

CLIP AS A PRIOR TEACHER: BREAKING THE LABEL DEPENDENCY IN SEMI-SUPERVISED LEARNING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Semi-supervised learning (SSL) has shown remarkable potential in scenarios with
012 limited labeled data. However, our study reveals that existing SSL approaches
013 remain inherently label-dependent—their ability to exploit unlabeled samples is
014 bounded by the quantity and quality of labeled data. To address this limitation, we
015 establish a portable asymmetric-modalities co-training framework for efficiently
016 integrating CLIP into SSL, termed CaPT. CaPT aggregates predictions from a
017 fully fine-tuned unimodal network and a parameter-efficiently fine-tuned multi-
018 modal CLIP model via carefully designed co-pseudo labels, which guide training
019 by refining CLIP’s biased predictions and supplementing reliable prior for SSL
020 without compromising efficiency. Moreover, the asymmetric-modalities mitigates
021 the pattern-homogeneity bottleneck observed in previous co-training methods,
022 enabling richer cross-model information exchange. CaPT consistently achieves
023 state-of-the-art performance across multiple SSL benchmarks. Notably, it out-
024 performs the second-best method by **21.38%** and **4.05%** on the CIFAR-100 and
025 EuroSAT datasets, respectively, under the one-label-per-class setting, demon-
026 strating its strong potential in low-label regimes.
027

1 INTRODUCTION

028
029 Semi-supervised learning (SSL) aims to reduce the reliance of supervised training on large-scale
030 labeled data. Recent advances in thresholding strategies (Zhang et al., 2021a; Wang et al., 2023) and
031 generalization techniques (Berthelot et al., 2019b;a; Huang et al., 2023) have significantly enhanced
032 SSL performance. Even in low-label regimes, SSL achieves promising results (Han et al., 2025).
033 Nevertheless, we note that SSL methods still exhibit a heavy dependency on labeled data, with per-
034 formance dropping sharply once label quantity falls below a critical threshold. As shown in the left
035 subfigure of Figure 1a, SSL algorithms perform competitively on the CIFAR-10 dataset (Krizhevsky,
036 2009) with as few as 400, 25, or even 4 labeled samples per class. However, their performance de-
037 teriorates markedly when the labeled data is reduced to just one sample per class. In addition, the
038 quality of labeled samples matters. Following prior work (Sohn et al., 2020), under the one-label-
039 per-class setting on CIFAR-10, we construct three labeled training sets using the prototypicality
040 ordering mechanism (Carlini et al., 2019): Set 0 contains the most prototypical image for each
041 class, while Set 2 contains the least prototypical images. The radar chart in Figure 1a shows that
042 SSL algorithms achieve the highest performance when trained on Set 0 and the lowest performance
043 when trained on Set 2. Diving deeper, Figure 1b shows that, during FreeMatch (Wang et al., 2023)
044 training, pseudo label accuracy is substantially lower when the labeled samples are less prototypical.

045 To complement these empirical observations, we present a analytic model and a supporting theorem.
046 Under a prototype-based Gaussian-mixture generative model, let g denote the minimum inter-class
047 centroid distance, σ^2 the per-class noise variance, B a uniform bound on the systematic bias of
048 the chosen labeled prototypes (i.e., non-prototypicality), and n_{\min} the minimum number of labeled
049 samples per class. Define $\varepsilon_n := \frac{2\sigma}{\sqrt{n_{\min}}} \sqrt{\log\left(\frac{K 2^{d/2}}{\eta}\right)}$, where K is the number of classes and d the
050 input dimension. Let $r := B + \varepsilon_n$. we derive the following bound on the pseudo label error:

051 **Theorem 1.1.** *With probability at least $1 - \eta$ over the labeled-sample draws, the nearest-prototype
052 pseudo label error for any class c satisfies*

$$053 \Pr_{x|y=c} (\hat{y}(x) \neq c) \leq (K - 1) 2^{d/2} \exp\left(-\frac{(g/2 - r)^2}{4\sigma^2}\right). \quad (1)$$

Figure 1: Motivating example of CaPT. (a) Existing SSL methods exhibit significant performance degradation under restricted labeled data. (b) The quality of labeled data affects the accuracy of pseudo labels for unlabeled data. (c) SSL struggles to benefit from unlabeled data when labeled data are extremely scarce.

Figure 2: Different framework for integrating CLIP into SSL. CLIP-Adapter and DebiasPL suffer from limited learning capacity and biased prior, resulting in unreliable predictions. In contrast, CaPT balances efficiency and reliability.

Consequently, the upper bound of the pseudo label error decays exponentially in $(g/2 - r)^2 / \sigma^2$ when $g/2 > r$. Increasing the prototype bias B , or reducing the labeled sample size (which increases ε_n), directly reduces the effective margin $g/2 - r$. A smaller margin in turn enlarges the upper bound of the pseudo label error, thereby substantially increasing the risk that the actual pseudo label error will rise. This reveals a fundamental limitation of existing SSL methods: *the utilization of unlabeled samples depends heavily on the properties of labeled data*. More concretely, although SSL ostensibly depends on two data sources, the utility of unlabeled samples is tightly **coupled** to labeled data. Paradoxically and unexpectedly, as the supervision from labeled data deteriorates, SSL instead becomes more dependent on that limited supervision and can even fail to benefit from unlabeled data when the labeled set is sufficiently poor. Figure 1c demonstrates the accuracy gain of FreeMatch on the CIFAR-100 dataset—compared to training with labeled data alone—as the volume of unlabeled samples increases under different labeled data scales, where it can be observed that in the one-label-per-class setting, the gain SSL derives from unlabeled samples is substantially smaller than that in other scenarios. This explains the abrupt performance drop in Figure 1a. Therefore, it is crucial to develop mechanisms for utilizing unlabeled data that do not **depend exclusively on** labeled data.

CLIP (Radford et al., 2021) employs contrastive learning to align a large number of image-text pairs, achieving exceptional performance across various vision tasks *without any annotations* (Rao et al., 2022; Shi et al., 2022). Inspired by this, we argue that even when a model trained with restricted labeled data struggles to generate reliable pseudo labels, CLIP’s zero-shot capability may act as a catalyst for unlocking the potential of unlabeled data in SSL. However, effectively integrating CLIP into SSL remains challenging. Parameter-efficient fine-tuning (PEFT) methods (Zhou et al., 2022) such as CLIP-Adapter (Gao et al., 2024) enable few-shot adaptation but often fail to capture the diversity present in SSL training data (Figure 2a); conversely, full fine-tuning is prohibitively expensive due to CLIP’s fixed input resolution and large parameter count (Gao et al., 2024) (Figure 2b). DebiasPL (Wang et al., 2022a) incorporates CLIP-predicted high-confidence unlabeled samples into the labeled set before training (Figure 2c), but, as Figure 5 and prior work (Wang et al., 2022a) show, CLIP’s biased predictions limit the scalability of such approaches.

To address these limitations, we propose **CLIP as a Prior Teacher (CaPT)**, a novel asymmetric-modalities co-training framework that decouples the provision of reliable prior from the provision of strong learning capacity (Figure 2d). Specifically, CaPT jointly trains the multimodal CLIP and a unimodal network, with co-pseudo labels facilitating complementary strengths between the two models. While we fully fine-tune the unimodal network, CLIP is fine-tuned efficiently using PEFT,

Figure 3: Attention maps for different vision transformers.

where lightweight adapters (Houlsby et al., 2019) are inserted into its textual and visual encoders. The former can better adapt to the richness of the training samples and is not constrained by input image resolution. The latter injects more reliable prior into SSL while maintaining efficiency.

While our emphasis is on efficiently integrating CLIP into SSL, CaPT—like most co-training methods (Yao et al., 2022; Blum & Mitchell, 1998)—preserves bidirectional information flow, enabling mutual learning between models and improving both branches. Crucially, the asymmetric-modalities design mitigates the *pattern-homogeneity bottleneck* encountered when co-training two pure-vision models (e.g., CLS (Yao et al., 2022)). Prior work (Blum & Mitchell, 1998) emphasizes that the independence between cotrained views is essential for successful co-training. However, as shown in Figure 3, unimodal Vision Transformers (ViTs)—despite differing parameter initializations ViT (θ_1) and ViT (θ_2)—still exhibit similar representational patterns. By incorporating textual context, CLIP produces representations that diverge substantially from those of a pure-vision ViT (e.g., on a “rooster” example ViT (CLIP) attends to the comb while the pure-vision ViTs focus on the eye and beak), and this cross-modal complementarity enriches the mutual learning mechanism and markedly enhances co-training effectiveness¹. The contributions of our work are as follows:

1. We identify and theoretically establish the label dependency that constrains SSL, where the ability to utilize unlabeled data is bounded by the quantity or quality of labeled data.
2. We design a novel and portable framework for integrating CLIP into SSL, CaPT. Its advantages are two-fold: first, it efficiently leverages CLIP’s prior knowledge in SSL, unlocking the potential of unlabeled data; second, among co-training methods, it enables richer information exchange between models, enhancing mutual learning.
3. CaPT significantly outperforms existing SSL methods and demonstrates immense potential in realistic restricted supervision scenarios.

2 RELATED WORK

In this section, we provide an overview of SSL from two key perspectives: thresholding strategies (Sohn et al., 2020; Zhang et al., 2021a; Wang et al., 2023) and data augmentation techniques (Cubuk et al., 2018; Zhang et al., 2018).

Thresholding Strategies. A key direction in SSL research focuses on developing more effective thresholding strategies for generating pseudo labels. Pseudo-labeling (Lee et al., 2013) assigns each unlabeled example the class with highest predicted probability, which is simple but prone to confirmation bias (Arazo et al., 2020). FixMatch (Sohn et al., 2020) applies a fixed confidence threshold to select unlabeled samples for training. Subsequent methods seek greater adaptivity: MPL (Pham et al., 2021) adapts the teacher using student feedback to improve pseudo label quality; Dash (Xu et al., 2021) introduces dynamic filtering based on training loss; FlexMatch (Zhang et al., 2021a) adjusts thresholds for each class according to learning difficulty; FreeMatch (Wang et al.,

¹Due to space constraints, the experiments demonstrating CaPT’s cross-modal complementarity are provided in Appendix B.

Figure 4: CaPT pipeline: Given a batch of unlabeled images, UPM uses a vision model to extract features and generate predictions from both strongly and weakly augmented views. MPM uses adapter-tuned CLIP and feature augmentation (Mixup) to obtain strong and weak features, and computes cosine similarity with class weights obtained through class prompts for prediction. The weak predictions from both modules are converted into pseudo labels in PFM, which are combined through entropy-based weighting to form co-pseudo labels that supervise strong predictions.

2023) further adapts thresholds to the model’s learning state; and SoftMatch (Chen et al., 2023) replaces hard thresholding with confidence-weighted sample contributions.

