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ABSTRACT

Semi-supervised learning (SSL) has shown remarkable potential in scenarios with
limited labeled data. However, our study reveals that existing SSL approaches
remain inherently label-dependent—their ability to exploit unlabeled samples is
bounded by the quantity and quality of labeled data. To address this limitation, we
establish a portable asymmetric-modalities co-training framework for efficiently
integrating CLIP into SSL, termed CaPT. CaPT aggregates predictions from a
fully fine-tuned unimodal network and a parameter-efficiently fine-tuned multi-
modal CLIP model via carefully designed co-pseudo labels, which guide training
by refining CLIP’s biased predictions and supplementing reliable prior for SSL
without compromising efficiency. Moreover, the asymmetric-modalities mitigates
the pattern-homogeneity bottleneck observed in previous co-training methods,
enabling richer cross-model information exchange. CaPT consistently achieves
state-of-the-art performance across multiple SSL benchmarks. Notably, it out-
performs the second-best method by 21.38% and 4.05% on the CIFAR-100 and
EuroSAT datasets, respectively, under the one-label-per-class setting, demonstrat-
ing its strong potential in low-label regimes.

1 INTRODUCTION

Semi-supervised learning (SSL) aims to reduce the reliance of supervised training on large-scale
labeled data. Recent advances in thresholding strategies (Zhang et al., 2021a; Wang et al., 2023) and
generalization techniques (Berthelot et al., 2019b;a; Huang et al., 2023) have significantly enhanced
SSL performance. Even in low-label regimes, SSL achieves promising results (Han et al., 2025).
Nevertheless, we note that SSL methods still exhibit a heavy dependency on labeled data, with per-
formance dropping sharply once label quantity falls below a critical threshold. As shown in the left
subfigure of Figure 1a, SSL algorithms perform competitively on the CIFAR-10 dataset (Krizhevsky,
2009) with as few as 400, 25, or even 4 labeled samples per class. However, their performance de-
teriorates markedly when the labeled data is reduced to just one sample per class. In addition, the
quality of labeled samples matters. Following prior work (Sohn et al., 2020), under the one-label-
per-class setting on CIFAR-10, we construct three labeled training sets using the prototypicality
ordering mechanism (Carlini et al., 2019): Set 0 contains the most prototypical image for each
class, while Set 2 contains the least prototypical images. The radar chart in Figure 1a shows that
SSL algorithms achieve the highest performance when trained on Set 0 and the lowest performance
when trained on Set 2. Diving deeper, Figure 1b shows that, during FreeMatch (Wang et al., 2023)
training, pseudo label accuracy is substantially lower when the labeled samples are less prototypical.

To complement these empirical observations, we present a analytic model and a supporting theorem.
Under a prototype-based Gaussian-mixture generative model, let g denote the minimum inter-class
centroid distance, σ2 the per-class noise variance, B a uniform bound on the systematic bias of
the chosen labeled prototypes (i.e., non-prototypicality), and nmin the minimum number of labeled

samples per class. Define εn := 2σ√
nmin

√
log
(
K 2d/2

η

)
, where K is the number of classes and d the

input dimension. Let r := B + εn. we derive the following bound on the pseudo label error:
Theorem 1.1. With probability at least 1− η over the labeled-sample draws, the nearest-prototype
pseudo label error for any class c satisfies

Pr
x|y=c

(
ŷ(x) ̸= c

)
≤ (K − 1) 2d/2 exp

(
− (g/2− r)2

4σ2

)
. (1)
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Figure 1: Motivating example of CaPT. (a) Existing SSL methods exhibit significant performance
degradation under restricted labeled data. (b) The quality of labeled data affects the accuracy of
pseudo labels for unlabeled data. (c) The proportion of CLIP’s predictions for each class on the
EuroSAT (Helber et al., 2019) dataset reveals its strong class bias.
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Figure 2: Different framework for integrating CLIP into SSL. CLIP-Adapter and DebiasPL suffer
from limited learning capacity and biased prior, resulting in unreliable predictions. In contrast, CaPT
balances efficiency and reliability.

Consequently, the pseudo label error decays exponentially in (g/2 − r)2/σ2 when g/2 > r. In-
creasing the prototype bias B, or reducing the labeled sample size (which increases εn), directly
reduces the effective margin g/2 − r and therefore substantially increases the pseudo label error.
This reveals a fundamental limitation of existing SSL methods: the utilization of unlabeled samples
depends heavily on the properties of labeled data. When labeled data are non-prototypical (large
B) or too few (large εn), the model’s predictions on unlabeled samples become less reliable and
pseudo-labeling can fail or even reinforce errors (Figure 1b). The proof is provided in Appendix A.

CLIP (Radford et al., 2021) employs contrastive learning to align a large number of image-text pairs,
achieving exceptional performance across various vision tasks without any annotations (Rao et al.,
2022; Shi et al., 2022). Inspired by this, we argue that even when a model trained with restricted
labeled data struggles to generate reliable pseudo labels, CLIP’s zero-shot capability may act as a
catalyst for unlocking the potential of unlabeled data in SSL. However, effectively integrating CLIP
into SSL remains challenging. Parameter-efficient fine-tuning (PEFT) methods (Zhou et al., 2022)
such as CLIP-Adapter (Gao et al., 2024) enable few-shot adaptation but often fail to capture the
diversity present in SSL training data (Figure 2a); conversely, full fine-tuning is prohibitively expen-
sive due to CLIP’s fixed input resolution and large parameter count (Gao et al., 2024) (Figure 2b).
DebiasPL (Wang et al., 2022a) incorporates CLIP-predicted high-confidence unlabeled samples into
the labeled set before training (Figure 2c), but, as Figure 1c and prior work (Wang et al., 2022a)
show, CLIP’s biased predictions limit the scalability of such approaches.

To address these limitations, we propose CLIP as a Prior Teacher (CaPT), a novel asymmetric-
modalities co-training framework that decouples the provision of reliable prior from the provision
of strong learning capacity (Figure 2d). Specifically, CaPT jointly trains the multimodal CLIP and
a unimodal network, with co-pseudo labels facilitating complementary strengths between the two
models. While we fully fine-tune the unimodal network, CLIP is fine-tuned efficiently using PEFT,
where lightweight adapters (Houlsby et al., 2019) are inserted into its textual and visual encoders.
The former can better adapt to the richness of the training samples and is not constrained by input
image resolution. The latter injects more reliable prior into SSL while maintaining efficiency.

While our emphasis is on efficiently integrating CLIP into SSL, CaPT—like most co-training
methods (Yao et al., 2022; Blum & Mitchell, 1998)—preserves bidirectional information flow, en-
abling mutual learning between models and improving both branches. Crucially, the asymmetric-
modalities design mitigates the pattern-homogeneity bottleneck encountered when co-training two
pure-vision models (e.g., CLS (Yao et al., 2022)). Prior work (Blum & Mitchell, 1998) emphasizes
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Figure 3: Attention maps for different vision transformers.

that the independence between cotrained views is essential for successful co-training. However, as
shown in Figure 3, unimodal Vision Transformers (ViTs)—despite differing parameter initializa-
tions ViT (θ1) and ViT (θ2)—still exhibit similar representational patterns. By incorporating textual
context, CLIP produces representations that diverge substantially from those of a pure-vision ViT
(e.g., on a “rooster” example ViT (CLIP) attends to the comb while the pure-vision ViTs focus on
the eye and beak), and this cross-modal complementarity enriches the mutual learning mechanism
and markedly enhances co-training effectiveness1. The contributions of our work are as follows:

1. We identify and theoretically establish the label dependency that constrains SSL, where the
ability to utilize unlabeled data is bounded by the quantity or quality of labeled data.

2. We design a novel and portable framework for integrating CLIP into SSL, CaPT. Its advan-
tages are two-fold: first, it efficiently leverages CLIP’s prior knowledge in SSL, unlocking
the potential of unlabeled data; second, among co-training methods, it enables richer infor-
mation exchange between models, enhancing mutual learning.

3. CaPT significantly outperforms existing SSL methods and demonstrates immense potential
in realistic restricted supervision scenarios.

