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Abstract
The Geometric Algebra Transformer (GATr) is a versatile architecture for geometric deep
learning based on projective geometric algebra. We generalize this architecture into a
blueprint that allows one to construct a scalable transformer architecture given any geometric
(or Clifford) algebra. We study versions of this architecture for Euclidean, projective, and
conformal algebras, all of which are suited to represent 3D data, and evaluate them in
theory and practice. The simplest Euclidean architecture is computationally cheap, but
has a smaller symmetry group and is not as sample-efficient, while the projective model
is not sufficiently expressive. Both the conformal algebra and an improved version of the
projective algebra define powerful, performant architectures.

1. Introduction

Geometric problems require geometric solutions, such as those developed under the umbrella
of geometric deep learning (Bronstein et al., 2021). The primary design principle of this
field is equivariance to symmetry groups (Cohen and Welling, 2016): network outputs should
transform consistently under symmetry transformations of the inputs. This idea has sparked
architectures successfully deployed to problems from molecular modelling to robotics.

In parallel to the development of modern geometric deep learning, the transformer
(Vaswani et al., 2017) rose to become the de-facto standard architecture across a wide
range of domains. Transformers are expressive, versatile, and exhibit stable training dy-
namics. Crucially, they scale well to large systems, mostly thanks to the computation of
pairwise interactions through a plain dot product and the existence of highly optimized
implementations (Rabe and Staats, 2021; Dao et al., 2022).

Only recently have these two threads been woven together. While different equivariant
transformer architectures have been proposed (Fuchs et al., 2020; Jumper et al., 2021; Liao
and Smidt, 2022), most involve expensive pairwise interactions that either require restricted
receptive fields or limit the scalability to large systems. Brehmer et al. (2023) introduced the
Geometric Algebra Transformer (GATr), to the best of our knowledge the first equivariant
transformer architecture based purely on dot-product attention. The key enabling idea is
the representation of data in a geometric (or Clifford) algebra (GA), having an expressive
invariant inner product. While multiple suitable GAs exist, Brehmer et al. (2023) chose a
particular projective algebra. Concurrently, the use of GAs in equivariant networks was also
explored by Ruhe et al. (2023) in the context of graph neural networks.
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In this paper, we discuss and compare different geometric algebras that may be used in
an equivariant transformer for 3D modelling problems. We show how geometric data can
be represented in Euclidean and conformal GAs in addition to the projective GA used by
Brehmer et al. (2023). We then construct new variations of the GATr architectures based
on Euclidean and conformal GA representations. These architectures are compared both
theoretically and in an experiment. All three prove viable, with unique strengths.

2. Geometric Algebras

Geometric algebra We start with a brief introduction to geometric algebra (GA). An
algebra is a vector space that is equipped with an associative bilinear product V × V → V .

Given a vector space V with a symmetric bilinear inner product, the geometric or Clifford
algebra G(V ) can be constructed in the following way: choose an orthogonal basis ei of the
original d-dimensional vector space V . Then, the algebra has 2d dimensions with a basis
given by elements ej1ej2 ...ejk =: ej1j2...jk , with 1 ≤ j1 < j2 < ... < jk ≤ d, 0 ≤ k ≤ d. For
example, for V = R3, with orthonormal basis e1, e2, e3, a basis for the algebra G(R3) is

1, e1, e2, e3, e12, e13, e23, e123. (1)

An algebra element spanned by basis elements with k indices is called a k-vector or a vector
of grade k. A generic element whose basis elements can have varying grades is called a
multivector. A multivector x can be projected to a k-vector with the grade projection ⟨x⟩k.

The product on the algebra, called the geometric product, is defined to satisfy eiej = −ejei
if i ̸= j and eiei = ⟨ei, ei⟩, which by bilinearity and associativity fully specifies the algebra.
As an example, for G(R3), we can work out the following product:

e23e12 = (e2e3)(e1e2) = (−e3e2)(−e2e1) = e3(e2e2)e1 = e3⟨e2, e2⟩e1 = e3e1 = −e1e3 = −e13.

GAs are equipped with a linear bijection ̂ej1j2...jk = (−1)kej1j2...jk , called the grade
involution, a linear bijection ˜ej1j2...jk = ejk...j2j1 , called the reversal, an inner product
⟨x, y⟩ = ⟨xỹ⟩0, and an inverse x−1 = x̃/⟨x, x⟩, defined if the denominator is nonzero. From
the geometric product, another associative bilinear product can be defined, the wedge product
∧. For k-vector x and l-vector y, this is defined as x ∧ y = ⟨xy⟩k+l.

