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Abstract

In graph learning, maps between graphs and their subgraphs frequently arise. For in-
stance, when coarsening or rewiring operations are present along the pipeline, one needs
to keep track of the corresponding nodes between the original and modified graphs. Clas-
sically, these maps are represented as binary node-to-node correspondence matrices, and
used as-is to transfer node-wise features between the graphs. In this paper, we argue that
simply changing this map representation can bring notable benefits to graph learning tasks.
Drawing inspiration from recent progress in geometry processing, we introduce a spectral
representation for maps that is easy to integrate into existing graph learning models. This
spectral representation is a compact and straightforward plug-in replacement, and is robust
to topological changes of the graphs. Remarkably, the representation exhibits structural
properties that make it interpretable, drawing an analogy with recent results on smooth
manifolds. We demonstrate the benefits of incorporating spectral maps in graph learning
pipelines, addressing scenarios where a node-to-node map is not well defined, or in the
absence of exact isomorphism. Our approach bears practical benefits in knowledge distil-
lation and hierarchical learning, where we show comparable or improved performance at a
fraction of the computational cost.

Keywords: Spectral theory, Learning on graphs, Subgraphs, Maps Representation

1. Introduction

Graph learning offers a powerful set of techniques for understanding complex data, which
often call for downsampling or rewiring operations to improve scalability and performance.
One common approach is to perform computations and training on a partial or modified
version of the graph rather than the entire graph. For example, computationally expen-
sive operations can be performed on a coarsened version of the graph, as demonstrated in
works such as Deng et al. (2020). Additionally, graph rewiring, which directly modifies the
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Figure 1: Spectral maps between a full graph (depicted on the left) and three different
graphs, respectively: an isomorphic graph (i), an isomorphic subgraph(ii), and a
non-isomorphic subgraph obtained by randomly rewiring the former (iii) where
the green and red edges are added and removed, respectively.

connectivity, creates an even more challenging scenario (Chan and Akoglu, 2016; Brüel-
Gabrielsson et al., 2022). In these settings, a crucial aspect that is often taken for granted
is the data transfer between graphs and their subgraphs. Recent studies have shown that
transferring information such as positional encoding from a graph to its rewired versions can
improve GNN performance (Brüel-Gabrielsson et al., 2022), highlighting the importance of
effectively transferring information between graphs. However, this task remains challenging
in many scenarios, particularly when the involved graphs are not isomorphic. Although
correspondences between nodes are often provided, utilizing these correspondences as they
are may not always be the optimal solution, leaving room for further improvement.

In this paper, we propose to shift to a spectral representation to compactly encode maps
between graphs and subgraphs in graph learning pipelines. The new representation is a
straightforward replacement into existing models; it is easy to compute, has a regularizing
behaviour leading to improved downstream performance, and bears a natural structure
that is easy to interpret. From a technical standpoint, the map representation is obtained
via a change of basis with respect to the eigenvectors of the graph Laplacian. This idea,
introduced a decade ago in the field of geometry processing under then name of functional
maps (Ovsjanikov et al., 2012), has led to notable advancements in several tasks in graphics
and vision. However, the potential application of this concept in graph learning has not
been explored so far.

We summarize our main contributions as follows:

• We propose the adoption of spectral representations for maps between graphs and
subgraphs. For the first time, we show that such maps exhibit a special structure in
their coefficients, capturing the similarity between the Laplacian eigenspaces of the
two graphs.

• We focus on the problem of feature transfer and include experiments showing practical
applications, such as hierarchical embedding and knowledge distillation, on graphs
spanning a few dozen to tens of thousands of nodes. We demonstrate key benefits in
terms of performance and computational complexity.
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• We conduct an empirical examination of the structure of the spectral map across a
diverse range of graphs and in various scenarios of partiality, including sub-isomorphic
and non-isomorphic graphs. Our findings demonstrate that the map exhibits a distinct
structure in these contexts; see Figure 1 for examples.

2. Related work

In this section, we review the literature on using maps in graph learning models, where our
method has a direct relevance.

Maps for graph learning. Transferring information between non-isomorphic graphs
is a challenging problem in graph learning. This is especially relevant in scenarios such as
domain adaptation (Pilanci and Vural, 2020), meta-learning (Yang et al., 2022b), and feder-
ated learning (Zhang et al., 2021), where the information collected on a set of graphs needs
to be transferred to other graphs. In this paper, we focus on the problem of representing
maps between graphs, given a (possibly partial) node-to-node correspondence; however, it
is worth noting that several methods tackle the complementary problem of determining a
correspondence (Singh et al., 2008; Hermanns et al., 2021; Man et al., 2016) when the latter
is not provided as input.

Hierarchical graph embedding. Many learning-based graph embedding algorithms,
such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016), do
not scale to large graphs and struggle to capture long-distance global relationships (Chen
et al., 2018). To overcome these problems, recent works (Chen et al., 2018; Deng et al.,
2020; Liang et al., 2021) proposed to compute a hierarchy of coarsened graphs on which
to compute the embeddings and then lift the values up to the original graph. In this
framework, an important step is the propagation of embeddings through the coarsened
graphs, which requires a proper refinement step to ensure the quality of the final embedding.
In particular, ensuring smooth propagation between levels has been identified as crucial in
enhancing performance. In our experiments, we show how the spectral representation can
be easily adapted for this step, with beneficial effects on the graph embedding task; we refer
to Section 4.2 for a detailed evaluation.

