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ABSTRACT

Mobile robots need coordinated whole-body motion to perform household tasks
effectively. Current mobile manipulation datasets rely on expensive teleoperation
or slow planning methods, limiting available data to hundreds of demonstrations.
This data scarcity severely constrains the development of generalizable learning-
based policies. Here, we demonstrate that GPU-accelerated planning generates
up to 5,000 episodes per GPU hour, over 80ˆ faster than existing methods. Our
AutoMoMa pipeline produces 500K diverse physically valid whole-body motions
across 300 household scenes and multiple robot embodiments, compared to pre-
vious datasets limited to narrow robot-scene pairs with a few hundred demonstra-
tions. Downstream validation demonstrates consistent policy improvements with
large-scale training data. This work provides the first scalable solution to the mo-
bile manipulation data bottleneck. By enabling massive dataset generation, Auto-
MoMa accelerates progress toward general-purpose household robots capable of
complex coordination tasks.

1 INTRODUCTION

Mobile manipulation is a fundamental capability for autonomous robots operating in unstructured
human environments. Unlike fixed-base manipulators with limited reach, mobile manipulators com-
bine the mobility of a base with the dexterity of an arm, thereby extending the effective workspace
and enabling interaction with a diverse range of household objects. Achieving this capability re-
quires coordinated whole-body motion, as many real-world tasks inherently couple navigation and
manipulation, requiring simultaneous planning over base positioning, arm configuration, and object
interaction (Khatib, 1999; Mittal et al., 2022; Sleiman et al., 2023).

Traditional approaches typically decompose mobile manipulation into separate navigation and arm
control stages or rely on handcrafted coordination strategies for specific tasks (Sleiman et al., 2023).
While effective in constrained setups, these methods require extensive manual effort to encode
task constraints and generalize poorly across diverse settings. Recent learning-based methods show
promise for end-to-end whole-body policies (Li et al., 2023; Zhang et al., 2024), but their progress is
hindered by the lack of large-scale, diverse datasets capturing physically valid coordinated motions.

Although several large-scale manipulation datasets have emerged, mobile manipulation datasets re-
main highly limited (Tab. 1). Existing efforts often oversimplify the problem by restricting to static
tabletop scenes (Geng et al., 2023; Cui et al., 2025), focusing on a single robot embodiment (Pari
et al., 2021; Bahl et al., 2023), or targeting narrow task classes (Wu et al., 2023). As a result, they
lack the scale, task diversity, and coordinated base-arm-object interactions necessary to train gener-
alizable whole-body policies.

These shortcomings largely arise from their collection methodologies. Reinforcement Learning (RL)
requires prohibitively expensive trial-and-error exploration (Fu et al., 2023; Xia et al., 2021; Li
et al., 2023), especially when scaling across object variations and environments; teleoperation (Fu
et al., 2024) is bottlenecked by expert availability and hardware interface limitations; and traditional
planning-based methods require sequential planning of base and arm, which failed to capture co-
ordinated motion. The Augmented Kinematic Representation (AKR) framework (Jiao et al., 2025)
offers a principled way to unify base, arm, and object kinematics in a single representation (Jiao
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Mobile Manipulation Trajectory Data
Learned Policies
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AutoMoMa Pipeline

Generated Interactive
Scenes

Task Objectives

Robot Embodiments DP
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Figure 1: AutoMoMa pipeline for generating large-scale coordinated mobile manipulation trajectories. By com-
bining AKR modeling with GPU-accelerated planning, the system produces diverse, physically valid whole-
body motions across robots, tasks, and household scenes. These data support the training of modern learning-
based policies, including DP, DP3, and ACT.

et al., 2021a;b), but existing implementations are computationally intensive, resulting in generation
speed at around 60 effective trajectories per hour (Zhang et al., 2024), limiting the ability to gener-
ate scalable datasets. These constraints have fragmented research efforts, forcing teams to develop
narrow-purpose datasets (Pari et al., 2021; Schiavi et al., 2023; Ceola et al., 2023; Wu et al., 2023;
Fu et al., 2024) that fail to capture the full spectrum of mobile manipulation scenarios, ultimately
impeding progress toward general-purpose household robots.

We address these challenges with AutoMoMa, a scalable framework for generating diverse, high-
quality whole-body mobile manipulation trajectories. By combining AKR-based modeling with
GPU-accelerated motion planning (Sundaralingam et al., 2023), AutoMoMa generates physically
valid trajectories at 5,000 per GPU-hour—orders of magnitude (80ˆ) faster than prior approaches.
This efficiency enables large-scale data generation across multiple robots, articulated objects, and
realistic household scenes without requiring costly human demonstrations. Beyond simple pick-and-
place, AutoMoMa supports articulated-object interactions and multi-step tasks with grasp switching
in confined spaces. We validate its effectiveness both in simulation and on a dual-UR5 Clearpath
Ridgeback platform, demonstrating successful sim-to-real transfer.

Our contributions are:

• Scalable pipeline: A GPU-accelerated AKR planner with 80x faster trajectory generation (up to
5k trajectories per GPU-hour), enabling scalable whole-body data collection.

• Comprehensive dataset: 500k trajectories across 300 photorealistic scenes, 26 articulated ob-
jects, 3 robot morphologies, and 150 tasks, with straightforward extensibility.

• Benchmark foundation: Baselines with learning-based policies (DP, DP3, ACT) and real-robot
validation to support learning methods and sim-to-real research.

Together, these contributions establish AutoMoMa as the first scalable framework that bridges high-
performance planning with large-scale dataset generation for coordinated mobile manipulation.