Given a algebra G(V ), there is a group Pin(V ) that is generated by the 1-vectors in
the algebra with norm ±1, and whose group product is the geometric product. A group
element u ∈ Pin(V ) acts on an algebra element x ∈ G(V ) as u[x] = uxu−1 if u ∈ Spin(V )
and u[x] = ux̂u−1 otherwise. This action is linear, making G(V ) a representation of Pin(V ).

All real inner product spaces are equivalent to a space of the form Rp,q,r, with an
orthogonal basis with p basis elements that square to +1 (⟨ei, ei⟩ = 1), q that square to
-1 and r that square to 0. Similarly, all GAs are equivalent to an an algebra of the form
G(Rp,q,r). We’ll write G(p, q, r) := G(Rp,q,r),Pin(p, q, r) := Pin(Rp,q,r).

Geometric algebras for 3D space We consider three GAs to model three dimensional
geometry. The first is G(3, 0, 0), the Euclidean GA (EGA), also known as Vector GA.
The k-vectors have as geometric interpretation respectively: scalar, vectors, pseudovectors,
pseudoscalar. A unit vector x in Pin(3, 0, 0) represents a mirroring through the plane normal
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to x. Combined reflections generate all orthogonal transformation, making the EGA a
representation of O(3), or of E(3), invariant to translations.

To represent translation-variant quantities (e.g. positions), we can use G(3, 0, 1), the
projective GA (PGA). Its base vector space R3,0,1 adds to the three Euclidean basis elements,
the basis element e0 which squares to 0 (“homogeneous coordinates”). A unit 1-vector in the
PGA is written as v = n− δe0, for a Euclidean unit vector n ∈ R3, and δ ∈ R, and represents
a plane normal to n, shifted δ from the origin. The 2-vectors represent lines and 3-vectors
points (Dorst and De Keninck). The group Pin(3, 0, 1) is generated by the unit vectors
representing reflections through shifted planes, generating all of E(3), including translations.

The final algebra we consider is G(4, 1, 0), the conformal GA (CGA, (Dorst et al., 2009)).
Its base vector space R4,0,1 adds to the three Euclidean basis elements ei, the elements e+
and e− which square to +1 and −1 respectively. Alternatively, it is convenient to choose
a non-orthogonal basis ∞ = e− − e+ and o = (e− + e+)/2, such that ⟨∞,∞⟩ = ⟨o, o⟩ = 0
and ⟨∞, o⟩ = −1. Planes in the CGA are represented by a 1-vector n− δ∞, for a Euclidean
unit vector n and δ ∈ R. The Euclidean group E(3) is generated by all such planes, which
form a subgroup of Pin(4, 1, 0). The CGA contains a point representation by a null 1-vector
p = o+ p+ ∥p∥2∞/2, for a Euclidean position vector p ∈ R3.

3. Geometric Algebra Transformer

Given one of the geometric algebras EGA, PGA or CGA, we can construct a geometric
algebra transformer (GATr) (Brehmer et al., 2023), respectively E-GATr, P-GATr or C-
GATr, that use (many copies of) the algebra as its feature space and is equivariant to
E(3) transformations. This requires making the following adjustments to a standard dot-
product attention transformer: (1) constrain the linear layers to be equivariant, (2) switch
normalization layers and nonlinearities to their equivariant counterparts, (3) in the MLP, let
the inputs interact via the geometric product, (4) compute an invariant attention weight
between key k and query q via the algebra’s inner product ⟨k, q⟩.

Any E(3)-equivariant linear map is constructed from linear combinations of grade pro-
jections and multiplication with e0 or ∞ for PGA and CGA, respectively. See Appendix C
for a proof. The geometric product is equivariant, because for u ∈ Pin(V ), x, y ∈ G(V ), we
have that u[xy] = u[x]u[y]. The inner product is invariant, because the grade projection and
reversal are linear equivariant and the 0-vector, i.e. scalar, is invariant.

The GATr architecture introduced in Brehmer et al. (2023) was based on the PGA, but
differs from P-GATr in two key ways: besides the geometric product, the MLP uses another
bilinear operation, called the join; and in addition to PGA inner product attention, it uses
a map from PGA 3-vectors representing points to CGA 1-vectors representing points and
uses the CGA inner product on those. See Brehmer et al. (2023) for details. We refer to this
version as improved P-GATr (iP-GATr).