Knowledge distillation on graphs. The goal of knowledge distillation is to transfer
information from a large model to a smaller one (Hinton et al., 2015). Recently, this
framework has been extended to graphs (Yang et al., 2020; Chen et al., 2020; Yang et al.,
2021). Specifically, Yang et al. (2022a) introduced the concept of geometric knowledge
distillation, which involves transferring graph topology information extracted by a GNN
model from a graph G (Teacher) to a target GNN model; importantly, the target GNN only
has access to a partial view of G (Student). In this paper, we address this task by adopting
the spectral representation to enforce the similarity between the intermediate representation
learned by the teacher and the student (Section 4.3).

3. Background on spectral representation

Graphs and Laplacian eigenvectors. We consider undirected, unweighted graphs G =
(V,E) with nodes V and edges E ⊆ V × V . We denote as A ∈ {0, 1}|V |×|V | the adjacency
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matrix of G, which is a binary matrix where A(i, j) = 1 if an edge connects node i to node
j, and A(i, j) = 0 otherwise.

The symmetric normalized Laplacian for G is defined as the square matrix L = I −
D− 1

2AD− 1
2 , where D is a diagonal matrix of node degrees, with entries D(i, i) =

∑|V |
j=1A(i, j).

This linear operator is symmetric and positive semi-definite; it admits an eigendecompo-
sition L = ΦΛΦ⊤, where Λ is a diagonal matrix that contains the eigenvalues, and Φ
is a matrix having as columns the corresponding eigenvectors concatenated side by side.
Throughout this paper, we assume the eigenvalues (and corresponding eigenvectors) to be
sorted in non-descending order 0 = λ1 ≤ λ2 ≤ . . . ≤ 2; this is important for interpreting
the spectral maps that we define in the sequel.

Each eigenvector ϕl for l = 1, . . . , |V | has length |V |, and can be interpreted as a
scalar function defined on the nodes of the graph; for this reason, we will refer to them as
eigenfunctions. The eigenfunctions form an orthonormal basis for the space of functions
defined on the graph nodes (i.e. Φ⊤Φ = Id). One may consider a subset of eigenfunctions,
namely those associated with the k smallest eigenvalues, to compactly approximate a graph
signal, employing techniques akin to Fourier analysis.

Spectral maps for graphs. The representation we propose directly derives from the
functional maps framework for smooth manifolds Ovsjanikov et al. (2012), extended to the
graph setting in Wang et al. (2019); Hermanns et al. (2021).

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2) and a binary matrix S ∈ R|V2|×|V1|

encoding a node-to-node map T : G2 → G1. Applying an orthogonal change of basis w.r.t.
bases Φ1,Φ2, we get to the representation:

C = Φ⊤
2 SΦ1 , (1)

where Φ1 ∈ R|V1|×k,Φ2 ∈ R|V2|×k contain the first k eigenvectors of the symmetrically
normalized graph Laplacians of G1 and G2 respectively. This matrix C is easy to compute
by simple matrix multiplication. The size of C does not depend on the number of points in
G1 and G2, but only on the number k of basis functions. In other words, C represents the
linear transformation that maps the coefficients of any given function f : V1 → R expressed
as linear combination of Φ1, to coefficients of a corresponding function g : V2 → R expressed
in the eigenbasis Φ2.

Graph nodes may often come with numerical attributes encoding user identities in social
networks, or positional encodings. We can model such data as a collection of functions
f : V1 → R. From Equation 1 we can transfer a function f from G1 to G2 applying the
following formula:

ĝ = Φ2CΦ⊤
1 f , (2)

where Φ⊤
1 projects f in its coefficients, C apply the spectral transfer, Φ2 reconstucts the

transfered signal ĝ.

4. Applications on subgraphs

From now on, we consider the setting where we are given a graph G1 and a possibly noisy
subgraph G2 = (V2, E2) of G1, such that V2 ⊆ V1. In this paper, we define the node-to-
node map T : G2 → G1 as the mapping that associates each node v2i ∈ G2 with the node
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Figure 2: Subset of eigenfunctions from a complete graph G1 and its subgraph G2, with
its the ordering index. We observe that the eigenfunctions of G1 and G2 still
correlate even if not necessarily at the same index.

v1i ∈ G1, which originally represented v2i before the perturbation was applied to G1. In this
case, Equation 1 still holds. Note that in some cases, one may decide to invert the roles of
the graphs G1 and G2, as in Section 4.2. This does not affect the spectral representation of
the map.

4.1. Motivation

Our motivation starts from the observation that in many practical cases, the eigenspaces of
the normalized graph Laplacian are well preserved under non-isomorphic transformations
of the graph, including strong partiality, topological perturbations, and edge rewiring.

According to Equation (1), each coefficient cij of C corresponds to a dot product between
ϕ2
i and Sϕ1

j ; this measures the correlation at corresponding nodes between a Laplacian

eigenvector ϕ2
i of G2, and a Laplacian eigenvector ϕ1

j of G1; see Figure 1.

Figure 2 shows how the eigenfunctions of the complete graph G1, and those of the
subgraph G2 still correlate even if not necessarily at the same index (see pair 5-4) and
the correlation may not be exact (see pair 10-8); the extent to which the eigenfunctions
correlate is captured precisely by the structure of C. In particular, we can see that the
values of the Laplacian eigenfunctions stay approximately the same (up to sign, in the case
of simple spectrum) at the nodes that are not directly involved in the perturbation – which
is to say that the eigenvectors of the partial graph G2, encoded in Φ2, correlate strongly
with the those of G1, encoded in Φ1.