Data Augmentation Techniques. Data augmentation is another central pillar of modern SSL. VAT (Miyato et al., 2018) enforces consistency between original and adversarially perturbed inputs to improve robustness. Mixup (Zhang et al., 2018) augments training by convexly combining pairs of samples and has been shown to effectively smooth decision boundaries in SSL (Berthelot et al., 2019b;a; Han et al., 2025). FixMatch and follow-up works (Li et al., 2021; Nguyen, 2024) refine augmentation schemes by integrating stronger strategies such as RandAugment (Cubuk et al., 2020), which improves generalization. FlatMatch (Huang et al., 2023) applies sharpness-aware minimization (Foret et al., 2020) to flatten the loss landscape and further enhance generalization.

However, as shown in Figure 1a, existing SSL algorithms exhibit suboptimal performance under weak supervision (see Appendix J for further scenarios). We refine CLIP’s prior and integrate it into SSL, effectively reducing SSL’s label dependency. Our work is related to DebiasPL (Wang et al., 2022a) and CLS (Yao et al., 2022), which incorporate CLIP and co-training into SSL, respectively. Unlike CLS, which co-trains two unimodal networks with identical architectures but different parameter initializations, CaPT jointly trains models from asymmetric-modalities, breaking SSL’s label dependency and enabling informative co-training. Compared to DebiasPL, we utilize CLIP in a more reliable manner and identify its critical role in restricted supervision scenarios.

3 METHOD

As illustrated in Figure 4, the overall workflow of CaPT is structured into three modules: **Unimodal Prediction Module (UPM)**, where a unimodal network generates predictions for unlabeled samples; **Multimodal Prediction Module (MPM)**, where CLIP is fine-tuned and used to produce predictions for the same samples; and **Prediction Fusion Module (PFM)**, which aggregates the predictions from the first two modules and computes the loss.

3.1 UNIMODAL PREDICTION MODULE

The process in UPM follows common practices (Sohn et al., 2020) in current SSL methods. Given an unlabeled sample x_u , we apply weak and strong augmentations to it, and then obtain the predictions

216 for both augmented views using the classification model:
 217

$$q^{w,a} = p_m(y|x_u \circledast \delta^w), q^{s,a} = p_m(y|x_u \circledast \delta^s). \quad (2)$$

219 Here, we use the symbol \circledast to denote the augmentation operation applied to data, δ^w and δ^s represent
 220 weak and strong augmentations, respectively, $q^{w,a}$ ($q^{s,a}$) denotes the weak (strong) prediction
 221 generated in UPM, and $p_m(y|x)$ is the predicted class distribution produced by the model for input
 222 x .

223 To better illustrate our algorithm, we present the subsequent usual practice in SSL: converting the
 224 weakly augmented view's prediction into pseudo label:

$$\hat{q} = \arg \max(q^{w,a}), \quad (3)$$

225 then calculating the consistency loss between the prediction of the strongly augmented sample and
 226 the pseudo label:

$$l = CE(\hat{q}, q^{s,a}), \quad (4)$$

227 where $CE(\cdot, \cdot)$ denotes the standard cross-entropy loss. The core idea is consistency regularization
 228 (Bachman et al., 2014): expecting the model to maintain consistent predictions before and after
 229 perturbations to enhance generalization ability.

230 Our method converts the weak predictions from UPM into pseudo labels. To integrate CLIP's prior
 231 knowledge, we combine them with the pseudo labels generated in MPM to form co-pseudo labels,
 232 which serve as the supervision signal for strong predictions.

233 3.2 MULTIMODAL PREDICTION MODULE

234 MPM extracts reliable prior knowledge from CLIP. We find that fully fine-tuning CLIP and obtaining
 235 predictions for both weak and strong views of input data through it is much more time-consuming
 236 compared to UPM. To mitigate this, we introduce adapter for efficient fine-tuning of CLIP and
 237 employ feature-augmented consistency regularization.

238 3.2.1 ADAPTER-TUNING

239 CLIP typically requires input images with resolutions of 224×224 or higher, and its encoders
 240 contain a large number of parameters, prompting us to explore an efficient fine-tuning method. We
 241 freeze the visual and textual encoders of CLIP and only train additional adapters, as commonly done
 242 in few-shot learning (Gao et al., 2024).

243 Specifically, given a weakly augmented version of an unlabeled sample $x_u \circledast \delta^w$, we first extract
 244 features through CLIP's visual encoder E_v :

$$f = E_v(x_u \circledast \delta^w), \quad (5)$$

245 and then input f into a learnable adapter A_v , which consists of two linear layers for dimensionality
 246 reduction and expansion. The output is then combined with the original feature f using a residual
 247 connection to obtain the fine-tuned feature:

$$f^* = f + A_v(f). \quad (6)$$

248 To construct class weights for classification, we follow the zero-shot CLIP, placing each class name
 249 into a predefined template to generate class prompts (more details in Appendix H), which are then
 250 input into CLIP's textual encoder E_t to obtain class weights W . We simplify the fine-tuning of the
 251 textual encoder by constructing a learnable parameter A_t (Zhu et al., 2023), initialized to zero and of
 252 the same shape as W , and similarly combining it with class weights W using a residual connection
 253 to obtain new class weights:

$$W^* = W + A_t. \quad (7)$$

254 With the fine-tuned image feature f^* and class weights W^* , we can use cosine similarity as a
 255 classifier to calculate the predicted probability of the sample for each class:

$$p_i = \frac{\exp\left(\frac{W_i^{*T} f^*}{\tau}\right)}{\sum_{j=1}^C \exp\left(\frac{W_j^{*T} f^*}{\tau}\right)}, \quad (8)$$

256 where τ denotes the temperature of softmax, W_i^* represents the prototype weight vector for class i .

270 3.2.2 FEATURE-AUGMENTED CONSISTENCY REGULARIZATION
271

272 Given than CLIP’s visual encoder E_v is frozen, we implement strong augmentation at feature level
273 instead of input level to reduce resource consumption. Mixup (Zhang et al., 2018) achieves data
274 augmentation through convex combinations of data and labels, and feature-based Mixup has shown
275 strong potential (Verma et al., 2019). Inspired by this, we perform feature-level strong augmentation
276 by convexly combining the feature f extracted from weakly augmented anchor sample by E_v with
277 the feature f' of another weakly augmented sample randomly selected from the same batch:
278

$$\bar{f} = \lambda f + (1 - \lambda)f', \quad (9)$$

279 where λ follows a Beta distribution with parameters (α, α) . Next, we fine-tune the feature f and
280 \bar{f} using the adapter A_v , obtaining f^* and \bar{f}^* , respectively. We then use the fine-tuned features
281 and class weights W^* to obtain the final weak and strong predictions $q^{w,b}$ and $q^{s,b}$ via Equation 8.
282 The strong prediction $q^{s,b}$ will later be paired with a convexly combined co-pseudo label to enforce
283 feature-augmented consistency regularization in PFM.

284 Feature-augmented consistency regularization not only improves the generalization of CLIP but also
285 avoids the need to construct another high-resolution version of the unlabeled image and feed it again
286 to the parameter-heavy visual encoder E_v to obtain feature.
287

288 3.3 PREDICTION FUSION MODULE
289

290 Modules UPM and MPM generate strong and weak predictions using the unimodal network and
291 CLIP, respectively. To aggregate the two modules for exchanging supervision signals, we weight
292 and combine the pseudo labels generated by these modules to form co-pseudo labels. Specifically,
293 we first construct pseudo labels from the weak predictions of the two modules:
294

$$\hat{q}^a = \arg \max(q^{w,a}), \hat{q}^b = \arg \max(q^{w,b}). \quad (10)$$

295 To assign weights, given a batch of unlabeled samples x_j^u , where $j \in (1 \dots N)$, assume any model’s
296 weakly augmented version predictions for these samples are q_j^w . We first compute the average
297 entropy of the model’s predictions for these samples:
298

$$H = \frac{1}{N} \sum_{j=1}^N \left(- \sum_i q_{j,i}^w \log q_{j,i}^w \right), \quad (11)$$

302 where $q_{j,i}^w$ represents the predicted probability for class i of the j -th sample. The smaller the entropy,
303 the higher the model’s confidence in its predictions, which warrants a higher weight allocation. The
304 weights assigned to the two modules are defined as:
305

$$\Gamma^a = \frac{\frac{1}{H^a}}{\frac{1}{H^a} + \frac{1}{H^b}}, \Gamma^b = \frac{\frac{1}{H^b}}{\frac{1}{H^a} + \frac{1}{H^b}}. \quad (12)$$

308 Then we combine the two pseudo labels using the computed weights to generate a co-pseudo label:
309

$$\hat{q}^c = \Gamma^a \hat{q}^a + \Gamma^b \hat{q}^b. \quad (13)$$

311 Entropy-based weighting enables adaptive weight adjustment. At the early co-training, the uni-
312 modal network is not yet fully trained, while CLIP, with its rich prior knowledge, dominates the
313 supervision. As the full fine-tuning of the network in UPM progresses, it gradually takes over the
314 supervision due to its larger number of learnable parameters.
315

316 To parallel the feature level convex combination in MPM, the co-pseudo label of the anchor sample
317 is convexly combined with that of the randomly selected sample using the same mixing parameter
318 λ :
319

$$\bar{q}^c = \lambda \hat{q}^c + (1 - \lambda) \hat{q}^{c'}. \quad (14)$$

320 Ultimately, the strong predictions from both modules jointly use the co-pseudo label (or its mixed
321 variant) as the supervision signal to compute the consistency loss:
322

$$L^a = \frac{1}{N} \sum_{j=1}^N CE(\hat{q}_j^c, q_j^{s,a}), L^b = \frac{1}{N} \sum_{j=1}^N CE(\bar{q}_j^c, q_j^{s,b}). \quad (15)$$

324 Table 1: Accuracy (%) on CIFAR-100, STL10 and EuroSAT datasets under USB. The best results are high-
 325 lighted with **Bold** and the second-best results are highlighted with underline.

