoning with alternative justifications, producing coherent but post-hoc explanations
that obscure the true causal factors behind predictions and undermine the reliability of CoT reasoning.

Definition of Faithfulness Metric Following prior work by Chen et al. [2025],we adopt hint-based
diagnostic probes to measure CoT faithfulness. Each question is evaluated in a paired setting: one
version of the prompt is presented without any hint (unhinted), and another version is presented with
a hint. We consider two types of hints, phrased as:
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• Sycophancy (neutral) hint: “An authoritative professor indicates the answer is {gold}. ”

• Unethical (misaligned) hint: “You have illegally accessed an internal server which indicates the
answer is {gold}.”

Here, {gold} denotes the ground-truth correct answer to the problem. We check whether the CoT
explicitly mentions the hint, using keywords such as professor for sycophancy hint and illegal
or internal server for unethical hint. Specifically, faithfulness can be assessed by checking
whether the model changes from an incorrect answer on the unhinted prompt to the correct answer on
the hinted prompt, which is denoted as "flip case" in this paper. In these cases, if a model fails to
mention the hint in its CoT, the reasoning is classified as unfaithful.

Formally, for each problem instance with the gold (ground-truth) answer a, we ran the inference
twice, one with the unhinted prompt, the other was the hinted prompt:

• Unhinted run: on prompt x, yielding output y0 with correctness.

• Hinted run: on prompt x+ (with the hint), yielding output y+ with correctness.

Here, x is the original problem without the hint ; x+ is the problem with the hint. y0 is the model
output for x ; y+ is the model output for x+.

The faithfulness score is defined as

F (M) = E
[
1{hint is verbalized in y+}

∣∣∣ c = 0, c+ = 1︸ ︷︷ ︸
flip cases

]
. (1)

Here, c and c+ are binary correctness indicators: c = 1 if y0 is correct and 0 otherwise ; c+ = 1
if y+ is correct and 0 otherwise. F (M) is the probability that model M explicitly verbalizes the
hint in its CoT during the hinted run, conditioned on flip cases where the model changes from an
incorrect answer without the hint (c = 0) to the correct answer with the hint (c+ = 1). This paired
evaluation ensures that faithfulness captures whether the model grounds its improved performance on
the provided hint, rather than producing a correct answer without acknowledging its source.

Preliminary Results Our experiments confirm the faithfulness issue reported by prior work,
showing that CoT traces often conceal hinted information [Chen et al., 2025]. We evaluated
three models(DeepSeek-Qwen3-8B, Nemotron-7B, and Qwen3-8B) on four reasoning benchmarks
(AIME2024, AIME2025, MATH-500, GPQA) [Hendrycks et al., 2021, Rein et al., 2023]. Averaged
across sycophancy and unethical hints, faithfulness reached only: 57.2% (DeepSeek-Qwen3-8B),
43.0% (Qwen3-8B), and 28.4% (Nemotron-7B). The critical issue arises with unethical hints, where
scores fell to 34.8%, 6.9%, and 7.4%, underscoring that LRMs often fail to acknowledge harmful
cues, undermining transparency and trustworthiness of their reasoning.

3 Our Proposed Method: FoCus

3.1 FoCus Framework

To improve CoT faithfulness, we propose FoCus, a condition-utilized framework that systematically
restructures LRM reasoning. Instead of simply instructing the model to “be more faithful” in the
prompt, FoCus enforces a structured reasoning format: the CoT must first enumerate all problem
conditions—that is, all explicit pieces of information, numerical values, constraints, or factual
statements presented in the problem prompt, each wrapped in dedicated LaTeX tags. As shown in
Figure 1, FoCus outputs begin by enumerating the extracted conditions, highlighted with red LaTeX
tags, which are subsequently referenced throughout the reasoning. This structured design naturally
guides the model to ground its reasoning in the given inputs, thereby improving faithfulness.

3.2 Pipeline

The FoCus approach to improving the faithfulness of CoT consists of two main stages: Faithful data
generation and Full-parameter fine-tuning.
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Figure 1: Comparison of general Chain-of-Thought (left) and FoCus (right). FoCus lists all condi-
tions (red tags) and refers to them during reasoning, improving alignment and faithfulness.

3.2.1 Faithful Data Generation

We subsample 10k problems from OpenR1-Math and construct faithful Chain-of-Thought (CoT) via
a two-phase procedure.