2 RELATED WORK

2.1 MOTION PLANNING FOR MOBILE MANIPULATION

Model-Based Planning Classical approaches to coordinated mobile manipulation include task-
specific controllers such as impedance and model-predictive control for doors and drawers (Jain and
Kemp, 2010; Karayiannidis et al., 2016; Stuede et al., 2019), as well as general base-arm optimiza-
tion frameworks for cluttered environments (Berenson et al., 2008; Gochev et al., 2012; Bodily et al.,
2017). While effective under controlled conditions, these methods require extensive hand-tuning for
each robot-object pair and do not scale well to diverse environments or object types. The AKR
framework (Jiao et al., 2021a;b; 2025) advanced the field by unifying the base, manipulator, and
object into a single kinematic model, enabling constraint-aware planning in a unified configuration
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Table 1: Comparison of mobile manipulation datasets from the Open-X-Embodiment project (O’Neill
et al., 2024). Existing datasets are generally limited in scale, scene diversity, or ability to capture coordinated
whole-body joint trajectories, and most rely on human demonstrations or scripted policies. “EEF” denotes end-
effector.

Dataset Robot #Episodes Coordinated
Motion #Scenes Action Space Data Collection Method

RT-1 Robot Action (Brohan et al., 2022) Google Robot 73,499 Yes 10 EEF Position Human VR
NYU VINN (Pari et al., 2021) Hello Stretch 435 Yes 3 EEF Position Human Kinesthetic
BC-Z (Jang et al., 2022) Google Robot 39,350 Yes 2–3 EEF Position Human VR
ETH Agent Affordances (Schiavi et al., 2023) Franka 120 No 50 EEF Position Expert Policy
QUT Dexterous Manipulation (Ceola et al., 2023) Franka 200 No 1 EEF Position Human VR
CMU Stretch (Bahl et al., 2023; Mendonca et al., 2023) Hello Stretch 135 No 10 EEF Position Expert Policy
ConqHose (Mitrano and Berenson, 2024) Spot 139 Yes 3 EEF Velocity Scripted
DobbE (Shafiullah et al., 2023) Hello Stretch 5,208 Yes 216 EEF Position Human Tools
MobileALOHA (Fu et al., 2024) MobileALOHA 276 Yes 5 Joint Position Human Puppeteering
TidyBot (Wu et al., 2023) TidyBot 24 No 104 Other Handcrafted Object Placements
Ours Franka, R1, TIAGo 500,000 Yes 300 Joint Position Physics Plausible Motion Planner

space. This approach naturally handles articulated objects, but conventional CPU-based implemen-
tations remain computationally expensive, assume fixed grasp poses, and are limited in task diversity
(Zhang et al., 2024).

Learning-Based Planning End-to-end deep RL has been applied to coordinated base-arm control
in simulation (Xia et al., 2021; Fu et al., 2023), but remains highly sample-inefficient and struggles
to generalize across novel robots or environments (Sun et al., 2022). Imitation learning provides a
more data-efficient alternative by leveraging demonstrations (Fu et al., 2024; Jang et al., 2022), yet
it is constrained by dataset scale and diversity. Both approaches are ultimately bottlenecked by the
scarcity of large, high-quality datasets capturing realistic whole-body coordination. This motivates
the need for scalable data generation platforms like AutoMoMa that can bridge the gap between
planning frameworks and data-driven methods.

2.2 DATA COLLECTION FOR MOBILE MANIPULATION

Simulated Embodied AI Platforms Platforms such as Habitat 2.0 (Szot et al., 2021), AI2-THOR
(Kolve et al., 2017), OmniGibson (Li et al., 2023), and RoboHive (Kumar et al., 2023) provide
photorealistic environments with articulated assets, but typically prioritize visual realism over phys-
ically valid robot motion. Interactions are often simplified to scripted primitives that bypass base-arm
kinematics and whole-body coordination. ManiSkill-HAB (Shukla et al., 2025) makes progress with
8,000 demonstrations of coordinated table-setting, but is limited to a single kitchen and narrow task
diversity.

Teleoperation Human-guided teleoperation captures realistic behaviors but scales poorly. Early
systems like MOCA (Wu et al., 2019) and MOMA-Force (Yang et al., 2023) recorded only end-
effector trajectories, omitting full joint-space motion. Recent platforms such as Mobile ALOHA (Fu
et al., 2024) and TeleMoMa (Dass et al., 2024) collect high-fidelity joint-space data, yet remain
constrained by operator fatigue, hardware availability, and limited environment diversity, restricting
datasets to thousands rather than millions of demonstrations.

Standalone Mobile Manipulation Datasets Despite increasing interest, large-scale datasets for
mobile manipulation remain scarce. BC-Z (Jang et al., 2022) includes 25,000 demonstrations but
mostly involves stationary bases and end-effector poses only. Mobile ALOHA (Fu et al., 2024)
contributes 276 joint-space demonstrations coupling a base with a 7-DoF arm, but is limited to a
single platform and lacks scale. Overall, current datasets are narrow in task coverage, robot diversity,
and physically valid coordination.

In contrast, our AutoMoMa platform enables scalable, automated generation of diverse, constraint-
compliant whole-body trajectories across multiple robots, articulated objects, and realistic
environments—providing the breadth and quality of data required to advance learning-based mo-
bile manipulation.

3 PRELIMINARY

This section briefs AKR-based mobile manipulation planning, illustrating how the AKR formula-
tion enables scalable whole-body trajectory generation for manipulating both rigid and articulated
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objects. We begin by introducing the AKR modeling, then formulate motion planning problems from
the AKR perspective, and finally describe how task and environmental constraints are incorporated
into this framework.

3.1 AKR MODELING

The objective of the modeling is to construct a serial AKR by composing the kinematics of the
mobile base, manipulator arm, and the object to be manipulated (Jiao et al., 2025). This requires
three inputs: 1) the robot’s kinematic tree, 2) the object’s kinematic tree, and 3) the transformation
between the robot’s end-effector and the object’s attachable frame (i.e., the grasping pose). The
procedure for constructing the AKR consolidates the robot and object kinematic models as follows.