4. Theoretical considerations

Multilinear expressivity To understand better the trade-offs between the GATr variants,
we’d like to understand whether they are universal approximators. We will study the slightly
simpler question of whether the algebras can express any multilinear map G(V )l → G(V ), a
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map from l multivectors to one multivector, linear in each of the inputs. First, we study the
case of non-equivariant maps, proven in Appendix B.

Proposition 1 (informal) The EGA and CGA can express any non-equivariant multilinear
map with operations within the algebra, such as geometric products, and constant multivectors.
However, due to the degeneracy of its inner product, the PGA can only do so if we also
include the join operation.

For GATr, we are primarily interested in equivariant maps. Here, we don’t have a
theoretical result, but a conjecture, which we numerically verify up to l = 4 (Appendix C).

Conjecture 2 Let l ≥ 2. For the EGA and the CGA, and not for the PGA, any E(3)-
equivariant (resp. SE(3)-equivariant) multilinear map G(p, q, r)l → G(p, q, r) can be con-
structed out of a combination of the geometric product and E(3)-equivariant (resp. SE(3)-
equivariant) linear maps. For PGA, any SE(3)-equivariant multilinear map can be expressed
using equivariant linear maps, the geometric product and the join.

These results suggest that the EGA and CGA, and PGA with the join are sufficiently
expressive, while the PGA without the join is not.

Absolute positions The PGA and CGA can represent the absolute position of points:
multivectors that are invariant to exactly one rotational SO(3) subgroup of SE(3) – rotations
around that point. In contrast, the multivectors of the EGA are invariant to translations, so
it can represent directions but not positions. A typical work-around, which we use in our
EGA experiments, is to not use absolute positions, but positions relative to some special
point, such as the center of mass of a point cloud, which are translation-invariant. This
has as downside that the interactions between point-pairs depends on the center of mass.
Alternatively, positions can be treated not as generic features in the network, but get special
treatment, so that only the position difference between points is used. However, this design
decision precludes using efficient dot-product attention in transformers (Brehmer et al., 2023).

Distance-based attention It is desirable when using transformers with geometric systems,
that the attention weights between objects can be modulated by their distance. In GATr,
the attention logits are the GA inner product between a key and query multivector.

Distance-based attention appears most naturally in the C-GATr architecture. In the
CGA, a Euclidean position vector p ∈ R3 is represented as p = o+ p+ ∥p∥2∞/2, and inner
products between points directly compute the Euclidean distance. In the E-GATr, using
the positions relative to a center of mass, the inner product of a query consisting of three
multivectors (∥q∥2, 2q, 1) and a key (−1,k,−∥k∥2) computes negative squared distance.

However, in P-GATr, dot-product attention cannot compute distances, as we prove in
Appendix D. In iP-GATr, this is addressed by computing CGA points from PGA points, and
using the CGA inner product in the attention; see Brehmer et al. (2023) for details.
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5. Experiments
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Figure 1: n-body modelling.

n-body modelling We first benchmark the GATr
variants on the problem of predicting the future posi-
tion of n gravitational bodies of varying mass and initial
position and velocity, initialized concentrated around
a varying number of clusters. Figure 1 shows the pre-
diction error as a function of the number of training
samples. We find that P-GATr performs poorly due to
limited expressivity. E-GATr only performs well with
sufficient data, due to the fact that it is only equivariant
to rotations around the center of mass. The other GATr
variants achieve an excellent performance, outperform-
ing or matching the equivariant baselines (Fuchs et al.,
2020; Brandstetter et al., 2022).

Method Approx. error

E-GATr 6.2 %
P-GATr 7.2 %
iP-GATr 5.5 %
C-GATr 5.5 %

Transformer 10.5 %
PointNet++ 12.3 %
GEM-CNN 7.7 %

Table 1: Arterial experiment.

Arterial wall-shear-stress estimation Secondly, we test
the GATr variants on the problem of predicting the wall
shear stress exerted by the blood flow on the arterial wall,
using a benchmark dataset proposed by Suk et al. (2022),
a challenging problem as there are only 1600 meshes, each
begin large (≈ 7000 nodes). We describe the experimental
setup in more detail in Appendix F. Table 1 shows our
results, the baselines of a regular transformer, PointNet++
(Qi et al., 2017) and GEM-CNN (De Haan et al., 2021). The
baseline results are taken from Brehmer et al. (2023) and
Suk et al. (2022). All GATrs outperform the baselines. C-
& iP-GATr which use distance-aware attention, perform best. We found that C-GATr can
suffer from instabilities, see Appendix E.