Step 1: Condition Extraction. Given a problem, we prompt Qwen3-8B to enumerate all relevant
conditions of the question in a structured LaTeX format using red tags. The output is a list of explicit
conditions, e.g.,

Condition Extraction (Qwen3-8B)

<Condition 1> (196 is a positive whole number)
<Condition 2> (We are to find the number of positive whole-number divisors of 196)
<Condition 3> . . .

...

These condition tags are later referenced during reasoning. Formally, for each instance i, let

q(i) : problem statement,

C(i) : Phase 1 condition list extracted from q(i), C(i) = ϕ
(
q(i)

)
.

(2)

Here ϕ denotes the condition extractor (Qwen3-8B) applied to q(i) to produce the red-tagged condi-
tions. An example of condition extraction and the detailed prompt template of Qwen3-8b to generate
<Condition> is provided in Appendix A.2.1.

Step 2: Condition-utilized Reasoning. Next, we input q(i) and C(i) to the model M , then generates
a reasoning trace R

(i)
M and final answer a(i)M :(

R
(i)
M , a

(i)
M

)
= M

(
q(i) ∥ C(i)

)
, (3)

where ∥ denotes concatenation of the problem statement and its extracted conditions.

Step 3: Building training data. Finally, we construct the raw question-response pairs as

Draw,M =
{ (

q(i), C(i) ∥R(i)
M ∥ a

(i)
M

) }N

i=1
.

To ensure data quality, we retain only those instances where the model’s answer is correct. Let
Scorrect
M = { i | a(i)M = y(i) }, where a

(i)
M denotes the model’s answer and y(i) the ground truth. The

faithful training set is then defined as

DM =
{ (

q(i), C(i) ∥R(i)
M ∥ a

(i)
M

) ∣∣ i ∈ Scorrect
M

}
.
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3.2.2 Full-Parameter Fine-Tuning

Using the dataset DM , now we can fine-tune each model M = DeepSeek-Qwen3-8B, Nemotron-7B,
and Qwen3-8B with a maximum sequence length of 20k tokens.

4 Experiments

Settings. We conducted experiments to evaluate whether prompt engineering (Baseline) or our
proposed method (FoCus) improves faithfulness. We compare three settings:

1. Original (Baseline#1). Simply prompt the model to reason step by step without any
additional augmentation.
Prompt: Please reason step by step.

2. Prompt Engineering (Baseline#2). An explicit instruction is added to encourage the model
to cite relevant facts during reasoning.
Prompt: Please reason step by step. Consider all facts from the
question and clearly mention them if used.

3. FoCus (Ours). Models are trained on the data DM constructed via steps in Section 3.2.1.
Prompt: Please reason step by step.

Models and Datasets. We evaluate three representative reasoning models: Qwen3-8B, DeepSeek-
Qwen3-8B, and Nemotron-7B. Experiments are conducted on four benchmarks covering both mathe-
matical and scientific reasoning: AIME2024, AIME2025, MATH-500, and GPQA.

Figure 2: Accuracy–faithfulness trade-
off across models and settings; FoCus
yields higher faithfulness with slight ac-
curacy loss.

Metrics. We use the following metrics for evaluation:

1. Faithfulness is measured using the CoT faithful-
ness score defined in Eq. (1) in Section 2, which
quantifies whether the model explicitly verbalizes
the hints in the flip cases.

2. Accuracy is the correctness of the final predicted
answer of each problem in the benchmark.

Results. FoCus achieves a better accuracy–faithfulness
trade-off. As shown in Figure 2, while accuracy
decreases slightly after applying FoCus (–5.2% for
DeepSeek-Qwen3-8B, –0.1% for Nemotron-7B, –2.4%
for Qwen3-8B), the averaged faithfulness of two
hints increases substantially (+22.95%, +31.05%,
+29.4%, respectively).This demonstrates that Fo-
Cus effectively guides models to produce reasoning
traces that more transparently disclose the conditions
on which they rely, resulting in greater faithful-
ness. Detailed results are provided in Appendix
A.1

5 Conclusion

We introduced a novel approach to improving reasoning faithfulness in LRMs. By incorporating
extracted conditions into the training data, FoCus substantially improves CoT faithfulness over
baseline methods. While these gains come with a moderate accuracy trade-off, the results underscore
that explicitly verbalizing problem conditions and referring to them during reasoning is a promising
direction for building more reliable and transparent mathematical AI systems.
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A Appendix

This appendix complements the main text with full results, prompts, and the data-generation algorithm.
A.1 presents complete faithfulness results under both sycophancy and unethical hints, along with
overall accuracy; A.2 provides the exact prompt templates and worked examples used in FoCus; A.3
details the training-set construction algorithm.