Kinematic Inversion Virtual Base
Manipulator Kinematics
Object Kinematics
Virtual Joint
Constructed AKR

Augmented Kinematic Representation

Robot Kinematics

Object Kinematics

ManipulatorVirtual Base
Figure 2: Augmented Kinematic Representation (AKR) Construction. The AKR unifies the kinematics of
the mobile base, manipulator, and object into a single serial chain by introducing a virtual base and a virtual
joint that connects the manipulator to the object. For articulated objects (e.g., cabinets), the object model is
inverted to maintain a valid serial structure suitable for trajectory optimization.

The kinematic structures of the robot and the object are each represented as separate kinematic trees
(e.g., Unified Robot Description Format (URDF)), as shown in Sec. 3.1. To form a serial AKR,
we insert a virtual joint, corresponding to the grasping pose, between the robot’s end-effector and
the object. This requires inverting the object’s kinematic model. Importantly, inverting a kinematic
tree is not simply a matter of reversing the parent-child relationships; all associated transformations,
including those branching structures, must be carefully updated, as revolute and prismatic joints typi-
cally define motion relative to the child link’s frame. Moreover, the geometry of branching structures
must also be considered during trajectory optimization to ensure safety and feasibility.

To jointly optimize locomotion and manipulation, we further insert a virtual base that models the
mobile base’s planar motion. This is implemented using two orthogonal prismatic joints and one rev-
olute joint between the virtual base and the robot’s base, allowing for planar motion while preserving
a serial kinematic structure.

Sec. 3.1 illustrates a constructed AKR for a door-opening task. The resulting AKR begins with a
fixed virtual link and ends at the object link connected to the ground (e.g., a door’s frame). The
mobile base and manipulator are embedded within this serial chain. Consequently, the states of the
mobile base, arm, and object are jointly represented within the AKR configuration space. Task goals
and kinematic constraints are subsequently imposed during trajectory optimization, as described in
the next section.

3.2 AKR-BASED MOBILE MANIPULATION PLANNING

The mobile manipulation planning problem can be modeled as finding a collision-free trajectory
within the configuration space of the AKR. Formally, the resulting AKR state is defined as:

xxx“
“

qqqTB , qqq
T
M , qqq

T
O

‰T
P Xfree, (1)

where qqqB PR3 is the mobile base pose, qqqM PRn is the manipulator joint state (n is the Degree of
Freedom (DoF) of the manipulator), qqqO PRm is the articulated object’s joint state (m is the DoF of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Voxelized Collision
Environment

AKR Collision Spheres

Task Description Planner Input Optimization Problem

Robot Embodiment

Environment Geometry Task Constraint

Data Generation

AKR Initial State

AKR Goal StateObject Start/Goal State

Augmented Kinematic
Representation

RGB Images

Fixed-view Point Cloud

Ego-centric Point Cloud

Fixed

Figure 3: AutoMoMa data generation pipeline. The pipeline begins by preprocessing planning contexts
through AKR construction and collision processing. It then models mobile manipulation tasks from the AKR
perspective and solves them via trajectory optimization. Finally, the data undergoes postprocessing to enforce
constraints and generate multi-modal outputs.

the articulated object, 0 for rigid object), and Xfree is the collision-free configuration space. Then, the
motion planning problem seeks a collision-free path of length T : xxx1:T “ xxxxr1s, . . . ,xxxrT sy ĂXfree.

During trajectory optimization (following Jiao et al. (2025)), we enforce:

hchainpxxxrtsq “ 0, @t“ 1, . . . , T, (2)

}ftaskpxxxrT sq´ggggoal}
2
2 ď ξgoal, (3)

xxxmin ď xxxrts ď xxxmax, @t“ 1, . . . , T, (4)

}∆xxxrts}8 ď∆xxxmax, @t“ 1, . . . , T ´1, (5)

}∆ 9xxxrts}8 ď∆ 9xxxmax, @t“ 2, . . . , T ´1. (6)

Here, Eq. (2) enforces the physical constraints arising from robot-environment interactions (e.g., a
door hinged to the ground, or a chair constrained to planar motion along the floor); Eq. (3) bounds
the task goal via ftask :X ÑG with tolerance ξgoal; and Eq. (4)-Eq. (6) impose joint limits, velocity,
and acceleration bounds. Collision avoidance is handled by the underlying motion planner’s self-
and environment-collision checks.

4 DATA GENERATION PIPELINE

Our data generation pipeline consists of four stages. First, we prepare the task description by load-
ing the environment, robot embodiment, objects, and start/goal configurations into the planning
scene. Second, we prepare the planner input by calculating voxelized environment collision models,
constructing AKR representations for robot-object pairs, and create sphere-based collision approxi-
mations. Third, we solve the trajectory optimization problem, where the AKR start and goal states
are computed and whole-body trajectories are generated under task-specific constraints. Finally,
we post-process the optimized trajectories and render multi-modal outputs in Isaac Sim, including
RGB-D images and both egocentric and fixed-viewpoint point clouds. Detailed information about
our scene generation process is described at Appx. C

4.1 TASK DESCRIPTIONS

The AutoMoMa pipeline receives a triplet pS,O,Rq that jointly defines the motion planning prob-
lem: a scene S, a finite set of interactive objects O, and a robot embodiment R, together with start
and goal configurations for each task.
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Household scene layouts. Each scene S specifies the geometry, appearance, and semantic tags for
static elements such as floors, walls, countertops, and fixed appliances. A world frame is anchored at
the scene’s geometric center, and all elements include both visual and collision meshes for rendering
and collision checking. To enrich environmental diversity, scenes are constructed either by procedu-
rally generating new layouts with articulated objects or by augmenting existing layouts through the
replacement of static assets with articulated counterparts.