Dataset	CIFAR-100		STL10		EuroSAT	
	2	4	4	10	2	4
# Labels per Class						
VAT (Miyato et al., 2018)	<u>68.51</u> \pm 1.33	<u>78.66</u> \pm 0.50	<u>81.55</u> \pm 1.47	<u>89.31</u> \pm 0.51	73.84 \pm 0.96	89.91 \pm 0.94
Mean Teacher (Tarvainen & Valpola, 2017)	<u>64.53</u> \pm 0.40	<u>73.97</u> \pm 0.30	<u>81.33</u> \pm 1.69	<u>75.81</u> \pm 10.15	<u>73.17</u> \pm 1.46	84.15 \pm 1.66
ReMixMatch (Berthelot et al., 2019a)	<u>77.79</u> \pm 2.21	<u>83.14</u> \pm 0.57	<u>86.92</u> \pm 3.34	<u>92.79</u> \pm 0.39	<u>94.95</u> \pm 1.05	94.93 \pm 0.56
FixMatch (Sohn et al., 2020)	<u>70.40</u> \pm 0.90	<u>80.44</u> \pm 0.52	<u>83.85</u> \pm 1.89	<u>91.89</u> \pm 0.68	<u>86.56</u> \pm 3.53	94.09 \pm 2.02
FlexMatch (Zhang et al., 2021a)	<u>73.24</u> \pm 1.12	<u>81.76</u> \pm 0.36	<u>85.60</u> \pm 3.11	<u>91.83</u> \pm 0.78	<u>94.83</u> \pm 0.57	94.42 \pm 0.81
Dash (Xie et al., 2020)	<u>69.39</u> \pm 0.98	<u>80.62</u> \pm 0.10	<u>83.78</u> \pm 5.95	<u>92.15</u> \pm 0.74	<u>88.81</u> \pm 0.90	93.04 \pm 0.87
CoMatch (Li et al., 2021)	<u>64.92</u> \pm 0.69	<u>74.77</u> \pm 0.50	<u>84.88</u> \pm 1.88	<u>90.44</u> \pm 1.35	<u>94.25</u> \pm 0.43	95.19 \pm 1.05
SimMatch (Zheng et al., 2022)	<u>76.22</u> \pm 1.08	<u>82.94</u> \pm 0.78	<u>88.23</u> \pm 3.20	<u>92.45</u> \pm 1.86	<u>92.34</u> \pm 0.60	94.73 \pm 0.89
SoftMatch (Chen et al., 2023)	<u>77.33</u> \pm 1.32	<u>83.16</u> \pm 0.66	<u>86.45</u> \pm 3.16	<u>92.16</u> \pm 1.72	<u>94.25</u> \pm 0.62	94.10 \pm 1.42
FreeMatch (Wang et al., 2023)	<u>78.60</u> \pm 0.30	<u>84.35</u> \pm 0.26	<u>87.27</u> \pm 3.22	<u>91.48</u> \pm 0.53	<u>93.50</u> \pm 0.78	94.22 \pm 0.51
SequenceMatch (Nguyen, 2024)	<u>78.86</u> \pm 0.25	<u>84.26</u> \pm 0.15	<u>87.73</u> \pm 3.13	<u>92.45</u> \pm 0.66	<u>94.13</u> \pm 0.69	95.09 \pm 0.81
RegMixMatch (Han et al., 2025)	<u>80.74</u> \pm 0.56	<u>84.45</u> \pm 0.31	<u>89.89</u> \pm 3.20	<u>92.90</u> \pm 0.66	<u>95.75</u> \pm 0.77	96.39 \pm 0.75
CaPT	<u>84.83</u>\pm0.10	<u>85.60</u>\pm0.07	<u>96.07</u>\pm0.05	<u>96.34</u>\pm0.05	<u>96.60</u>\pm0.13	<u>96.98</u>\pm0.11
Adapter-tuned CLIP	<u>74.90</u> \pm 0.03		<u>75.54</u> \pm 0.02	<u>96.86</u> \pm 0.01	<u>97.15</u> \pm 0.01	<u>93.83</u> \pm 0.06
CLIP (Radford et al., 2021)	65.10		97.18		49.46	

341
 342 We emphasize that a pseudo label is retained only if the weak-prediction confidence exceeds a
 343 threshold. Otherwise, the corresponding module’s pseudo label is replaced by the all-zero vector.
 344 Consequently, the resulting co-pseudo label comprises supervision exclusively from the other
 345 module, with the sum of class prediction probabilities equaling the module’s weight (less than 1).
 346 This mechanism ensures that low-confidence samples are assigned smaller weights during the loss
 347 calculation, thus reducing confirmation bias.

348 Overall, CaPT aggregates the weak predictions of the unimodal network and the multimodal CLIP
 349 through co-pseudo labels, guiding the strong predictions to align with these co-pseudo labels to
 350 jointly train the unimodal network and fine-tune CLIP. Although CLIP is only adapter-tuned and thus
 351 typically lags behind the fully fine-tuned network in UPM, it remains indispensable, as its adapter-
 352 tuned outputs provide reliable priors that serve as a catalyst for effectively leveraging unlabeled
 353 samples in SSL.

355 4 EXPERIMENTS

356 This section provides a comprehensive experimental evaluation of CaPT. We begin by reporting its
 357 performance on the USB benchmark (Wang et al., 2022b). Next, we evaluate CaPT on large-scale
 358 datasets, extreme low-label settings, and fine-grained benchmarks. Finally, we conduct extensive
 359 ablation studies to validate the design choices of CaPT.

362 4.1 USB

363 USB (Wang et al., 2022b) is a unified SSL benchmark for the fair evaluation of SSL methods. It
 364 adopts the pre-trained ViTs (Dosovitskiy, 2020) as the training backbone. For fair comparison,
 365 our unimodal network uses the same training configuration and backbone as USB. Unless other-
 366 wise stated, ViT-B/32 is employed as the visual encoder for CLIP. Detailed experimental configura-
 367 tions are provided in Appendix F. Similar to RegMixMatch, we validate CaPT on three datasets,
 368 including CIFAR-100 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), and EuroSAT (Helber
 369 et al., 2019), under different amounts of labeled data conditions. The experimental results are
 370 compared against 12 established SSL algorithms, including VAT (Miyato et al., 2018), Mean-
 371 Teacher (Tarvainen & Valpola, 2017), ReMixMatch (Berthelot et al., 2019a), FixMatch (Sohn et al.,
 372 2020), FlexMatch (Zhang et al., 2021a), Dash (Xu et al., 2021), CoMatch (Li et al., 2021), Sim-
 373 Match (Zheng et al., 2022), FreeMatch (Wang et al., 2023), SoftMatch (Chen et al., 2023), Se-
 374 quenceMatch (Nguyen, 2024), and RegMixMatch (Han et al., 2025). Each algorithm is trained
 375 three times with different random seeds. We adopt the adaptive threshold strategy from FreeMatch
 376 to filter pseudo labels, as in RegMixMatch. The final performance of CaPT is reported using the
 377 fully fine-tuned unimodal network, while the results of our adapter-tuned CLIP are also presented.

378 Table 1 presents the results of CaPT on the
 379 USB benchmark². The results show that CaPT
 380 leads in all 6 commonly used evaluation set-
 381 tings, with particularly significant improve-
 382 ments when labeled data is scarce. Speci-
 383 fically, with only 2 labeled samples per class
 384 on the CIFAR-100 dataset, CaPT outperforms
 385 the second-best method (i.e., RegMixMatch) by
 386 4.09%. On the STL-10 dataset, where each
 387 class has 4 labeled samples, CaPT leads by
 388 6.18%. Moreover, under varying labeled data
 389 quality (i.e., different random seeds), CaPT
 390 achieves a lower standard deviation compared
 391 to existing SSL methods. These results illustrate that CaPT effectively mitigates SSL’s label depen-
 392 dency on labeled data.

393 4.2 IMAGENET

394 To verify the scalability of CaPT, we conduct experiments on the ImageNet dataset (Deng et al.,
 395 2009). Similar to RegMixMatch, we use MAE pre-trained ViT-B (He et al., 2022) as the training
 396 backbone for UPM and conduct experiments with 10 and 100 labeled samples per class. Table
 397 2 demonstrates CaPT’s superior performance on the ImageNet dataset. The leading advantage of
 398 CaPT is more pronounced under conditions with fewer labels: with 10 labeled samples per class,
 399 CaPT outperforms RegMixMatch by 9.33%.

402 4.3 EXTREMELY-SCARCE-LABELS REGIMES

404 To further assess CaPT under extreme label scarcity,
 405 we evaluate on CIFAR-10, CIFAR-100 and EuroSAT
 406 with only one labeled sample per class, and com-
 407 pare against state-of-the-art SSL methods FreeMatch
 408 and RegMixMatch (Table 3). CaPT attains a substan-
 409 tial lead in the one-label-per-class setting. Notably,
 410 when labeled samples per class decrease from 2 to 1,
 411 FreeMatch and RegMixMatch suffer accuracy drops
 412 of 17.47% (78.60%→61.13%) and 20.25% (80.74%→60.49%) on CIFAR-100, respectively. By
 413 contrast, CaPT substantially reduces reliance on labeled data: in the one-label-per-class setting it
 414 improves over the second-best method by 21.38% on CIFAR-100 and by 4.05% on EuroSAT³.
 415 These results indicate that, although recent SSL algorithms perform well with moderate labels, their
 416 accuracy degrades sharply under extreme scarcity, whereas CaPT remains robust by refining and
 417 leveraging CLIP’s prior, effectively unlocking the potential of unlabeled data.

418 Furthermore, in Table 4, we compare the training time
 419 and memory consumption of CaPT with other SSL al-
 420 gorithms. The experiments are conducted on a 10GB
 421 RTX 3080 GPU. The results show that, compared
 422 to training a unimodal network (FreeMatch), CaPT
 423 achieves significant performance improvement at the
 424 cost of only 8.00% more memory consumption and
 425 11.18% additional training time. Compared to the
 426 latest state-of-the-art method RegMixMatch, CaPT
 427 demonstrates significant advantages in both resource
 428 consumption and classification performance.

Table 2: Performances of CaPT on the ImageNet dataset.

Dataset	ImageNet			
	# Labels per Class		10	100
Top- n acc	Top-1	Top-5	Top-1	Top-5
FixMatch	53.61	75.96	71.53	90.36
FlexMatch	54.21	76.80	72.17	90.59
FreeMatch	54.69	77.02	72.57	90.97
RegMixMatch	58.35	81.10	73.66	91.89
CaPT	67.68	89.82	74.21	92.19

Table 3: Performances of different SSL methods with one labeled sample per class.

Dataset	CIFAR-10	CIFAR-100	EuroSAT
FreeMatch	91.93	61.13	90.12
RegMixMatch	95.65	60.49	92.28
CaPT	96.37	82.51	96.33

Table 4: Comparison of training time and
 memory consumption on CIFAR-100 with
 2 labeled samples per class.

Method	Time (sec./iter.)	Mem. (MiB)	Acc. (%)
FreeMatch	0.0939	4676	78.60
RegMixMatch	0.1484	6578	80.74
CaPT	0.1044	5050	84.83

²The results of CaPT using TorchSSL (Zhang et al., 2021a), along with broader method comparisons, are provided in Appendix I.

³We note that under the 1-shot setting, FreeMatch already achieves near-saturation on EuroSAT (90.12%). A 6.21% improvement by CaPT (96.33%) on such a strong baseline is therefore also substantial.

Table 5: Accuracy (%) of CaPT on fine-grained datasets.