2 RELATED WORK

In this section, we provide an overview of SSL from two key perspectives: thresholding strate-
gies (Sohn et al., 2020; Zhang et al., 2021a; Wang et al., 2023) and data augmentation tech-
niques (Cubuk et al., 2018; Zhang et al., 2018).

Thresholding Strategies. A key direction in SSL research focuses on developing more effective
thresholding strategies for generating pseudo labels. Pseudo-labeling (Lee et al., 2013) assigns
each unlabeled example the class with highest predicted probability, which is simple but prone to
confirmation bias (Arazo et al., 2020). FixMatch (Sohn et al., 2020) applies a fixed confidence
threshold to select unlabeled samples for training. Subsequent methods seek greater adaptivity:
MPL (Pham et al., 2021) adapts the teacher using student feedback to improve pseudo label quality;
Dash (Xu et al., 2021) introduces dynamic filtering based on training loss; FlexMatch (Zhang et al.,
2021a) adjusts thresholds for each class according to learning difficulty; FreeMatch (Wang et al.,
2023) further adapts thresholds to the model’s learning state; and SoftMatch (Chen et al., 2023)
replaces hard thresholding with confidence-weighted sample contributions.

Data Augmentation Techniques. Data augmentation is another central pillar of modern SSL.
VAT (Miyato et al., 2018) enforces consistency between original and adversarially perturbed inputs
to improve robustness. Mixup (Zhang et al., 2018) augments training by convexly combining pairs
of samples and has been shown to effectively smooth decision boundaries in SSL (Berthelot et al.,
2019b;a; Han et al., 2025). FixMatch and follow-up works (Li et al., 2021; Nguyen, 2024) refine

1Due to space constraints, the experiments demonstrating CaPT’s cross-modal complementarity are pro-
vided in Appendix B.
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Figure 4: CaPT pipeline: Given a batch of unlabeled images, Module A uses a vision model to ex-
tract features and generate predictions from both strongly and weakly augmented views. Module B
uses adapter-tuned CLIP and feature augmentation (Mixup) to obtain strong and weak features, and
computes cosine similarity with class weights obtained through class prompts for prediction. The
weak predictions from both modules are converted into pseudo labels in Module C, which are com-
bined through entropy-based weighting to form co-pseudo labels that supervise strong predictions.

augmentation schemes by integrating stronger strategies such as RandAugment (Cubuk et al., 2020),
which improves generalization. FlatMatch (Huang et al., 2023) applies sharpness-aware minimiza-
tion (Foret et al., 2020) to flatten the loss landscape and further enhance generalization.

However, as shown in Figure 1a, existing SSL algorithms exhibit suboptimal performance under
weak supervision (see Appendix J for further scenarios). We refine CLIP’s prior and integrate it
into SSL, effectively reducing SSL’s label dependency. Our work is related to DebiasPL (Wang
et al., 2022a) and CLS (Yao et al., 2022), which incorporate CLIP and co-training into SSL, respec-
tively. Unlike CLS, which co-trains two unimodal networks with identical architectures but different
parameter initializations, CaPT jointly trains models from asymmetric-modalities, breaking SSL’s
label dependency and enabling informative co-training. Compared to DebiasPL, we utilize CLIP in
a more reliable manner and identify its critical role in restricted supervision scenarios.

3 METHOD

As illustrated in Figure 4, the overall workflow of CaPT is structured into three modules: Module A,
where a unimodal network generates predictions for unlabeled samples; Module B, where CLIP is
fine-tuned and used to produce predictions for the same samples; and Module C, which aggregates
the predictions from the first two modules and computes the loss.

3.1 MODULE A

The process in Module A follows common practices (Sohn et al., 2020) in current SSL methods.
Given an unlabeled sample xu, we apply weak and strong augmentations to it, and then obtain the
predictions for both augmented views using the classification model:

qw,a = pm(y|xu + δw), qs,a = pm(y|xu + δs). (2)

Here, δw and δs represent weak and strong augmentations, respectively, qw,a (qs,a) denotes the weak
(strong) prediction generated in Module A, and pm(y|x) is the predicted class distribution produced
by the model for input x.

To better illustrate our algorithm, we present the subsequent usual practice in SSL: converting the
weakly augmented view’s prediction into pseudo label:

q̂ = argmax(qw,a), (3)

4
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then calculating the consistency loss between the prediction of the strongly augmented sample and
the pseudo label:

l = CE(q̂, qs,a), (4)
where CE(·, ·) denotes the standard cross-entropy loss. The core idea is consistency regulariza-
tion (Bachman et al., 2014): expecting the model to maintain consistent predictions before and after
perturbations to enhance generalization ability.

Our method converts the weak predictions from Module A into pseudo labels. To integrate CLIP’s
prior knowledge, we combine them with the pseudo labels generated in Module B to form co-pseudo
labels, which serve as the supervision signal for strong predictions.

3.2 MODULE B

Module B extracts reliable prior knowledge from CLIP. We find that fully fine-tuning CLIP and
obtaining predictions for both weak and strong views of input data through it is much more time-
consuming compared to Module A. To mitigate this, we introduce adapter for efficient fine-tuning
of CLIP and employ feature-augmented consistency regularization.

3.2.1 ADAPTER-TUNING

CLIP typically requires input images with resolutions of 224 × 224 or higher, and its encoders
contain a large number of parameters, prompting us to explore an efficient fine-tuning method. We
freeze the visual and textual encoders of CLIP and only train additional adapters, as commonly done
in few-shot learning (Gao et al., 2024).

Specifically, given a weakly augmented version of an unlabeled sample xu + δw, we first extract
features through CLIP’s visual encoder Ev:

f = Ev(xu + δw), (5)

and then input f into a learnable adapter Av , which consists of two linear layers for dimensionality
reduction and expansion. The output is then combined with the original feature f using a residual
connection to obtain the fine-tuned feature:

f∗ = f +Av(f). (6)

To construct class weights for classification, we follow the zero-shot CLIP, placing each class name
into a predefined template to generate class prompts (more details in Appendix H), which are then
input into CLIP’s textual encoder Et to obtain class weights W . We simplify the fine-tuning of the
textual encoder by constructing a learnable parameter At (Zhu et al., 2023), initialized to zero and of
the same shape as W , and similarly combining it with class weights W using a residual connection
to obtain new class weights:

W ∗ = W +At. (7)
With the fine-tuned image feature f∗ and class weights W ∗, we can use cosine similarity as a
classifier to calculate the predicted probability of the sample for each class:

pi =
exp

(
W∗

i
T f∗

τ

)
∑C

j=1 exp
(

W∗
j

T f∗

τ

) , (8)

where τ denotes the temperature of softmax, W ∗
i represents the prototype weight vector for class i.

3.2.2 FEATURE-AUGMENTED CONSISTENCY REGULARIZATION

Given than CLIP’s visual encoder Ev is frozen, we implement strong augmentation at feature level
instead of input level to reduce resource consumption. Mixup (Zhang et al., 2018) achieves data
augmentation through convex combinations of data and labels, and feature-based Mixup has shown
strong potential (Verma et al., 2019). Inspired by this, we perform feature-level strong augmentation
by convexly combining the feature f extracted from weakly augmented anchor sample by Ev with
the feature f ′ of another weakly augmented sample randomly selected from the same batch:

f̄ = λf + (1− λ)f ′, (9)
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where λ follows a Beta distribution with parameters (α, α). Next, we fine-tune the feature f and
f̄ using the adapter Av , obtaining f∗ and f̄∗, respectively. We then use the fine-tuned features
and class weights W ∗ to obtain the final weak and strong predictions qw,b and qs,b via Equation 8.
The strong prediction qs,b will later be paired with a convexly combined co-pseudo label to enforce
feature-augmented consistency regularization in Module C.

Feature-augmented consistency regularization not only improves the generalization of CLIP but also
avoids the need to construct another high-resolution version of the unlabeled image and feed it again
to the parameter-heavy visual encoder Ev to obtain feature.