Interactive objects: The object set O “Origid YOart contains rigid bodies Origid and articulated
objects Oart. Every rigid object o POrigid consists of a watertight mesh and a set of grasp poses ex-
pressed in the object’s base frame. For each articulated object o POart, we require a URDF specifying
joint types, axes, limits, and inertial parameters. Grasp poses are state-dependent—for example, a
closed cabinet may afford different grasps than when open. The articulated objects are inverted for
AKR modeling, as introduced in Sec. 3.1.

Robot embodiments: A robot embodiment R consists of a virtual mobile base and a manipula-
tor. Both are defined following URDF; an auxiliary file provides (i) a spherical approximation of
collision geometry, (ii) a self-collision mask, and (iii) a joint-weight vector www PRn`m`3 used by
the trajectory optimization. Any robot embodiment that satisfies the above description can be loaded
without further modification. This paper has validated it on a Franka arm mounted on a Summit base,
the R1 robot adopted from OmniGibson (Li et al., 2023), and the Tiago model from PAL Robotics.

4.2 AKR CONSTRUCTION AND COLLISION PROCESSING

Manipulated objects are integrated into robotic manipulation pipelines via the following workflow.

Preprocessing: Since standalone datasets typically provide objects at a fixed scale, we resize them
to fit the scene and update grasp poses accordingly. In this process, the geometric components of
each link are merged into a single mesh and scaled accordingly. Since scaling alters the spatial
configuration, joint origins are updated to preserve valid kinematic relationships.

AKR construction: To construct a AKR, the post-inversion object model is treated as an extended
limb of the robot, The grasp pose defines the transformation between the robot’s end-effector and
the target object link. This transformation, along with the two associated links, forms a virtual joint
that connects the object to the robot, yielding a unified kinematic model Kakr for integrated motion
planning.

Collision Processing: To enable efficient collision checking in the GPU-accelerated motion plan-
ner, each AKR’s geometry is approximated using a set of fitted spheres. To avoid overestimating the
original shape, the merged mesh is slightly downscaled before fitting spheres to its geometry. In rare
cases of translational shifts, the sphere cloud’s centroid is aligned with that of the original mesh to
preserve geometric consistency. Finally, we identify negligible collision pairs (e.g., adjacent links
that are always in contact) in the AKR, ensuring efficient collision checking.

Environment Collision Models: Each scene is converted into an Euclidean Signed-distance Field
(ESDF) to accelerate collision checking. During planning, only the ESDF voxels within an axis-
aligned bounding box, defined by the target object’s start and goal states, are considered, further
limiting collision checks to the local workspace and reducing unnecessary computations.

4.3 TRAJECTORY GENERATION

We generate trajectories by solving an optimization problem in the AKR space, which jointly opti-
mizes the base, arm, and object states. This enables object-centric goals and task-specific constraints,
and supports both rigid-object relocation and articulated-object manipulation with grasp switching
when needed.
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Defining Task Objectives and Goals: The mobile manipulation planning objective minimizes
total traveling distance and trajectory non-smoothness:

J pxxx1:T q “

T´1
ÿ

t“1

›

›wwwv ∆xxxrts

›

›

2

2
`

T´1
ÿ

t“2

›

›wwwa ∆ 9xxxrts

›

›

2

2
, (7)

xxx‹
1:T “ argmin

xxx1:T

J pxxx1:T q. (8)

where wwwv and wwwa are diagonal weight matrices over each DoF, enabling modulation of base-arm
coordination strategies. Task goals are object-centric: for rigid-object relocation, the goal is the grasp
pose to the object or a target placement pose of the object; for articulated objects, the goal is a desired
object state (e.g., a door opened to a specific joint angle).

Specifying Task Constraints: Trajectory constraints are defined based on the object-scene rela-
tionship and task type. For rigid object relocation, the object is treated as a free joint. For tasks
involving large objects or specific task requirements—such as pushing a chair or sweeping a table—
we impose planar constraints on the AKR’s end-effector (i.e., the object’s base link) to ensure stable,
planar motion. When manipulating articulated objects fixed to the environment, we enforce a fixed
constraint on the AKR’s end-effector, penalizing deviations of the object’s location from its initial
pose via a pose cost.

Start and Goal Configurations: To initialize the motion planning problem, we compute start
and goal AKR configurations under the assumption of a fixed grasp pose during execution. These
configurations are obtained by solving Inverse Kinematics (IK) for both object states. Similar AKR
configurations are removed through clustering, yielding a compact yet diverse set of candidate con-
figurations. This reduces planning overhead while maintaining broad workspace coverage, facilitat-
ing efficient trajectory optimization.

Grasp Switching: Grasp switching is critical when a single grasp cannot maintain stability or
reachability, such as opening a dishwasher with a handle positioned near the floor, making it inac-
cessible to the robot in one continuous grasp. To address this, we first sample an intermediate object
state ϕmid between the start ϕ0 and goal ϕT . We then solve for two sets of IK solutions: one using
the initial grasp for rϕ0Ñϕmids and the other using the final grasp for rϕmidÑϕT s. A short transi-
tion trajectory is planned between the two grasp configurations to enable collision-free detachment
and reattachment. The three segments are concatenated into a continuous motion, yielding smooth
trajectories with grasp switches executed only when necessary. This mechanism substantially ex-
pands task feasibility, as many articulated-object interactions (e.g., dishwashers, drawers) cannot be
completed under a single grasp.

4.4 DATA GENERATION

After trajectory optimization, we refine optimized trajectories to prone constraint-violated trajecto-
ries and synthesize realistic sensor observations for downstream tasks.

