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Mean-field approximations are widely used for efficiently approximating high-
dimensional integrals. While the efficacy of such approximations is well under-
stood for well-behaved likelihoods, it is not clear how accurately it can approxi-
mate the marginal likelihood associated with a highly non log-concave singular
model. In this article, we provide a case study of the convergence behavior of co-
ordinate ascent variational inference (CAVI) for a general d-dimensional singular
model in standard form. We prove that such amodelwith real log canonical thresh-
old (RLCT) λ and multiplicity m, the CAVI system converges to one of m locally
attracting fixed points. Furthermore, at each of these fixed points, the evidence
lower bound (ELBO) recovers the leading-order behavior of the asymptotic expan-
sion of the log marginal likelihood predicted by Watanabe [1, 2, 3]. Our empirical
results demonstrate that for models with multiplicity m = 1 the ELBO provides a
tighter approximation to the log-marginal likelihood than Watanabe’s [1] asymp-
totic approximation −λ log n+ o(log log n) for a range of sample sizes.

1. Introduction
Variational inference (VI) [4–6] is an optimization-based approach to approximate Bayesian infer-
ence which aims to approximate the posterior distribution p(w | Xn) ∝ p(Xn | w)π(w) of the
parameters of interest w ∈ W by selecting the best approximation q̂ to the posterior within a pre-
specified family of distributions Q by minimizing the Kullback-Leibler (KL) divergence

q̂(w) = argmin
q∈Q

∫
W

q(w) log

[
q(w)

p(w | Xn)

]
dw.

This variational minimization problem is equivalent to maximizing a variational objective known
as the evidence lower bound (ELBO)

q̂(w) = argmax
q∈Q

Eq log

[
p(Xn, w)

q(w)

]
:= argmax

q∈Q
ELBO(q),

which derives its name from the fact that it serves as a lower bound to the log marginal likelihood
of the model; ELBO(q) ≤ log p(Xn). A well-known choice of variational family is the mean-field
variational family which is comprised of product distributions over the parameters,

Q := {q(w) = ⊗d
i=1qi(wi) : q ≪ π a prob. measure onW}.

The optimal variational approximation for the mean-field family is given by the product of the op-
timal marginal distributions q̂(w) := ⊗j q̂j(wj). Numerically, this distribution is computed using an
algorithm known as coordinate ascent variational inference (CAVI); see CH 10 of Bishop [7] or the
survey of Blei et al. [4] for further details on CAVI.

Although there is now a large body of work delineating the general statistical properties of mean-
field variational inference [8–16], general results regarding the convergence properties of mean-
field variational inference are limited in the literature. The algorithmic behavior of CAVI has been
studied for several classes of models utilizing tools from dynamical systems with mixed results

Second Conference on Parsimony and Learning (CPAL 2025).



[17–21]. This approach works directly on the space of parameters W of the model and is forced
to confront challenging technical issues in the form of intractable update equations and unwieldy
normalization constants. More recent approaches have been able to provide general results for the
mean-field approximation by considering the problem in the space of probability measures overW .
Lacker et al. [22] and Arnese and Lacker [23] provide general convergence results for the mean-
field approximation and CAVI in the case of log-concave measures. Bhattacharya et al. [24] provide
general convergence guarantees for two-block CAVI using techniques from convex optimization on
Hilbert spaces.

In this work, we provide a case study of the convergence behavior of a block CAVI algorithm by
considering the mean-field approximation of a d-dimensional singular model in standard form.1 The
standard form of a singular model arises from a deep result in algebraic geometry known as the res-
olution of singularities which shows that every singularity can be transformed into a simple normal
crossing singularity [25, 26]. This transformation induces a new coordinate system which puts the
posterior into its standard form; for additional details see Section 2.2 The resolved coordinates are
(typically) going to be made of blocks of the original coordinatesW , so the mean-field approxima-
tion to the standard form (in the resolved coordinates) is a block mean-field approximation of the
original model (in the W coordinates). Furthermore, the standard form is highly nonconvex and
does not satisfy standard relaxations of convexity such as the Polyak-Lojasiewicz (PL) condition
[29]. Hence, the standard form provides an interesting case for which the previous results on the
convergence of CAVI are not applicable.

We return to the dynamical systems approach to study the convergence properties of CAVI for a
d-dimensional singular model in standard form in the asymptotic regime. We show that for a suffi-
ciently large sample size n, CAVI converges to one ofm locally attracting fixed points, wherem is the
multiplicity of the model; see Lemma 3.1 and Section 3.1.3 for more details. Furthermore, at each of
these fixed points, the ELBO asymptotically recovers the correct leading-order asymptotic behavior
of the log-marginal likelihood as predicted by Bhattacharya et al. [30]. Our theoretical guarantees
are supported by our simulation study for a standard form of dimension d = 4. We empirically
compare the ELBO and Watanabe’s asymptotic expansion of the log marginal likelihood (logML)
of the model [1–3]. Surprisingly, we find that there is a wide regime of sample size n for which
the ELBO provides a better approximation to the logML than the asymptotic approximation. The
size of this regime depends on the dimension d of the system. Finally, we provide a simple example
that demonstrates the difference between the mean-field approximation in the original coordinate
system and the mean-field approximation in the standard form coordinates.

Previous works on mean-field VI focus on specific examples of singular models [31–40] with the
aim of bounding the real log canonical threshold (RLCT) to study the asymptotic behavior of the
mean-field ELBO with respect to the original coordinate system. These asymptotic expansions re-
cover similar leading-order behavior as Watanabe’s asymptotic expansion, but the constants for the
leading-order terms in the upper and lower bounds do not (typically) match. Although these ap-
proaches leverage dynamical systems techniques, they only work in the original coordinate system
W of the model; due to the inability to compute the resolution map, i.e. the standard form coordi-
nates, for general models.

The remainder of the article is organized as follows. In Section 2, we specify the problem setup
and provide a brief review of some key concepts of singular model theory. Section 3 contains our
main results on the convergence of the CAVI algorithm. Section 4 provides a simulation study
on the convergence of the CAVI algorithm, which numerically corroborates our theoretical results.
We further verify these results in the context of a simple singular regression model for which the

1The data generating distribution q(x) is said to be singular for the model {p(x | w) | w ∈ W} if either the
minimum locus of average log loss function L(w) := −EX [log p(x |w)] contains more than one point or there
exists points in the minimum locus for which the Hessian matrix∇2L fails to be positive definite.

2This coordinate system also exists for regular models [27, 28] and should not be confused with asymptotic
normality.

2



resolution is known. Finally, we conclude our article and discuss related open problems in Section
5.

2. Background

2.1. Problem Setup and Notation
Let Xn = (X1, . . . , Xn)

T denote n independent and identically distributed (i.i.d.) observations
from a probability density function p(x | w⋆). A Bayesian approach posits: (1) A statistical
model {p(· | w) : w ∈ W}, where W ⊂ Rd is compact, and (2) a prior (probability) dis-
tribution φ(·) on W . The posterior distribution is given by p(w | Xn) = e−nLn(w)φ(w)/p(Xn)
with Ln(w) := − 1

n

∑n
i=1 log p(Xi | w) the negative average log-likelihood function and p(Xn) =∫

W
e−nLn(w)φ(w)dw is the marginal likelihood (or evidence). We denote the average log loss func-

tion by L(w) = −EX [log p(x |w)], the empirical log-likelihood ratio by Kn(w) = Ln(w
⋆) − Ln(w),

and the average log-likelihood ratio byK(w) = L(w⋆)−L(w). We will denote the ELBO of a proba-
bility density ρwith respect to another probability density µ by ELBOµ(ρ) := Eρ[logµ]−Eρ[log ρ].