6. Conclusion
The geometric algebra transformer is a powerful method to build E(3) equivariant models that
scale to large problems due to the transformer backend. In this work, we have generalized the
original GATr model, which was based on the projective geometic algebra, to the Euclidean
and conformal geometric algebra. This involved finding the equivariant linear maps and
effective normalization layers. From a theoretical analysis, we found that the Euclidean
E-GATr and conformal C-GATr have sufficient expressivity, while the projective P-GATr does
not. Addition of the join bilinear, resulting in the improved projective iP-GATr, addresses
these issues at the cost of additional complexity. E-GATr can not represent translations or
absolute positions, and thus must rely on centering to be E(3) equivariant. This reduces the
symmetry group to rotations around the center, and thus sample efficiency. Experimentally,
E-GATr has the lowest computational cost, but indeed tends to overfit faster. P-GATr lacks
expressivity and doesn’t perform well, while the iP-GATr and C-GATr perform best. Of
these, C-GATr enjoys the simplicity of just relying on geometric products, while iP-GATr
needs the complexity of the join bilinear, as well as a hand-crafted attention method. On
the other hand, iP-GATr appears more stable in training than C-GATr.
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E-GATr P-GATr iP-GATr C-GATr

Simplicity
Representational richness
Expressivity

Memory efficiency
Training stability
Experiment performance

Table 2: GATr variants ranked from (best) to (worst) along theoretical qualities
(top) and empirical observations (bottom).2

Appendix A. Scorecard

In Table 2, we provide a subjective scoring of the nuanced trade-off between the variants.

Appendix B. Constructing generic multilinear maps

Proposition 3 Let l ≥ 1.

(1) If and only if the inner product of Rp,q,r is non-degenerate (r = 0), any multilinear
map G(p, q, r)l → G(p, q, r) can be constructed from addition, geometric products, grade
projections and constant multivectors.

(2) Furthermore, any multilinear map G(p, 0, 1)l → G(p, 0, 1) can be constructed from addi-
tion, geometric products, the join bilinear, grade projections and constant multivectors.

Proof Proof of (1), “⇒”: First, let r = 0. Then let ei be an orthogonal basis of Rp,q,0 where
each ei squares to ±1. This gives a basis ei, with multi-index i ∈ 2p+q, of the algebra G(p, q, 0).
This basis is also orthogonal and each element ei1i2...ik squares to ⟨ei1i2...ik , ei1i2...ik⟩ =
⟨ei1i2...ik ˜ei1i2...ik⟩0 = ei1ei2 ...eikeik ...ei2ei1 =

∏
k⟨ek, ek⟩ = ±1.

Now, let ϕ : G(p, q, 0) → G(p, q, 0) be any linear map. For each basis element of the
algebra, let xi := ϕ(ei)/⟨ei, ei⟩. Then ϕ can then be written as:

ψ(w) =
∑

i∈2p+q+r

xi⟨w ẽi⟩0

It is easy to see that for any basis element ei, ϕ(ei) = ψ(ei), hence the linear maps coincide.
For a multilinear map ϕ : G(p, q, 0)l → G(p, q, 0), a similar construction can be made:

ϕ(w1, ..., wl) =
∑

i1∈2p+q+r

...
∑

il∈2p+q+r

xi1,...,il⟨w1 ẽi1⟩0...⟨wl ẽil⟩0

with xi1,...,il =
ϕ(ei1 , ..., eil)

⟨ei1 , ei1⟩...⟨eil , eil⟩

2. Symbol by Twemoji, used under a CC BY-4.0 license.
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Proof of (1), “⇐”: Let r > 0. Let e0 ∈ Rp,q,r denote a nonzero radical vector, meaning
that for all x ∈ Rp,q,r, ⟨e0, x⟩ = 0. Consider the multilinear map ϕ : G(p, q, r)l → G(p, q, r)
sending input (e0, ..., e0) 7→ 1 and all other inputs to 0. This map can not be constructed
from within the algebra. To see this, consider any nonzero k-vector e0 ∧ y for a (k− 1)-vector
y. The only way of mapping e0 ∧ y to a scalar involves multipication with e0, which results
in a zero scalar component.