Trajectory Post-Processing: This stage verifies that each trajectory waypoint xrts satisfies the
required motion constraints. For fixed-base tasks, we compute the translational deviation d“

|ppxrtsq´ppxrefq| and rotational deviation θ“ cos´1
`

2 xrpxrtsq, rpxrefqy2 ´1
˘

, where pp¨q and
rp¨q denote the translational and rotational components of the AKR forward kinematics, and xref
is the reference configuration. For planar constraints, such as requiring motion constrained to the
XY plane, we evaluate the vertical displacement dz “ |pzpxrtsq´pzpxrefq| and rool-pitch deviation
θplanar “ |ψpxrtsq´ψpxrefq|, where pzp¨q is the z-axis translation and ψp¨q denotes roll and pitch.
Trajectories violating any thresholded constraint are discarded. This process ensures all retained
trajectories satisfy the specified kinematic constraints for stable, physically plausible execution.

Multi-Modal Data Rendering: We integrate both egocentric and fixed RGB-D cameras into each
scene using NVIDIA Isaac Sim, configuring synchronized color and depth sensors on the robot and
in the environment. At each trajectory waypoint, Isaac Sim renders high-fidelity RGB images and
aligned depth maps, which are directly converted into point clouds in the simulation’s coordinate

7
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Figure 4: Evaluation of trajectory generation performance across six representative household scenes.
(a) Visualizations of test scenes, with increasing confinement for realistic mobile manipulation. (b) Generation
speed is measured as valid trajectories per second; simpler layouts result in higher throughput. (c) Average
translational effort of the mobile base per trajectory, with error bars indicating standard deviation. (d) Average
rotational effort of the manipulator, reflecting the compensatory motion required in constrained environments.

frame. Camera placements are fully customizable, and scenes can be re-rendered by replaying the
generated trajectories. The resulting dataset supports a wide range of downstream tasks, including
imitation learning (Fang et al., 2019; Hua et al., 2021), visual servoing (Sun et al., 2018; Janabi-
Sharifi et al., 2011), and affordance detection (Chu et al., 2019; Do et al., 2018).

5 DATASET

5.1 TRAJECTORY GENERATION PERFORMANCE

To evaluate the effectiveness and generalizability of our trajectory generation framework, we con-
duct experiments across six representative kitchen scenes from the data environment. Each scene
poses unique spatial constraints and increasing layout complexity (lower complexity means more
collision-free IK could be found in that scene) (Fig. 4a). We deploy the Summit Franka mobile
manipulator and execute a common articulated object manipulation task, opening a wall-mounted
cabinet with an unwieldy door, in each environment.

We evaluate three key metrics:

• Generation Speed: Measured as valid trajectories (i.e., trajectories that passed trajectory post
processing) generated per second. The results are shown in Fig. 4b. Simpler layouts (e.g., Scene
#1 and #2) achieve higher data generation speed, while tightly constrained environments (e.g.,
Scene #5 and #6) reduce generation speed due to limited spaces that constrain base movement.

• Translational Effort: Defined as the average distance traveled by the mobile base per trajectory.
As shown in Fig. 4c, variations in base effort result in a diverse set of trajectories within the
dataset.

• Rotational Effort: Measured by the cumulative angular motion of the arm. Similarly, Fig. 4d
illustrates that variation in arm effort also contributes to the diversity of trajectories in the dataset.

These results highlight the adaptability of our planner to diverse spatial layouts and the ability to
generate feasible whole-body trajectories in challenging, real-world scenarios.

8
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5.2 DOWNSTREAM VALIDATION

To assess the utility of our dataset for training learning-based policies, we conducted downstream
validation experiments under varying robot embodiments, scene diversity, and training set sizes.
Tab. 2 reports the number of successful executions (out of 100 trials) for three representative policy
classes: diffusion-based policy (DP), action-conditioned transformer (ACT), and diffusion policy
with trajectory priors (DP3).
Table 2: Downstream validation results. Success counts (out of 100 trials) across robot embodiments and
training set sizes.

Embodiment Training
Size

ACT
Successes

DP
Successes

DP3
Successes

Fixed 100 0 13 5
Mobile 100 0 0 6
Fixed 300 7 31 23
Mobile 300 0 0 18
Fixed 1,000 37 52 83
Mobile 1,000 2 13 55

Effect of training data scale. Across both mobile-based and fixed-based settings, increasing the
number of training trajectories consistently improves success rates. For instance, in the mobile-based
setting with a single scene, DP3 improves from 6 successes with 100 trajectories to 55 successes with
1,000 trajectories, while DP increases from 0 to 13 successes over the same range. This highlights
the importance of large-scale data availability for generalizable mobile manipulation.

Mobile vs. fixed embodiments. Results reveal a persistent performance gap between mobile-
based and fixed-based setups. With 1,000 trajectories in a single scene, DP3 achieves 83% success on
the fixed-base but only 55% on the mobile-base. Similarly, DP and ACT obtain 52 and 37 successes
respectively in the fixed-base, compared to only 13 and 2 in the mobile-base. This gap illustrates the
amplified difficulty of coordinated whole-body planning when base motions are involved.

Scene diversity. To better evaluate the impact of environmental diversity, we test mobile-based
DP3 across five distinct scenes using 5,000 training trajectories (1,000 per scene). The policy
achieves only 22 successes in 100 trials, significantly lower than the 55 successes obtained with
1,000 trajectories in a single scene. This substantial performance drop highlights the challenges
posed by scene diversity and underscores the need for both broader environmental coverage and
larger data volumes to achieve robust generalization. Moreover, we conduct single-object gener-
alization tests across 15 procedurally generated scenes, collecting 1,000 trajectories per scene, to
systematically assess how scene count and data scale influence planning robustness.

Overall, these results demonstrate that current learning-based policies struggle to generalize across
embodiments and diverse scenes without large-scale, physically valid data. By enabling efficient
generation of such data, our dataset provides a critical resource for advancing robust mobile manip-
ulation.