To the best of our knowledge, this observation is not trivial and has not been reported
before. This simple fact leads to the following important observation that is central to our
contribution:

The spectral representation allows us to represent the same (or similar) subspace of
smooth functions by truncating the functional representation at the first k eigenfunctions

Since eigenfunctions align well, we can exploit the spectral maps and the properties
they inherit on the representation and transfer of signals. Classically, maps are represented
as binary matrices S whose dimensions scale quadratically with the number of nodes in
the graphs. This observation allows us to use the spectral map as a compact and sparse
representation that still provides an efficient way of transferring information between graphs.
Furthermore, as we will show in the rest of this section, the properties inherited from this
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representation provide advantages in applications. In all the following experiments, we
inject the spectral representation in learning procedures only where information transfer is
needed, leaving the rest of the pipeline unchanged. In Section 5, we show empirical evidence
of this behavior and describe its practical consequences.

Table 1: Hierarchical embedding : Mean classification accuracy on the task of node classifi-
cation.

Node2Vec Graph Walk GraphSAGE

Cora Citeseer Pubmed Cora Citeseer Pubmed Cora Citeseer Pubmed

Graphzoom 0.77 0.64 0.79 0.76 0.65 0.78 0.72 0.55 0.74

Ours (5%) 0.78 0.67 0.79 0.77 0.67 0.80 0.68 0.56 0.74

Ours

(% eigs)

0.79

(10%)

0.67

(2.5%)

0.80

(10%)

0.79

(15%)

0.68

(2.5%)

0.80

(0.05)

0.74

(20%)

0.59

(60%)

0.74

(5%)

4.2. Hierarchical Graph Embedding

Hierarchical Graph Embedding aims to learn graph embedding considering a hierarchy of
coarsened graphs. First, each level of the hierarchy is constructed from the original graph.
Then, an embedding is computed on the last level (i.e. smallest subgraph), and finally, it
is lifted to the original graph. In this case, the correspondence between the original graph
and its subgraphs is given by construction.

In this section, we show that transferring the embeddings across the hierarchy levels via
the spectral map is beneficial in the applications. To this end, we consider the state-of-
the-art Hierarchical Graph embedding approach GraphZoom Deng et al. (2020) to compute
the coarsened graphs. Then, we transfer the embedding using Equation (2) in the reverse
direction, as we transfer the signal from the subgraph to the full graph. Equation (2) still
holds, but G1 is now the subgraph, and G2 is the full graph. The spectral map is computed
from the ground truth correspondences obtained during the coarsening phase.

To evaluate performance, we tackle the task of node classification. The classification
is performed by a linear logit regression model that takes as input the embedding lifted
up through the hierarchy of graphs. As done in Deng et al. (2020), we consider two levels
of coarsening. Table 1 shows the node classification accuracy of our method compared to
GraphZoom Deng et al. (2020) and a baseline n2n. We consider here three graphs (Cora,
Citeseer and Pubmed) and three embedding algorithms (node2vec Grover and Leskovec
(2016), DeepWalk Perozzi et al. (2014) and GraphSAGE Hamilton et al. (2017a)), simi-
larly to Deng et al. (2020). The only hyperparameter of our approach is the number of
eigenvectors k employed in the spectral map computation. In the last two rows of Table
1, we report the best accuracy obtained using the fixed percentage 5% (Ours fixed) and
at varying percentages of eigenvectors (Ours). The GraphZoom method is replicated using
the parameters provided by the official code repository.

Regularizing behavior. Using k ≪ n eigenvectors in the construction of C has a
regularizing effect on the map, akin to a low-pass filtering of the correspondence. It was
already demonstrated in Nt and Maehara (2019) and Li et al. (2019) that smoothing signals
can improve performance on graphs. Our results validate this idea once again. We analyze
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this behaviour in Appendix A.3 and C, showing qualitative and quantitative results on the
smoothing effect.

Table 2: Knowledge distillation: Results of node classification accuracy over multiple runs.
We compare the spectra representation (Ours) with the methods proposed by Yang
et al. (2022a) (GKD-G, GKD-R, GKD-S, PGKD). For Ours we also report the
percentages of eigenvectors used in the spectral map.

Cora Citeseer Amazon-photo Amazon-computer Coauthor-cs Pubmed

Node-aware knowledge setting

ORACLE 87.74 ± 1.41 70.35 ± 1.30 93.00 ± 0.63 90.90 ± 0.56 92.89 ± 0.41 86.33 ± 0.25

TEACHER 85.52 ± 0.51 68.91 ± 1.62 91.93 ± 0.11 89.34 ± 0.42 92.25 ± 0.45 85.16 ± 0.56

STUDENT 82.87 ± 2.09 69.19 ± 2.27 92.30 ± 0.40 85.41 ± 2.30 85.67 ± 2.28 85.09 ± 0.16

GKD-G 88.08 ± 0.95 71.07 ± 0.36 92.02 ± 0.41 90.13 ± 0.19 92.75 ± 0.61 85.97 ± 0.15

GKD-R 88.13 ± 1.32 70.83 ± 1.89 92.44 ± 0.43 88.25 ± 0.79 92.13 ± 0.86 86.05 ± 0.42

GKD-S 87.64 ± 0.56 71.15 ± 0.88 92.44 ± 0.67 89.95 ± 0.50 92.26 ± 0.37 86.01 ± 0.27

PGKD 86.71 ± 0.82 68.95 ± 0.55 92.21 ± 0.67 89.80 ± 0.12 92.02 ± 0.14 86.36 ± 0.34

Ours

(% eigs)

88.08 ± 1.11

(12%)

71.15 ± 1.13

(50%)

92.84 ± 0.28

(25%)

90.94 ± 0.50

(50%)

92.13 ± 0.37

(50%)

86.42 ± 0.39

(50%)

