

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AUTOMOMA: SCALABLE COORDINATED MOBILE MANIPULATION TRAJECTORY GENERATION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Mobile robots need coordinated whole-body motion to perform household tasks effectively. Current mobile manipulation datasets rely on expensive teleoperation or slow planning methods, limiting available data to hundreds of demonstrations. This data scarcity severely constrains the development of generalizable learning-based policies. Here, we demonstrate that GPU-accelerated planning generates up to 5,000 episodes per GPU hour, over 80 \times faster than existing methods. Our AutoMoMa pipeline produces 500K diverse physically valid whole-body motions across 300 household scenes and multiple robot embodiments, compared to previous datasets limited to narrow robot-scene pairs with a few hundred demonstrations. Downstream validation demonstrates consistent policy improvements with large-scale training data. This work provides the first scalable solution to the mobile manipulation data bottleneck. By enabling massive dataset generation, AutoMoMa accelerates progress toward general-purpose household robots capable of complex coordination tasks.

1 INTRODUCTION

Mobile manipulation is a fundamental capability for autonomous robots operating in unstructured human environments. Unlike fixed-base manipulators with limited reach, mobile manipulators combine the mobility of a base with the dexterity of an arm, thereby extending the effective workspace and enabling interaction with a diverse range of household objects. Achieving this capability requires **coordinated whole-body motion**, as many real-world tasks inherently couple navigation and manipulation, requiring simultaneous planning over base positioning, arm configuration, and object interaction (Khatib, 1999; Mittal et al., 2022; Sleiman et al., 2023).

Traditional approaches typically decompose mobile manipulation into separate navigation and arm control stages or rely on handcrafted coordination strategies for specific tasks (Sleiman et al., 2023). While effective in constrained setups, these methods require extensive manual effort to encode task constraints and generalize poorly across diverse settings. Recent learning-based methods show promise for end-to-end whole-body policies (Li et al., 2023; Zhang et al., 2024), but their progress is hindered by the lack of large-scale, diverse datasets capturing physically valid coordinated motions.

Although several large-scale manipulation datasets have emerged, mobile manipulation datasets remain highly limited (Tab. 1). Existing efforts often oversimplify the problem by restricting to static tabletop scenes (Geng et al., 2023; Cui et al., 2025), focusing on a single robot embodiment (Pari et al., 2021; Bahl et al., 2023), or targeting narrow task classes (Wu et al., 2023). As a result, they lack the scale, task diversity, and coordinated base-arm-object interactions necessary to train generalizable whole-body policies.

These shortcomings largely arise from their collection methodologies. Reinforcement Learning (RL) requires prohibitively expensive trial-and-error exploration (Fu et al., 2023; Xia et al., 2021; Li et al., 2023), especially when scaling across object variations and environments; teleoperation (Fu et al., 2024) is bottlenecked by expert availability and hardware interface limitations; and traditional planning-based methods require sequential planning of base and arm, which failed to capture coordinated motion. The Augmented Kinematic Representation (AKR) framework (Jiao et al., 2025) offers a principled way to unify base, arm, and object kinematics in a single representation (Jiao

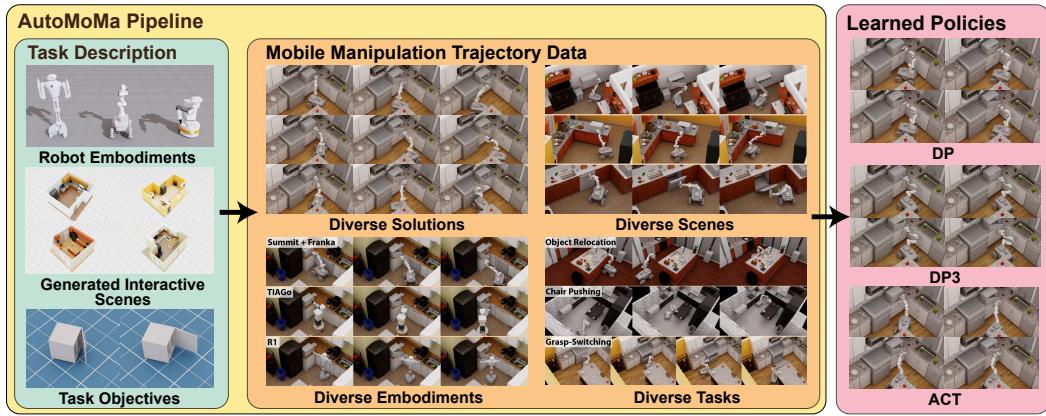


Figure 1: AutoMoMa pipeline for generating large-scale coordinated mobile manipulation trajectories. By combining AKR modeling with GPU-accelerated planning, the system produces diverse, physically valid whole-body motions across robots, tasks, and household scenes. These data support the training of modern learning-based policies, including DP, DP3, and ACT.

et al., 2021a;b), but existing implementations are computationally intensive, resulting in generation speed at around 60 effective trajectories per hour (Zhang et al., 2024), limiting the ability to generate scalable datasets. These constraints have fragmented research efforts, forcing teams to develop narrow-purpose datasets (Pari et al., 2021; Schiavi et al., 2023; Ceola et al., 2023; Wu et al., 2023; Fu et al., 2024) that fail to capture the full spectrum of mobile manipulation scenarios, ultimately impeding progress toward general-purpose household robots.