Proof of (2): Now consider the projective algebra G(p, 0, 1) equipped with the join ∨, a
bilinear operation G(p, 0, 1)×G(p, 0, 1) → G(p, 0, 1) mapping algebra basis elements ei ∨ ej to
±ek, where k contains all indices that occur in both i and j, as long as all p+ 1 indices are
present as at least once in either i or j. Otherwise, ei ∨ ej = 0. See Dorst and De Keninck
for details. In particular, the join satisfies e012...p ∨ 1 = 1.

With the join in hand, any linear map ϕ : G(p, 0, 1) → G(p, 0, 1) can be written as:

ψ(w) =
∑

i∈2p+1

xi⟨(w ∧ e\i) ∨ 1⟩0

where xi := ϕ(ei) and e\i contains all indices absent in i, in an order such that ei∧e\i = e012...p.
For any basis element ej, ⟨(ej ∧ e\i) ∨ 1⟩0 = 1 if j = i and 0 otherwise, because if j lacks
any index in i, the join yields a zero, and if it j has any indices not in i, the join results
in a non-scalar, which becomes zero with the grade projection. Therefore, ψ(ei) = ϕ(ei)
for all basis elements ei, and the linear maps are equal. As before, this construction easily
generalizes to multi-linear maps.

Appendix C. Numerically computing equivariant multilinear maps

C.1. Lie group equivariance constraint solving via Lie algebras

First, let’s discuss in generality how to solve group equivariance constraints via the Lie
algebra, akin to Finzi et al. (2021).

Let G be a Lie group, g be its algebra. Let exp : g → G be the Lie group exponential
map.

A group representation (ρ, V ) induces a Lie algebra representation: dρ : g → gl(V ),
linearly sending X ∈ g to a linear map dρ(X) : V → V , satisfying ρ(exp(X)) = exp(dρ(X)),
where the latter exp is the matrix exponential.

Given a real Lie algebra representation (ρ, V ), there is a dual representation (ρ∗, V ∗)
satisfying ρ∗(g) = ρ(g−1)T . It is easy to see that dρ∗(X) = −dρ(X)T .

For two group representations (ρ1, V1) and (ρ2, V2), there is a tensor representation
(ρ1 ⊗ ρ2, V1 ⊗ V2) with Lie algebra representation d(ρ1 ⊗ ρ2) = 1V1 ⊗ dρ2 + dρ1 ⊗ 1V2 .

(ρ1, V1) and (ρ2, V2), a linear map ϕ : V1 → V2 is equivariant if and only if ϕ is invariant
to the group representation ρ2 ⊗ ρ∗1, when flattening vec(ϕ) ∈ V2 ⊗ V ∗

1 : for all g ∈ G,

ρ2(g)ϕ = ϕρ1(g) ⇐⇒ (ρ2 ⊗ ρ∗1)(g)vec(ϕ) = vec(ϕ)

Any Lie group G is equal to a semi-direct product G0 ⋊D, for G0 ⊆ G the subgroup
connected to the identity and D a discrete group. Let B be a set of basis elements of the Lie
algebra. Then exp(span(B)) = G0.
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First, consider a connected Lie group G0, and a basis B of the Lie algebra, and a
representation (ρ, V ). Then

∀g ∈ G0, ρ(g)v = v

⇐⇒ ∀X ∈ g, ρ(exp(X))v = v

⇐⇒ ∀X ∈ g, exp(dρ(X))v = v

⇐⇒ ∀X ∈ g, dρ(X)v = 0

⇐⇒ ∀X ∈ B, dρ(X)v = 0

where in for the final step, we note that dρ is linear, so linearly dependent algebra vectors
generate linearly dependent csontraints, and just constraining by a basis of the algebra
suffices.

To test invariance to a non-connected Lie group, we need to additionally constrain for
the discrete group D, generated by subgroup D′, leading to:

∀g ∈ Gρ(g)v = v ⇐⇒

{
dρ(X)v = 0 ∀X ∈ B

(ρ(g)− 1V )v = 0 ∀g ∈ D′

If V is d-dimensional There are thus |B|+ |D′| d×d matrices and v needs to be in the null
space of each of these, or equivalently in the null space of the concatenated ((|B|+ |D′|)d)×d
matrix. This can be done numerically via e.g. scipy.linalg.nullspace. When ρ can be
decomposed into subrepresentations (ρa ⊕ ρb, Va ⊕ Vb), the invariant vectors can be found
separately, making computing the null space more efficient.