6 LIMITATIONS AND CONCLUSION

AutoMoMa presents a scalable framework for generating large-scale, physically valid whole-body
trajectories for coordinated mobile manipulation, producing over half a million examples across
diverse scenes, objects, and robot embodiments. Despite its efficiency and extensibility, several lim-
itations remain. First, the reliance on fixed layouts and known kinematic models restricts coverage
of highly cluttered and outdoor scenarios. Second, the use of sphere-based collision approxima-
tions, while critical for GPU acceleration, can occasionally introduce geometric inaccuracies that
lead to planning failures (see Appx. D). Finally, the current pipeline does not account for dynamic
human–robot interaction or deformable object manipulation, which are important for real-world de-
ployment. Looking forward, we plan to integrate learning-based components to further automate
data generation and to develop community-driven tools that enable seamless extension with new
robots, assets, and environments. These directions will broaden the applicability of AutoMoMa and
strengthen its role as a foundation for advancing embodied AI.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. A detailed description of
the dataset generation pipeline, including scene layouts, object assets, robot embodiments, and mo-
tion planning algorithms, is provided in Sec. 4. To facilitate re-use and verification, we will release
an anonymous code repository containing the GPU-accelerated planning scripts, trajectory post-
processing modules, and rendering pipeline. The complete dataset of generated episodes, together
with metadata (scene/task configuration files, robot models, and collision sphere parameters), will
also be made available upon publication.

LLM USAGE

We used large language models (LLMs), specifically OpenAI’s ChatGPT, to assist in polishing the
writing and improving the clarity of exposition. The LLM was employed exclusively for language
refinement (e.g., grammar corrections, style adjustments, and conciseness), while all technical con-
tributions, experiments, analyses, and claims were implemented and validated by the authors. No
LLM-generated text was used without careful human verification, and the models did not contribute
novel ideas, experimental results, or theoretical insights. Thus, the role of LLMs in this work was
limited to aiding readability and presentation, similar to the function of a language editor.

REFERENCES

Oussama Khatib. Mobile manipulation: The robotic assistant. Robotics and Autonomous Systems,
26(2-3):175–183, 1999.

Mayank Mittal, David Hoeller, Farbod Farshidian, Marco Hutter, and Animesh Garg. Articulated
object interaction in unknown scenes with whole-body mobile manipulation. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1647–1654. IEEE,
2022.

Jean-Pierre Sleiman, Farbod Farshidian, and Marco Hutter. Versatile multicontact planning and
control for legged loco-manipulation. Science Robotics, 8(81):eadg5014, 2023.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Conference
on Robot Learning, pages 80–93. PMLR, 2023.

Zeyu Zhang, Sixu Yan, Muzhi Han, Zaijin Wang, Xinggang Wang, Song-Chun Zhu, and Hangxin
Liu. M3Bench: Benchmarking whole-body motion generation for mobile manipulation in 3D
scenes. arXiv preprint arXiv:2410.06678, 2024.

Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu, Li Yi, Siyuan Huang, and He Wang. Gapartnet:
Cross-category domain-generalizable object perception and manipulation via generalizable and
actionable parts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7081–7091, 2023.

Wenbo Cui, Chengyang Zhao, Songlin Wei, Jiazhao Zhang, Haoran Geng, Yaran Chen, and
He Wang. GAPartManip: A large-scale dataset for generalizable and actionable part manipu-
lation with material-agnostic articulated objects. In IEEE International Conference on Robotics
and Automation. IEEE, 2025.

Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. arXiv preprint
arXiv:2112.01511, 2021.

Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from hu-
man videos as a versatile representation for robotics. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13778–13790, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance with
large language models. Autonomous Robots, 47(8):1087–1102, 2023.

Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-body control: Learning a unified policy
for manipulation and locomotion. In Conference on Robot Learning, pages 138–149. PMLR,
2023.

Fei Xia, Chengshu Li, Roberto Martín-Martín, Or Litany, Alexander Toshev, and Silvio Savarese.
Relmogen: Integrating motion generation in reinforcement learning for mobile manipulation. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pages 4583–4590.
IEEE, 2021.

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

Ziyuan Jiao, Yida Niu, Zeyu Zhang, Yangyang Wu, Yao Su, Yixin Zhu, Hangxin Liu, and Song-Chun
Zhu. Integration of robot and scene kinematics for sequential mobile manipulation planning. IEEE
Transactions on Robotics, 2025.

Ziyuan Jiao, Zeyu Zhang, Weiqi Wang, David Han, Song-Chun Zhu, Yixin Zhu, and Hangxin Liu.
Efficient task planning for mobile manipulation: A virtual kinematic chain perspective. In IROS,
2021a.

Ziyuan Jiao, Zeyu Zhang, Xin Jiang, David Han, Song-Chun Zhu, Yixin Zhu, and Hangxin Liu.
Consolidating kinematic models to promote coordinated mobile manipulations. In IROS, 2021b.

Giulio Schiavi, Paula Wulkop, Giuseppe Rizzi, Lionel Ott, Roland Siegwart, and Jen Jen Chung.
Learning agent-aware affordances for closed-loop interaction with articulated objects. In 2023
IEEE International Conference on Robotics and Automation (ICRA), pages 5916–5922. IEEE,
2023.

Federico Ceola, Lorenzo Natale, Niko Sünderhauf, and Krishan Rana. LHManip: A dataset for long-
horizon language-grounded manipulation tasks in cluttered tabletop environments. arXiv preprint
arXiv:2312.12036, 2023.

Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam Fishman, Caelan Garrett, Karl Van Wyk,
Valts Blukis, Alexander Millane, Helen Oleynikova, Ankur Handa, Fabio Ramos, et al. Curobo:
Parallelized collision-free robot motion generation. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 8112–8119. IEEE, 2023.