3.3 MODULE C

Modules A and B generate strong and weak predictions using the unimodal network and CLIP,
respectively. To aggregate the two modules for exchanging supervision signals, we weight and
combine the pseudo labels generated by these modules to form co-pseudo labels. Specifically, we
first construct pseudo labels from the weak predictions of the two modules:

q̂a = argmax(qw,a), q̂b = argmax(qw,b). (10)
To assign weights, given a batch of unlabeled samples xu

j , where j ∈ (1 . . . N), assume any model’s
weakly augmented version predictions for these samples are qwj . We first compute the average
entropy of the model’s predictions for these samples:

H =
1

N

N∑
j=1

(
−
∑
i

qwj,i log q
w
j,i

)
, (11)

where qwj,i represents the predicted probability for class i of the j-th sample. The smaller the entropy,
the higher the model’s confidence in its predictions, which warrants a higher weight allocation. The
weights assigned to the two modules are defined as:

Γa =
1

Ha

1
Ha + 1

Hb

,Γb =
1
Hb

1
Ha + 1

Hb

. (12)

Then we combine the two pseudo labels using the computed weights to generate a co-pseudo label:
q̂c = Γaq̂a + Γbq̂b. (13)

Entropy-based weighting enables adaptive weight adjustment. At the early co-training, the unimodal
network is not yet fully trained, while CLIP, with its rich prior knowledge, dominates the supervi-
sion. As the full fine-tuning of the network in Module A progresses, it gradually takes over the
supervision due to its larger number of learnable parameters.

To parallel the feature-level convex combination in Module B, the co-pseudo label of the anchor
sample is convexly combined with that of the randomly selected sample using the same mixing
parameter λ:

¯̂qc = λq̂c + (1− λ)q̂c
′
. (14)

Ultimately, the strong predictions from both modules jointly use the co-pseudo label (or its mixed
variant) as the supervision signal to compute the consistency loss:

La =
1

N

N∑
j=1

CE(q̂cj , q
s,a
j ), Lb =

1

N

N∑
j=1

CE(¯̂qcj , q
s,b
j ). (15)

We emphasize that a pseudo label is retained only if the weak-prediction confidence exceeds a
threshold. Otherwise, the corresponding module’s pseudo label is replaced by the all-zero vec-
tor. Consequently, the resulting co-pseudo label comprises supervision exclusively from the other
module, with the sum of class prediction probabilities equaling the module’s weight (less than 1).
This mechanism ensures that low-confidence samples are assigned smaller weights during the loss
calculation, thus reducing confirmation bias.

Overall, CaPT aggregates the weak predictions of the unimodal network and the multimodal CLIP
through co-pseudo labels, guiding the strong predictions to align with these co-pseudo labels to
jointly train the unimodal network and fine-tune CLIP. Although CLIP is only adapter-tuned and
thus typically lags behind the fully fine-tuned network in Module A, it remains indispensable, as
its adapter-tuned outputs provide reliable priors that serve as a catalyst for effectively leveraging
unlabeled samples in SSL.

6
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Table 1: Accuracy (%) on CIFAR-100, STL10 and EuroSAT datasets under USB. The best results are high-
lighted with Bold and the second-best results are highlighted with underline.

Dataset CIFAR-100 STL10 EuroSAT

# Labels per Class 2 4 4 10 2 4

VAT (Miyato et al., 2018) 68.51±1.33 78.66±0.50 81.55±1.47 89.31±0.51 73.84±0.96 89.91±0.94

Mean Teacher (Tarvainen & Valpola, 2017) 64.53±0.40 73.97±0.30 81.33±1.69 75.81±10.15 73.17±1.46 84.15±1.66

ReMixMatch (Berthelot et al., 2019a) 77.79±2.21 83.14±0.57 86.92±3.34 92.79±0.39 94.95±1.05 94.93±0.56

FixMatch (Sohn et al., 2020) 70.40±0.90 80.44±0.52 83.85±1.89 91.89±0.68 86.56±3.53 94.09±2.02

FlexMatch (Zhang et al., 2021a) 73.24±1.12 81.76±0.36 85.60±3.11 91.83±0.78 94.83±0.57 94.42±0.81

Dash (Xie et al., 2020) 69.39±0.98 80.62±0.10 83.78±5.95 92.15±0.74 88.81±0.90 93.04±0.87

CoMatch (Li et al., 2021) 64.92±0.69 74.77±0.50 84.88±1.88 90.44±1.35 94.25±0.43 95.19±1.05

SimMatch (Zheng et al., 2022) 76.22±1.08 82.94±0.78 88.23±3.20 92.45±1.86 92.34±0.60 94.73±0.89

SoftMatch (Chen et al., 2023) 77.33±1.32 83.16±0.66 86.45±3.16 92.16±1.72 94.25±0.62 94.10±1.42

FreeMatch (Wang et al., 2023) 78.60±0.30 84.35±0.26 87.27±3.22 91.48±0.53 93.50±0.78 94.22±0.51

SequenceMatch (Nguyen, 2024) 78.86±0.25 84.26±0.15 87.73±3.13 92.45±0.66 94.13±0.69 95.09±0.81

RegMixMatch (Han et al., 2025) 80.74±0.56 84.45±0.31 89.89±3.20 92.90±0.66 95.75±0.77 96.39±0.75

CaPT 84.83±0.10 85.60±0.07 96.07±0.05 96.34±0.05 96.60±0.13 96.98±0.11

Adapter-tuned CLIP 74.90±0.03 75.54±0.02 96.86±0.01 97.15±0.01 93.83±0.06 94.52±0.04

CLIP (Radford et al., 2021) 65.10 97.18 49.46

4 EXPERIMENTS

This section provides a comprehensive experimental evaluation of CaPT. We begin by reporting its
performance on the USB benchmark (Wang et al., 2022b). Next, we evaluate CaPT on large-scale
datasets, extreme low-label settings, and fine-grained benchmarks. Finally, we conduct extensive
ablation studies to validate the design choices of CaPT.

4.1 USB

USB (Wang et al., 2022b) is a unified SSL benchmark for the fair evaluation of SSL methods. It
adopts the pre-trained ViTs (Dosovitskiy, 2020) as the training backbone. For fair comparison,
our unimodal network uses the same training configuration and backbone as USB. Unless other-
wise stated, ViT-B/32 is employed as the visual encoder for CLIP. Detailed experimental configura-
tions are provided in Appendix F. Similar to RegMixMatch, we validate CaPT on three datasets,
including CIFAR-100 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), and EuroSAT (Helber
et al., 2019), under different amounts of labeled data conditions. The experimental results are
compared against 12 established SSL algorithms, including VAT (Miyato et al., 2018), Mean-
Teacher (Tarvainen & Valpola, 2017), ReMixMatch (Berthelot et al., 2019a), FixMatch (Sohn et al.,
2020), FlexMatch (Zhang et al., 2021a), Dash (Xu et al., 2021), CoMatch (Li et al., 2021), Sim-
Match (Zheng et al., 2022), FreeMatch (Wang et al., 2023), SoftMatch (Chen et al., 2023), Se-
quenceMatch (Nguyen, 2024), and RegMixMatch (Han et al., 2025). Each algorithm is trained
three times with different random seeds. We adopt the adaptive threshold strategy from FreeMatch
to filter pseudo labels, as in RegMixMatch. The final performance of CaPT is reported using the
fully fine-tuned unimodal network, while the results of our adapter-tuned CLIP are also presented.

Table 2: Performances of CaPT on the Ima-
geNet dataset.

Dataset ImageNet

# Labels per Class 10 100

Top-n acc Top-1 Top-5 Top-1 Top-5

FixMatch 53.61 75.96 71.53 90.36
FlexMatch 54.21 76.80 72.17 90.59
FreeMatch 54.69 77.02 72.57 90.97
RegMixMatch 58.35 81.10 73.66 91.89
CaPT 67.68 89.82 74.21 92.19

Table 1 presents the results of CaPT on the USB
benchmark2. The results show that CaPT leads in
all 6 commonly used evaluation settings, with par-
ticularly significant improvements when labeled data
is scarce. Specifically, with only 2 labeled samples
per class on the CIFAR-100 dataset, CaPT outper-
forms the second-best method (i.e., RegMixMatch)
by 4.09%. On the STL-10 dataset, where each class
has 4 labeled samples, CaPT leads by 6.18%. More-
over, under varying labeled data quality (i.e., differ-
ent random seeds), CaPT achieves a lower standard
deviation compared to existing SSL methods. These
results illustrate that CaPT effectively mitigates SSL’s label dependency on labeled data.