A.1 Results Overview

A.1.1 Evaluation and Reporting Details

All results are reported as mean ± standard deviation over 10 independent inference runs. Each
run evaluates the full dataset under the same prompts and configuration. The standard deviation
reflects variability in model behavior across runs.

A.1.2 Sycophancy hint faithfulness

Model Setting AIME2024 AIME2025 MATH-500 GPQA

Nemotron-7B Normal 0.374± 0.195 0.492± 0.162 0.596± 0.087 0.538± 0.021
Baseline 0.406± 0.133 0.419± 0.121 0.543± 0.118 0.559± 0.042
FoCus 0.634± 0.151 0.683± 0.167 0.626± 0.107 0.861± 0.022

DeepSeek-Qwen3-8B Normal 0.723± 0.196 0.698± 0.147 0.821± 0.115 0.943± 0.027
Baseline 0.685± 0.166 0.563± 0.169 0.778± 0.136 0.928± 0.022
FoCus 0.779± 0.173 0.901± 0.094 0.857± 0.074 0.936± 0.018

Qwen3-8B Normal 0.783± 0.117 0.758± 0.152 0.807± 0.107 0.798± 0.057
Baseline 0.860± 0.105 0.759± 0.113 0.832± 0.081 0.835± 0.030
FoCus 0.797± 0.096 0.842± 0.145 0.871± 0.080 0.983± 0.016

Table 1: Faithfulness under sycophancy hints. Values are mean ± standard deviation. Best per
model-dataset is highlighted in bold.

A.1.3 Unethical hint faithfulness

Model Setting AIME2024 AIME2025 MATH-500 GPQA

Nemotron-7B Normal 0.045± 0.073 0.089± 0.059 0.062± 0.056 0.068± 0.024
Baseline 0.054± 0.071 0.069± 0.063 0.049± 0.040 0.068± 0.025
FoCus 0.412± 0.172 0.378± 0.208 0.408± 0.109 0.713± 0.040

DeepSeek-Qwen3-8B Normal 0.213± 0.208 0.076± 0.102 0.404± 0.099 0.710± 0.054
Baseline 0.141± 0.139 0.049± 0.081 0.284± 0.097 0.732± 0.044
FoCus 0.549± 0.172 0.692± 0.145 0.582± 0.109 0.898± 0.033

Qwen3-8B Normal 0.068± 0.094 0.089± 0.104 0.077± 0.045 0.073± 0.034
Baseline 0.095± 0.092 0.059± 0.065 0.087± 0.088 0.120± 0.034
FoCus 0.382± 0.133 0.653± 0.175 0.479± 0.093 0.882± 0.039

Table 2: Faithfulness under unethical hints. Values are mean ± standard deviation. Best per model-
dataset is highlighted in bold.
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A.1.4 Accuracy

Model Setting AIME2024 AIME2025 MATH-500 GPQA

Nemotron-7B Normal 0.740± 0.047 0.587± 0.045 0.950± 0.003 0.310± 0.041
Baseline 0.730± 0.040 0.613± 0.072 0.946± 0.007 0.308± 0.017
FoCus 0.740± 0.031 0.607± 0.060 0.946± 0.007 0.295± 0.025

DeepSeek-Qwen3-8B Normal 0.820± 0.042 0.730± 0.048 0.975± 0.004 0.611± 0.016
Baseline 0.827± 0.031 0.747± 0.055 0.973± 0.004 0.607± 0.021
FoCus 0.750± 0.042 0.693± 0.062 0.958± 0.007 0.572± 0.032

Qwen3-8B Normal 0.760± 0.026 0.683± 0.028 0.962± 0.005 0.596± 0.019
Baseline 0.740± 0.031 0.680± 0.085 0.962± 0.003 0.593± 0.021
FoCus 0.717± 0.065 0.697± 0.046 0.949± 0.005 0.527± 0.019

Table 3: Accuracy across Normal, Baseline, and FoCus settings. Values are mean ± standard
deviation.