Advait Jain and Charles C Kemp. Pulling open doors and drawers: Coordinating an omni-directional
base and a compliant arm with equilibrium point control. In International Conference on Robotics
and Automation (ICRA), 2010.

Yiannis Karayiannidis, Christian Smith, Francisco Eli Vina Barrientos, Petter Ögren, and Danica
Kragic. An adaptive control approach for opening doors and drawers under uncertainties. Trans-
actions on Robotics (T-RO), 32(1):161–175, 2016.

Marvin Stuede, Kathrin Nuelle, Svenja Tappe, and Tobias Ortmaier. Door opening and traversal
with an industrial cartesian impedance controlled mobile robot. In International Conference on
Robotics and Automation (ICRA), 2019.

Dmitry Berenson, James Kuffner, and Howie Choset. An optimization approach to planning for
mobile manipulation. In International Conference on Robotics and Automation (ICRA), 2008.

Kalin Gochev, Alla Safonova, and Maxim Likhachev. Planning with adaptive dimensionality for
mobile manipulation. In International Conference on Robotics and Automation (ICRA), 2012.

Daniel M Bodily, Thomas F Allen, and Marc D Killpack. Motion planning for mobile robots using
inverse kinematics branching. In International Conference on Robotics and Automation (ICRA),
2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026
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A AUGMENTED KINEMATIC REPRESENTATION (AKR) CONSTRUCTION

A.1 COLLISION-SPHERE FITTING PROCEDURE

As the manipulated object becomes part of the robot representation during planning via AKR, we
approximate its collision geometry using a set of spheres. This procedure aligns seamlessly with
cuRobo’s sphere-based robot representation and enables GPU-accelerated parallel computation of
collision checking.

Specifically, the collision-sphere fitting involves the following detailed steps:

1. Mesh Preprocessing: Since each link may contain multiple geometric components, these
are first merged into a single link mesh.

2. Mesh Scaling and Voxelization: The merged link mesh is uniformly scaled down slightly
to ensure conservative collision checking. This scaled mesh is then voxelized into discrete
occupied volumetric regions, representing the shape of the object as an occupancy grid.

3. Sphere Fitting: For each occupied region identified through voxelization, an individual
collision sphere is fitted. Each sphere is positioned at the centroid of the corresponding
voxel region, with its diameter equal to the voxel edge length, thereby filling the voxel
exactly.

4. Spatial Alignment Adjustment: Post voxelization, the resulting sphere cloud might expe-
rience translational offsets due to discretization. To maintain spatial consistency, we option-
ally realign the centroid of the fitted sphere cloud with the centroid of the original merged
mesh, mitigating any significant translational drift introduced during voxelization.

The resulting compact, sphere-based collision representation ensures computationally efficient col-
lision queries during trajectory optimization, crucial for maintaining interactive performance in our
planning pipeline.

Algorithm 1: AKR Construction Procedure
1 Function akr_construction(robot, object, init_state, scaling_factor, sphere_params,

grasp_pose, grasp_link, sample_n):
2 update_object_state(object, init_state);
3 foreach link P object.links do
4 merged_mesh Ð merge(link.geometries);
5 scaled_mesh Ð scale(merged_mesh, scaling_factor);
6 link.visual Ð scaled_mesh;
7 link.collision Ð sphere_fit(scaled_mesh, sphere_params);
8 end
9 foreach joint P object.joints do

10 tf Ð get_tf(object, joint.child, joint.parent);
11 joint.origin Ð update(tf, scaling_factor);
12 end
13 scaled_object Ð object;
14 fk_pose Ð fk(scaled_object, grasp_link);
15 attached_origin Ð grasp_pose´1 ¨ fk_pose;
16 inversed_object Ð inverse(scaled_object, grasp_link);
17 akr Ð attach(robot, inversed_object, attached_origin);
18 added_link_pairs Ð filter(akr.link_pairs, robot.link_pairs);
19 sampled_cfg Ð sample_cfg(akr, sample_n);
20 added_collision_pairs Ð check_collision(added_link_pairs, sampled_cfg);
21 akr.collision_pairs Ð union(robot.collision_pairs, added_collision_pairs);

A.2 DETAILED IMPLEMENTATION FOR AKR INVERSION AND ASSEMBLY

To facilitate efficient integration of articulated objects into robotic manipulation pipelines, we
present a structured workflow comprising the following steps: a) URDF preprocessing and kine-
matic inversion, b) collision spheres generation, c) object-to-robot attachment, and d) selective self-
collision checking. The process begins by applying a uniform scaling factor to the object URDF to
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ensure physical consistency. This step is particularly important when working with grasp datasets
derived from point cloud or RGB-D data, where object models are often normalized to fit within a
standardized bounding volume. Since each link may contain multiple geometric components, these
are first merged into a single link mesh and scaled accordingly. As mesh scaling alters the spatial
relationships defined in the original kinematic chain Kraw, all joint origins are subsequently recal-
culated to preserve valid relative transformations. The resulting structure defines a new kinematic
chain, denoted as Kscaled.

The tip link ℓtip, corresponding to the grasping point, is identified along with its parent joint. To
enable attachment of the object as an extension of the robot, we invert the kinematic structure by
reassigning ℓtip as the new base link. The joint hierarchy along the kinematic chain Kscaled, from the
original base ℓbase to the tip, is reversed accordingly, while the rest of the tree structure is preserved.
The resulting kinematic chain is denoted as Kinv.

The transformation that defines the attachment between the robot and the object is computed based
on the grasp pose and the object’s forward kinematics(FK). Let T base

tip represent the pose of the
selected tip link ℓtip frame relative to the object’s original base link ℓbase frame under the joint con-
figuration qinit corresponding to the grasp pose.