Dataset	FGVCAircraft		Flowers102		StanfordCars		SUN397		DTD		SVHN	
# Labels per Class	5	10	1	2	5	10	30	50	10	20	2	4
FreeMatch	51.43	65.82	75.31	93.89	66.31	83.79	70.06	74.87	62.14	70.03	67.35	86.61
RegMixMatch	49.86	66.21	80.23	94.31	68.75	85.60	72.57	76.59	63.56	71.06	70.23	76.56
CaPT	50.12	64.33	94.71	96.42	80.36	89.66	75.69	78.29	66.22	72.93	81.20	91.73
CLIP	18.97		61.33		52.63		59.53		40.17		34.36	

4.4 FINE-GRAINED DATASETS

To preclude any advantage for CaPT arising from potential overlap between CLIP’s corpus and simple benchmarks⁴, Table 5 presents its performance on 6 fine-grained benchmarks: FGVCAircraft (Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), StanfordCars (Krause et al., 2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), and SVHN (Netzer et al., 2011). Except for FGVCAircraft (discussed in Appendix N), CaPT outperforms competing methods across all other datasets, underscoring its great scalability on datasets with greater domain shift.

4.5 ABLATION STUDY

In this section, we validate the design choices behind CaPT. We begin by validating the effectiveness of the CaPT framework in leveraging CLIP within SSL. We evaluate three ablated variants of CaPT: CaPT-Ada (Figure 2a), in which the model in UPM is replaced with a CLIP-Adapter and MPM is removed; CaPT-Deb (Figure 2c), which disables adapter-tuning and vision model \rightarrow CLIP flow; and CaPT-Uni (Figure 2d but retaining only the CLIP \rightarrow vision model flow), where the unimodal network no longer transmits information back to CLIP. As reported in Table 6, the full CaPT achieves the best performance across all settings. Despite access to abundant data, CaPT-Ada suffers a substantial performance drop (-16.40% and -16.38%) due to the lack of sufficient learnable parameters. CaPT-Deb, affected by CLIP’s biased prior, shows a significant decline (-12.73%) on the EuroSAT dataset, which is more sensitive to CLIP’s class preference. This highlights the importance of adapter tuning in mitigating CLIP’s biased prior (see Figure 5). Lastly, the performance degradation of CaPT-Uni confirms that maintaining bidirectional knowledge exchange between models is crucial for enhancing overall effectiveness.

Additionally, we show the contribution of unimodal network (i.e., only UPM) and multimodal CLIP (i.e., only MPM) during co-training by retaining only one of the two classification models. Retaining only the unimodal network results in degraded performance (-6.23% and -3.10%), as the model lacks the prior knowledge needed to fully exploit unlabeled samples. Conversely, when only MPM is retained, although CLIP provides prior knowledge, the limited number of learnable parameters cannot match the richness of the unlabeled samples, ultimately leading to a significant performance decline (-16.51% and -16.48%) due to underfitting. The co-training mechanism proposed in CaPT effectively combines the strength of these two modules.

Finally, we evaluate the impact of feature-augmented consistency regularization and entropy-based weighting. Removing consistency regularization on the CLIP side (i.e., w/o feat aug.) leads to performance degradation, indicating that improving the generalization of either branch benefits the overall system. Replacing entropy-based weighting with equal weighting (i.e., 0.5 per model) also

Figure 5: Adapter-tuning effectively mitigates CLIP’s biased prior. Experiments are conducted on EuroSAT datasets with 2 labeled samples per class.

Table 6: Ablation study of CaPT. Experiments are conducted with 2 labeled samples per class.

Dataset	CIFAR-100	EuroSAT
CaPT	84.83	96.60
CaPT-Ada	68.43 (-16.40)	80.22 (-16.38)
CaPT-Deb	81.03 (-3.80)	83.87 (-12.73)
CaPT-Uni	83.95 (-0.88)	95.11 (-1.49)
only UPM	78.60 (-6.23)	93.50 (-3.10)
only MPM	68.32 (-16.51)	80.12 (-16.48)
w/o feat aug.	84.26 (-0.57)	94.79 (-1.81)
equal weights	83.96 (-0.87)	95.03 (-1.57)

⁴We offer an in-depth discussion of this issue in Appendix M.

486 results in a performance drop, suggesting that entropy-based weighting more effectively adapts to
 487 the training dynamics of each model, thereby enhancing final performance.
 488

489 5 CONCLUSION, LIMITATION AND BROADER IMPACT

490
 491 In this paper, we identify and theoretically demonstrate an inherent limitation of SSL: deficiencies
 492 in labeled data undermine the accuracy of pseudo labels, thereby hindering the effective use of un-
 493 labeled data. We propose CaPT, a novel framework that integrates vision-language models (VLMs)
 494 into SSL, efficiently and reliably leveraging CLIP to mitigate the label dependency of SSL. CaPT
 495 exhibits exceptional performance and efficiency across public benchmarks, extremely-scarce-labels
 496 regimes, fine-grained datasets and more realistic weakly supervised SSL settings (Appendix J).
 497

498 Despite its overall effectiveness, we observe that CLIP’s prior is less informative on certain fine-
 499 grained datasets such as FGVCAircraft, limiting its contribution in this case. Nonetheless, CaPT’s
 500 primary contribution lies in **establishing a general and future-proof framework for integrating**
 501 **VLMs into SSL**. As more powerful VLMs (Sun et al., 2023) emerge, they can be seamlessly⁵
 502 incorporated into CaPT to efficiently achieve strong performance (see Appendix N). Developing
 503 more efficient frameworks for integrating VLMs into SSL could be a potential future direction.
 504

505 REPRODUCIBILITY STATEMENT

506 We provide detailed descriptions of our model architecture, training procedure, and hyperparameter
 507 settings in Section 3, Section 4, and Appendix F. Complete proofs of Theorem 1.1 are included in
 508 Appendix A. Anonymous source code for reproduction is provided in the supplementary materials.
 509

510 REFERENCES

511 Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Pseudo-labeling
 512 and confirmation bias in deep semi-supervised learning. In *2020 International joint conference*
 513 *on neural networks (IJCNN)*, pp. 1–8, 2020. doi: 10.1109/IJCNN48605.2020.9207304.

514 Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. *Advances in*
 515 *neural information processing systems*, 27, 2014.

516 Ethan Baron, Idan Tanel, Peter Tu, and Guy Ben-Yosef. Real classification by description: Extending
 517 clip’s limits of part attributes recognition. *arXiv preprint arXiv:2412.13947*, 2024.

518 David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and
 519 Colin Raffel. Remixmatch: Semi-supervised learning with distribution alignment and augmentation
 520 anchoring. *arXiv preprint arXiv:1911.09785*, 2019a.

521 David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
 522 Raffel. Mixmatch: A holistic approach to semi-supervised learning. *Advances in neural informa-*
 523 *tion processing systems*, 32, 2019b.

524 Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In *Proceed-*
 525 *ings of the eleventh annual conference on computational learning theory*, COLT’ 98, pp. 92–100,
 526 New York, NY, USA, 1998. Association for computing machinery.

527 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101—mining discriminative compo-
 528 nents with random forests. In *European conference on computer vision*, pp. 446–461. Springer,
 529 2014.

530 Nicholas Carlini, Úlfar Erlingsson, and Nicolas Papernot. Distribution density, tails, and outliers in
 531 machine learning: metrics and applications. *ArXiv*, abs/1910.13427, 2019.

532 Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj,
 533 and Marios Savvides. Softmatch: Addressing the quantity-quality tradeoff in semi-supervised
 534 learning. In *The eleventh international conference on learning representations*, 2023.

535 ⁵To ensure broad applicability, CaPT was designed with strong portability in mind (See Appendix L).

540 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
 541 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
 542 contrastive language-image learning. In *Proceedings of the IEEE/CVF conference on computer*
 543 *vision and pattern recognition*, pp. 2818–2829, 2023.

544

545 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 546 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
 547 *pattern recognition*, pp. 3606–3613, 2014.

548 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
 549 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-*
 550 *gence and statistics*, pp. 215–223, 2011.

551

552 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
 553 Learning augmentation policies from data. *arXiv preprint arXiv:1805.09501*, 2018.

554

555 Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
 556 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on*
 557 *computer vision and pattern recognition workshops*, pp. 702–703, 2020.

558

559 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 560 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 561 pp. 248–255. IEEE, 2009.

562

563 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 564 *arXiv preprint arXiv:2010.11929*, 2020.

565

566 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
 567 tion for efficiently improving generalization. In *International conference on learning representa-*
 568 *tions*, 2020.

569

570 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
 571 and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International*
 572 *journal of computer vision*, 132(2):581–595, 2024.

573

574 Keren Gu, Xander Masotto, Vandana Bachani, Balaji Lakshminarayanan, Jack Nikodem, and Dong
 575 Yin. An instance-dependent simulation framework for learning with label noise. *Machine learn-*
 576 *ing*, 112(6):1871–1896, 2023.

577

578 Haorong Han, Jidong Yuan, Chixuan Wei, and Zhongyang Yu. Regmixmatch: Optimizing mixup
 579 utilization in semi-supervised learning. In *Proceedings of the AAAI conference on artificial intel-*
 580 *ligence*, volume 39, pp. 17032–17040, 2025.

581

582 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 583 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 584 770–778, 2016.

585

586 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 587 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 588 *vision and pattern recognition*, pp. 16000–16009, 2022.

589

590 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 591 and deep learning benchmark for land use and land cover classification. *IEEE journal of selected*
 592 *topics in applied earth observations and remote sensing*, 12(7):2217–2226, 2019.

593

594 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 595 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 596 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

597

598 Tony Huang, Jack Chu, and Fangyun Wei. Unsupervised prompt learning for vision-language mod-
 599 els. *arXiv preprint arXiv:2204.03649*, 2022.

594 Zhuo Huang, Li Shen, Jun Yu, Bo Han, and Tongliang Liu. Flatmatch: Bridging labeled data and
 595 unlabeled data with cross-sharpness for semi-supervised learning. *Advances in neural information*
 596 *processing systems*, 36:18474–18494, 2023.

597 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
 598 bazi Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on*
 599 *computer vision and pattern recognition*, pp. 19113–19122, 2023.

600 Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-
 601 grained image categorization: Stanford dogs. In *Proc. CVPR workshop on fine-grained visual*
 602 *categorization (FGVC)*, volume 2, 2011.

603 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 604 categorization. In *Proceedings of the IEEE international conference on computer vision work-
 605 shops*, pp. 554–561, 2013.

606 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,
 607 Department of Computer Science, University of Toronto, April 2009.

608 Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
 609 deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3,
 610 pp. 896. Atlanta, 2013.

611 Hyuck Lee, Seungjae Shin, and Heeyoung Kim. Abc: Auxiliary balanced classifier for class-
 612 imbalanced semi-supervised learning. *Advances in neural information processing systems*, 34:
 613 7082–7094, 2021.

614 Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-
 615 supervised learning. *arXiv preprint arXiv:2002.07394*, 2020.

616 Junnan Li, Caiming Xiong, and Steven CH Hoi. Comatch: Semi-supervised learning with con-
 617 trastive graph regularization. In *Proceedings of the IEEE/CVF international conference on com-
 618 puter vision*, pp. 9475–9484, 2021.

619 Xianhang Li, Zeyu Wang, and Cihang Xie. An inverse scaling law for clip training. *Advances in*
 620 *neural information processing systems*, 36:49068–49087, 2023.