Edge-aware knowledge setting

ORACLE 87.74 ± 1.41 70.35 ± 1.30 93.00 ± 0.63 90.90 ± 0.56 92.89 ± 0.41 86.33 ± 0.25

TEACHER 81.88 ± 1.49 67.11 ± 2.05 90.57 ± 1.04 87.47 ± 0.26 91.14 ± 0.54 83.19 ± 0.49

STUDENT 82.82 ± 0.31 70.47 ± 1.42 92.42 ± 0.54 77.86 ± 3.20 83.38 ± 1.48 84.52 ± 0.31

GKD-G 87.54 ± 0.23 71.51 ± 0.82 91.76 ± 0.60 89.53 ± 0.12 91.98 ± 0.07 86.09 ± 0.14

GKD-R 86.76 ± 1.48 71.11 ± 0.70 92.12 ± 0.36 88.29 ± 0.58 91.73 ± 0.35 86.06 ± 0.64

GKD-S 87.05 ± 1.20 71.31 ± 2.65 92.00 ± 0.53 88.49 ± 0.64 91.51 ± 0.47 86.07 ± 0.43

PGKD 86.21 ± 0.56 69.59 ± 0.68 92.42 ± 0.31 89.30 ± 0.61 91.65 ± 0.25 86.86 ± 0.48

Ours

(% eigs)

86.26 ± 0.39

(4%)

71.47 ± 0.62

(4%)

92.14 ± 0.24

(25%)

90.16 ± 0.46

(50%)

91.80 ± 0.33

(50%)

85.81 ± 0.10

(50%)

4.3. Geometric Knowledge Distillation

The aim of Geometric Knowledge Distillation Yang et al. (2022a) is to transfer topological
knowledge from a teacher model to a student model, which has only a partial vision of the
graph. In particular, the teacher model is trained on G1 = (V1, E1) and the student on
G2 = (V2, E2). In this scenario, we can exploit the spectral map to align the features that
the teacher and student models are learning. For this purpose, we define the following loss:

||CΦT
1 xt − ΦT

2 xs|| (3)

where xt ∈ R|V1|×d and xs ∈ R|V2|×d are the features computed by the teacher and the
student, Φ1 ∈ R|V1|×k and Φ2 ∈ R|V2|×k are the eigenvectors on the teacher and student
graph respectively and C ∈ Rk×k is the spectral map between the two graphs. We remark
that both Φ1 and Φ2 are precomputed before training time.

In Table 2, we compare the student trained with Equation (3) with the methods pro-
posed in Yang et al. (2022a) using different kernels: gaussian kernel (GKD-G), random
kernel (GKD-R), sigmoid kernel (GKD-S) and parametric kernel (PGKD). In the first three
rows, we also report the performance of the ORACLE model (trained and tested on G1),
TEACHER (trained on G1 and tested on G2) and STUDENT (trained and tested on G2).
We consider two settings: node-aware where the subgraph’s nodes are a subset of the full
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graph’s node V2 ⊂ V1; edge-aware where the subgraph’s edges are a subset of the full graph’s
edges, but the nodes are the same E2 ⊂ E1 and V2 = V1. In both cases, the partiality con-
sidered is 50%. We report the node classification accuracy over three runs with random
initialization. We train all the models for 500 epochs.

In all the datasets, the spectral representation reaches an accuracy comparable with at
least one of the methods proposed by Yang et al. (2022a). In particular, in the node-aware
setting, the spectral map always performs as the first or second-best method. The edge-
aware setting corresponds to a non-isomorphic transformation of the graph. In this case, as
we will show in Section 5.2, the spectral representation still holds a compact representation,
but at higher percentages of partiality, the correlation between the eigenspaces of the graphs
tends to be weaker. As the results show, this can damage the performance of the spectral
representation, even if not drastically. We believe this can lead to further investigation of
the non-isomorphic mapping of graphs.

The spectral representation is also a faster method than Yang et al. (2022a). Since the
eigenvector can be precomputed at training time, the only additional expense is a simple
matrix multiplication. The spectral representation can reach a speedup of 200% compared
to Yang et al. (2022a). In Appendix D we show the full table with the computation time
per epoch and speed-ups.

5. Empirical results and analysis

So far we have seen how the spectral representation can be easily plugged into existing
pipelines showing competitive performances. In this section, we analyse the structure of
the spectral map under different kind of partialities to give further insights on its benefits.

5.1. Map structure

In Section 4.1, we highlighted how the preservation of the eigenspaces between a graph and
a subgraph is reflected in the structure of the spectral map C. In 3D geometry processing, a
similar behaviour was observed for the discrete Laplace-Beltrami operator under partiality
transformations (Rodolà et al., 2017; Postolache et al., 2020); however, their theoretical
analysis assumes the data to be Riemannian surfaces with a smooth metric – an assumption
that does not hold in the case of general graphs.

In Appendix A.2, we directly compare the spectral maps computed on smooth surfaces
and graphs. Interestingly, in both cases, we observe a slanted-diagonal structure. This
structural pattern finds its theoretical explanation on smooth surfaces by applying Weyl’s
law, as demonstrated in Rodolà et al., 2017, Eq. 9. In contrast, the existence of this di-
agonal structure in graph-based maps remains enigmatic due to the complete absence of
metric information. Despite this theoretical gap, we observe that this diagonal pattern per-
sists even when subjected to various edge removal scenarios, hinting at profound algebraic
implications.

5.2. Non-isomorphic subgraphs

In many practical settings, there are cases where the subgraph G2 is contained in the bigger
graph G1 only up to some topological alterations; for example, in the graph learning liter-
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Figure 3: Robustness of the map to the simultaneous action of partiality and rewiring of
the subgraph. We compare the addition of Gaussian noise with the impact of
increasing rewiring on the spectral map C of size 50 × 50. On the left, we plot
three graphs with their spectral map: no rewiring (Subgraph), the addition of
Gaussian noise (Noise), 3% and 30% of edges rewired. On the right, we plot
the variation of C at different percentages of rewiring (solid lines) and with the
addition of noise (dashed lines) for each graph.

ature, topological perturbations frequently occur due to noise in the data or are explicitly
obtained by rewiring operations (Chamberlain et al., 2021) or adversarial attacks (Jin et al.,
2021) among others.