2.2. Singular Models
Watanabe [1, 2, 3] shows for any singular model satisfying some mild technical conditions, the
asymptotic behavior of the log-marginal likelihood follows

Ln(w
⋆)− λ log n+ (m− 1) log(log n) +Rn, (2.1)

assuming the data is generated from P ⋆ ≡ p(· | w⋆), with the stochastic error term Rn = OP⋆(1).
The quantity λ ∈ (0, d/2] is called the real log-canonical threshold (RLCT) and serves as a generalized
measure of dimension for the parameter space of the model. The integer m ≥ 1 is the multiplicity
and measures how many parameters achieve this dimension. Unlike the asymptotic expansion for
regular models, the RLCT and its multiplicity depend on both the model and the true data generat-
ing distribution. For a regular statistical model, we have (λ,m) = (d/2, 1) and the expansion (2.1)
reduces to the usual Laplace approximation. A pivotal part of the derivation of this asymptotic ex-
pansion is a deepmathematical result in algebraic geometry known as the resolution of singularities
[25, 26]. This result guarantees a family of local coordinates {Uℓ} and transformations {w = gℓ(u)},
here-in referred to as the resolved coordinate system, which allows us to view the singular model as
a regular model in a higher dimensional space. In each part of this resolved coordinate system
(Uℓ, gℓ), the normalized posterior of the model is expressed in its standard form,

p(gℓ(u) | Xn) ∝ uhℓ exp{−nu2kℓ}bℓ(u), u ∈ [0, 1]d,

where u2kℓ := u
2kℓ,1

1 u
2kℓ,2

2 · · ·u2kℓ,d

d is a monomial with multi-index kℓ = (kℓ,1, . . . , kℓ,d)
T ∈ Nd

having at least one positive entry, uhℓ := u
hℓ,1

1 u
hℓ,2

2 · · ·uhℓ,d

d a monomial with multi-index hℓ =
(hℓ,1, . . . , hℓ,d)

T ∈ Nd, and bℓ(u) > 0 is a real-analytic function. In each local coordinate sys-
tem Uℓ, the multi-indexes kℓ and hℓ of (local) standard form of a model can be used to deter-
mine the local RLCT λℓ and the multiplicity mℓ via simple closed-form expressions, with λℓ =
minj∈[d](hℓ,j + 1)/(2kℓ,j) and mℓ = #

{
i ∈ [d] : (hℓ,i + 1)/(2kℓ,i) = λℓ

}
. The (global) RLCT λ and

multiplicity m of the singular model are defined by λ = minℓ λℓ,m = max{mℓ : λℓ = λ}.

Although the resolution coordinates {gℓ} are theoretically guaranteed to exist, computing them is
not feasible for most statistical models [27, 28]. Beyond simple examples and the reduced rank
regression model [35] the determination of the RLCT and multiplicity remains a challenging open
problem. Several works have made progress in this direction by providing upper bounds for the
RLCT in several classes of singularmodels [41–47]. For textbook level treatments of singularmodels
see Watanabe [27] or Watanabe [28]. For recent survey and an alternative derivation of Equation
(2.1) using only probabilistic tools see Bhattacharya et al. [30]. For more on model selection in
singular settings, we refer the reader to Watanabe [48], Drton and Plummer [49], or Wang and
Yang [40].
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3. Convergence of CAVI Algorithm
Ourmain result shows that for any singularmodel of parameter dimension d, the optimalmean-field
approximation to the standard form of the model computed using the CAVI algorithm converges to
a local fixed point that recovers the correct leading-order behavior [30]. Our analysis reveals that
both the number of possible fixed points and the rate of convergence of the system depend on the
multiplicity of the model. The proof is based on the dual view of the CAVI algorithm as a discrete
time dynamical system of the variational parameters. A brief introduction to dynamical systems
can be found in Appendix A of Plummer et al. [21]. For textbook-level treatments, see Wiggins
[50], Kuznetsov [51], or Elaydi [52].

3.1. CAVI for Standard Form
We begin by defining notation for several functions which will play a pivotal role in the study
of the dynamics of the CAVI system associated to the singular model in standard form. De-
fine the density function fk,h,β(u) = uh exp(−βu2k)/B(k, h, β), u ∈ [0, 1], where B(k, h, β) =∫ 1

0
xh exp(−βx2k) dx. The quantity G(λ, β) :=

∫ 1

0
u2kfk,h,β(u) du depends on k and h only through

λ = (h + 1)/(2k). A straightforward integration by parts shows that G(λ, β) = [λγ(λ +
1, β)]/[βγ(λ, β)], where for any a > 0, γ(a, x) =

∫ x

0
ta−1e−tdt/Γ(a), x > 0, is the cumulative

distribution function (CDF) of the Gamma distribution with shape parameter a and rate parameter
1.

Consider the following standard form of the singular model with dimension d ≥ 2,

γK(u1, . . . , ud) ∝ uh exp{−nu2k}, u ∈ [0, 1]d,

where u2k =
∏d

j=1 u
2kj

j , uh =
∏d

j=1 u
hj

j , and b(u) ≡ 1 for simplicity.3 The optimal marginals for
the mean-field approximation to the standard form of the posterior γK(u) are computed using the
CAVI algorithm [4]. For each j ∈ [d] := {1, 2, . . . , d}, the j-th marginal distribution at the (t+ 1)-th
iteration of the CAVI algorithm for a model in standard form is computed by

ρ
(t+1)
j (uj) ∝ exp

{∫
[0,1]d−1

log[γK(u)]ρ(t+1)
−j (u−j)du−j

}
,

where ρ(t+1)
−j (u−j) = ρ

(t+1)
1 (u1)⊗ · · · ⊗ ρ

(t+1)
j−1 (uj−1)⊗ ρ

(t)
j+1(uj+1)⊗ · · · ⊗ ρ

(t)
d (ud). A straightforward

computation shows that the j-th marginal distribution is given by, ρ(t+1)
j (uj) = f

kj ,hj ,nµ
(t+1)
j

(uj),
j ∈ [d], where for t ≥ 0 and j ∈ [d],

µ
(t+1)
j =

j−1∏
s=1

G(λs, nµ
(t+1)
s ) ·

d∏
s=j+1

G(λs, nµ
(t)
s ). (3.1)

The ELBO at the (t + 1)-th iteration of the algorithm, which is computed using ρ(t+1)(u) =

⊗jρ
(t+1)
j (uj), is given by,

ELBOγK
(ρ(t+1)) = −n

d∏
s=1

G(λs, nµ
(t+1)
s ) +

d∑
s=1

nµ(t+1)
s G(λs, nµ

(t+1)
s ) +

d∑
s=1

logB(ks, hs, nµ
(t+1)
s ).

Notice that both the optimal j-th marginal distribution ρ
(t+1)
j (uj) and the ELBO are fully deter-

mined by the behavior of the dynamical system in the variational parameters µ
(t+1)
j in Equation

3A key part of Watanabe’s analysis is the study of ZK(n) =
∫
[0,1]d

exp{−nK(w)}dw, where K(w)

is average log-likelihood ratio function. The notation for the deterministic standard form γK(u) =

exp{−nK(g(u))}|g′(u)|/ZK(n) = uh exp{−nu2k}b(u)/ZK(n), where g(u) = w is the resolution map, arises
from this.
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3.1. Convergence of the CAVI algorithm translates to the convergence of the variational dynamical
system to a fixed point. A fixed point µ∗ of the CAVI dynamical system must statisfy,

µ∗
j =

∏
s̸=j

G(λs, nµ
∗
s), for all 1 ≤ j ≤ d.