621 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 622 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

623 Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
 624 regularization method for supervised and semi-supervised learning. *IEEE transactions on pattern*
 625 *analysis and machine intelligence*, 41(8):1979–1993, 2018.

626 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 627 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep*
 628 *learning and unsupervised feature learning*, volume 2011, pp. 4. Granada, 2011.

629 Khanh-Binh Nguyen. Sequencematch: Revisiting the design of weak-strong augmentations for
 630 semi-supervised learning. In *Proceedings of the IEEE/CVF winter conference on applications of*
 631 *computer vision*, pp. 96–106, 2024.

632 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 633 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 634 722–729. IEEE, 2008.

635 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 636 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

637 Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In *Proceedings of the*
 638 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11557–11568, 2021.

639 Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
 640 ating customized prompts for zero-shot image classification. In *Proceedings of the IEEE/CVF*
 641 *international conference on computer vision*, pp. 15691–15701, 2023.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 649 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 650 models from natural language supervision. In *International conference on machine learning*, pp.
 651 8748–8763, 2021.

652

653 Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou,
 654 and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting. In
 655 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18082–
 656 18091, 2022.

657

658 Hengcan Shi, Munawar Hayat, Yicheng Wu, and Jianfei Cai. Proposalclip: unsupervised open-
 659 category object proposal generation via exploiting clip cues. In *Proceedings of the IEEE/CVF*
 660 *conference on computer vision and pattern recognition*, pp. 9611–9620, 2022.

661

662 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
 663 Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
 664 learning with consistency and confidence. *Advances in neural information processing systems*,
 33:596–608, 2020.

665

666 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
 667 techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

668

669 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
 670 sistency targets improve semi-supervised deep learning results. *Advances in neural information*
 671 *processing systems*, 30, 2017.

672

673 Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
 674 Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
 675 In *International conference on machine learning*, pp. 6438–6447. PMLR, 2019.

676

677 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 678 birds-200-2011 dataset. 2011.

679

680 Xudong Wang, Zhirong Wu, Long Lian, and Stella X Yu. Debiased learning from naturally imbal-
 681 anced pseudo-labels. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 682 *recognition*, pp. 14647–14657, 2022a.

683

684 Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, Renjie Wang, Linyi Yang, Zhi
 685 Zhou, Lan-Zhe Guo, et al. Usb: A unified semi-supervised learning benchmark for classification.
 686 *Advances in neural information processing systems*, 35:3938–3961, 2022b.

687

688 Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Sav-
 689 vides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, and Xing Xie. Freematch: Self-adaptive
 690 thresholding for semi-supervised learning. In *The eleventh international conference on learning*
 691 *representations*, 2023.

692

693 Shihan Wu, Ji Zhang, Pengpeng Zeng, Lianli Gao, Jingkuan Song, and Heng Tao Shen. Skip
 694 tuning: Pre-trained vision-language models are effective and efficient adapters themselves. In
 695 *Proceedings of the computer vision and pattern recognition conference*, pp. 14723–14732, 2025.

696

697 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 698 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 699 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

700

701 Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation
 702 for consistency training. *Advances in neural information processing systems*, 33:6256–6268,
 703 2020.

704

705 Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin. Dash: Semi-
 706 supervised learning with dynamic thresholding. In *International conference on machine learning*,
 707 pp. 11525–11536. PMLR, 2021.

702 Lingxiao Yang, Ru-Yuan Zhang, Yanchen Wang, and Xiaohua Xie. Mma: Multi-modal adapter for
 703 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 704 *pattern recognition*, pp. 23826–23837, 2024.

705

706 Yao Yao, Junyi Shen, Jin Xu, Bin Zhong, and Li Xiao. Cls: Cross labeling supervision for semi-
 707 supervised learning. *arXiv preprint arXiv:2202.08502*, 2022.

708 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint*
 709 *arXiv:1605.07146*, 2016.

710

711 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 712 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 713 pp. 11975–11986, 2023.

714 Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
 715 Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
 716 beling. *Advances in neural information processing systems*, 34:18408–18419, 2021a.

717

718 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
 719 cal risk minimization. In *International conference on learning representations*, 2018.

720

721 Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
 722 sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. *arXiv*
 723 *preprint arXiv:2111.03930*, 2021b.

724

725 Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen Qian, and Chang Xu. Simmatch: Semi-
 726 supervised learning with similarity matching. In *Proceedings of the IEEE/CVF conference on*
 727 *computer vision and pattern recognition*, pp. 14471–14481, 2022.

728

729 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 730 language models. *International journal of computer vision*, 130(9):2337–2348, 2022.

731

732 Xiangyang Zhu, Renrui Zhang, Bowei He, Aojun Zhou, Dong Wang, Bin Zhao, and Peng Gao. Not
 733 all features matter: Enhancing few-shot clip with adaptive prior refinement. In *Proceedings of the*
 734 *IEEE/CVF international conference on computer vision*, pp. 2605–2615, 2023.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A PROOF OF THEOREM 1.1 (NEAREST-PROTOTYPE PSEUDO LABEL ERROR
757 BOUND)**

759 **Notation and model assumptions.** Let $(x, y) \sim \mathcal{D}$ with $y \in \{1, \dots, K\}$. For each class c assume
760 the conditional distribution of x is
761

$$762 \quad x \mid y = c \sim \mathcal{N}(\mu_c, \sigma^2 I_d),$$

763 and define the minimum inter-class centroid distance
764

$$765 \quad g := \min_{c \neq c'} \|\mu_c - \mu_{c'}\| > 0.$$

767 For each class c we are given $n_c \geq 1$ labeled samples and form the sample mean (prototype)

$$768 \quad m_c := \frac{1}{n_c} \sum_{i: y_i = c} x_i.$$

771 Decompose

$$772 \quad m_c = \mu_c + b_c + \delta_c,$$

773 where b_c is a deterministic bias vector (systematic selection bias / non-prototypicality), and
774

$$775 \quad \delta_c \sim \mathcal{N}\left(0, \frac{\sigma^2}{n_c} I_d\right)$$

777 is the random sampling error of the sample mean. Assume the deterministic bias satisfies $\|b_c\| \leq B$
778 for all c .
779

780 We adopt the nearest-prototype decision rule for unlabeled x :

$$781 \quad \hat{y}(x) = \arg \min_c \|x - m_c\|.$$

783 Below we will prove the following high-probability bound.

785 **Theorem A.1** (Theorem 1.1). *Let $n_{\min} := \min_c n_c$. Fix $\eta \in (0, 1)$ and define*

$$787 \quad \varepsilon_n := \frac{2\sigma}{\sqrt{n_{\min}}} \sqrt{\log\left(\frac{K 2^{d/2}}{\eta}\right)}, \quad r := B + \varepsilon_n.$$

789 Assume $g/2 > r$ (otherwise the bound below is vacuous). Then with probability at least $1 - \eta$ (over
790 the randomness of the labeled samples) the following holds for every class c :
791

$$792 \quad \Pr_{x \sim \mathcal{N}(\mu_c, \sigma^2 I_d)}(\hat{y}(x) \neq c) \leq (K-1) 2^{d/2} \exp\left(-\frac{(g/2 - r)^2}{4\sigma^2}\right). \quad (16)$$

796 **Lemma A.2.** Let $Z \sim \mathcal{N}(0, I_d)$ and $W = \|Z\|^2$. Then for any $u > 0$ and any $\lambda \in (0, 1/2)$,

$$797 \quad \Pr(W \geq u) \leq (1 - 2\lambda)^{-d/2} \exp(-\lambda u).$$

799 In particular, choosing $\lambda = \frac{1}{4}$ yields

$$801 \quad \Pr(\|Z\| \geq t) = \Pr(W \geq t^2) \leq 2^{d/2} \exp\left(-\frac{t^2}{4}\right), \quad (t > 0). \quad (17)$$

804 *Proof.* The mgf of a χ_d^2 variable W satisfies $\mathbb{E}[e^{\lambda W}] = (1 - 2\lambda)^{-d/2}$ for $\lambda < 1/2$. By Markov
805 (Chernoff) bound,

$$806 \quad \Pr(W \geq u) \leq \mathbb{E}[e^{\lambda W}] e^{-\lambda u} = (1 - 2\lambda)^{-d/2} e^{-\lambda u}.$$

807 Setting $\lambda = \frac{1}{4}$ gives $(1 - 2\lambda)^{-d/2} = (1/2)^{-d/2} = 2^{d/2}$ and the stated bound follows by taking
808 $u = t^2$.
809

□

810 **Lemma A.3.** For each class c , $\delta_c \sim \mathcal{N}(0, \sigma^2/n_c I_d)$. Hence for any $t > 0$,

$$812 \quad 813 \quad \Pr(\|\delta_c\| \geq t) \leq 2^{d/2} \exp\left(-\frac{n_c t^2}{4\sigma^2}\right). \quad (18)$$

815 *Proof.* Let $Z_c := \sqrt{\frac{n_c}{\sigma^2}} \delta_c \sim \mathcal{N}(0, I_d)$. Applying Lemma A.2 with $t' = \sqrt{\frac{n_c}{\sigma^2}} t$ yields

$$817 \quad 818 \quad \Pr(\|\delta_c\| \geq t) = \Pr(\|Z_c\| \geq t') \leq 2^{d/2} \exp\left(-\frac{(t')^2}{4}\right) = 2^{d/2} \exp\left(-\frac{n_c t^2}{4\sigma^2}\right),$$

819 which is precisely Equation 18. □

822 *Proof of Theorem A.1.* Let $n_{\min} = \min_c n_c$. Fix $\eta \in (0, 1)$ and choose $\varepsilon_n > 0$ such that

$$824 \quad 825 \quad K 2^{d/2} \exp\left(-\frac{n_{\min} \varepsilon_n^2}{4\sigma^2}\right) \leq \eta. \quad (19)$$

826 Solving Equation 19 for ε_n gives the explicit choice

$$828 \quad 829 \quad \varepsilon_n = \frac{2\sigma}{\sqrt{n_{\min}}} \sqrt{\log\left(\frac{K 2^{d/2}}{\eta}\right)}.$$

831 By Lemma A.3 and a union bound over the K classes,

$$833 \quad 834 \quad \Pr\left(\exists c : \|\delta_c\| \geq \varepsilon_n\right) \leq \sum_{c=1}^K \Pr(\|\delta_c\| \geq \varepsilon_n) \leq K 2^{d/2} \exp\left(-\frac{n_{\min} \varepsilon_n^2}{4\sigma^2}\right) \leq \eta.$$

836 Thus with probability at least $1 - \eta$ (over the labeled-sample draw) the following event \mathcal{E} holds:

$$837 \quad 838 \quad \mathcal{E} : \quad \forall c, \|\delta_c\| \leq \varepsilon_n.$$

839 Condition on \mathcal{E} . Then for every class c we have

$$840 \quad 841 \quad \|m_c - \mu_c\| = \|b_c + \delta_c\| \leq \|b_c\| + \|\delta_c\| \leq B + \varepsilon_n = r. \quad (20)$$