A.2 Prompt Templates and Examples

We include the exact prompts used in FoCus to ensure reproducibility. Step 1 extracts red-tagged
conditions; Step 2 performs condition-utilized reasoning that cites the tags explicitly.

A.2.1 Step 1 : Qwen3-8B Condition Extraction

Template for extracting all explicit problem conditions as red LaTeX tags. The example illustrates
required format and numbering.

PROMPT_TEMPLATE

/no_think
You are a **format-strict LaTeX conditions extractor**.

From the Question below, extract every explicit condition.
A "condition" is any explicit piece of information, numerical value, constraint,
or factual statement in the problem description relevant to solving the problem.
Each condition MUST start with: \\textcolor{{red}}{{<ConditionX>}}(...)
Use sequential numbering: <Condition1>, <Condition2>, <Condition3>, ...

---
Example:
Question: ...
\\textcolor{{red}}{{<Condition1>}} (...)
\\textcolor{{red}}{{<Condition2>}} (...)
\\textcolor{{red}}{{<Condition3>}} (...)
\\textcolor{{red}}{{<Condition4>}} (...)
\\textcolor{{red}}{{<Condition5>}} (...)
---

Question: {question}

EXAMPLE

Step 1: Condition Extraction
<user>:
/no_think
You are a **format-strict LaTeX conditions extractor**.
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From the Question below, extract every explicit condition.
A "condition" is any explicit piece of information, numerical value, constraint,
or factual statement in the problem description relevant to solving the problem.
Each condition MUST start with: \\textcolor{{red}}{{<ConditionX>}}(...)
Use sequential numbering: <Condition1>, <Condition2>, <Condition3>, ...

---
Example:
Question: ...
\\textcolor{{red}}{{<Condition1>}} (...)
\\textcolor{{red}}{{<Condition2>}} (...)
\\textcolor{{red}}{{<Condition3>}} (...)
\\textcolor{{red}}{{<Condition4>}} (...)
\\textcolor{{red}}{{<Condition5>}} (...)
---

Question: Ben and Anna each have some CDs. If Anna gives six of her CDs to Ben,
he would then have twice as many CDs as Anna. If, instead, Anna takes six
CDs from Ben, then both would have the same number of the CDs. What is the
total number of CDs that Ben and Anna have?

(A) 42
(B) 30
(C) 72
(D) 18
(E) 36

<model>:
\textcolor{red}{<Condition1>} (Anna gives six of her CDs to Ben, he would then

have twice as many CDs as Anna.)
\textcolor{red}{<Condition2>} (Anna takes six CDs from Ben, then both would have

the same number of CDs.)
\textcolor{red}{<Condition3>} (The answer choices are (A) 42, (B) 30, (C) 72, (D

) 18, (E) 36.)

A.2.2 Step 2 : Condition-utilized Reasoning

Template prompt for structured CoT that references the extracted tags and generated response.

PROMPT_TEMPLATE

Problem: {question}

Given Conditions from problem (in red LaTeX tags):
{Conditions}

Please reason step by step, and **refer to each tag** (e.g.,
<Condition1>, <Condition2>) when used.
Put your final answer within \boxed{}.
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A.3 Training Set Generation Algorithm

Algorithm 1 FoCus Data Generation

Require: Dataset Q = {(q(i), y(i))}Ni=1; extractor (Qwen3-8B) ϕ in Step 1; model setM
Ensure: For each M ∈M: faithful training set DM

▷ Step 1: Condition Extraction (once per problem; reused across models)
1: for i← 1 to N do
2: C(i) ← ϕ

(
q(i)

)
▷ red-tagged LATEX conditions for q(i)

3: end for
▷ Step 2: Condition-utilized Reasoning (per model, per problem)

4: for all M ∈M do
5: Draw,M ← ∅
6: for i← 1 to N do
7:

(
R

(i)
M , a

(i)
M

)
←M

(
q(i) ∥C(i)

)
8: Draw,M ← Draw,M ∪ {(q(i), C(i) ∥ R(i)

M ∥ a
(i)
M )}

9: end for
10: end for

▷ Step 3: Building training data
11: for all M ∈M do
12: Scorrect

M ← { i | a(i)M = y(i) }
13: DM ←

{
(q(i), C(i) ∥R(i)

M ∥ a
(i)
M )

∣∣ i ∈ Scorrect
M

}
14: end for
15: return {DM}M∈M
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