2The results of CaPT using TorchSSL (Zhang et al., 2021a), along with broader method comparisons, are
provided in Appendix I.
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Table 5: Accuracy (%) of CaPT on fine-grained datasets.

Dataset FGVCAircraft Flowers102 StanfordCars SUN397 DTD SVHN

# Labels per Class 5 10 1 2 5 10 30 50 10 20 2 4

FreeMatch 51.43 65.82 75.31 93.89 66.31 83.79 70.06 74.87 62.14 70.03 67.35 86.61
RegMixMatch 49.86 66.21 80.23 94.31 68.75 85.60 72.57 76.59 63.56 71.06 70.23 76.56
CaPT 50.12 64.33 94.71 96.42 80.36 89.66 75.69 78.29 66.22 72.93 81.20 91.73
CLIP 18.97 61.33 52.63 59.53 40.17 34.36

4.2 IMAGENET

To verify the scalability of CaPT, we conduct experiments on the ImageNet dataset (Deng et al.,
2009). Similar to RegMixMatch, we use MAE pre-trained ViT-B (He et al., 2022) as the training
backbone for Module A and conduct experiments with 10 and 100 labeled samples per class. Table
2 demonstrates CaPT’s superior performance on the ImageNet dataset. The leading advantage of
CaPT is more pronounced under conditions with fewer labels: with 10 labeled samples per class,
CaPT outperforms RegMixMatch by 9.33%.

4.3 EXTREMELY-SCARCE-LABELS REGIMES

Table 3: Performances of different SSL
methods with one labeled sample per class.

Dataset CIFAR-10 CIFAR-100 EuroSAT

FreeMatch 91.93 61.13 90.12
RegMixMatch 95.65 60.49 92.28
CaPT 96.37 82.51 96.33

To further assess CaPT under extreme label scarcity,
we evaluate on CIFAR-10, CIFAR-100 and EuroSAT
with only one labeled sample per class, and com-
pare against state-of-the-art SSL methods FreeMatch
and RegMixMatch (Table 3). CaPT attains a substan-
tial lead in the one-label-per-class setting. Notably,
when labeled samples per class decrease from 2 to 1,
FreeMatch and RegMixMatch suffer accuracy drops
of 17.47% (78.60%→61.13%) and 20.25% (80.74%→60.49%) on CIFAR-100, respectively. By
contrast, CaPT substantially reduces reliance on labeled data: in the one-label-per-class setting it
improves over the second-best method by 21.38% on CIFAR-100 and by 4.05% on EuroSAT3.
These results indicate that, although recent SSL algorithms perform well with moderate labels, their
accuracy degrades sharply under extreme scarcity, whereas CaPT remains robust by refining and
leveraging CLIP’s prior, effectively unlocking the potential of unlabeled data.

Table 4: Comparison of training time and
memory consumption on CIFAR-100 with
2 labeled samples per class.

Method Time (sec./iter.) Mem. (MiB) Acc. (%)

FreeMatch 0.0939 4676 78.60
RegMixMatch 0.1484 6578 80.74
CaPT 0.1044 5050 84.83

Furthermore, in Table 4, we compare the training time
and memory consumption of CaPT with other SSL al-
gorithms. The experiments are conducted on a 10GB
RTX 3080 GPU. The results show that, compared
to training a unimodal network (FreeMatch), CaPT
achieves significant performance improvement at the
cost of only 8.00% more memory consumption and
11.18% additional training time. Compared to the
latest state-of-the-art method RegMixMatch, CaPT
demonstrates significant advantages in both resource
consumption and classification performance.

4.4 FINE-GRAINED DATASETS

To preclude any advantage for CaPT arising from potential overlap between CLIP’s corpus and
simple benchmarks4, Table 5 presents its performance on 6 fine-grained benchmarks: FGVCAir-
craft (Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), StanfordCars (Krause et al.,
2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), and SVHN (Netzer et al., 2011).
Except for FGVCAircraft (discussed in Appendix N), CaPT outperforms competing methods across
all other datasets, underscoring its great scalability on datasets with greater domain shift.

3We note that under the 1-shot setting, FreeMatch already achieves near-saturation on EuroSAT (90.12%).
A 6.21% improvement by CaPT (96.33%) on such a strong baseline is therefore also substantial.

4We offer an in-depth discussion of this issue in Appendix M.
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4.5 ABLATION STUDY
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Figure 5: Adapter-tuning effec-
tively mitigates CLIP’s biased
prior. Experiments are con-
ducted on EuroSAT datasets with
2 labeled samples per class.

In this section, we validate the design choices behind CaPT. We
begin by validating the effectiveness of the CaPT framework in
leveraging CLIP within SSL. We evaluate three ablated variants
of CaPT: CaPT-Ada (Figure 2a), in which the model in module
A is replaced with a CLIP-Adapter and module B is removed;
CaPT-Deb (Figure 2c), which disables adapter-tuning and vision
model→CLIP flow; and CaPT-Uni (Figure 2d but retaining only
the CLIP→vision model flow), where the unimodal network no
longer transmits information back to CLIP. As reported in Ta-
ble 6, the full CaPT achieves the best performance across all
settings. Despite access to abundant data, CaPT-Ada suffers a
substantial performance drop (-16.40% and -16.38%) due to the
lack of sufficient learnable parameters. CaPT-Deb, affected by
CLIP’s biased prior, shows a significant decline (-12.73%) on
the EuroSAT dataset, which is more sensitive to CLIP’s class
preference. This highlights the importance of adapter tuning in mitigating CLIP’s biased prior (see
Figure 5). Lastly, the performance degradation of CaPT-Uni confirms that maintaining bidirectional
knowledge exchange between models is crucial for enhancing overall effectiveness.

Table 6: Ablation study of CaPT. Experi-
ments are conducted with 2 labeled sam-
ples per class.

Dataset CIFAR-100 EuroSAT

CaPT 84.83 96.60
CaPT-Ada 68.43 (-16.40) 80.22 (-16.38)
CaPT-Deb 81.03 (-3.80) 83.87 (-12.73)
CaPT-Uni 83.95 (-0.88) 95.11 (-1.49)

only module A 78.60 (-6.23) 93.50 (-3.10)
only module B 68.32 (-16.51) 80.12 (-16.48)

w/o feat aug. 84.26 (-0.57) 94.79 (-1.81)
equal weights 83.96 (-0.87) 95.03 (-1.57)

Additionally, we show the contribution of unimodal net-
work (i.e., only module A) and multimodal CLIP (i.e.,
only module B) during co-training by retaining only one
of the two classification models. Retaining only the
unimodal network results in degraded performance (-
6.23% and -3.10%), as the model lacks the prior knowl-
edge needed to fully exploit unlabeled samples. Con-
versely, when only Module B is retained, although CLIP
provides prior knowledge, the limited number of learn-
able parameters cannot match the richness of the unla-
beled samples, ultimately leading to a significant per-
formance decline (-16.51% and -16.48%) due to under-
fitting. The co-training mechanism proposed in CaPT
effectively combines the strength of these two modules.

Finally, we evaluate the impact of feature-augmented consistency regularization and entropy-based
weighting. Removing consistency regularization on the CLIP side (i.e., w/o feat aug.) leads to
performance degradation, indicating that improving the generalization of either branch benefits the
overall system. Replacing entropy-based weighting with equal weighting (i.e., 0.5 per model) also
results in a performance drop, suggesting that entropy-based weighting more effectively adapts to
the training dynamics of each model, thereby enhancing final performance.

5 CONCLUSION, LIMITATION AND BROADER IMPACT

In this paper, we identify and theoretically demonstrate an inherent limitation of SSL: deficiencies
in labeled data undermine the accuracy of pseudo labels, thereby hindering the effective use of un-
labeled data. We propose CaPT, a novel framework that integrates vision-language models (VLMs)
into SSL, efficiently and reliably leveraging CLIP to mitigate the label dependency of SSL. CaPT
exhibits exceptional performance and efficiency across public benchmarks, extremely-scarce-labels
regimes, fine-grained datasets and more realistic weakly supervised SSL settings (Appendix J).