842 Fix a class c and consider an unlabeled example x with true label $y = c$. Suppose x is misclassified
843 by the nearest-prototype rule, i.e. $\hat{y}(x) \neq c$. Then there exists some $c' \neq c$ such that

$$845 \quad \|x - m_{c'}\| \leq \|x - m_c\|.$$

847 For a fixed wrong class $c' \neq c$, if $\hat{y}(x) = c'$ (and $y = c$) then the above inequality holds. Using the
848 triangle inequality and Equation 20 we obtain

$$849 \quad 850 \quad \begin{aligned} \|x - m_{c'}\| &\geq \|\mu_{c'} - \mu_c\| - \|x - \mu_c\| - \|m_{c'} - \mu_{c'}\| \geq g - \|x - \mu_c\| - r, \\ \|x - m_c\| &\leq \|x - \mu_c\| + \|m_c - \mu_c\| \leq \|x - \mu_c\| + r. \end{aligned}$$

852 Combining these two inequalities and using $\|x - m_{c'}\| \leq \|x - m_c\|$ gives

$$854 \quad g - \|x - \mu_c\| - r \leq \|x - m_{c'}\| \leq \|x - m_c\| \leq \|x - \mu_c\| + r,$$

855 which rearranges to

$$857 \quad 858 \quad 2\|x - \mu_c\| \geq g - 2r \implies \|x - \mu_c\| \geq \frac{g}{2} - r.$$

859 Thus for this fixed c' we have the set inclusion

$$860 \quad 861 \quad \{\hat{y}(x) = c'\} \subseteq \left\{ \|x - \mu_c\| \geq \frac{g}{2} - r \right\},$$

862 and hence

$$863 \quad \Pr(\hat{y}(x) = c' \mid \mathcal{E}) \leq \Pr\left(\|x - \mu_c\| \geq \frac{g}{2} - r\right).$$

864 By the union bound we obtain
 865

$$866 \Pr(\hat{y}(x) \neq c \mid \mathcal{E}) = \Pr\left(\bigcup_{c' \neq c} \{\hat{y}(x) = c'\} \mid \mathcal{E}\right) \leq \sum_{c' \neq c} \Pr(\hat{y}(x) = c' \mid \mathcal{E}) \leq (K-1) \Pr\left(\|x - \mu_c\| \geq \frac{g}{2} - r\right). \quad (21)$$

869 Applying Lemma A.2 to the centered Gaussian $(x - \mu_c)/\sigma \sim \mathcal{N}(0, I_d)$ with $t := (g/2 - r)/\sigma > 0$
 870 yields

$$871 \Pr\left(\|x - \mu_c\| \geq \frac{g}{2} - r\right) \leq 2^{d/2} \exp\left(-\frac{(g/2 - r)^2}{4\sigma^2}\right).$$

873 Combining this with Equation 21 gives, conditioned on \mathcal{E} ,

$$874 \Pr(\hat{y}(x) \neq c \mid \mathcal{E}) \leq (K-1) 2^{d/2} \exp\left(-\frac{(g/2 - r)^2}{4\sigma^2}\right).$$

876 Since \mathcal{E} holds with probability at least $1 - \eta$ (over labeled-sample randomness), we conclude that
 877 with probability at least $1 - \eta$ (over the labeled-sample draw) the unconditional misclassification
 878 probability for class c is upper-bounded by the right-hand side above. This proves Equation 16.

879 \square

882 B COMPLEMENTARITY OF CaPT'S ASYMMETRIC-MODALITIES 883 CO-TRAINING

895 Figure 6: Comparison of conditional mutual information and accuracy between CaPT and CLS.
 896 Experiment is conducted on the EuroSAT (Helber et al., 2019) dataset with 2 labeled samples per
 897 class.

900 Table 7: Comparison of accuracy (%) between CaPT and CLS.

Dataset	CIFAR-100		EuroSAT	
# Labels per Class	2	4	2	4
CLS	80.64	84.66	94.46	94.89
CaPT	84.83	85.60	96.60	96.98

906 We perform an in-depth analysis of the complementarity conferred by CaPT's asymmetric-
 907 modalities co-training framework. First, if the two co-trained networks consistently produce identi-
 908 cal predictions on the same unlabeled batch, co-training reduces to standard single-model training.
 909 Second, Blum and Mitchell (Blum & Mitchell, 1998) theoretically proved that if, for each instance,
 910 the predictions obtained from the two views X_1 and X_2 approach conditional independence given
 911 the true label Y , then the co-training algorithm is PAC-learnable.

912 Building on these insights, we reasonably hypothesize that, under the CaPT framework, the two
 913 co-trained models' predictions on the same sample

$$914 \quad H_1 = h_1(X), \quad H_2 = h_2(X) \quad (22)$$

916 are **closer to conditional independence** given Y than those produced by the symmetric modality
 917 co-training baseline (CLS (Yao et al., 2022)), resulting in stronger complementarity and improved
 learning performance.

918 To validate this hypothesis, we performed both qualitative and quantitative analyses.
 919

920 1. **Qualitative Visualization.** Intuitively, for a given input image, the less overlap there is
 921 between the regions attended by the two co-trained models, the more independent their
 922 respective “views” of the input become, and consequently, the more independent their pre-
 923 dictions. Thus, for the same input image, we visualize the attention maps of the class
 924 token from the final Transformer block of both co-trained networks. As shown in Figure 3,
 925 CaPT’s two co-trained networks exhibit markedly distinct attention patterns.
 926 2. **Quantitative Measurement.** Given a labeled validation set $\{(x^{(i)}, y^{(i)})\}_{i=1}^N$, we collect
 927 the discrete predictions of the two co-trained models: $\hat{y}_1^{(i)} = h_1(x^{(i)})$ and $\hat{y}_2^{(i)} = h_2(x^{(i)})$.
 928 For each class y , we estimate the conditional mutual information as

$$\hat{I}(H_1; H_2 | Y = y) = \text{MI}(\{\hat{y}_1^{(i)}\}_{y^{(i)}=y}, \{\hat{y}_2^{(i)}\}_{y^{(i)}=y}), \quad (23)$$

929 and compute the overall conditional mutual information via
 930

$$\hat{I}(H_1; H_2 | Y) = \sum_y P(Y = y) \hat{I}(H_1; H_2 | Y = y). \quad (24)$$

931 As shown in Figure 6, CaPT yields a substantially lower $\hat{I}(H_1; H_2 | Y)$ compared to CLS,
 932 which is associated with a greater co-training accuracy improvement (see Table 7)⁶.
 933

934 These findings confirm that CaPT maintains stronger conditional independence of the two co-trained
 935 models’ predictions given Y , and that this enhanced complementarity is a key factor in its co-training
 936 success.
 937

938 C LLM USAGE

939 We employed a large language model (LLM) to assist with the refinement of Section 1 and to verify
 940 the derivation process of Theorem 1.1.
 941

942 D LOSS CALCULATION FOR LABELED DATA

943 Given a batch of labeled data containing Q samples $\mathcal{X} = \{(x_j^l, y_j) : j \in (1, \dots, Q)\}$. The
 944 supervised loss in CaPT is formulated—consistent with standard SSL practice—as the mean
 945 cross-entropy between the model’s predicted class distribution and the ground-truth labels:
 946

$$\mathcal{L}_s = \frac{1}{Q} \sum_{j=1}^Q H(y_j, p_m(y|x_j^l)), \quad (25)$$

947 where $p_m(y|x)$ is the predicted class distribution produced by the model for input x .
 948

949 E CAPT WITH RESNET-50 VISUAL ENCODER

950 We report in Table 8 the performance of CaPT on CIFAR-100 (Krizhevsky, 2009), STL10(Coates
 951 et al., 2011), and EuroSAT (Helber et al., 2019), using ResNet-50 (He et al., 2016) as the visual en-
 952 coder for CLIP (Radford et al., 2021). Since CLIP’s zero-shot classification performance is inferior
 953 when using ResNet-50 as the visual encoder compared to ViT-B/32, except on the EuroSAT dataset
 954 where their performance is similar, the overall performance of CaPT declines. Nevertheless, it still
 955 outperforms existing SSL methods.
 956

957 F EXPERIMENTAL DETAILS

958 We list the experimental configurations used in USB (Wang et al., 2022b) in Table 9. All pretrained
 959 ViT (Dosovitskiy, 2020) models are obtained from the links provided by USB. ViT-S-P2-32 indicates
 960 that we use ViT-Small with a patch size of 2 and an image size of 32. Since USB does not
 961

962 ⁶For fair comparison, our reproduced results of CLS are also based on FreeMatch (Wang et al., 2023) and
 963 USB benchmark. Additionally, we note that training CLS requires approximately 1.75× more time than CaPT.
 964

972 Table 8: Accuracy (%) on CIFAR-100, STL10, and EuroSAT under USB. Different visual encoders
973 for CLIP are used.
974

975 Encoder	976 Dataset	977 CIFAR-100		978 STL10		979 EuroSAT	
		980 # Labels per Class	981 2	982 4	983 4	984 10	985 2
986 ViT-B/32	987 CaPT	988 84.83 \pm 0.10	989 85.60 \pm 0.07	990 96.07 \pm 0.05	991 96.34 \pm 0.05	992 96.60 \pm 0.13	993 96.98 \pm 0.11
	994 Adapter-tuned CLIP	995 74.90 \pm 0.03	996 75.54 \pm 0.02	997 96.86 \pm 0.01	998 97.15 \pm 0.01	999 93.83 \pm 0.06	1000 94.52 \pm 0.4
	1001 CLIP	1002 65.10		1003 97.18		1004 49.46	
1005 RN50	1006 CaPT	1007 82.83 \pm 0.35	1008 84.85 \pm 0.16	1009 94.83 \pm 0.07	1010 95.17 \pm 0.05	1011 96.72 \pm 0.15	1012 96.87 \pm 0.11
	1013 Adapter-tuned CLIP	1014 66.10 \pm 0.08	1015 69.44 \pm 0.10	1016 94.49 \pm 0.02	1017 94.58 \pm 0.03	1018 93.94 \pm 0.03	1019 94.48 \pm 0.37
	1020 CLIP	1021 42.36		1022 94.37		1023 41.23	

984 Table 9: Training configurations and backbones in CaPT.
985

986 Dataset	987 CIFAR-100	988 STL10	989 EuroSAT	990 SVHN	991 FGVC Aircraft	992 ImageNet
993 Image Size	994 32	995 96	996 32	997 32	998 224	999 224
999 Model	1000 ViT-S-P2-32	1001 ViT-B-P16-96	1002 ViT-S-P2-32	1003 ViT-S-P2-32	1004 ViT-B-P16-224	1005 ViT-B-P16-224
1006 Weight Decay	1007 5e-4		1008 5e-2			
1009 Labeled Batch size	1010 16		1011 64			
1012 Unlabeled Batch size	1013 16		1014 64			
1015 Learning Rate	1016 5e-4	1017 1e-4	1018 5e-5	1019 5e-5	1020 5e-4	1021 3e-4
1022 Layer Decay Rate	1023 0.5	1024 0.95	1025 1.0	1026 1.0	1027 0.5	1028 0.5
1029 Scheduler	1030 $\eta = \eta_0 \cos(\frac{7\pi k}{16K})$					
1031 Model EMA Momentum	1032 0.0					
1033 Prediction EMA Momentum	1034 0.999					
1035 Weak Augmentation	1036 Random Crop, Random Horizontal Flip					
1037 Strong Augmentation	1038 RandAugment (Cubuk et al., 2020)					

1000 include training configurations for FGVC Aircraft (Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), StanfordCars (Krause et al., 2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), or SVHN (Netzer et al., 2011), we proceed as follows: for SVHN, we use the same ViT architecture as that used during EuroSAT (Helber et al., 2019) training; for the remaining datasets, we adopt the same ViT architecture as used during ImageNet (Deng et al., 2009) training, along with a unified training configuration across them. Consequently, Table 9 only reports CaPT’s training configuration for the FGVC Aircraft dataset.