In Figure 1, we show the spectral map between Minnesota and a subgraph after rewiring
(iii). We still observe a correspondence between the eigenvectors of the full graph and those
of the subgraph. The spectral map has a sparse pattern, but it loosens up as the topological
modifications increase. For this to be true, we expect small changes in graph connectivity to
lead to small changes in the matrix coefficients. See Appendix B.2 for the formal definition.

In Figure 3, we evaluate the changes of the spectral map at increasing percentages
of rewiring of a subgraph. We consider six graphs and compute a subgraph from each
one. Then, we apply small incremental changes to the topology of the subgraphs, with
increments of 3% of the total number of edges; the changes are performed by removing
and adding random edges, obtaining new subgraphs Gi. The plot on the right shows how
much the increasing topological changes affect the spectral map representation compared to
adding Gaussian noise. In all the cases, the rewiring produces less variation in the spectral
map than in adding Gaussian noise. In particular, the functional representation is more
robust on larger graphs, such as cat (10000 nodes) or citeseer (2120 nodes), while on smaller
graphs, such as QM9 (29 nodes) and Karate (34 nodes), removing or adding an edge has
a more significant impact. This observation demonstrates the effectiveness of the spectral
representation, especially on larger graphs. We show the complete qualitative analysis in
Appendix B.2.

All the remarks directly depend on graph connectivity, and it is hard to find analogies for
smooth surfaces. We conjecture that local topological transformations of a graph, while they
can undoubtedly induce strong transformations of some of its Laplacian eigenspaces (similar
to single-point perturbations on planar manifolds, see Filoche and Mayboroda (2012)), are



Pegoraro Marin Rampini Melzi Cosmo Rodolà

less likely to distort all the eigenspaces at once. This way, the spectral map matrix tends
to maintain its global structure intact and exhibits local perturbations.

6. Conclusions

In this paper we highlighted the advantages of the spectral representation for encoding
graph and subgraph maps, demonstrating its importance and efficacy in graph learning
pipelines.

Further, while in this paper we showed extensive evidence that the spectral map repre-
sentation bears a special structure depending on the type of partiality, currently we have
not taken full advantage of this structure. When the task at hand requires seeking for
the subgraph alignment, i.e. whenever the map is unknown, it may be possible to design
stronger regularizers to induce sparsity in the matrix representation of the map. This is
quite different from the better-known setting of 3D surfaces, where this sparse structure is
typically just diagonal or slanted-diagonal.

In light of the increasing interest of the graph learning community toward spectral
techniques, adopting a spectral representation for maps between graphs is a natural next
step; it is simple to adopt, easy to manipulate, and memory-efficient and has the potential
to become a fundamental ingredient in spectral graph learning pipelines in the near future.
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Appendix A. Interpretation of the spectral map matrix

A.1. Spectral maps on surfaces

Consider two smooth manifolds M and N , and let T : N → M be a point-to-point map
between them. Given a scalar function f : M → R, the map T induces a spectral mapping
via the composition g = f ◦ T , which can be seen as a linear map TF : f 7→ g from the
space of functions on M to the space of functions on N . As a linear map, the functional
TF admits a matrix representation after choosing a basis for the two function spaces.

To this end, consider a discretization of M and N , with vertices V1 and V2 respectively,
and the corresponding discretized version of their Laplace-Beltrami operators (LBOs) (the
counterpart of the graph Laplacian on smooth manifolds). The first k eigenfunctions of the
two LBOs can be concatenated side by side as columns to form the matrices Φ ∈ R|V1|×k

and Ψ ∈ R|V2|×k. Further, assume the pointwise map T is available and encoded in a binary
matrix S, such that S(y, x) = 1 if y ∈ V2 corresponds to x ∈ V1, and 0 otherwise. By
choosing Φ and Ψ as bases, the spectral map TF can be encoded in a small k× k matrix C
via the change of basis formula:

C = Ψ†SΦ , (4)

where † is the Moore-Penrose pseudoinverse. The size of C does not depend on the number
of points in M and N , but only on the number k of basis functions. In other words,
C represents the linear transformation that maps the coefficients of any given function
f : M → R expressed in the eigenbasis Φ, to coefficients of a corresponding function
g : N → R expressed in the eigenbasis Ψ.

When the pointwise similarity S is unknown, one can directly compute the matrix C
as the solution of a regularized least-squares problem with k2 unknowns, given some input
features on the two surfaces (e.g., landmark matches or local descriptors). For further
details we refer to Ovsjanikov et al. (2012, 2017).

A.2. Comparison with smooth surfaces

In the case of smooth surfaces, it has been shown (Rodolà et al., 2017) that the sparsity
pattern of matrix C can be well approximated by a simple formula. Given a surface M
and an isometric part N , the matrix C is approximately diagonal, with diagonal angle α
proportional to the ratio of surface areas:

α ∼ Area(N )

Area(M)
. (5)

As a a special case, full-to-full isometric shape matching yields a diagonal matrix C, since
Area(N ) = Area(M). This result comes directly from an application of Weyl’s asymptotic
law for Laplacian eigenvalues of smooth manifolds (Weyl, 1911), which relates the eigenvalue
growth to the surface area of the manifold via the relation:

λℓ ∼
(2π)2

Area(M)2/d
ℓ2/d , ℓ → ∞ (6)
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where d is the dimension of the manifold (d = 2 for surfaces). We refer to Rodolà et al.,
2017, Eq. 9 for additional details pertaining surfaces.