Despite its overall effectiveness, we observe that CLIP’s prior is less informative on certain fine-
grained datasets such as FGVCAircraft, limiting its contribution in this case. Nonetheless, CaPT’s
primary contribution lies in establishing a general and future-proof framework for integrating
VLMs into SSL. As more powerful VLMs (Sun et al., 2023) emerge, they can be seamlessly5

incorporated into CaPT to efficiently achieve strong performance (see Appendix N). Developing
more efficient frameworks for integrating VLMs into SSL could be a potential future direction.

5To ensure broad applicability, CaPT was designed with strong portability in mind (See Appendix L).
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our model architecture, training procedure, and hyperparameter
settings in Section 3, Section 4, and Appendix F. Complete proofs of Theorem 1.1 are included in
Appendix A. Anonymous source code for reproduction is provided in the supplementary materials.
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A PROOF OF THEOREM 1.1 (NEAREST-PROTOTYPE PSEUDO LABEL ERROR
BOUND)

Notation and model assumptions. Let (x, y) ∼ D with y ∈ {1, . . . ,K}. For each class c assume
the conditional distribution of x is

x | y = c ∼ N (µc, σ
2Id),

and define the minimum inter-class centroid distance

g := min
c̸=c′

∥µc − µc′∥ > 0.

For each class c we are given nc ≥ 1 labeled samples and form the sample mean (prototype)

mc :=
1

nc

∑
i:yi=c

xi.

Decompose
mc = µc + bc + δc,

where bc is a deterministic bias vector (systematic selection bias / non-prototypicality), and

δc ∼ N
(
0,

σ2

nc
Id

)
is the random sampling error of the sample mean. Assume the deterministic bias satisfies ∥bc∥ ≤ B
for all c.

We adopt the nearest-prototype decision rule for unlabeled x:

ŷ(x) = argmin
c

∥x−mc∥.

Below we will prove the following high-probability bound.
Theorem A.1 (Theorem 1.1). Let nmin := minc nc. Fix η ∈ (0, 1) and define

εn :=
2σ

√
nmin

√
log
(K 2d/2

η

)
, r := B + εn.

Assume g/2 > r (otherwise the bound below is vacuous). Then with probability at least 1− η (over
the randomness of the labeled samples) the following holds for every class c:

Pr
x∼N (µc,σ2Id)

(
ŷ(x) ̸= c

)
≤ (K − 1) 2d/2 exp

(
− (g/2− r)2

4σ2

)
. (16)

Lemma A.2. Let Z ∼ N (0, Id) and W = ∥Z∥2. Then for any u > 0 and any λ ∈ (0, 1/2),

Pr(W ≥ u) ≤ (1− 2λ)−d/2 exp(−λu).

In particular, choosing λ = 1
4 yields

Pr
(
∥Z∥ ≥ t

)
= Pr

(
W ≥ t2

)
≤ 2d/2 exp

(
− t2

4

)
, (t > 0). (17)

Proof. The mgf of a χ2
d variable W satisfies E[eλW ] = (1 − 2λ)−d/2 for λ < 1/2. By Markov

(Chernoff) bound,
Pr(W ≥ u) ≤ E[eλW ]e−λu = (1− 2λ)−d/2e−λu.

Setting λ = 1
4 gives (1 − 2λ)−d/2 = (1/2)−d/2 = 2d/2 and the stated bound follows by taking

u = t2.
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Lemma A.3. For each class c, δc ∼ N (0, σ2/nc Id). Hence for any t > 0,

Pr
(
∥δc∥ ≥ t

)
≤ 2d/2 exp

(
− nct

2

4σ2

)
. (18)

Proof. Let Zc :=
√

nc

σ2 δc ∼ N (0, Id). Applying Lemma A.2 with t′ =
√

nc

σ2 t yields

Pr(∥δc∥ ≥ t) = Pr
(
∥Zc∥ ≥ t′

)
≤ 2d/2 exp

(
− (t′)2

4

)
= 2d/2 exp

(
− nct

2

4σ2

)
,

which is precisely Equation 18.

Proof of Theorem A.1. Let nmin = minc nc. Fix η ∈ (0, 1) and choose εn > 0 such that

K 2d/2 exp
(
− nminε

2
n

4σ2

)
≤ η. (19)

Solving Equation 19 for εn gives the explicit choice

εn =
2σ

√
nmin

√
log
(K 2d/2

η

)
.

By Lemma A.3 and a union bound over the K classes,

Pr
(
∃c : ∥δc∥ ≥ εn

)
≤

K∑
c=1

Pr(∥δc∥ ≥ εn) ≤ K 2d/2 exp
(
− nminε

2
n

4σ2

)
≤ η.

Thus with probability at least 1− η (over the labeled-sample draw) the following event E holds:

E : ∀c, ∥δc∥ ≤ εn.

Condition on E . Then for every class c we have

∥mc − µc∥ = ∥bc + δc∥ ≤ ∥bc∥+ ∥δc∥ ≤ B + εn = r. (20)

Fix a class c and consider an unlabeled example x with true label y = c. Suppose x is misclassified
by the nearest-prototype rule, i.e. ŷ(x) ̸= c. Then there exists some c′ ̸= c such that

∥x−mc′∥ ≤ ∥x−mc∥.

For a fixed wrong class c′ ̸= c, if ŷ(x) = c′ (and y = c) then the above inequality holds. Using the
triangle inequality and Equation 20 we obtain

∥x−mc′∥ ≥ ∥µc′ − µc∥ − ∥x− µc∥ − ∥mc′ − µc′∥ ≥ g − ∥x− µc∥ − r,

∥x−mc∥ ≤ ∥x− µc∥+ ∥mc − µc∥ ≤ ∥x− µc∥+ r.

Combining these two inequalities and using ∥x−mc′∥ ≤ ∥x−mc∥ gives

g − ∥x− µc∥ − r ≤ ∥x−mc′∥ ≤ ∥x−mc∥ ≤ ∥x− µc∥+ r,

which rearranges to

2∥x− µc∥ ≥ g − 2r =⇒ ∥x− µc∥ ≥ g

2
− r.

Thus for this fixed c′ we have the set inclusion

{ŷ(x) = c′} ⊆
{
∥x− µc∥ ≥ g

2
− r
}
,

and hence
Pr
(
ŷ(x) = c′ | E

)
≤ Pr

(
∥x− µc∥ ≥ g

2
− r
)
.
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By the union bound we obtain

Pr
(
ŷ(x) ̸= c | E

)
= Pr

( ⋃
c′ ̸=c

{ŷ(x) = c′}
∣∣∣ E) ≤

∑
c′ ̸=c

Pr
(
ŷ(x) = c′ | E

)
≤ (K−1)Pr

(
∥x−µc∥ ≥ g

2
−r

)
.

(21)

Applying Lemma A.2 to the centered Gaussian (x− µc)/σ ∼ N (0, Id) with t := (g/2− r)/σ > 0
yields

Pr
(
∥x− µc∥ ≥ g

2
− r
)
≤ 2d/2 exp

(
− (g/2− r)2

4σ2

)
.

Combining this with Equation 21 gives, conditioned on E ,

Pr
(
ŷ(x) ̸= c | E

)
≤ (K − 1) 2d/2 exp

(
− (g/2− r)2

4σ2

)
.

Since E holds with probability at least 1 − η (over labeled-sample randomness), we conclude that
with probability at least 1 − η (over the labeled-sample draw) the unconditional misclassification
probability for class c is upper-bounded by the right-hand side above. This proves Equation 16.

B COMPLEMENTARITY OF CAPT’S ASYMMETRIC-MODALITIES
CO-TRAINING
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Figure 6: Comparison of conditional mutual information and accuracy between CaPT and CLS.
Experiment is conducted on the EuroSAT (Helber et al., 2019) dataset with 2 labeled samples per
class.

Table 7: Comparison of accuracy (%) between CaPT and CLS.