At such a fixed point, ELBO is given by,

ELBOγK
(ρ∗) = −n

d∏
s=1

G(λs, nµ
∗
s) +

d∑
s=1

nµ∗
sG(λs, nµ

∗
s) +

d∑
s=1

logB(ks, hs, nµ
∗
s).

Hence, understanding the number and nature of fixed points of the CAVI dynamical system (3.1)
determines the behavior of the ELBO.

We now state our main theorem, which characterizes these fixed points and shows that each yields
an ELBO asymptotically matching −λ log n+ C.
Theorem 3.1. For a standard form with RLCT λ and multiplicity m, the recursive formula (3.1) admits
m locally attracting fixed points for large sample size n. At each of these fixed points, the ELBO admits the
asymptotic expansion ELBOγK

(ρ∗) ≍ −λ log n+ C.

The study of the convergence behavior of a dynamical system is called a local stability analysis of the
system and proceeds in two steps. First, we determine the fixed points of the system in Lemma
3.1. We will show that the number of fixed points is related to the multiplicity m of the singular
model. Next, Lemma A.2 provides the partial derivatives for the CAVI system. We show that for a
sufficiently large sample size n, each of thesem fixed points is locally attracting by showing that the
spectral radius of the Jacobian of the system at the fixed point is strictly less than 1. This guarantees
that the systemwill converge to the fixed point if it is initialized sufficiently close to that fixed point.
At each of these fixed points, applying the asymptotic computations from Bhattacharya et al. [30]
shows that the ELBO corresponding to this fixed point is of order −λ log n+ C.

3.1.1. Fixed Points of CAVI

We begin by computing the fixed points of the system. The number of fixed points depend on the
model’s multiplicitym. For a system with multiplicity m, the RLCTs satisfy

λ = λ1 = · · · = λm < λm+1 ≤ · · · ≤ λd.

The fixed points of this system are given by the following lemma, the proof of which can be found
in Appendix A.1,
Lemma 3.1. For a standard form with RLCT λ and multiplicitym, the recursive system (3.1) admits a fixed
point µ∗ = (µ∗

1, . . . , µ
∗
d)

T ∈ (0, 1)d given by

µ∗
j = Cjn

1−m
m , 1 ≤ j ≤ m, µ∗

s = Csn
−1, m+ 1 ≤ s ≤ d,

where the constants satisfy the system of equations
m∏
j=1

Cj = λm−1
∏

m+1≤s≤d

G(λs, Cs), CsG(λs, Cs) = λ, m+ 1 ≤ s ≤ d.

Furthermore, for a sufficiently large sample size n, the number of fixed points in the system is equal to its
multiplicitym.

3.1.2. Local Stability of Fixed Point

Next, we need to determine the spectral radius of the Jacobian at these fixed points. To do this, we
need to compute the Jacobian of the CAVI system. In order to shorten the notation for the partial
derivatives for the CAVI equations ∂µ(t+1)

j /∂µ
(t)
k we introduce the function

R(λ, β) :=
βλ+1 exp(−β)

Γ(λ+ 1)γ(λ+ 1, β)
− βλ exp(−β)

Γ(λ)γ(λ, β)
.

5



The derivative of Gwith respect to β is given by
d

dβ
G(λ, β) =

G(λ, β)

β
(−1 +R(λ, β)).

A tedious series of recursive computations, found in Appendix A.2, yields the Jacobian of the CAVI
system.
Lemma 3.2. The partial derivatives of the recursive system (3.1) are given by
∂µ

(t+1)
k

∂µ
(t)
1

= 0, 1 ≤ k ≤ d,
∂µ

(t+1)
1

∂µ
(t)
k

=
µ
(t+1)
1

µ
(t)
k

(−1 +R(λk, nµ
(t)
k )), 2 ≤ k ≤ d,

∂µ
(t+1)
j

∂µ
(t)
k

=
µ
(t+1)
j

µ
(t)
k

∏
k≤p<j

R(λp, nµ
(t)
p )(−1 +

∏
1≤ℓ<k

R(λℓ, nµ
(t+1)
ℓ ))(−1 +R(λk, nµ

(t)
k )), 2 ≤ k < j ≤ d,

∂µ
(t+1)
k

∂µ
(t)
k

= (−1 +R(λk, nµ
(t+1)
k ))(−1 +

∏
1≤ℓ<k

R(λℓ, nµ
(t+1)
ℓ )), 2 ≤ k ≤ d,

∂µ
(t+1)
j

∂µ
(t)
k

=
µ
(t+1)
j

µ
(t+1)
k

∏
1≤ℓ<j

R(λℓ, nµ
(t+1)
ℓ )(−1 +R(λk, nµ

(t+1)
k )), 2 ≤ j < k ≤ d.

At this fixed point R(λ, nµ∗
j ) is exponentially small in n for each 1 ≤ j ≤ m. It follows from the

Gershgorin circle theorem [53, 54], that the spectral radius of the Jacobian at this fixed point is
strictly less than 1. This shows that the fixed point µ∗ is a hyperbolic attracting fixed point of the
system. Initializing the system sufficiently close to this fixed point guarantees that the system will
converge to this fixed point [50–52].

Combining these two lemmas together with the bounds from Bhattacharya et al. [30] shows that
for any d-dimensional singular model, numerically computing the mean-field approximation to the
posterior in standard form, i.e. in the coordinate system of the resolutionmapping, always produces
an ELBO which recovers the correct leading-order behavior of the log-marginal likelihood.

3.1.3. Consequences of Multiplicity

The multiplicity of the singular model plays a rather surprising role in the convergence properties
of the CAVI system. First, the multiplicity m and the sample size n determine the number of fixed
points in the system. For a small to moderate sample size n, the system has a single fixed point
of attraction for which C1 = C2 = · · · = Cm. For a large sample size n, the system undergoes a
bifurcation— a change in the behavior of the dynamical system as one of the parameters changes —
in which the original fixed point becomes asymptotically repelling and the system develops m lo-
cally attracting fixed points. Second, the multiplicity of the system also determines the convergence
speed of the CAVI algorithm to a fixed point. Specifically, systems with larger multiplicity converge
at a slower rate than systems with smaller multiplicity. To simplify the discussion, consider the case
where n is sufficiently large. The eigenvalues of the CAVI system Jacobian are exponentially close to
1−R(λj , nµ

∗
j ), for 2 ≤ j ≤ d. For 2 ≤ j ≤ m, R(λ, nµ∗

j ) = O(exp{−Cn1/m}) hence, each eigenvalue
is exponentially close to 1, and at each time step, the dynamical system moves very little in these
directions.