Combining the framing of equivariance as invariance, and finding invariant vectors via a
null space, we can find the linear equivariant maps ϕ : V1 → V2 by finding the nullspace of:

∀g ∈ Gρ2(g)ϕ = ϕρ1(g) ⇐⇒

{
(dρ2 ⊗ 1V ∗

1
− 1V2 ⊗ dρT1 )(X)vecϕ = 0 ∀X ∈ B

((ρ2 ⊗ ρ∗1)(g)− 1V )vecϕ = 0 ∀g ∈ D′

To find equivariant multilinear maps ϕ : Vi1 ⊗ Vi2 ⊗ ... ⊗ Vil → V , we simply set
ρ1 = ρi1 ⊗ ρi2 ⊗ ...⊗ ρil , with dρ1 = dρi1 ⊗ 1Vi2

⊗ ...+ 1Vi1
⊗ dρi2 ⊗ ...+ ....

C.2. GA equivariance solving of linear maps

For the GA, we’ll consider V = G(p, q, r) and ρ(u)(x) = ux̂u−1. Define dρ(X)(v) = Xv−vX.
Any GA has the exponential map endomorphism, defined through the Taylor series:

exp : G(p, q, r) → G(p, q, r) : x 7→ 1 + x+
1

2!
x2 +

1

3!
x3 + ...

EGA Now, for the EGA, the bivectors G(3, 0, 0)2 are the Lie algebra spin(3, 0, 0) of the
connected Lie group Spin(3, 0, 0) of even number of reflections. The Lie group exponential map
is the GA exponential map. The entire Pin group decomposes as Pin(3, 0, 0) = Spin(3, 0, 0)⋊
{1, e1}. The bivectors have a basis spin(3, 0, 0) = G(3, 0, 0)2 = span(e12, e23, e13). Therefore,

10
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a linear map ϕ : G(3, 0, 0) → G(3, 0, 0) is equivariant to Pin(3, 0, 0), and hence to O(3), which
it doubly covers, and E(3) with trivial action under translation, if and only if:

{
(dρ⊗ 1− 1⊗ dρT )(X)vecϕ = 0 ∀X ∈ {e12, e23, e13}
((ρ⊗ ρ∗)(e1)− 1V )vecϕ = 0

Studying the nullspace, we find that all equivariant linear maps can be written as linear
combinations of grade projections, giving 4 independent maps:

ϕ : G(3, 0, 0) → G(3, 0, 0) : x 7→
3∑

k=0

αk⟨x⟩k

PGA For the PGA, similarly, Pin(3, 0, 1) doubly covers E(3). The group Spin(3, 0, 1) is its
connected subgroup, whose algebra are the bivectors, and the Pin group decomposes as the
Spin group and a mirroring. A linear map ϕ : G(3, 0, 1) → G(3, 0, 1) is therefore equivariant
to Pin(3, 0, 1), and hence E(3), if and only if:

{
(dρ⊗ 1− 1⊗ dρT )(X)vecϕ = 0 ∀X ∈ {e12, e23, e13, e01, e02, e03}
((ρ⊗ ρ∗)(e1)− 1V )vecϕ = 0

Studying the nullspace, we find that all equivariant linear maps can be written as linear
combinations of grade projections and multiplications with e0, leading to 9 independent
maps:

ϕ : G(3, 0, 1) → G(3, 0, 1) : x 7→
4∑

k=0

αk⟨x⟩k +
4∑

k=1

βk⟨e0x⟩k

This result is in accordance with what was shown analytically in Brehmer et al. (2023).

CGA Let ι : G(3, 0, 1) → G(4, 0, 1) be the algebra homomorphism with ι(ei) = ei, ι(e0) = ∞.
For the CGA, E(3) is doubly covered by the subgroup ι(Pin(3, 0, 1)) of Pin(4, 1, 0), hence a
linear map ϕ : G(4, 1, 0) → G(4, 1, 0) is equivariant to ι(Pin(3, 0, 1)), and hence E(3), if and
only if:

{
(dρ⊗ 1− 1⊗ dρT )(X)vecϕ = 0 ∀X ∈ {e12, e23, e13, e∞1, e∞2, e∞3}
((ρ⊗ ρ∗)(e1)− 1V )vecϕ = 0

Studying the nullspace, we find that all equivariant linear maps can be written as linear
combinations of grade projections and multiplications with ∞, giving 20 independent maps