Dataset CIFAR-100 EuroSAT

# Labels per Class 2 4 2 4

CLS 80.64 84.66 94.46 94.89
CaPT 84.83 85.60 96.60 96.98

We perform an in-depth analysis of the complementarity conferred by CaPT’s asymmetric-
modalities co-training framework. First, if the two co-trained networks consistently produce identi-
cal predictions on the same unlabeled batch, co-training reduces to standard single-model training.
Second, Blum and Mitchell (Blum & Mitchell, 1998) theoretically proved that if, for each instance,
the predictions obtained from the two views X1 and X2 approach conditional independence given
the true label Y , then the co-training algorithm is PAC-learnable.

Building on these insights, we reasonably hypothesize that, under the CaPT framework, the two
co-trained models’ predictions on the same sample

H1 = h1(X), H2 = h2(X) (22)

are closer to conditional independence given Y than those produced by the symmetric modality
co-training baseline (CLS (Yao et al., 2022)), resulting in stronger complementarity and improved
learning performance.
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To validate this hypothesis, we performed both qualitative and quantitative analyses.

1. Qualitative Visualization. Intuitively, for a given input image, the less overlap there is
between the regions attended by the two co-trained models, the more independent their
respective “views” of the input become, and consequently, the more independent their pre-
dictions. Thus, for the same input image, we visualize the attention maps of the class
token from the final Transformer block of both co-trained networks. As shown in Figure 3,
CaPT’s two co-trained networks exhibit markedly distinct attention patterns.

2. Quantitative Measurement. Given a labeled validation set {(x(i), y(i))}Ni=1, we collect
the discrete predictions of the two co-trained models: ŷ(i)1 = h1(x

(i)) and ŷ
(i)
2 = h2(x

(i)).
For each class y, we estimate the conditional mutual information as

Î
(
H1;H2 | Y = y

)
= MI

(
{ŷ(i)

1 }y(i)=y, {ŷ
(i)
2 }y(i)=y

)
, (23)

and compute the overall conditional mutual information via

Î(H1;H2 | Y ) =
∑
y

P (Y = y) Î
(
H1;H2 | Y = y

)
. (24)

As shown in Figure 6, CaPT yields a substantially lower Î(H1;H2 | Y ) compared to CLS,
which is associated with a greater co-training accuracy improvement (see Table 7)6.

These findings confirm that CaPT maintains stronger conditional independence of the two co-trained
models’ predictions given Y , and that this enhanced complementarity is a key factor in its co-training
success.

C LLM USAGE

We employed a large language model (LLM) to assist with the refinement of Section 1 and to verify
the derivation process of Theorem 1.1.

D LOSS CALCULATION FOR LABELED DATA

Given a batch of labeled data containing Q samples X = {(xl
j , yj) : j ∈ (1, . . . , Q)}. The

supervised loss in CaPT is formulated—consistent with standard SSL practice—as the mean
cross-entropy between the model’s predicted class distribution and the ground-truth labels:

Ls =
1

Q

Q∑
j=1

H(yj , pm(y|xl
j)), (25)

where pm(y|x) is the predicted class distribution produced by the model for input x.

E CAPT WITH RESNET-50 VISUAL ENCODER

We report in Table 8 the performance of CaPT on CIFAR-100 (Krizhevsky, 2009), STL10(Coates
et al., 2011), and EuroSAT (Helber et al., 2019), using ResNet-50 (He et al., 2016) as the visual en-
coder for CLIP (Radford et al., 2021). Since CLIP’s zero-shot classification performance is inferior
when using ResNet-50 as the visual encoder compared to ViT-B/32, except on the EuroSAT dataset
where their performance is similar, the overall performance of CaPT declines. Nevertheless, it still
outperforms existing SSL methods.

F EXPERIMENTAL DETAILS

We list the experimental configurations used in USB (Wang et al., 2022b) in Table 9. All pretrained
ViT (Dosovitskiy, 2020) models are obtained from the links provided by USB. ViT-S-P2-32 indi-
cates that we use ViT-Small with a patch size of 2 and an image size of 32. Since USB does not

6For fair comparison, our reproduced results of CLS are also based on FreeMatch (Wang et al., 2023) and
USB benchmark. Additionally, we note that training CLS requires approximately 1.75× more time than CaPT.
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Table 8: Accuracy (%) on CIFAR-100, STL10, and EuroSAT under USB. Different visual encoders
for CLIP are used.

Encoder
Dataset CIFAR-100 STL10 EuroSAT

# Labels per Class 2 4 4 10 2 4

ViT-B/32

CaPT 84.83±0.10 85.60±0.07 96.07±0.05 96.34±0.05 96.60±0.13 96.98±0.11

Adapter-tuned CLIP 74.90±0.03 75.54±0.02 96.86±0.01 97.15±0.01 93.83±0.06 94.52±0.4

CLIP 65.10 97.18 49.46

RN50

CaPT 82.83±0.35 84.85±0.16 94.83±0.07 95.17±0.05 96.72±0.15 96.87±0.11

Adapter-tuned CLIP 66.10±0.08 69.44±0.10 94.49±0.02 94.58±0.03 93.94±0.03 94.48±0.37

CLIP 42.36 94.37 41.23

Table 9: Training configurations and backbones in CaPT.

Dataset CIFAR-100 STL10 EuroSAT SVHN FGVCAircraft ImageNet

Image Size 32 96 32 32 224 224

Model ViT-S-P2-32 ViT-B-P16-96 ViT-S-P2-32 ViT-S-P2-32 ViT-B-P16-224 ViT-B-P16-224

Weight Decay 5e-4 5e-2

Labeled Batch size 16 64

Unlabeled Batch size 16 64

Learning Rate 5e-4 1e-4 5e-5 5e-5 5e-4 3e-4

Layer Decay Rate 0.5 0.95 1.0 1.0 0.5 0.5

Scheduler η = η0 cos(
7πk
16K )

Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation Random Crop, Random Horizontal Flip

Strong Augmentation RandAugment (Cubuk et al., 2020)

include training configurations for FGVCAircraft (Maji et al., 2013), Flowers102 (Nilsback & Zis-
serman, 2008), StanfordCars (Krause et al., 2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al.,
2014), or SVHN (Netzer et al., 2011), we proceed as follows: for SVHN, we use the same ViT ar-
chitecture as that used during EuroSAT (Helber et al., 2019) training; for the remaining datasets, we
adopt the same ViT architecture as used during ImageNet (Deng et al., 2009) training, along with
a unified training configuration across them. Consequently, Table 9 only reports CaPT’s training
configuration for the FGVCAircraft dataset.

Additionally, CLS requires two vision models; in our reimplementation, we utilize two versions of
the pretrained ViT model: the vanilla ViT (Dosovitskiy, 2020) and the MAE-pretrained ViT (He
et al., 2022).

G TRANSDUCTIVE ZERO-SHOT LEARNING

Table 10: Performances (%) of CaPT in T-ZSL setting.

Dataset CLIP DebiasPL CaPT
CIFAR-100 65.10 76.10 85.57
EuroSAT 49.46 69.98 70.17
CIFAR-10 89.13 93.53 96.61
ImageNet 63.51 67.83 69.22

We emphasize another advantage of CaPT over previous SSL methods—its ability to leverage
CLIP’s zero-shot capability for transductive zero-shot learning (T-ZSL), bridging SSL and T-ZSL.
Most prior SSL approaches cannot perform T-ZSL; to demonstrate CaPT’s strength, we compare it
with DebiasPL (Wang et al., 2022a), which selects high-confidence samples from CLIP’s zero-shot
predictions as the labeled dataset. Although CaPT can perform T-ZSL without modifications, to
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obtain better performance, we select the top-J highest-confidence samples per class (Huang et al.,
2022) based on CLIP’s predictions as the initial labeled data.

4 2 1 0
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(a) CIFAR-100.
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(b) ImageNet.

Figure 7: CaPT’s performances in T-ZSL surpass its performances in SSL in some cases.