4. Simulation Study for CAVI in Standard Forms
We now present numerical experiments for the standard form γK(u) = uh exp{−nu2k}/ZK(n), il-
lustrating Theorem 3.1 and the behavior of multiplicity. We also compare the ELBO to Watanabe’s
asymptotic formula (2.1), finding that for a broad regime of n, the ELBO can be more accurate.
Finally, we give a simple singular regression example in which the ELBO of the mean-field approxi-
mation in the original parameter coordinates fails to recover the correct leading-order term−λ log n,
while the ELBO of the mean-field approximation in the resolved standard-form coordinates do in-
deed recover it.
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(λ1, λ2, λ3, λ4) Parameter Dynamic Numeric Product

Case 1: (1/4, 1/3, 1/3, 1/2) C1 0.005410077 0.005410609
C2 1.7167214 1.716581
C3 1.7167214 1.716581
C4 0.9799794 0.979926

Case 2: (1/3, 1/3, 1/2, 1/2) C1 0.62576484 0.01620921
C2 0.02590196
C3 1.511632 1.511556
C4 1.511632 1.511556

Case 3: (1/3, 1/3, 1/3, 1/2) C1 0.4631405 0.02450186
C2 0.2348403
C3 0.2252707
C4 1.511632 1.511556

Case 4: (1/5, 1/5, 1/5, 1/5) C1 0.2989035 0.008
C2 0.2989076
C3 0.2989061
C4 0.2989020

Table 1: A table containing the coefficients for the fixedpoints of themean-field equations for various
combination of λ for n = ⌊exp(13)⌋. The Dynamic column records the values of Cj , for 1 ≤ j ≤ d,
computed using the CAVI fixed points. TheNumeric column contains the numerically approximate
solution to the analytic equation CsG(λs, Cs) = λ, for m+ 1 ≤ s ≤ d. The Product column contains
the value of the formula λm−1

∏
m+1≤s≤d G(λs, Cs) computed using the values from the Numeric

column. In each case, the coefficients Cs, m + 1 ≤ s ≤ d, in Dynamics column approximately
match the corresponding quantity in the Numerical column. The product of the Dynamic column
coefficients Cj , 1 ≤ j ≤ m, approximately equal the value in the Product column.

4.1. CAVI in the Standard Form
We consider a d = 4 dimensional standard form γK(u) = uh exp{−nu2k}/ZK(n)with four different
choices of multi-indices (k,h).4 Concretely, we study:

1. k = (2, 3, 3, 1) and h = (1, 2, 2, 0)with (λ,m) = (1/4, 1).
2. k = (3, 3, 2, 1) and h = (1, 1, 0, 0)with (λ,m) = (1/3, 2).
3. k = (3, 3, 3, 1) and h = (1, 1, 1, 0)with (λ,m) = (1/3, 3).
4. k = (5, 5, 5, 5) and h = (1, 1, 1, 1)with (λ,m) = (1/5, 4).

For each sample size n, we initialize CAVI, run to a tight convergence tolerance of 10−12, and record
the converged variational parameters µ∗ and ELBOγK

(ρ∗).

4.1.1. Validating Lemma 3.1

Table 1 shows, for each case at n = ⌊e13⌋ initialized from µ(0) = 0, the coefficients {Cj} from the
fixed point µ∗

j , for 1 ≤ j ≤ 4. The column labeled “Dynamic” shows Cj as obtained via the CAVI
system, while the column labeled “Numeric” and "Product" display a direct numerical solution of
the consistency conditions CsG(λ,Cs) = λ and λm−1

∏
m+1≤s≤d G(λs, Cs), respectfully. The close

match across columns verifies that the fixed-point equations in Lemma 3.1 hold.

4.1.2. Validating Theorem 3.1

Next, we check whether ELBOγK
(ρ∗) matches −λ log n + C for large n. Table 2 displays the least-

squares estimates β̂0, β̂1, β̂2 from regressing ELBOγK
(ρ∗) onto β0 + β1 log n+ β2 log log n. For each

4The resolution map does not need to be computed in this case as the standard form is the posterior of the
model expressed in the resolution coordinates.
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Case (λ,m) β0 Estimate (P-val) β1 Estimate (P-val) β2 Estimate (P-val)
Case 1 (1/4, 1) 2.513e+00 (2e-16) −2.500e-01 (2e-16) 5.879e-13 (0.816)
Case 2 (1/3, 2) 2.133e+00 (2e-16) −3.333e-01 (2e-16) 2.729e-10 (0.285)
Case 3 (1/3, 3) 2.700e+00 (2e-16) −3.333e-01 (2e-16) 9.589e-09 (0.027)
Case 4 (1/5, 4) 4.8774074 (2e-16) −0.2003880 (2e-16) 0.0065515 (0.000541)
Table 2: A table containing the estimated coefficients and P-values corresponding to the regressions
ELBO(q∗) = β0+β1 log n+β2 log log nwhen ELBO is computed using mean-field VI. As predicted
by Theorem 3.1, we see that the β1 estimate is approximately −λ and the ELBO fails to correctly
recover the lower order log log n term associated with the multiplicity m when m > 1 as the β2

estimate is approximately 0 instead of the correct (m−1) value predicted byWatanabe’s asymptotic
expansion.

case, if wewere to fit a regression of the form β0+β1 log n+β2 log log n to the log-marginal likelihood
logZK(n), then the estimated regression coefficients should be approximately β̂1 ≈ −λ and β̂2 ≈
(m − 1) based on Watanabe’s asymptotic expansion [28]. In contrast, we see that the estimated
coefficient are β̂1 ≈ −λ and β̂2 ≈ 0. Hence, the ELBO fails to recover the correct log log n term for
models with multiplicity m > 1. This is exactly what we expect based on Theorem 3.1.

4.1.3. Comparing the ELBO and Asymptotic Expansions

We also compare the ELBO and the asymptotic expansion in 2.1 as approximations to the log
marginal-likelihood (logML) for standard forms of various dimensions d ∈ {4, 8, 10, 20}, each with
RLCT λ = 1/2 and multiplicitym = 1.5 The multiplicitym = 1 is chosen so that the ELBO matches
the true asymptotic expansion of the log-marginal likelihood and the bias, the difference between
the ELBO and the log-ML, depends only on the constant terms. Additional simulations for lower-
dimensional models are provided in Appendix A.4.

Surprisingly, our results in Figure 1 demonstrate that the ELBO provides a better approxima-
tion to the logML than the asymptotic approximation −λ log n in Equation (2.1) for a large “pre-
asymptotic” regime of sample sizes n. Eventually, in the “asymptotic” regime, the asymptotic ap-
proximation −λ log n is better a approximation to the logML than the ELBO. This is due to the con-
stant bias term that arises in the ELBO. In this context, bias is the difference between the ELBO and
the log-ML, |ELBOγK

(ρ∗)−logZK(n)|. As n → ∞, the approximation error for the ELBO converges
to a constant that depends on the dimension of the model. Furthermore, these simulations suggest
that the point at which the ELBO begins to diverge significantly from the logML also depends on
the dimension of the model; note that the point at which the asymptotic approximation error dips
below the ELBO approximation error moves right as d increases from d = 4 to d = 20.

We now outline the dimensional dependence of the bias term. In order to simplify the following
analysis, let us consider the case λ = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λd. The multiplicity of the system is
m = 1 and theCAVI fixedpoint isµ∗ = (C1, C2/n,C3/n, . . . , Cd/n), whereC1 =

∏d
s=2 G(λs, Cs) and

CsG(s, Cs) = λ. In this case the leading order term in the ELBO is B(k1, h1, nµ
∗
1) ≍ −λ log n which

cancels out the leading order term of the asymptotic expansion of the log-ML. The bias becomes

−n

d∏
s=1

G(λs, nµ
∗
s) +

d∑
s=1

nµ∗
sG(λs, nµ

∗
s) +

d∑
s=2

logB(ks, hs, nµ
∗
s).

Plugging in µ∗ = (C1, C2/n,C3/n, . . . , Cd/n) and reducing terms we see that the first term and
second term in the sum reduce to (d− 1) · λ. The remaining term can be bound by

(d− 1) logB(k2, h2, C2) ≤
d∑

s=2

logB(ks, hs, Cs) ≤ d− 1) log(d− 1) logB(kd, hd, Cd).