11
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in total:

ϕ : G(4, 1, 0) →G(4, 1, 0)

x 7→
5∑

k=0

αk⟨x⟩k

+
5∑

k=1

βk⟨∞⟨x⟩k⟩k−1

+
4∑

k=0

γk⟨∞⟨x⟩k⟩k+1

+

4∑
k=1

δk∞⟨∞⟨x⟩k⟩k−1

SE(3) equivariance To consider SE(3) equivariance, we just have to be equivariant tot
the connected part rotational of the Lie group, so remove the mirror constraint in the above
equations. For the EGA, PGA and CGA, we find numerically that the SE(3)-equivariant maps
are the same as the E(3)-equivariant linear maps, but possibly combined with multiplication
with the pseudoscalar: e123 for the EGA, e0123 for the PGA and e123 ∧ o ∧∞ for the CGA.
This is because the pseudoscalar is an invariant, up to a sign flip due to mirroring, thus
SE(3) invariant.

C.3. Multilinear equivariant map solving

To find multilinear equivariant maps efficiently, we found it necessary to separate out the
grades. For any geometric algebra, the Pin(p, q, r) representation decomposes into sum of a
representation (ρk,G(p, q, r)k) of k-vectors, for each grade k. Then we use the above procedure
to find the equivariant multilinear maps ϕ : G(p, q, r)i1 ⊗ G(p, q, r)i2 ⊗ ... ⊗ G(p, q, r)il →
G(p, q, r)o, taking as inputs an i1-vector, and i2-vector, ..., and an il-vector and outputting
an o-vector.

C.4. Numerically testing expressivity

In the above subsections, we show how one can compute all equivariant multilinear maps for
a given algebra. In the main paper, we stated the following conjecture:

Conjecture 4 Let l ≥ 2. For the EGA and the CGA, and not for the PGA, any E(3)-
equivariant (resp. SE(3)-equivariant) multilinear map G(p, q, r)l → G(p, q, r) can be con-
structed out of a combination of the geometric product and E(3)-equivariant (resp. SE(3)-
equivariant) linear maps. For PGA, any SE(3)-equivariant multilinear map can be expressed
using equivariant linear maps, the geometric product and the join.

To test this, we explicitly construct all linear maps via the algebra. Let ϕαµν be a basis for
the linear equivariant maps of an algebra, so that for each α, ya =

∑
b ϕ

α
abxb is an equivariant

linear map, where roman indices enumerate multivector indices. Also, let Φβ
abc be a basis for

the bilinears in the algebra, so that for each β, za =
∑

bcΦ
β
abcxbyc is a bilinear. For most

12
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algebras, we’ll just consider the geometric product, but for the PGA, we can also consider
the join, which is only SE(3)-equivariant (Brehmer et al., 2023, Prop 7). Then, for example,
for l = 2, all bilinear maps constructable for two inputs x1, x2 from the linears and bilinears
are: ∑

bc

Ωσαβγδ
abc x1bx

2
c =

∑
bcdef

ϕαabΦ
β
bcd (ϕ

γ
cex

σ1
e )

(
ϕδdfx

σ2
f

)
where σ ∈ S2 is a permutation over the two inputs. This approach can be recursively
applied to construct any multilinear map from the bilinears and linears. As the algebra
is not commutative, we need to take care to consider all permutations of the inputs. For
computational efficiency to soften the growth in the number of Greek basis indices, during
the reduction for multilinear maps, we apply a singluar value decomposition of the basis of
maps, re-express the basis in the smallest number of basis maps.

With this strategy, we were able to verify the above conjecture for 2 ≤ l ≤ 4.

Appendix D. Distance-based attention

To show that P-GATr, which uses the PGA inner product as attention, can not have attention
weights depend on distance, we prove that taking the inner product of any transformation
of point representations, will be constant in the position of the points. Hence, it can not
compute distances.

Proposition 5 Let ω : R3 → G(3, 0, 1), x 7→ x1e032 + x2e013 + x3e021 + e123 be the point
representation of the PGA. For all Spin-equivariant maps ϕ, ψ : G(3, 0, 1) → G(3, 0, 1), for
positions x, y ∈ R3, the inner product ⟨ϕ(ω(x)), ψ(ω(y))⟩ is constant in both x and y.