1007 Additionally, CLS requires two vision models; in our reimplementation, we utilize two versions of
1008 the pretrained ViT model: the vanilla ViT (Dosovitskiy, 2020) and the MAE-pretrained ViT (He
1009 et al., 2022).

1011 G TRANSDUCTIVE ZERO-SHOT LEARNING

1012 Table 10: Performances (%) of CaPT in T-ZSL setting.
1013

1014 Dataset	1015 CLIP	1016 DebiasPL	1017 CaPT
1018 CIFAR-100	1019 65.10	1020 76.10	1021 85.57
1022 EuroSAT	1023 49.46	1024 69.98	1025 70.17
1026 CIFAR-10	1027 89.13	1028 93.53	1029 96.61
1030 ImageNet	1031 63.51	1032 67.83	1033 69.22

1035 We emphasize another advantage of CaPT over previous SSL methods—its ability to leverage
1036 CLIP’s zero-shot capability for transductive zero-shot learning (T-ZSL), bridging SSL and T-ZSL.
1037 Most prior SSL approaches cannot perform T-ZSL; to demonstrate CaPT’s strength, we compare it
1038 with DebiasPL (Wang et al., 2022a), which selects high-confidence samples from CLIP’s zero-shot
1039 predictions as the labeled dataset. Although CaPT can perform T-ZSL without modifications, to

1026 obtain better performance, we select the top- J highest-confidence samples per class (Huang et al.,
 1027 2022) based on CLIP’s predictions as the initial labeled data.
 1028

1038 Figure 7: CaPT’s performances in T-ZSL surpass its performances in SSL in some cases.
 1039

1040 We set $J = S \lfloor \sqrt{C} \rfloor$, where C is the number of classes in a dataset. Owing to CLIP’s outstanding
 1041 performance on CIFAR-10, we set $S = 300$ for CIFAR-10 and $S = 3$ for other datasets. As shown
 1042 in Table 10, CaPT consistently outperforms others. Furthermore, Figure 7 visualizes CaPT’s per-
 1043 formance under SSL settings (with varying label counts) alongside its T-ZSL results. By leveraging
 1044 unlabeled samples solely through CLIP’s prior knowledge, CaPT even outperforms its performances
 1045 in SSL in some cases, breaking the label dependency of SSL. This demonstrates that, in rare cases,
 1046 the high-confidence dataset extracted from CLIP’s priors can offer better supervision than the labeled
 1047 training set used in SSL settings. Researchers can incorporate the high-confidence data selected in
 1048 T-ZSL into the labeled training set for SSL to improve SSL performance.

1049 Additionally, We present the prediction accuracy A of the samples selected by CLIP for different
 1050 values of S in Figure 8. Because of CLIP’s class bias, the number of selected samples M might be
 1051 less than $J C$. We use M/JC to represent the uniformity of the selected samples. Finally, we use
 1052 $A \times (M/JC)$ to represent the accuracy considering uniformity. The S we choose is not necessarily
 1053 optimal, and researchers can select better S values based on the subfigures to achieve better T-ZSL
 1054 performance.

1064 Figure 8: The accuracy and uniformity of the selected labeled training set when S takes different
 1065 values, using ViT-B/32 as the visual encoder for CLIP.
 1066

1067 H CUSTOMIZED PROMPTS

1070 When constructing class prompts, to obtain more representative prompts, we adopt the customized
 1071 prompts proposed in CuPL (Pratt et al., 2023). Specifically, we first design large language model
 1072 (LLM) prompts that guide the LLM to generate descriptions of the dataset categories (e.g., “What
 1073 does a dog look like?”). Next, we feed these LLM prompts into the LLM to obtain prompts describ-
 1074 ing specific categories (e.g., “A dog looks like ...”). For each LLM prompt, we generate 10 different
 1075 class prompts. The LLM prompts constructed for each dataset are listed in Table 11.
 1076

1077 I COMPARISON WITH OTHER SSL ALGORITHMS

1078 In the main text, we reference several SSL algorithms, such as FlatMatch (Huang et al., 2023) and
 1079 DebiasPL (Yao et al., 2022), but do not include them in the experimental section. This is due to

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093

Table 11: LLM prompts used in CaPT.

Dataset	LLM Prompts
ImageNet	“Describe what a(n) {} looks like” “How can you identify a(n) {}?” “What does a(n) {} look like?” “Describe an image from the internet of a(n) {}” “A caption of an image of a(n) {}:”
CIFAR-10	“What are the identifying characteristics of a(n) {}?” “Describe a(n) {}:” “Describe what a(n) {} looks like ”
CIFAR-100	“What are the identifying characteristics of a(n) {}?” “Describe a(n) {}:” “Describe what a(n) {} looks like ” “Describe a photo of a(n) {}”
DTD	“What does {} material look like?” “What does a {} surface look like?” “What does a {} texture look like?” “What does a {} object look like?” “What does a {} thing look like?” “What does a {} pattern look like?”
EuroSAT	“Describe an aerial satellite view of {}” “How does a satellite photo of a(n) {} look like” “Visually describe a satellite view of a(n) {}”
STL10	“What are the identifying characteristics of a(n) {}?” “Describe a(n) {}:” “Describe what a(n) {} looks like ”
SVHN	“Describe a photo of the number {}” “Describe a street sign of the number {}”

1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Figure 9: Pseudo label accuracy of three methods on CIFAR-100 with labeled data under $n_r=50$ (left) and $i_r=30$ (right).

the fact that these algorithms have not been evaluated on the USB benchmark. Their experiments commonly use Wide ResNet (Zagoruyko & Komodakis, 2016) trained from scratch as the training backbone. In this section, we adopt the same training setting and backbone as these algorithms for the unimodal network in our UPM, and compare CaPT with several SSL algorithms on the CIFAR-10 (Krizhevsky, 2009) dataset under different numbers of labeled samples. The results are shown in Table 12, where our method still achieves leading performance.

Table 12: Accuracy (%) on CIFAR-10 with varying numbers of labels per class. The best results are shown in **bold**, and the second-best in underline.

Dataset	CIFAR-10			
	1	4	25	400
# Labels per Class				
VAT (Miyato et al., 2018)	20.19	25.34	58.97	89.49
Mean Teacher (Tarvainen & Valpola, 2017)	23.63	29.91	62.54	91.90
MixMatch (Berthelot et al., 2019b)	34.24	63.81	86.37	93.34
ReMixMatch (Berthelot et al., 2019a)	79.23	90.12	93.70	95.16
UDA (Xie et al., 2020)	65.47	89.38	94.84	95.71
FixMatch (Sohn et al., 2020)	75.21	92.53	95.14	95.79
Dash (Xu et al., 2021)	72.72	91.07	94.84	95.64
MPL (Pham et al., 2021)	76.45	93.38	94.24	95.45
FlexMatch (Zhang et al., 2021a)	86.15	95.03	95.02	95.81
CLS (Yao et al., 2022)	-	91.82	95.55	96.28
SoftMatch (Chen et al., 2023)	-	95.09	95.18	95.96
DebiasPL (Wang et al., 2022a)	-	94.60	95.40	-
FreeMatch (Wang et al., 2023)	91.93	95.10	95.12	95.90
SequenceMatch (Nguyen, 2024)	-	95.20	95.25	95.85
FlatMatch (Huang et al., 2023)	84.77	94.42	95.78	96.39
RegMixMatch (Han et al., 2025)	<u>95.65</u>	<u>95.76</u>	<u>95.79</u>	<u>96.62</u>
CaPT	95.93	96.35	96.57	96.80

J CaPT’S RESULTS IN ADDITIONAL SCENARIOS WITH RESTRICTED SUPERVISION

Table 13: Accuracy (%) of CaPT on CIFAR-100 and EuroSAT under different levels of noisy labels (n_r) and class imbalance (i_r).

Dataset	CIFAR-100				EuroSAT			
	$n_r=25$	$n_r=50$	$i_r=15$	$i_r=30$	$n_r=25$	$n_r=50$	$i_r=15$	$i_r=30$
Condition								
FreeMatch	70.07	69.63	80.61	73.21	86.74	72.64	95.26	92.12
RegMixMatch	73.12	72.56	82.17	75.85	88.87	70.35	95.87	94.16
CaPT	78.88	76.41	85.10	84.40	95.60	88.54	96.96	96.80

1188 Although advanced methods have been proposed to address low-label (Wang et al., 2023; Han et al., 2025),
 1189 class-imbalanced (Lee et al., 2021), and noisy-label (Li et al., 2020) SSL regimes individually,
 1190 few approaches tackle more than one of these challenges simultaneously. In realistic SSL
 1191 scenarios (Gu et al., 2023), low-label conditions often imply that annotations are difficult to
 1192 obtain—e.g., requiring expert knowledge—and that label reliability and class balance are harder to
 1193 guarantee. Furthermore, label noise tends to affect classes unevenly, reducing the number of trust-
 1194 worthy annotations per class and amplifying class imbalance, which in turn degrades the perfor-
 1195 mance of conventional SSL methods. By reducing SSL’s dependence on labeled data, CaPT achieves
 1196 more robust performance in practical, weakly supervised SSL settings.

1197 Beyond low-label regime, we further evaluate CaPT in two additional label-constrained scenar-
 1198 ios—SSL with noisy labels (NL) and class-imbalanced SSL (CI)—to demonstrate its effectiveness
 1199 under limited supervision. The experimental setups for these tasks are defined as follows:

1200 **NL Setup:** Each class is assigned 15 labeled samples, and $n_r\%$ denotes the fraction of labels that
 1201 are randomly corrupted in each class.

1202 **CI Setup:** Classes have varying numbers of labeled samples, gradually decreasing from 30 to fewer.
 1203 We use i_r to denote the imbalance ratio, defined as the ratio between the most and least labeled sam-
 1204 ples across classes.