5This choice of dimension is due to computational limitations.
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Figure 1: ELBO vs Asymp.: A plot of the log marginal likelihood (logML), the ELBO, and Watan-
abe’s asymptotic expansion for a d ∈ 4, 8, 10, 20 dimensional standard form with RLCT λ = 1/2 and
multiplicitym = 1. Surprisingly, in the non-asymptotic regime, the ELBO provides a better approx-
imation of the log marginal likelihood than the asymptotic expansion. Approx. Errors: A plot of
the approximation errors between the logML and ELBO (ELBO Error) and between the logML and
asymptotic approximation (Asymp. Error). As n → ∞, both errors converge to constant values.

which makes the overall bias on the order of d− 1

(d− 1) · [λ+ logB(k2, h2, C2)] ≤ Bias ≤ (d− 1) · [λ+ logB(kd, hd, Cd)].

4.2. Singular Regression Example

Previouswork onmean-fieldVI in singularmodels [31, 39] demonstrates that the leading coefficient
of the asymptotic expansion of the ELBO is not the RLCT when the mean-field approximation is
computed in the original coordinate system of the model. We will now provide a simple example
of a singular regression model for which the asymptotic behavior of the ELBO for the mean-field
approximation in the original coordinate system does not behave like −λ log n + C, but the ELBO
for the mean-field approximation in the resolved coordinate system asymptotically behaves like
−λ log n+C. Additional details for this example, including a derivation of the resolution map, can
be found in Appendix A.3.

We will consider the following singular regression model, Example 46 from [28], for x, y ∈ R, and
parameters w = (a, b, c) ∈ [−1, 1]3,

p(x, y | a, b, c) = 1

2
√
2π

exp

{
−1

2
(y − aS(bx)− cx)2

}
I[−1,1]3(x), (4.1)

φ(a, b, c) = 1/8,

where S(x) = x2 + x. We will assume that the true data generating distribution is q(x, y) = p(x, y |
0, 0, 0). The average log-density ratio for this setting is K(a, b, c) = (ab + c)2/2 + a2b4/6, which is
singular at 0. The RLCT and multiplicity for this singular model are λ = 3/4 and m = 1.

A numerical investigation of the asymptotic behavior of the ELBO for this system in the original
coordinate system of the model and in each of the resolution coordinates is summarized in Table
3. In the original (a, b, c)-coordinates of the model, the model is not in standard form and the CAVI
solution does not recover −λ log n. a regression of the ELBO on β0 + β1 log n + β2 log log n yields
β̂1 ≈ −1 instead of the true RLCT λ = 3/4. In local resolved coordinate system, the model is in
standard form and the CAVI solution recoversELBO ≈ −λ log n+C. Numericallywe find β̂1 ≈ −λj

in each local coordinate system Uj .
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Coordinate System (λ,m) β0 Estimate (P-val) β1 Estimate (P-val) β2 Estimate (P-val)
Original Coord. NA 2.6741243 (2e-16) −1.0103421 (2e-16) 0.0792974 (2e-16)
Res. Coord. 1 (1, 1) −1.063e+00 (2e-16) −1.000e+00 (2e-16) −5.789e-05 (0.93)
Res. Coord. 2 (1, 2) −0.8947223 (2e-16) −1.0233375 (2e-16) 0.1858234 (2e-16)
Res. Coord. 3 (3/4, 1) −1.398e+00 (2e-16) −7.500e-01(2e-16) −6.569e-05 (5.21e-06)
Res. Coord. 4 (3/4, 1) −1.525e+00 (2e-16) −7.500e-01 (2e-16) −9.563e-06 (0.613)
Table 3: A table containing the estimated coefficients and P-values corresponding to the regressions
ELBO(q∗j ) = β0+β1 log n+β2 log lognwhenELBO is computed usingmean-fieldVI for the example
in Equation 4.1. The original coordinate system incorrectly recovers the largest of the local RLCTs
instead of the smallest one.

5. Conclusion
In this article, we analyzed the dynamics of coordinate ascent variational inference (CAVI) for sin-
gular models in standard form, showing that:

1. There are m stable fixed points when the model has multiplicity m.
2. In the "asymptotic" regime, each of these fixed points is asymptotically stable and the CAVI

ELBO recovers the correct leading-order term, −λ log n, of the log marginal likelihood.

Our experiments confirm these theoretical predictions and reveal that the ELBO can, in a "non-
asymptotic" regime of sample sizes, yield better estimates of the log marginal likelihood than the
classic asymptotic approximation. In the "asymptotic" regime, the classic asymptotic approximation
provides a closer approximation of the logmarginal likelihood than the ELBO. Interestingly we find
that the point at which the system changes from the "non-asymptotic" regime to the "asymptotic"
regime depends on the dimension of the system.

There are several open questions which are related to our work. First, in the example of Section 4.2,
working in the original coordinates yields the wrong RLCT, but the correct RLCT emerges from the
resolved coordinates. This suggests that while mean-field VI in the original coordinates may fail to
produce the “true” leading term, it might still behave consistently for certain model-selection tasks;
see [16] for recent results in singular mixture models. Second, the singular regression example also
suggests that the resolution coordinates are needed for the mean-field approximation to recover the
correct leading behavior of the log-marginal likelihood. Unfortunately, computation of the reso-
lution coordinates is not feasible for all but the simplest singular models. It would be valuable to
determine if transformation-based variational methods such as normalizing flows [55, 56] are able
by-pass the need for the computation of the resolution as part of the variational approximation. Fi-
nally, it would be of interest to determine if more flexible variational families such as black-box VI
[57] or semi-implicit VI [58–60] would be able to provably recover the lower-order log log n term in
the asymptotic expansion of the ELBO.
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A. Appendix

A.1. Proof of Lemma 3.1

Proof. Plugging the points µ∗
j = Cjn

1−m
m , 1 ≤ j ≤ m, µ∗

s = Csn
−1,m+ 1 ≤ s ≤ d, into the recursive

formula

µ
(t+1)
j =

j−1∏
s=1

G(λs, nµ
(t+1)
s ) ·

d∏
s=j+1

G(λs, nµ
(t)
s )

yields the system of equations
m∏
j=1

Cj = λm−1
∏

m+1≤s≤d

G(λs, Cs), CsG(λs, Cs) = λ, m+ 1 ≤ s ≤ d.

For each m + 1 ≤ s ≤ d, xG(λs, x) is monotonically increasing and limx→∞ xG(λs, x) = λs > λ,
hence the equation xG(λs, x) = λ has a unique solution. Any combination of C1, . . . , Cm satisfying∏m

j=1 Cj = λm−1
∏

m+1≤s≤d G(λs, Cs)will produce a fixed point for the system of equations 3.1.

A.2. Proof of Lemma 3.2

The stability behavior of any nonlinear dynamical system near any hyperbolic fixed point can be
determined by the eigenvalues of the Jacobian matrix. In order to determine the behavior CAVI
system near its fixed points we need to first determine the Jacobian of the system and then the
eigenvalues of the system at the fixed point.

We begin by defining some shorthand notation

R(λ, β) :=
βλ+1 exp(−β)

Γ(λ+ 1)γ(λ+ 1, β)
− βλ exp(−β)

Γ(λ)γ(λ, β)
. (A.1)

The derivative of Gwith respect to β is given by

d

dβ
G(λ, β) = G(λ, β)

(
− 1

β
+

βλ exp(−β)

Γ(λ+ 1)γ(λ+ 1, β)
− βλ−1 exp(−β)

Γ(λ)γ(λ, β)

)
=

G(λ, β)

β
(−1 +R(λ, β)).