We set J = S⌊
√
C⌋, where C is the number of classes in a dataset. Owing to CLIP’s outstanding

performance on CIFAR-10, we set S = 300 for CIFAR-10 and S = 3 for other datasets. As shown
in Table 10, CaPT consistently outperforms others. Furthermore, Figure 7 visualizes CaPT’s per-
formance under SSL settings (with varying label counts) alongside its T-ZSL results. By leveraging
unlabeled samples solely through CLIP’s prior knowledge, CaPT even outperforms its performances
in SSL in some cases, breaking the label dependency of SSL. This demonstrates that, in rare cases,
the high-confidence dataset extracted from CLIP’s priors can offer better supervision than the labeled
training set used in SSL settings. Researchers can incorporate the high-confidence data selected in
T-ZSL into the labeled training set for SSL to improve SSL performance.

Additionally, We present the prediction accuracy A of the samples selected by CLIP for different
values of S in Figure 8. Because of CLIP’s class bias, the number of selected samples M might be
less than JC. We use M/JC to represent the uniformity of the selected samples. Finally, we use
A× (M/JC) to represent the accuracy considering uniformity. The S we choose is not necessarily
optimal, and researchers can select better S values based on the subfigures to achieve better T-ZSL
performance.
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Figure 8: The accuracy and uniformity of the selected labeled training set when S takes different
values, using ViT-B/32 as the visual encoder for CLIP.

H CUSTOMIZED PROMPTS

When constructing class prompts, to obtain more representative prompts, we adopt the customized
prompts proposed in CuPL (Pratt et al., 2023). Specifically, we first design large language model
(LLM) prompts that guide the LLM to generate descriptions of the dataset categories (e.g., “What
does a dog look like?”). Next, we feed these LLM prompts into the LLM to obtain prompts describ-
ing specific categories (e.g., “A dog looks like ...”). For each LLM prompt, we generate 10 different
class prompts. The LLM prompts constructed for each dataset are listed in Table 11.

I COMPARISON WITH OTHER SSL ALGORITHMS

In the main text, we reference several SSL algorithms, such as FlatMatch (Huang et al., 2023) and
DebiasPL (Yao et al., 2022), but do not include them in the experimental section. This is due to
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Table 11: LLM prompts used in CaPT.

Dataset LLM Prompts
ImageNet “Describe what a(n) {} looks like”

“How can you identify a(n) {}?”
“What does a(n) {} look like?”
“Describe an image from the internet of a(n) {}”
“A caption of an image of a(n) {}:”

CIFAR-10 “What are the identifying characteristics of a(n) {}?”
“Describe a(n) {}:”
“Describe what a(n) {} looks like ”

CIFAR-100 “What are the identifying characteristics of a(n) {}?”
“Describe a(n) {}:”
“Describe what a(n) {} looks like ”
“Describe a photo of a(n) {}”

DTD “What does {} material look like?”
“What does a {} surface look like?”
“What does a {} texture look like?”
“What does a {} object look like?”
“What does a {} thing look like?”
“What does a {} pattern look like?”

EuroSAT “Describe an aerial satellite view of {}”
“How does a satellite photo of a(n) {} look like”
“Visually describe a satellite view of a(n) {}”

STL10 “What are the identifying characteristics of a(n) {}?”
“Describe a(n) {}:”
“Describe what a(n) {} looks like ”

SVHN “Describe a photo of the number {}”
“Describe a street sign of the number {}”
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Figure 9: Pseudo label accuracy of three methods on CIFAR-100 with labeled data under nr50 (left)
and ir30 (right).

the fact that these algorithms have not been evaluated on the USB benchmark. Their experiments
commonly use Wide ResNet (Zagoruyko & Komodakis, 2016) trained from scratch as the training
backbone. In this section, we adopt the same training setting and backbone as these algorithms for
the unimodal network in our Module A, and compare CaPT with several SSL algorithms on the
CIFAR-10 (Krizhevsky, 2009) dataset under different numbers of labeled samples. The results are
shown in Table 12, where our method still achieves leading performance.

Table 12: Accuracy (%) on CIFAR-10 with varying numbers of labels per class. The best results are
shown in bold, and the second-best in underline.

Dataset CIFAR-10

# Labels per Class 1 4 25 400

VAT (Miyato et al., 2018) 20.19 25.34 58.97 89.49
Mean Teacher (Tarvainen & Valpola, 2017) 23.63 29.91 62.54 91.90
MixMatch (Berthelot et al., 2019b) 34.24 63.81 86.37 93.34
ReMixMatch (Berthelot et al., 2019a) 79.23 90.12 93.70 95.16
UDA (Xie et al., 2020) 65.47 89.38 94.84 95.71
FixMatch (Sohn et al., 2020) 75.21 92.53 95.14 95.79
Dash (Xu et al., 2021) 72.72 91.07 94.84 95.64
MPL (Pham et al., 2021) 76.45 93.38 94.24 95.45
FlexMatch (Zhang et al., 2021a) 86.15 95.03 95.02 95.81
CLS (Yao et al., 2022) - 91.82 95.55 96.28
SoftMatch (Chen et al., 2023) - 95.09 95.18 95.96
DebiasPL (Wang et al., 2022a) - 94.60 95.40 -
FreeMatch (Wang et al., 2023) 91.93 95.10 95.12 95.90
SequenceMatch (Nguyen, 2024) - 95.20 95.25 95.85
FlatMatch (Huang et al., 2023) 84.77 94.42 95.78 96.39
RegMixMatch (Han et al., 2025) 95.65 95.76 95.79 96.62
CaPT 95.93 96.35 96.57 96.80

J CAPT’S RESULTS IN ADDITIONAL SCENARIOS WITH RESTRICTED
SUPERVISION

Table 13: Accuracy (%) of CaPT on CIFAR-100 and EuroSAT under different levels of noisy labels
(nr) and class imbalance (ir).

Dataset CIFAR-100 EuroSAT

Condition nr25 nr50 ir15 ir30 nr25 nr50 ir15 ir30

FreeMatch 70.07 69.63 80.61 73.21 86.74 72.64 95.26 92.12
RegMixMatch 73.12 72.56 82.17 75.85 88.87 70.35 95.87 94.16
CaPT 78.88 76.41 85.10 84.40 95.60 88.54 96.96 96.80
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Although advanced methods have been proposed to address low-label (Wang et al., 2023; Han et al.,
2025), class-imbalanced (Lee et al., 2021), and noisy-label (Li et al., 2020) SSL regimes individ-
ually, few approaches tackle more than one of these challenges simultaneously. In realistic SSL
scenarios (Gu et al., 2023), low-label conditions often imply that annotations are difficult to ob-
tain—e.g., requiring expert knowledge—and that label reliability and class balance are harder to
guarantee. Furthermore, label noise tends to affect classes unevenly, reducing the number of trust-
worthy annotations per class and amplifying class imbalance, which in turn degrades the perfor-
mance of conventional SSL methods. By reducing SSL’s dependence on labeled data, CaPT achieves
more robust performance in practical, weakly supervised SSL settings.

Beyond low-label regime, we further evaluate CaPT in two additional label-constrained scenar-
ios—SSL with noisy labels (NL) and class-imbalanced SSL (CI)—to demonstrate its effectiveness
under limited supervision. The experimental setups for these tasks are defined as follows:
NL Setup: Each class is assigned 15 labeled samples, and nr% denotes the fraction of labels that
are randomly corrupted in each class.
CI Setup: Classes have varying numbers of labeled samples, gradually decreasing from 30 to fewer.
We use ir to denote the imbalance ratio, defined as the ratio between the most and least labeled sam-
ples across classes.

Table 13 illustrates CaPT’s consistently superior performance under constrained supervision. Figure
9 further presents the training curves of pseudo label accuracy for CaPT and its two variants—ViT-
only (retaining only the ViT backbone) and CLIP-only (retaining only the CLIP component)—when
supervised with noisy or class-imbalanced labeled data. Both variants yield suboptimal pseudo
label accuracy: the ViT-only variant is hampered by constrained labeled data, while the CLIP-only
variant suffers from few learnable parameters. CaPT combines their strengths by injecting reliable
prior independent of labeled data into a robust ViT model, markedly enhancing unlabeled data use
in SSL.