T base
tip “ FKKscaled pqinit, ℓtipq (9)

The grasp pose is denoted as T base
tcp , which typically specifies the pose of the robot’s TCP frame with

respect to the object’s base link frame. The final attachment transformation is computed as:

T tcp
tip “

`

T base
tcp

˘´1
¨T base

tip (10)

The transformation is applied as a fixed joint between the robot’s TCP and the object’s new base link
(formerly the selected tip link ℓtip), resulting in a unified kinematic model that integrates the robot
and the object into a single tree structure.

Finally, we identify the additional self-collision link pairs introduced by the attached object, avoiding
a full recomputation of the entire self-collision matrix. This selective check reduces computational
overhead while ensuring sufficient coverage for motion planning and safety checks.

B IMPACT OF GRASP-SWITCHING (VS. FIXED-GRASP)

To evaluate the effect of grasp-switching on manipulation performance, we compare two trajec-
tory sets: one using a fixed grasp throughout the task and another allowing grasp-switching when
beneficial. Figure 5 presents example opening angles achieved by each method.

(a) Fixed-grasp trajectory. (b) Grasp-switching trajectory.

Figure 5: Comparison of object opening angles under fixed-grasp and grasp-switching strategies.

In these examples, grasp-switching enables the robot to change the grasp pose, which increases the
achievable opening angle by avoiding link collisions. Quantitatively, we observed that trajectories
with grasp-switching attained larger maximum opening angles compared to fixed-grasp baselines,
demonstrating the importance of grasp-switching in constrained manipulation tasks.

C GENERATION OF INTERACTIVE SCENES

AutoMoMa leverages two complementary sources of interactive household environments: manually
curated scenes and procedurally generated layouts.
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The first source consists of 30 high-fidelity scenes derived from AI2-THOR (Kolve et al., 2017)
(shown in Fig. 6a). In each, we manually replace static objects such as microwave ovens, dishwash-
ers, and cabinets with functionally equivalent articulated counterparts from the SAPIEN dataset (Xi-
ang et al., 2020). These replacements are carefully positioned to respect semantic context and phys-
ical plausibility, yielding semantically coherent scenes ideal for targeted evaluation.

To enable a large-scale dataset for the downstream task, we generate an additional 300 diverse scenes
using a custom Infinigen-based pipeline (Raistrick et al., 2024). We convert the articulated object
models into static placeholder assets and import them into Infinigen. Our generator supports con-
trollable parameters—including object selection, placement optimization, and layout sparsity—to
guide procedural generation toward manipulation-friendly configurations. The global layout is op-
timized while ensuring each selected articulated object remains embedded in the final scene. The
resulting layouts are exported in USD format for compatibility with GPU-accelerated planning in
cuRobo (Sundaralingam et al., 2023), after which placeholders are replaced with the original artic-
ulated objects to restore full kinematic fidelity, shown in Fig. 6b.

Together, these two complementary scene sources—30 curated and 300 procedural—provide a rich
and diverse foundation for training and evaluating robust mobile manipulation policies across a wide
range of household contexts.

(a) AI2-THOR(iTHOR) scene with asset replacement.

(b) Procedurally generated scene from Infinigen.

Figure 6: Two approaches for building interactive environments in AutoMoMa: replacing using SAPIEN assets
in AI2-THOR(iTHOR) and generating layouts with Infinigen.

D REPRESENTATIVE SUCCESS AND FAILURE CASES

We provide visual examples of both successful and unsuccessful trajectories generated by our
pipeline, highlighting common issues encountered during planning.

Failure due to Collision: Figure 7 illustrates a trajectory that resulted in a collision. Such col-
lisions primarily occur because the robot and manipulated object representations are simplified as
sphere-based models for computational efficiency. This spheroidization can occasionally lead to in-
accuracies where the simplified geometry fails to precisely capture the original shape, resulting in
unintended collisions during planning.
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Figure 7: Example of trajectory failure due to collision from simplified robot model.

Figure 8: Example of trajectory failure due to fixed-base constraint violation.

Failure due to Constraint Violation: Figure 8 depicts a trajectory that violates constraints, specif-
ically a fixed-base constraint violation. These constraint violations typically arise when the planned
trajectory erroneously involves movements inconsistent with object fix-base constraints defined in
the planning task. Ensuring strict adherence to constraints remains challenging, particularly in com-
plex manipulation scenarios.

Successful Trajectory: Conversely, Figure 9 showcases an example of a successful trajectory,
demonstrating how effective trajectory generation appropriately respects both collision constraints
and the specified motion constraints. This example validates the pipeline’s capacity to generate feasi-
ble and physically realistic robot motions, emphasizing the pipeline’s utility in diverse manipulation
tasks.

E FAILURE CASES OF LEARNED POLICIES

Despite achieving promising performance, policies trained on our dataset exhibit common failure
modes when deployed over long horizons. The most prevalent issue arises from the accumulation
of small prediction and execution errors, which progressively amplify into significant end-effector
drift and ultimately cause task failure. Figure 10 illustrates two representative examples.

F REAL-WORLD VALIDATION

We validate our planning pipeline on a physical UR5-Ridgeback system, which comprises two UR5
manipulators mounted on a Clearpath Ridgeback mobile base. Two representative tasks were tested:
opening a drawer and opening a cabinet door. In both tasks, the robot executed the planned trajecto-
ries smoothly, accurately reproducing the motion patterns generated in simulation without collisions
or constraint violations.
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Figure 9: Example of a successful trajectory.

Figure 10: Failure cases of mobile-base policies. Small prediction and control errors accumulate over time,
leading to drift, collisions, and eventual task failure.

Figure 11: UR5-Ridgeback executing a planned drawer-opening trajectory.

Figure 12: UR5-Ridgeback opening a cabinet door using the planned motion.
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