However, Weyl’s law (Equation 6) does not hold for graphs, since there is not a well-
defined notion of “area” of a graph. In fact, when we work with graphs and subgraphs, we
observe that matrix C does not necessarily follow a diagonal pattern. More general sparse
structures are observed in the coefficients of C, but an explanation rooted in differential
geometry is not readily available.

M

N

G1

G2 G3 G4

+1

0

−1

Figure 4: A spectral map between a full and a partial surface (left) compared to the spectral
maps between a graph and three different subgraphs (right).

In Figure 4 we show several examples of matrix C for different subgraphs. On the left
we show the spectral map matrix between a smooth surface M and a deformed part N :
the slanted-diagonal structure suggests that the eigenspaces of M are mostly preserved in
N . On the right, we show the spectral map matrices between a graph G1 and different sub-
graphs: G2 is obtained by removing 40% of the nodes of G1, while G3, G4 are obtained by
removing 55% and 80% of the edges from G2 respectively. The slanted-diagonal structure
can still be observed and gets dispersed only at very high partiality. In the graphs, corre-
sponding nodes have the same color. The slanted-diagonal structure of the map between M
and N is explained by an application of Weyl’s law to 2-dimensional Riemannian manifolds.
However, there is no theoretical counterpart to explain the map structure between G1 and
its subgraphs, due to the complete absence of metric information about the underlying sur-
face: the eigenfunctions are computed purely from the graph connectivity. Yet, the diagonal
structure is preserved even under rather dense removal of edges, suggesting deeper algebraic
implications.

One might legitimately ask whether the presence of a structure in the maps of Figure 4
is due to the specific choice of the data, where the subgraphs derive from a 3D mesh (al-
though the normalized graph Laplacian dismisses any edge length information) and where
the type of partiality resembles a neat ‘cut’ (although we also perform random edge re-
movals). However, the same behavior is also observed with abstract graphs. In Figure 6,
we report additional examples with large abstract graphs undergoing partiality transforma-
tions, showing that clear patterns appear rather consistently across different datasets.

A.3. Number of eigenvectors

Given two graphs G1 and G2 with m and n nodes respectively, the node-to-node map S
has size n×m, thus scaling quadratically with the number of nodes.
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CORA
class removal

CORA
random cut

Figure 5: Spectral maps between CORA and two different subgraphs.

By contrast, matrix C as defined in Equation 1 has dimensions that only depend on the
number of Laplacian eigenvectors encoded in the matrices Φ1,Φ2. If one chooses the first
k1 ≪ m Laplacian eigenvectors for G1 and the first k2 ≪ n Laplacian eigenvectors for G2,
the size of C is k2 × k1. Observe that C is rectangular in general, but can be made square
by choosing k1 = k2 if so desired.

The experiments in Figure 10 and 7 show that as the number of eigenvectors increases,
the performance also increases. The Mean Average Precision (MAP) is defined as 1

n

∑n
i=1

1
rai

where rai is the rank (position) of positive matching node in the sequence of sorted candi-
dates. In particular, Figure 7 demonstrates that, in most of the cases, a low percentage of
eigenvectors (about 5%) suffices to retrieve a good node-to-node correspondence; while at
50% of the eigenvectors on all graphs the error is above 90%. As a general guideline, in this
paper we typically use k = 20 ∼ 50 for a graph with 1000 nodes, leading to an especially
compact representation C.

A.4. Choice of Laplace operator

A spectral map can be computed from the eigenbasis of any linear operator. In this paper,
we use the symmetrically normalized graph Laplacian L = I−D

1
2AD

1
2 . A valid alternative

is the standard Laplacian L = D − A, which shows similar behavior to the normalized
counterpart. At a practical level, we observed that the Laplacian L suffers from more
problems of high multiplicity at lower frequencies, see Figure 8.

In the special case where the graph is constructed on top of a point cloud sampled
from a (possibly high-dimensional) manifold M, it has been shown that the eigenvectors
of the normalized graph Laplacian converge to the eigenfunctions of the Laplace-Beltrami
operator on M (Belkin and Niyogi, 2006). However, as discussed in Appendix A.2, our
case is more general. We consider generic abstract graphs without an explicit underlying
manifold, i.e. we do not construct our graphs from input point clouds. Further, in Belkin
and Niyogi (2006) it is assumed that M is a compact infinitely differentiable Riemannian
submanifold of Rd without boundary, meaning that partiality transformations, which are
the main focus of this paper, are not considered.

Appendix B. Dataset and implementation details

In this section we report additional details about the experimental setup used in the main
manuscript.
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CORA

full graph: 2485 nodes; subgraph: 1491 nodes
1

100

500

PPI0

full graph: 1546 nodes; subgraph: 1428 nodes
1

100

1k

Amazon Photo

full graph: 7487 nodes; subgraph: 1609 nodes

1

100

1k

1

940
1 3.7k

Amazon Computer

full graph: 13381 nodes; subgraph: 800 nodes

1

100

800

Figure 6: spectral maps computed over abstract graphs from 4 different datasets
(CORA (McCallum et al., 2000), PPI0 (Hamilton et al., 2017b), Amazon
Photo (McAuley et al., 2015) and Amazon Computer (McAuley et al., 2015)),
showing a clear pattern in all cases. For each dataset, we compute the spec-
tral map matrix C between the complete graph and a subgraph; the subgraph
is obtained according to a semantic criterion depending on the dataset, e.g., for
Amazon Photo, by considering the subgraph of nodes belonging to the same prod-
uct category. For each spectral map matrix C, we also show a zoom-in (framed
in red). All the matrices are sparse, and have a clean structure that in some cases
approximates a slanted diagonal. The wide matrix on the bottom is computed
on Amazon Photo (using a different subgraph than the one used in the example
above it), and shows that the sparse behavior is maintained throughout the entire
spectrum.