(A.2)

We are now equipped to begin computing the Jacobian of the system. We will compute expressions
for these quantities recursively beginning with the partials of µ(t+1)

1 . The partials of µ(t+1)
1 can be

computed without recursion and are given by,

∂1µ
(t+1)
1 =

∂

∂µ
(t)
1

∏
s̸=1

G(λs, nµ
(t)
s ) = 0

∂kµ
(t+1)
1 =

∂

∂µ
(t)
k

∏
s̸=1

G(λs, nµ
(t)
s ) = nG′(λk, nµ

(t)
k )

d∏
s̸=1,k

G(λs, nµ
(t)
s )

=

∏
s ̸=1 G(λs, nµ

(t)
s )

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

=
µ
(t+1)
1

µ
(t)
k

(−1 +R(λk, nµ
(t)
k )), 2 ≤ k ≤ d.

For j, k ∈ [d], the general derivatives of the system are given by the following equations. For 2 ≤
k ≤ j,
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∂kµ
(t+1)
j (µ) =

∂

∂µ
(t)
k

j−1∏
s=1

G(λs, nµ
(t+1)
s ·

d∏
s=j+1

G(λs, nµ
(t)
s )

=
∑

1≤ℓ<j

nG′(λℓ, nµ
(t+1)
ℓ )∂kµ

(t+1)
ℓ

∏
1≤s≤j−1

s ̸=ℓ

G(λs, nµ
(t+1)
s ) ·

d∏
s=j+1

G(λs, nµ
(t)
s )

=
∑

1≤ℓ<j

∏j−1
s=1 G(λs, nµ

(t+1)
s ) ·

∏d
s=j+1 G(λs, nµ

(t)
s )

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂kµ

(t+1)
ℓ

=
∑

1≤ℓ<j

µ
(t+1)
j

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂kµ

(t+1)
ℓ .

and for j + 1 ≤ k ≤ d,

∂kµ
(t+1)
j =

∂

∂µ
(t)
k

j−1∏
s=1

G(λs, nµ
(t+1)
s ) ·

d∏
s=j+1

G(λs, nµ
(t)
s )

=
∑

1≤ℓ<j

nG′(λℓ, nµ
(t+1)
ℓ )∂kµ

(t+1)
ℓ

∏
1≤s≤j−1

s ̸=ℓ

G(λs, nµ
(t+1)
s ) ·

d∏
s=j+1

G(λs, nµs)

+ nG′(λk, nµ
(t)
k )

∏
1≤s≤j−1

G(λs, nµ
(t+1)
s )

∏
j+1≤s≤d

s̸=ℓ

G(λs, nµ
(t)
s )

=
∑

1≤ℓ<j

∏j−1
s=1 G(λs, nµ

(t+1)
s ) ·

∏d
s=j+1 G(λs, nµ

(t)
s )

µ
(t+1)
ℓ

∂kµ
(t+1)
ℓ (−1 +R(λℓ, nµ

(t+1)
ℓ ))

+

∏j−1
s=1 G(λs, nµ

(t+1)
s ) ·

∏d
s=j+1 G(λs, nµ

(t)
s )

µ
(t)
k

(−1 +R(λℓ, nµ
(t)
k ))

=
∑

1≤ℓ<j

µ
(t+1)
j

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂kµ

(t+1)
ℓ +

µ
(t+1)
j

µ
(t)
k

(−1 +R(λk, nµ
(t)
k )).

Due to the sequential nature of the CAVI system in Equation 3.1, the derivatives of the update func-
tion µj depend on the derivatives of the previous update functions µℓ, 1 ≤ ℓ < j.

Now we derive the behavior for the other partial derivatives in an recursive fashion. Next we cal-
culate the partials for µ(t+1)

2 . First,

∂1µ
(t+1)
2 =

∑
1≤ℓ<2

µ
(t+1)
2

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂1µ

(t+1)
ℓ

=
µ
(t+1)
2

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂1µ

(t+1)
1 = 0.

Similarly,

∂1µ
(t+1)
3 =

∑
1≤ℓ<3

µ
(t+1)
3

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂1µ

(t+1)
ℓ

=
µ
(t+1)
3

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂1µ

(t+1)
1 +

µ
(t+1)
3

µ
(t+1)
2

(−1 +R(λ2, nµ
(t+1)
2 ))∂1µ

(t+1)
2 = 0.
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This gives us the recursive identity

∂1µ
(t+1)
k =

∑
1≤ℓ<k

µ
(t+1)
k

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂1µ

(t+1)
ℓ = 0.

The second partial of µ(t+1)
2 is given by,

∂2µ
(t+1)
2 = nG′(λ1, nµ

(t+1)
1 )∂2µ

(t+1)
1

∏
1≤s≤d

s̸=1,2

G(λs, nµ
(t)
s )

=
G(λ1, nµ

(t+1)
1 )

∏
3≤s≤d G(λs, nµ

(t)
s )

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂2µ

(t+1)
1

=
µ
(t+1)
2

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))

µ
(t+1)
1

µ
(t)
2

(−1 +R(λ2, nµ
(t)
2 ))

= (−1 +R(λ1, nµ
(t+1)
1 ))(−1 +R(λ2, nµ

(t)
2 )).

For the partial with the higher index than the update function k > j we have to follow an iterative
construction procedure starting with ∂kµ

(t+1)
2 , 3 ≤ k ≤ d, which expands as follows.

∂kµ
(t+1)
2 =

∑
1≤ℓ<2

µ
(t+1)
2

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂kµ

(t+1)
ℓ +

µ
(t+1)
2

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

=
µ
(t+1)
2

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂kµ

(t+1)
1 +

µ
(
2t+ 1)

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

=
µ
(t+1)
2

µ
(t+1)
1

µ
(t+1)
1

µ
(t)
k

(−1 +R(λ1, nµ
(t+1)
1 ))(−1 +R(λk, nµ

(t)
k )) +

µ
(t+1)
2

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

=
µ
(t+1)
2

µ
(t)
k

R(λ1, nµ
(t)
1 )(−1 +R(λk, nµ

(t)
k )).

Next we calculate the partials for µ(t+1)
3 . As above the first partial ∂1µ(t+1)

3 = 0. The second partial
is

∂2µ
(t+1)
3 =

∑
1≤ℓ<3

µ
(t+1)
3

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂2µ

(t+1)
ℓ

=
µ
(t+1)
3

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂2µ

(t+1)
1 +

µ
(t+1)
3

µ
(t+1)
2

(−1 +R(λ2, nµ
(t+1)
2 ))∂2µ

(t+1)
2

=
µ
(t+1)
3

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂2µ

(t+1)
1 (µ(t+1))

+
µ
(t+1)
3

µ
(t+1)
1

(−1 +R(λ2, nµ
(t+1)
2 ))(−1 +R(λ1, nµ

(t+1)
1 ))∂2µ

(t+1)
1

=
µ
(t+1)
3

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))R(λ2, nµ

(t+1)
2 )∂2µ

(t+1)
1

=
µ
(t+1)
3

µ
(t+1)
2

(−1 +R(λ1, nµ
(t+1)
1 ))(−1 +R(λ2, nµ

(t+1)
2 ))R(λ2, nµ

(t+1)
2 ).
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The third partial is

∂3µ
(t+1)
3 =

∑
1≤ℓ<3

µ
(t+1)
3

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂3µ

(t+1)
ℓ

=
µ
(t+1)
3

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂3µ

(t+1)
1 +

µ
(t+1)
3

µ
(t+1)
2

(−1 +R(λ2, nµ
(t+1)
2 ))∂3µ

(t+1)
2

= (−1 +R(λ1, nµ
(t+1)
1 ))(−1 +R(λ3, nµ

(t+1)
3 ))

+R(λ1, nµ
(t+1)
1 )(−1 +R(λ2, nµ

(t+1)
2 ))(−1 +R(λ3, nµ

(t+1)
3 ))

= (−1 +R(λ3, nµ
(t+1)
3 ))(−1 +R(λ1, nµ

(t+1)
1 )R(λ2, nµ

(t+1)
2 )).