Proof The inner product in the PGA is equal to the Euclidean inner product on the
Euclidean subalgebra G(3, 0, 0) (given a basis, this is the subalgebra spanned by elements
e1, e2, e3, but not e0), ignoring the basis elements containing e0. Translations act invariantly
on the the Euclidean subalgebra. Therefore, for any v ∈ G(3, 0, 1), if we consider the map
R3 → R : x 7→ ⟨ϕ(ω(x)), v⟩, this map is invariant to translations, and thus constant. Filling
in v = ϕ(ω(y)) proves constancy of ⟨ϕ(ω(x)), ψ(ω(y))⟩ in x. Constancy in y is shown similarly.

Appendix E. Normalization and stability

In GATr, as in typical transformers, LayerNorm is used, which normalizes a collection of n
multivector channels jointly. The obvious equivariant interpretation of LayerNorm in GATr
would be:

G(p, q, r)n → G(p, q, r) : x 7→ x√
1
n

∑n
i=1⟨xi, xi⟩+ ϵ

leaving out the shift to 0 mean used typically in normalization to ensure equivariance. This
approach works when q = r = 0, as then the inner product is directly related to the magnitued
of the multivector coefficients, which the normalization layer is designed to keep controlled.
However, for the PGA, with r = 1, the 8 dimensions containing e0 do not contribute to the
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inner product, making their magnitudes no longer well-controlled. We found a reasonably
high magnitude of ϵ = 0.01 to suffice to stabilize training. For the CGA, with q = 1, the
situation is worse. Firstly, as the inner products can be negative, the channels can cancel
each other out. In a first attempt to address this, we add the absolute value around the
inner product:

G(p, q, r)n → G(p, q, r) : x 7→ x√
1
n

∑n
i=1|⟨xi, xi⟩|+ ϵ

However, also within one multivector some dimension contribute negatively to the inner
product and, for example, a scalar and pseudoscalar can cancel out to give a 0-norm (null)
multivector. The coefficients of such a multivector grow by 1/

√
ϵ with each normalization

layer. Setting ϵ = 1 stabilized training, but made the models achieve poor training losses.
We found it beneficial to use the following norm in the CGA, which applies the absolute
value around each multivector grade separately:

G(p, q, r)n → G(p, q, r) : x 7→ x√
1
n

∑n
i=1

∑5
k=0|⟨⟨xi⟩k, ⟨xi⟩k|⟩+ ϵ

This approach mostly addressed stability concerns. However, due to the fact that we
still can’t fully control the magnitude of the coefficients, we still found it necessary to train
C-GATr on float32, whereas the other GATr variants trained well on bfloat16.

Appendix F. Experiment details

n-body modelling dataset We create an n-body modelling dataset, in which the task is to
predict the final positions of a number of objects that interact under Newtonian gravity given
their initial positions, velocities, and velocities. The dataset is created like the n-body dataset
described in Brehmer et al. (2023), with one exception: rather than a single cluster of bodies,
we create a variable number of clusters, each with a variable number of bodies, such that the
total number of bodies in each sample is 16. This makes the problem more challenging. Each
cluster is generated as described in Brehmer et al. (2023), and the clusters have locations
and overall velocities relative to each other sampled from Gaussian distributions.

Arterial wall-shear-stress dataset We use the dataset of human arteries with computed
wall shear stress by Suk et al. (2022). We use the single-artery version and focus on the
non-canonicalized version with randomly rotated arteries. There are 1600 training meshes,
200 validation meshes, and 200 evaluation meshes, each with around 7000 nodes.

Models and training Our GATr variants are discussed in the main paper. We mostly
follow the choices used in Brehmer et al. (2023), except for the choice of algebra, attention,
and normalization layers. For the linear maps, we evaluated two initialization methods:
initialize all basis maps with a Kaiming-like scheme, or initialize the linear maps to be the
identity on the algebra, and Kaiming-like in the channels. For iP-GATr and P-GATr, we
found that the former worked best, for C-GATr we found the latter to work best and for
E-GATr we found no difference.

We choose model and training hyperparameters as in Brehmer et al. (2023), except that
for the n-body experiments, we use wider and deeper architectures with 20 transformer
blocks, 32 multivector channels, and 128 scalar channels.
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Baselines For the n-body modelling experiment, we run Transformer, SE(3)-Transformer,
and SEGNN experiments, with hyperparameters as discussed in Brehmer et al. (2023).

For the artery experiments, baseline results are taken from Brehmer et al. (2023) and
Suk et al. (2022).
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