B.1. Datasets

In Table 3 we sum up the main statistics across all the datasets and benchmarks used in
our experiments. In addition to number of nodes, number of edges, graph diameter and
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Eigenvectors percentage

M
A
P
(%

)
Figure 7: MAP(%) of the correspondence on different datasets at increasing number of

eigenvectors (expressed as percentages, growing from 1% to 75%). The corre-
spondences are obtained from ground-truth spectral maps.

L = D − A L = I − D−1/2AD−1/2

Figure 8: Spectral maps computed with two different Laplacians between the CORA graph
and its subgraph.

average node degree, in the table we also report the application domain of each dataset,
the task where they are used, the type and number of node-wise features (where used).
Since PPI and QM9 are collections of graphs, we used only a subset. In particular, from
the PPI dataset we used the first and fourteenth graphs (specified with 0 and 13 in the
experiments). The Cat graph is derived from the corresponding mesh of the SHREC’16
Partial Deformable Shapes benchmark (Cosmo et al., 2016).

B.2. Robustness to rewiring

In this Section, we formally define the connectivity changes and spectral map robustness
used in Section 5.2. Given two graphs G = (V,E) and G′ = (V ′, E′), we measure the
amount of change from G to G′ as the (minimum) number of edits needed to transform E

to E′, divided by |E|: (|E−E′|+|E′−E|)
|E| . In our experiments, we consider small changes in the

graph connectivity as a perturbation of 3% of the edges. The rewiring operation we applied
to the graphs consists of the deletion or addition of the same number of edges.
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cat

Minnesota

CORA

QM9

Karate

1

-1

0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

(a) The plotted matrices represent the spectral map between the full and partial graphs from
0% to 30% of rewiring, showing the effect of rewiring on the spectral map structure.

cat

Minnesota

CORA

QM9

Karate

2

0

3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

(b) The plotted matrices encode the element-wise error of the spectral map after the topo-
logical perturbations. Error is encoded as color, growing from white to red.

Figure 9: Robustness of the map to the simultaneous action of partiality and rewiring of the
subgraph. The rewiring operations are increasingly stronger, with increments
of 3% of the total number of edges (starting from 3% and reaching 30%). The
second column shows one representative example (per dataset) of such topolog-
ical modifications, depicting the added edges in green, and the removed edges
in red. The plotted matrices represent the spectral map after the topological
perturbations, showing the effect of rewiring on the spectral map structure.
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Table 3: Summary of statistics about the datasets used in our experiments.

Dataset Nodes Edges Diameter
Average

degree
Domain Task Features

Number of

features

QM9 29 47 6 3.24 Chemistry Graph regression - -

Karate 34 78 5 4.59 Social networks Node classification - -

PPI 0 1546 17699 8 21.90 Chemistry Graph regression Gene attributes 50

Citeseer 2120 3731 28 3.50 Citation networks Node classification Bag-of-Words 3703

Cora 2485 5069 19 4.08 Citation networks Node classification - -

Minnesota 2635 3298 98 2.5 Roadmap - - 1,433

PPI 13 3480 56857 8 31.68 Chemistry Graph regression Gene attributes 50

Douban 3906 8164 13 4.18 Social networks Network alignment - -

Amazon Photo 7487 119044 11 31.80 Co-purchase Node classification Bag-of-Words 745

Cat 10000 19940 86 5.99 Geometry processing Shape matching - -

FraudAmazon 11944 4417576 4 739.71 Product reviews Fraud detection Bag-of-Words 25

Amazon Computer 13381 245778 10 36.74 Co-purchase Node classification Bag-of-Words 767

Coauthor-cs 18333 163,788 24 8.93 Citation networks Node classification Bag-of-Words 6,805

Pubmed 19717 88,648 18 4.5 Citation networks Node classification Bag-of-Words 500

We define the difference between the spectral map C and C ′ as ∥C − C ′∥2F . Note that
there is ambiguity in the sign of the eigenfunctions of C ′; to factor it out from the error
computation, we use the sign that minimizes the error.

In Figure 9 we show the spectral maps generated from the experiment in Figure 3.
Figure 9(a) shows the spectral map between the full and partial graphs from 0% to 30%
of rewiring; Figure 9(b) shows the variation in the functional representation between the
non-rewired case and the different percentages of rewiring.

Original graph Sub graph

1% 10% 75%

Percentage of eigenfunctions

R
M
S
E

Figure 10: RMSE obtained by transferring positional encodings (PE) using the spectral
map with an increasing amount of eigenfunctions. On the left, we show a qual-
itative example of signal transfer on PPI0. The first row shows the full graph
and the partial graph, with the PE plotted on top. The bottom row shows the
results of signal transfer with different percentages of eigenfunctions. On the
right, we plot the RMSE at increasing percentages of eigenfunctions.

Appendix C. Hierarchical Graph Embedding: additional results

Figure 11 shows on Cora an example of embedding transferred from the coarsest level to
the next in the hierarchy. We use a spectral map computed with the first 5% eigenvectors
(last column). The spectral transfer performs an evident smoothing on the embedding,
compared to Graphzoom (middle column). As further evidence, we plot the classification
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Node2Vec GraphZoom Ours

Figure 11: The Node2Vec embedding is, from left to right, applied to the coarsened graph,
transferred to the full graph with GraphZoom and with the spectral map. We
remark the smoothing effect of the spectral representation.
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Figure 12: Node classification accuracy on the task of Hierarchical Graph Embedding at
different percentages of eigenvectors.
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accuracy at varying percentages of eigenvectors (Figure 12 in Appendix C). Importantly, the
performance peaks with few eigenvectors and then decreases when increasing the number
of eigenvectors up to the complete base. In particular, when we use all the eigenvectors Φ1

and Φ2 to construct C, Equation 1 corresponds to an orthogonal change of basis; therefore,
the representations S and C are equivalent and have the same dimensions. Truncating the
bases to the first k1 and k2 eigenvectors, as described in Appendix A.3, yields a low-rank
approximation C ≈ S.