The kth partial, for 4 ≤ k ≤ d is given by,

∂kµ
(t+1)
3 =

∑
1≤ℓ<3

µ
(t+1)
3

µ
(t+1)
ℓ

(−1 +R(λℓ, nµ
(t+1)
ℓ ))∂kµ

(t+1)
ℓ +

µ
(t+1)
3

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

=
µ
(t+1)
3

µ
(t+1)
1

(−1 +R(λ1, nµ
(t+1)
1 ))∂kµ

(t+1)
1 +

µ
(t+1)
3

µ
(t+1)
2

(−1 +R(λ2, nµ
(t+1)
2 ))∂kµ

(t+1)
2

+
µ
(t+1)
3

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

=
µ
(t+1)
3

µ
(t)
k

(−1 +R(λ1, nµ
(t+1)
1 ))(−1 +R(λk, nµ

(t)
k ))

+
µ
(t+1)
3

µ
(t)
k

R(λ1, nµ
(t+1)
1 )(−1 +R(λ2, nµ

(t+1)
2 ))(−1 +R(λk, nµ

(t)
k ))

+
µ
(t+1)
3

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

=
µ
(t+1)
3

µ
(t)
k

(−1 +R(λk, nµ
(t)
k ))

∏
1≤ℓ≤2

R(λℓ, nµ
(t+1)
ℓ ).

In general when k > j we have,

∂kµ
(t+1)
j =

µ
(t+1)
j

µ
(t)
k

∏
1≤ℓ<j

R(λℓ, nµ
(t+1)
ℓ )(−1 +R(λk, nµ

(t)
k )).

For the partial with the same index as the update function we have,

∂kµ
(t+1)
k = (−1 +R(λk, nµ

(t+1)
k ))(−1 +

∏
1≤ℓ<j

R(λℓ, nµ
(t+1)
ℓ )).

Finally, when k < j we have,

∂kµ
(t+1)
j =

µ
(t+1)
j

µ
(t+1)
k

∏
k≤p<j

R(λp, nµ
(t+1)
p )(−1 +

∏
1≤ℓ<k

R(λℓ, nµ
(t+1)
ℓ ))(−1 +R(λk, nµ

(t+1)
k )).
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A.3. Singular Regression Example
Previous work by [39] and [31] on mean-field VI in singular models demonstrates that the lead-
ing coefficient of the asymptotic expansion of the ELBO is not the RLCT when the mean-field ap-
proximation is computed in the original coordinate system of the model. We will now provide a
simpler example of a singular regression model for which the asymptotic behavior of the ELBO for
the mean-field approximation in the original coordinate system does not behave like −λ log n+ C,
but the ELBO for the mean-field approximation in the resolved coordinate system asymptotically
behaves like −λ log n+ C.

We will consider the following singular regression model, Example 46 from [28], for x, y ∈ R, and
parameters w = (a, b, c) ∈ [−1, 1]3,

p(x, y | a, b, c) = 1

2
√
2π

exp

{
−1

2
(y − aS(bx)− cx)2

}
I[−1,1]3(x),

ϕ(a, b, c) = 1/8,

where S(x) = x2 + x. We will assume that the true data generating distribution is q(x, y) = p(x, y |
0, 0, 0). The average log-density ratio for this setting is K(a, b, c) = (ab+ c)2 + 3a2b4. This example
was chosen because it is one of the few examples for which the full resolution of singularities is
explicitly known.

A real analytic function f(w) is normal crossing if it has the form f(w) = w2kf0(w), where k is a
multi-index in Nd with at least one positive entry and f0(w) is a positive real-analytic function [26,
Definition 4.3]. Notice that in the (a, b, c)-coordinate system themodelK(a, b, c) is not normal cross-
ing, so the posterior is not in standard form in this coordinate system. Hironaka’s theorem [25]
guarantees that there exists a coordinate system in which K is normal crossing. This coordinate
system can be found through a finite sequence of blow-ups of the parameter space W by a variety
V , in which we replace the variety V by a copy of the projective plane Pn−1. See chapter 3 of [27]
for additional technical details on the computation of blow-ups.

A.3.1. Computing the Resolution

The first set in the resolution is to determine the singular structure of the hyper-surface {K(a, b, c) =
0}. Since this is a hyper-surface defined by a single polynomial, the singular points of {K = 0} are
the points ofW where the Jacobian of K also vanishes. The partial derivatives of K are

∂K

∂a
= 2(ab+ c)b+ 6ab4,

∂K

∂b
= 2(ab+ c)a+ 12a2b3,

∂K

∂c
= 2(ab+ c).

Setting these equal to zero and solving the system shows that the singular locus is given by V =
{a = 0, c = 0} ∪ {b = 0, c = 0}.

We will now outline how the resolution is computed for this example. The first step is to compute
the blow-up ofW by center {a = 0, c = 0}. This blow-up is covered by two local coordinate charts,

U1 : a = a1c1, b = b1, c = c1, U2 : a = a2, b = b2, c = a2c2

In U1, K(a, b, c) = c21
[
(a1b1 + 1)2 + 3a21b

4
1

]
is normal crossing, as the function (a1b1 + 1)2 + 3a21b

4
1 is

smooth and positive on U1. In U2, K(a, b, c) = a22[(b2 + c2)
2 + 3b42], which is not normal crossing in

this coordinate system as the function (b2+c2)
2+3b42 is singular on the set {b2 = 0, c2 = 0}. In order

to makeK normal crossing in the U2 coordinate chart we will need to compute further blow-ups to
resolve the singular part of (b2 + c2)

2 + 3b42.

The next step is to blow-up coordinate system U2 with center {b1 = 0, c1 = 0}. This blow-up is
covered by two local coordinate charts,

U3 : b2 = b3, c2 = b3c3, U4 : b2 = b4c4, c2 = (1− b4)c4.

The blow-up in U4 is chosen cleverly to reduce b2 + c2 = c4. In U3, the original coordinates are

U3 : a = a2, b = b3, c = a2b3c3
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andK(a, b, c) = a22b
2
3[(1+c3)

2+3b43]. InU3,K is not a normal crossing since (1+c3)
2+3b23 is singular

at {c3 = −1, b3 = 0}. In the U4 chart, the original coordinates are

U4 : a = a2, b = b4c4, c = a2(1− b4)c4

andK(a, b, c) = a22c
2
4(1 + 3b24c

2
4). In U4, K is normal crossing since 1 + 3b24c

2
4 smooth and positive.

The final blow-up, U3 with center {c3 = −1, b3 = 0}, begins by applying a change of notation u = b3
and v = c3 + 1. This makes

U3 : a = a2, b = u, c = a2u(v − 1)

with K(a, b, c) = a23u
2[v2 + 3u2]. The blow-up of U3 at center {u = 0, v = 0} is covered by two local

charts

U5 = {u = b5, v = b5c5}, U6 = {u = b6c6, v = c6}.

In U5, the original (a, b, c)-coordinates are given by

U5 : a = a2 = a5, b = b5, c = a5b5(b5c5 − 1)

and K(a, b, c) = a25b
4
5(c

2
5 + 3), which is normal crossing. In U6, the original (a, b, c)-coordinates are

given by
U6 : a = a2 = a5, b = b6c6, c = a2b6c6(c6 − 1)

and K(a, b, c) = a26b
2
6c

4
6[1 + 3b26], which is normal crossing. This completes the resolution of the

singularities for this example. Before proceeding we will relabel the local coordinate systems with
the following permutation of notation to re-align our notation with [28]; For sub-indexes j ∈ 4, 5, 6
map j 7→ (j − 2).