1205 Table 13 illustrates CaPT’s consistently superior performance under constrained supervision. Figure
 1206 9 further presents the training curves of pseudo label accuracy for CaPT and its two variants—ViT-
 1207 only (retaining only the ViT backbone) and CLIP-only (retaining only the CLIP component)—when
 1208 supervised with noisy or class-imbalanced labeled data. Both variants yield suboptimal pseudo
 1209 label accuracy: the ViT-only variant is hampered by constrained labeled data, while the CLIP-only
 1210 variant suffers from few learnable parameters. CaPT combines their strengths by injecting reliable
 1211 prior independent of labeled data into a robust ViT model, markedly enhancing unlabeled data use
 1212 in SSL.

K FEW-SHOT METHODS

1213 Despite methods like CLIP-Adapter (Gao et al., 2024), Tip-Adapter (Zhang et al., 2021b), and
 1214 APE (Zhu et al., 2023) being able to adapt CLIP to few-shot classification efficiently by introducing
 1215 only a minimal number of trainable parameters, this very parameter scarcity inherently confines their
 1216 applicability to few-shot scenarios. As Table 14 illustrates, these advanced few-shot approaches still
 1217 fall significantly short of CaPT’s performance; accordingly, we do not extend our comparisons to
 1218 additional few-shot methods.

1219 Table 14: Comparison of CaPT and few-shot methods. Experiments are conducted with 2 labeled
 1220 samples per class.

Method	CIFAR-100	EuroSAT
CLIP-Adapter	68.43	80.22
Tip-Adapter	68.63	80.36
APE-T	68.88	80.47
CaPT	84.83	96.60

L PORTABILITY OF CAPT

1231 Given the limited prior of CLIP and evolving nature of VLMs, Portability was a primary design
 1232 consideration when developing CaPT as a training framework. We summarize its portability along
 1233 three dimensions:

1234 **Decoupled Co-Training Roles.** The co-training scheme explicitly separates the provision of reli-
 1235 able prior (adapting VLMs) from the provision of strong learning capacity (training an SSL model).
 1236 By disentangling these two roles, CaPT treats the prior and the learner as modular components that
 1237 can be selected, improved, or replaced independently. In practice, this allows one to adopt stronger
 1238 VLMs, employ more efficient VLM-adaptation strategies, or substitute alternative pseudo labeling

algorithms (e.g., replacing FixMatch (Sohn et al., 2020) with FreeMatch (Wang et al., 2023)) without modifying the rest of the pipeline (see Table 16 and Table 17). This modularity reduces reliance on any single component and enables CaPT to continuously benefit from future advances in both VLMs and SSL techniques.

Efficient CLIP Tuning via Adapters. Among the two major CLIP adapting strategies—prompt tuning (Zhou et al., 2022) and adapter tuning (Gao et al., 2024)—prompt tuning fails to reduce the gradient propagation flow (Wu et al., 2025), and thus does not effectively shorten training time. In contrast, our choice of adapter tuning significantly reduces training time and enhances the lightweight nature of CaPT.

Architecture-Agnostic Adapter Design. Many adapter-based methods (Yang et al., 2024; Khatat et al., 2023) insert adapters into internal layers and therefore require architecture-specific modifications to accommodate different VLM configurations (e.g., patch size or model scale). In contrast, our adapter-tuning strategy appends lightweight adapter modules to the model’s output stage (i.e., at the tail of the architecture) rather than altering internal representations or layer layouts. By confining changes to the model’s final stage, CaPT avoids structural modifications to the backbone and remains compatible with a wide range of VLMs. This simple, tail-attached design preserves the original model internals, reduces engineering overhead for different architectures, and retains the parameter-efficiency benefits of adapter tuning.

M POTENTIAL OVERLAP

Table 15: Zero-shot performance (%) of attribute-based CLIP (results directly taken from (Baron et al., 2024)).

Dataset	With name	No name	Att.-finetuned (no name)
Dogs120 (Khosla et al., 2011)	65.6	26.5	32.8
OxfordPets (Parkhi et al., 2012)	87.9	49.0	52.8
CUB (Wah et al., 2011)	62.6	19.8	24.0
Flowers102 (Nilsback & Zisserman, 2008)	72.3	24.4	39.4
Food101 (Bossard et al., 2014)	78.7	65.0	69.0

Although we conducted experiments on a wide range of fine-grained datasets (e.g., satellite imagery and texture recognition), one might still be concerned that the strong performance arises from potential overlap between CLIP’s pre-training corpus and these datasets, leading to “memorization” of identical data or class names. We clarify as follows: CLIP is trained to align natural language descriptions with images in a shared semantic embedding space rather than to memorize class labels. Prior work (Pratt et al., 2023) has shown that replacing the fixed template prompt ‘‘a photo of [classname]’’ with more attribute-rich textual descriptions (e.g., ‘‘A pink primrose generally has soft, pink petals with a yellow center’’) can significantly improve zero-shot performance, indicating that CLIP captures attribute-based semantic alignment rather than merely matching class names. Furthermore, recent studies (Baron et al., 2024) demonstrate that decomposing class name concepts into attribute combinations allows CLIP to retain a non-negligible level of zero-shot capability **even when the class name itself is absent from the prompt**; fine-tuning CLIP with attribute-focused prompts can further enhance this zero-shot ability (see Table 15). Taken together, although we cannot completely rule out the possibility of a small amount of pre-training data overlap, the evidence from (1) robust performance gains with attribute-enriched prompts and (2) preserved zero-shot performance when only attribute descriptions are used provides a more compelling explanation that CLIP has learned attribute-level semantic alignment, enabling generalization across diverse tasks through attribute matching rather than simple memorization of labels or specific images in its pre-training corpus.

1296 Table 16: Accuracy (%) of CaPT with various VLMs.
1297

Dataset	FGVCAircraft		EuroSAT	
	5	10	2	4
FreeMatch	51.43	65.82	93.50	94.22
RegMixMatch	49.86	66.21	95.75	96.39
CaPT-CLIP	50.12	64.33	96.60	96.98
CaPT-SigLIP	53.33	66.15	96.67	96.90
CaPT-CLIPA	59.63	70.25	96.97	97.21
CLIP	18.97		49.46	
SigLIP	15.32		44.28	
CLIPA	40.06		60.46	

1306 Table 17: Accuracy (%) of CaPT with various pseudo label thresholding methods.
1307

Dataset	CIFAR100		EuroSAT	
	2	4	2	4
FixMatch	70.40	80.44	86.56	94.09
CaPT-Fix	77.87	83.66	93.53	96.45
FlexMatch	73.24	81.76	94.83	94.42
CaPT-Flex	78.55	84.26	97.01	96.88
FreeMatch	78.60	84.35	93.50	94.22
CaPT-Free	84.83	85.60	96.60	96.68

1323

N FAILURE CASES OF CAPT

1325 In Table 5, we show that CaPT outperforms previous methods on all evaluated fine-grained datasets
1326 except FGVCAircraft (Maji et al., 2013). We conjecture two reasons for this exception. First,
1327 CLIP exhibits relatively poor zero-shot performance on FGVCAircraft (18.97% zero-shot accuracy).
1328 Second, the version of CLIP used in our study carries a biased prior on this dataset that is more
1329 difficult to correct, because in our experiments we found that fine-tuning only increased CLIP’s
1330 accuracy from 18.97% to around 32%. Since CaPT relies on correcting CLIP’s prior to effectively
1331 leverage unlabeled samples, its performance is consequently constrained in this setting.

1332 Nevertheless, we emphasize that the main contribution of CaPT lies in providing a framework for
1333 efficiently integrating CLIP into SSL, which can readily accommodate more advanced VLMs to
1334 achieve improved performance. Benefiting from CaPT’s strong portability (Appendix L), we can
1335 efficiently incorporate advanced VLMs such as SigLIP (Zhai et al., 2023) and CLIPA (Li et al.,
1336 2023) into the CaPT pipeline. As shown in Table 16, when CaPT leverages priors from SigLIP and
1337 CLIPA⁷, it achieves substantial performance gains over existing methods. Although SigLIP exhibits
1338 poorer zero-shot performance on FGVCAircraft (15.32% zero-shot accuracy), in our experiments
1339 we found that fine-tuning SigLIP can effectively correct its biased prior—increasing its accuracy
1340 from 15.32% to over 43%. This suggests that the more advanced SigLIP learns richer and more
1341 transferable representations, which can be more readily adapted to the downstream task through
1342 fine-tuning. As a result, CaPT can fully exploit the corrected prior, enabling effective utilization of
1343 unlabeled samples and strong overall performance on this dataset.

1344

O CIFAR-10 (10) LABELED DATA VISUALIZATION

1345 In Figure 1a, we present the performance of SSL algorithms on the CIFAR-10 dataset, where each
1346 class has one labeled sample, under labeled training sets with varying levels of prototypicality. Fix-

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 170116 170117 170118 170119 170120 170121 170122 170123 170124 170125 170126 170127 170128 170129 170130 170131 170132 170133 170134 170135 170136 170137 170138 170139 170140 170141 170142 170143 170144 170145 170146 170147 170148 170149 170150 170151 170152 170153 170154 170155 170156 170157 170158 170159 170160 170161 170162 170163 170164 170165 170166 170167 170168 170169 170170 170171 170172 170173 170174 170175 170176 170177 170178 170179 170180 170181 170182 170183 170184 170185 170186 170187 170188 170189 170190 170191 170192 170193 170194 170195 170196 170197 170198 170199 170100 170101 170102 170103 170104 170105 170106 170107 170108 170109 170110 170111 170112 170113 170114 170115 17

Figure 10: Labeled training data for the one-label-per-class experiment. Each row corresponds to a labeled training set, sorted from the most prototypical dataset (first row) to the least prototypical dataset (last row).

Match selects eight training sets with progressively decreasing class prototypicality through the ordering mechanism (Carlini et al., 2019). We visualize all the selected samples in Figure 10 as done in FixMatch, and in our experiments, we only use the first three labeled training sets.

P POTENTIAL IMPROVEMENTS

Although CaPT demonstrates excellent performance in practical weakly-supervised SSL settings, we point out several potential areas for improvement:

1. CaPT relies on refining the zero-shot capabilities of VLMs to better leverage unlabeled data in SSL. However, when a chosen VLM neither achieves satisfactory zero-shot performance on a target dataset nor admits an easily correctable prior, the VLM may become ineffective or even detrimental to SSL performance.
2. We propose an entropy-based weighting method to effectively allocate weights to the predictions of two classification models. Ideally, the weight assignment should reflect the models' accuracy on the validation set. However, our method failed to fully achieve this objective in some cases.
3. In T-ZSL, CaPT relies on CLIP's zero-shot capability to select high-confidence samples for each class as the labeled training set. However, when certain categories fail to have any samples selected due to CLIP's class bias, CaPT's performance in T-ZSL falls significantly behind SSL (e.g., EuroSAT).
4. CaPT cannot handle semi-supervised tasks outside of computer vision, such as time series and natural language processing.