In Figure 12, we report the accuracy performance for different percentages of eigenvec-
tors in the experiment of Section 4.2. Even if, the regularizing effect is desirable in many
cases but is traded off for a loss in accuracy if a precise node-to-node correspondence is
desired. On the one hand, if the map C is used to transfer a smooth signal (e.g. node-wise
features like spectral positional encodings or carrying semantic information depending on
the data), then the loss in accuracy is negligible since Laplacian eigenvectors are optimal
for representing smooth signals (Aflalo et al., 2015); on the other hand, transferring non-
smooth signals via a small C has the effect of filtering out the high frequencies. If high
frequencies are desired, it is often sufficient just to increase the values of k1, k2, leading
to a bigger matrix C. The performance of the spectral map rapidly increases at low per-
centages demonstrating the need for a few eigenvectors to obtain a good embedding lifting.
When the percentages are higher than 50% the accuracy decreases reaching the values of
the node-to-node map at 100%. This phenomenon demonstrates that the spectral map can
approximate the node-to-node map at 100% eigenvectors, but it is not the most convenient
representation for the Hierarchical Embedding on graphs.

C.1. Signal Transfer

In Section 4.2 and 4.3, we leveraged Equation 2 to transfer information between graphs.
To better understand how the spectral representation afflicts the transferred signal, in
Figure 10, we analyze the spectral map transfer performance while increasing the number of
eigenfunctions used for the map representation. We evaluate the fidelity of the transferred
signal with the Root Mean Squared Error between the transferred signal ĝ and the ground
truth signal g (obtained via the ground truth node-to-node correspondence):

RMSE =

√√√√ 1

n

n∑
i

(g(i) − ĝ(i))2 , (7)

where n is the number of nodes in the subgraph. We consider pairs composed of the
original graph and a series of subgraphs extracted according to a semantic criterion, e.g.,
nodes belonging to the same class or nodes connected by the same edge type. Motivated by
the results from Brüel-Gabrielsson et al. (2022), we transfer the Random Walk Positional
Encoding (Dwivedi et al., 2022) computed on the full graphs to the subgraphs. We normalize
each dimension of the node features of the original graph to exhibit zero mean and unitary
standard deviation throughout all the nodes and then transfer this signal through Equation
2. In Figure 10, we can see how the Root Mean Squared Error between the spectral
map and the ground truth transfer decreases as the number of eigenfunctions increases.
In particular, the error is almost steady between 30% and 75%. This demonstrates the
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convenience of using fewer eigenvectors. The qualitative examples on the left of Figure 10
portray the transferred signal on PPI0. The transfer reaches a good approximation at 1%
of the eigenfunctions, while at 10% and 75% they are almost identical. This behaviour
demonstrates that using a compact representation with few eigenvectors can approximate
the signal well.

Appendix D. Geometric Knowledge Distillation: additional results

Table 4: Computation time per epoch in the task of Knowledge Distillation. For each
methods we report the mean time per epoch in milliseconds and the speed up
with respect to Ours (5%). For the spectral map, we report the performance with
both 5% and 10% of eigenvectors.

Cora Citeseer Amazon-photo Amazon-computer Coauthor-cs Pubmed Coauthor-physics

ORACLE 2.47 (54%) 2.68 (54%) 3.75 (47%) 6.27 (40%) 5.22 (51%) 2.75 (50%) 10.84 (48%)

TEACHER 2.47 (54%) 2.68 (54%) 3.75 (47%) 6.27 (40%) 5.22 (51%) 2.75 (50%) 10.84 (48%)

STUDENT 2.81 (47%) 2.95 (49%) 3.18 (55%) 4.32 (59%) 5.24 (51%) 2.84 (48%) 9.24 (56%)

GKD-G 7.28 (−37%) 7.67 (−32%) 25.79 (−265%) 15.25 (−45%) 18.80 (−76%) 14.76 (−169%) 39.66 (−91%)

GKD-R 9.51 (−79%) 9.86 (−69%) 21.78 (−208%) 16.85 (−60%) 20.27 (−90%) 16.46 (−200%) 41.29 (−99%)

GKD-S 6.27 (−18%) 6.51 (−12%) 17.31 (−145%) 13.90 (−32%) 17.45 (−64%) 13.68 (−149%) 38.35 (−85%)

PGKD 7.90 (−48%) 8.19 (−40%) 17.53 (−148%) 18.44 (−75%) 20.36 (−91%) 15.56 (−183%) 45.02 (−117%)

Ours (5%) 5.32 (0%) 5.83 (0%) 7.07 (0%) 10.53 (0%) 10.66 (0%) 5.50 (0%) 20.77 (0%)

Ours (10%) 5.51 (−4%) 6.18 (−6%) 7.20 (−2%) 10.63 (−1%) 10.97 (−3%) 5.83 (−6%) 21.97 (−6%)

In Table 4 we show the mean epoch time registered during training. For each method
and datset we report both the time in millisecond and the speed up compared to Ours (5%).
The spectral representation is able to reach a speed up of 200% in some cases, demonstrating
its convenience in terms of computation efficiency.
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