The resolution map w = g(u) is given locally, by

a = a1c1, b = b1, c = c1,

a = a2, b = b2c2, c = a2(1− b2)c2,

a = a3, b = b3, c = a3b3(b3c3 − 1),

a = a4, b = b4, c = a4b4c4(c4 − 1).

The image of the local coordinate system Uj = {(aj , bj , cj)} is denoted byWj with,

W1 = {(a, b, c) : |a| ≤ |c|},
W2 = {(a, b, c) : |a| ≥ |c|, |ab| ≤ |ab+ c|},
W3 = {(a, b, c) : |a| ≥ |c|, |ab+ c| ≤ |ab2|},
W4 = {(a, b, c) : |a| ≥ |c|, |ab2| ≤ |ab+ c| ≤ |ab|}.

Notice that W =
⋃

j Wj and each local coordinate system Uj = {(aj , bj , cj)} = g−1(W o
j ), j =

1, 2, 3, 4, is the closure of the inverse image of the interior of Wj . On each local coordinate system
the average log density ratio K is normal crossing,

K(a, b, c) = c21
(
[a1b1 + 1]2/2 + a21b

4
1/6

)
= a22c

2
2(1/2 + b22c

2
2/6) = a23b

4
3(c

2
3/2 + 1/6) = a24b

2
4c

2
4(1/2 + b24/6)

and the determinant of the Jacobian matrix is given by

|g′(u)| = |c1| = |a2c2| = |a3b23| = |a4b4c4|2.

The local RLCT λj and multiplicitymj on Uj are

(λ1,m1) = (1, 1), (λ2,m2) = (1, 2), (λ3,m3) = (3/4, 1), (λ4,m4) = 3/4, 1).

Therefore, the RLCT and multiplicity for this singular model are λ = 3/4 andm = 1.
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A.3.2. Computing the CAVI Equations

In the original (a, b, c)-coordinate system the CAVI approximation to the posterior arising from
Equation 4.1 takes the form

ρ(a) ∝ exp{νb, 2a2/2 + νb, 1νc, 1a+ νb, 4a
2/6},

ρ(b) ∝ exp{νa, 2b2/2 + νa, 1νc, 1b+ νa, 2b
4/6},

ρ(c) ∝ exp{c2/2 + νa, 1νb, 1c},

where νs, k =
∫ 1

−1
skρ(s)ds, s ∈ {a, b, c} and k ∈ {1, 2, 4}. A numerical investigation of the asymp-

totic behavior of the ELBO for this system is summarized in Table 3. Interestingly, we see that the
CAVI ELBO Ψn(ρ

∗) = − log n + C. It appears that in the original (a, b, c)-coordinate system the
ELBO of the CAVI fixed point is capturing the maximum λj rather than the minimum one.

We now compare this to the behavior of the CAVI algorithm computed on each of the local resolu-
tion coordinates. In the U1-coordinate system the CAVI approximation to the standard form of the
posterior arising from Equation 4.1 takes the form

ρ(a1) ∝ exp{a21νb1,2νc1,2/2 + νb1,1νc1,2a1 + νb1,4νc1,2a
2
1/6},

ρ(b1) ∝ exp{νa1,2νc1,2b
2
1/2 + νa1,1νc1,2b1 + νa1,2νc1,2b

4
1/6},

ρ(c1) ∝ |c1| exp{νa1,2νb1,2c
2
1/2 + νa1,1νb1,1c

2
1 + 1/2c21 + ν11,2νb1,4c

2
1/6},

where νs, k =
∫ 1

−1
skρ(s)ds, s ∈ {a1, b1, c1} and k ∈ {1, 2, 4}.

In the U2-coordinate system the CAVI approximation to the standard form of the posterior arising
from Equation 4.1 takes the form

ρ(a2) ∝ |a2| exp{νc2,2a22/2 + νb2,2νc2,4a
2
2/6},

ρ(b2) ∝ exp{νa2,2νc2,4b
2
2/6},

ρ(c2) ∝ |c2| exp{νa2,2c
2
2/2 + νa2,2νb2,2c

4/6},

with νs,k following a similar notational convention as before. In the U3-coordinate system the CAVI
approximation to the standard form of the posterior arising from Equation 4.1 takes the form

ρ(a3) ∝ |a3| exp{νb3,4a23/6 + νb3,4νc3,2a
2
3/2},

ρ(b3) ∝ |b3|2 exp{νa3,2b
4
3/6 + νa3,2νc3,2b

4
3/2},

ρ(c3) ∝ exp{νa3,2νb3,4c
2
3/2},

with νs,k following a similar notational convention as before. Finally, in the U4-coordinate system
the CAVI approximation to the standard form of the posterior arising from Equation 4.1 takes the
form

ρ(a4) ∝ |a4|2 exp{νb4,2νc4,2a24/2 + νb4,4νc4,2a
2
4/6)},

ρ(b4) ∝ |b4|2 exp{νa4,2νc4,2b
2
4/2 + νa4,2νc4,2b

4
4/6)},

ρ(c4) ∝ |c4|2 exp{νa4,2νb4,2c
2
4/2 + νa4,2νb4,4c

2
4/6)},

with νs,k following a similar notational convention as before. A numerical investigation of the
asymptotic behavior of the ELBO for this system is summarized in Table 3. As predicted by Theorem
3.1, we see that the CAVI ELBO on each local coordinate system recoversELBO(ρ∗j ) = −λj log n+C.

21



A.4. Additional Simulations from Sec 4.1
Additional simulations for lower-dimensional models comparing the ELBO and the asymptotic
expansion in Equation. 2.1 as approximations for the log marginal likelihood (logML) in for a
d = 2, 6, 12, 15 dimensional models in standard form with RLCT λ = 1/2 and multiplicity m = 1.
For each model, there is a wide regime of sample sizes n in which the ELBO provides a better ap-
proximation to the logML than the asymptotic approximation−λ log n+(m−1) log log n. For sample
sizes beyond this regime the logML is better approximated by the asymptotic approximation than
the ELBO. This is due to the constant bias term that arises in the ELBO. For each model, as n → ∞,
the approximation error for the ELBO converges to a constant that depends on the dimension of
the model. Furthermore, these simulations suggest that the point at which the ELBO begins to di-
verge significantly from the logML depends on the dimension of the model; note that the point at
which the asymptotic approximation error dips below the ELBO approximation error moves right
as d increases from d = 4 to d = 20.
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Figure 2: Left: A plot of the logmarginal likelihood (logML), the ELBO, andWatanabe’s asymptotic
expansion for d = 2, 6, dimensional standard forms with RLCT λ = 1/2 and multiplicity m =
1. Surprisingly, in the non-asymptotic regime, the ELBO provides a better approximation of the
log marginal likelihood than the asymptotic expansion. Right: A plot of the approximation errors
between the logML and ELBO and logML and asymptotic approximation. As n → ∞, both errors
converge to constant values.
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Figure 3: Left: A plot of the logmarginal likelihood (logML), the ELBO, andWatanabe’s asymptotic
expansion for d = 12, 15 dimensional standard forms with RLCT λ = 1/2 and multiplicity m =
1. Surprisingly, in the non-asymptotic regime, the ELBO provides a better approximation of the
log marginal likelihood than the asymptotic expansion. Right: A plot of the approximation errors
between the logML and ELBO and logML and asymptotic approximation. As n → ∞, both errors
converge to constant values.
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