K FEW-SHOT METHODS

Despite methods like CLIP-Adapter (Gao et al., 2024), Tip-Adapter (Zhang et al., 2021b), and
APE (Zhu et al., 2023) being able to adapt CLIP to few-shot classification efficiently by introducing
only a minimal number of trainable parameters, this very parameter scarcity inherently confines their
applicability to few-shot scenarios. As Table 14 illustrates, these advanced few-shot approaches still
fall significantly short of CaPT’s performance; accordingly, we do not extend our comparisons to
additional few-shot methods.

Table 14: Comparison of CaPT and few-shot methods. Experiments are conducted with 2 labeled
samples per class.

Method CIFAR-100 EuroSAT

CLIP-Adapter 68.43 80.22
Tip-Adapter 68.63 80.36
APE-T 68.88 80.47
CaPT 84.83 96.60

L PORTABILITY OF CAPT

Portability was a primary design consideration when developing CaPT as a training framework. We
summarize its portability along three dimensions:

Decoupled Co-Training Roles. The co-training scheme enables separating the provision of reli-
able prior (adapting CLIP) from the provision of strong learning capacity (training an SSL model).
Because these roles are disentangled, each can adopt the most appropriate technique independently.
For example, choosing more efficient CLIP adaptation strategies or swapping in more advanced
pseudo labeling algorithms (e.g., replacing FixMatch (Sohn et al., 2020) with FreeMatch (Wang
et al., 2023)).
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Efficient CLIP Tuning via Adapters. Among the two major CLIP adapting strategies—prompt
tuning (Zhou et al., 2022) and adapter tuning (Gao et al., 2024)—prompt tuning fails to reduce
the gradient propagation flow (Wu et al., 2025), and thus does not effectively shorten training
time. In contrast, our choice of adapter tuning significantly reduces training time and enhances
the lightweight nature of CaPT.

Architecture-Agnostic Adapter Design. While many adapter-based methods (Yang et al., 2024;
Khattak et al., 2023) achieve strong performance by inserting adapters into internal layers of the
network, they often require architecture-specific designs due to variations in VLM configurations
(e.g., patch size, model scale). Our adapter tuning strategy avoids structural modifications, making
it easily compatible with a wide range of VLMs.

M POTENTIAL OVERLAP

Table 15: Zero-shot performance (%) of attribute-based CLIP (results directly taken from (Baron
et al., 2024)).

Dataset With name No name Att.-finetuned (no name)

Dogs120 (Khosla et al., 2011) 65.6 26.5 32.8
OxfordPets (Parkhi et al., 2012) 87.9 49.0 52.8
CUB (Wah et al., 2011) 62.6 19.8 24.0
Flowers102 (Nilsback & Zisserman, 2008) 72.3 24.4 39.4
Food101 (Bossard et al., 2014) 78.7 65.0 69.0

Although we conducted experiments on a wide range of fine-grained datasets (e.g., satellite imagery
and texture recognition), one might still be concerned that the strong performance arises from po-
tential overlap between CLIP’s pre-training corpus and these datasets, leading to “memorization”
of identical data or class names. We clarify as follows: CLIP is trained to align natural language
descriptions with images in a shared semantic embedding space rather than to memorize class la-
bels. Prior work (Pratt et al., 2023) has shown that replacing the fixed template prompt ‘‘a photo
of [classname]’’with more attribute-rich textual descriptions (e.g., ‘‘A pink primrose
generally has soft, pink petals with a yellow center’’) can significantly
improve zero-shot performance, indicating that CLIP captures attribute-based semantic alignment
rather than merely matching class names. Furthermore, recent studies (Baron et al., 2024) demon-
strate that decomposing class name concepts into attribute combinations allows CLIP to retain a
non-negligible level of zero-shot capability even when the class name itself is absent from the
prompt; fine-tuning CLIP with attribute-focused prompts can further enhance this zero-shot ability
(see Table 15). Taken together, although we cannot completely rule out the possibility of a small
amount of pre-training data overlap, the evidence from (1) robust performance gains with attribute-
enriched prompts and (2) preserved zero-shot performance when only attribute descriptions are used
provides a more compelling explanation that CLIP has learned attribute-level semantic alignment,
enabling generalization across diverse tasks through attribute matching rather than simple memo-
rization of labels or specific images in its pre-training corpus.

N FAILURE CASES OF CAPT

In Table 5, we show that CaPT outperforms previous methods on all evaluated fine-grained datasets
except FGVCAircraft (Maji et al., 2013). We conjecture two reasons for this exception. First,
CLIP exhibits relatively poor zero-shot performance on FGVCAircraft (18.97% zero-shot accuracy).
Second, the version of CLIP used in our study carries a biased prior on this dataset that is more
difficult to correct, because in our experiments we found that fine-tuning only increased CLIP’s
accuracy from 18.97% to around 32%. Since CaPT relies on correcting CLIP’s prior to effectively
leverage unlabeled samples, its performance is consequently constrained in this setting.

Nevertheless, we emphasize that the main contribution of CaPT lies in providing a framework for
efficiently integrating CLIP into SSL, which can readily accommodate more advanced VLMs to
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Table 16: Accuracy (%) of CaPT with various VLMs.

Dataset FGVCAircraft EuroSAT

# Labels per Class 5 10 2 4

FreeMatch 51.43 65.82 93.50 94.22
RegMixMatch 49.86 66.21 95.75 96.39
CaPT-CLIP 50.12 64.33 96.60 96.98
CaPT-SigLIP 53.33 66.15 96.67 96.90
CaPT-CLIPA 59.63 70.25 96.97 97.21
CLIP 18.97 49.46

SigLIP 15.32 44.28

CLIPA 40.06 60.46

achieve improved performance. Benefiting from CaPT’s strong portability (Appendix L), we can
efficiently incorporate advanced VLMs such as SigLIP (Zhai et al., 2023) and CLIPA (Li et al.,
2023) into the CaPT pipeline. As shown in Table 16, when CaPT leverages priors from SigLIP and
CLIPA7, it achieves substantial performance gains over existing methods. Although SigLIP exhibits
poorer zero-shot performance on FGVCAircraft (15.32% zero-shot accuracy), in our experiments
we found that fine-tuning SigLIP can effectively correct its biased prior—increasing its accuracy
from 15.32% to over 43%—thereby enabling CaPT to effectively leverage unlabeled samples and
attain strong performance on this dataset.

O CIFAR-10 (10) LABELED DATA VISUALIZATION

In Figure 1a, we present the performance of SSL algorithms on the CIFAR-10 dataset, where each
class has one labeled sample, under labeled training sets with varying levels of prototypicality. Fix-
Match selects eight training sets with progressively decreasing class prototypicality through the
ordering mechanism (Carlini et al., 2019). We visualize all the selected samples in Figure 10 as
done in FixMatch, and in our experiments, we only use the first three labeled training sets.

P POTENTIAL IMPROVEMENTS

Although CaPT demonstrates excellent performance in practical weakly-supervised SSL settings.
we point out several potential areas for improvement:

1. CaPT relies on refining the zero-shot capabilities of VLMs to better leverage unlabeled data
in SSL. However, when a chosen VLM neither achieves satisfactory zero-shot performance
on a target dataset nor admits an easily correctable prior, the VLM may become ineffective
or even detrimental to SSL performance.

2. We propose an entropy-based weighting method to effectively allocate weights to the pre-
dictions of two classification models. Ideally, the weight assignment should reflect the
models’ accuracy on the validation set. However, our method failed to fully achieve this
objective in some cases.

3. In T-ZSL, CaPT relies on CLIP’s zero-shot capability to select high-confidence samples
for each class as the labeled training set. However, when certain categories fail to have any
samples selected due to CLIP’s class bias, CaPT’s performance in T-ZSL falls significantly
behind SSL (e.g., EuroSAT).

4. CaPT cannot handle semi-supervised tasks outside of computer vision, such as time series
and natural language processing.

7We use ViT-B-16-SigLIP and ViT-L-14-CLIPA obtained from OpenCLIP (Cherti et al., 2023).
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Figure 10: Labeled training data for the one-label-per-class experiment. Each row corresponds to
a labeled training set, sorted from the most prototypical dataset (first row) to the least prototypical
dataset (last row).
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