We address these challenges with AutoMoMa, a scalable framework for generating diverse, high-quality whole-body mobile manipulation trajectories. By combining AKR-based modeling with GPU-accelerated motion planning (Sundaralingam et al., 2023), AutoMoMa generates physically valid trajectories at 5,000 per GPU-hour—orders of magnitude ($80\times$) faster than prior approaches. This efficiency enables large-scale data generation across multiple robots, articulated objects, and realistic household scenes without requiring costly human demonstrations. Beyond simple pick-and-place, AutoMoMa supports articulated-object interactions and multi-step tasks with grasp switching in confined spaces. We validate its effectiveness both in simulation and on a dual-UR5 Clearpath Ridgeback platform, demonstrating successful sim-to-real transfer.

Our contributions are:

- **Scalable pipeline:** A GPU-accelerated AKR planner with 80x faster trajectory generation (up to 5k trajectories per GPU-hour), enabling scalable whole-body data collection.
- **Comprehensive dataset:** 500k trajectories across 300 photorealistic scenes, 26 articulated objects, 3 robot morphologies, and 150 tasks, with straightforward extensibility.
- **Benchmark foundation:** Baselines with learning-based policies (DP, DP3, ACT) and real-robot validation to support learning methods and sim-to-real research.

Together, these contributions establish AutoMoMa as the first scalable framework that bridges high-performance planning with large-scale dataset generation for coordinated mobile manipulation.

2 RELATED WORK

2.1 MOTION PLANNING FOR MOBILE MANIPULATION

Model-Based Planning Classical approaches to coordinated mobile manipulation include task-specific controllers such as impedance and model-predictive control for doors and drawers (Jain and Kemp, 2010; Karayannidis et al., 2016; Stuede et al., 2019), as well as general base-arm optimization frameworks for cluttered environments (Berenson et al., 2008; Gochev et al., 2012; Bodily et al., 2017). While effective under controlled conditions, these methods require extensive hand-tuning for each robot-object pair and do not scale well to diverse environments or object types. The AKR framework (Jiao et al., 2021a;b; 2025) advanced the field by unifying the base, manipulator, and object into a single kinematic model, enabling constraint-aware planning in a unified configuration

108
 109 **Table 1: Comparison of mobile manipulation datasets from the Open-X-Embodiment project (O’Neill**
 110 **et al., 2024).** Existing datasets are generally limited in scale, scene diversity, or ability to capture coordinated
 111 whole-body joint trajectories, and most rely on human demonstrations or scripted policies. “EEF” denotes *end-
 effector*.

Dataset	Robot	#Episodes	Coordinated Motion	#Scenes	Action Space	Data Collection Method
RT-1 Robot Action (Brohan et al., 2022)	Google Robot	73,499	Yes	10	EEF Position	Human VR
NYU VINN (Pari et al., 2021)	Hello Stretch	435	Yes	3	EEF Position	Human Kinesthetic
BC-Z (Jang et al., 2022)	Google Robot	39,350	Yes	2–3	EEF Position	Human VR
ETH Agent Affordances (Schiavi et al., 2023)	Franka	120	No	50	EEF Position	Expert Policy
QUT Dexterous Manipulation (Ceola et al., 2023)	Franka	200	No	1	EEF Position	Human VR
CMU Stretch (Bahl et al., 2023; Mendonca et al., 2023)	Hello Stretch	135	No	10	EEF Position	Expert Policy
CongHose (Mirano and Berenson, 2024)	Spot	139	Yes	3	EEF Velocity	Scripted
DobbE (Shafullah et al., 2023)	Hello Stretch	5,208	Yes	216	EEF Position	Human Tools
MobileALOHA (Fu et al., 2024)	MobileALOHA	276	Yes	5	Joint Position	Human Puppeteering
TidyBot (Wu et al., 2023)	TidyBot	24	No	104	Other	Handcrafted Object Placements
Ours	Franka, R1, TIAGO	500,000	Yes	300	Joint Position	Physics Plausible Motion Planner

112 space. This approach naturally handles articulated objects, but conventional CPU-based implementations
 113 remain computationally expensive, assume fixed grasp poses, and are limited in task diversity
 114 (Zhang et al., 2024).

115 **Learning-Based Planning** End-to-end deep RL has been applied to coordinated base-arm control
 116 in simulation (Xia et al., 2021; Fu et al., 2023), but remains highly sample-inefficient and struggles
 117 to generalize across novel robots or environments (Sun et al., 2022). Imitation learning provides a
 118 more data-efficient alternative by leveraging demonstrations (Fu et al., 2024; Jang et al., 2022), yet
 119 it is constrained by dataset scale and diversity. Both approaches are ultimately bottlenecked by the
 120 scarcity of large, high-quality datasets capturing realistic whole-body coordination. This motivates
 121 the need for scalable data generation platforms like AutoMoMa that can bridge the gap between
 122 planning frameworks and data-driven methods.

123 2.2 DATA COLLECTION FOR MOBILE MANIPULATION

124 **Simulated Embodied AI Platforms** Platforms such as Habitat 2.0 (Szot et al., 2021), AI2-THOR
 125 (Kolve et al., 2017), OmniGibson (Li et al., 2023), and RoboHive (Kumar et al., 2023) provide
 126 photorealistic environments with articulated assets, but typically prioritize visual realism over physically
 127 valid robot motion. Interactions are often simplified to scripted primitives that bypass base-arm
 128 kinematics and whole-body coordination. ManiSkill-HAB (Shukla et al., 2025) makes progress with
 129 8,000 demonstrations of coordinated table-setting, but is limited to a single kitchen and narrow task
 130 diversity.

131 **Teleoperation** Human-guided teleoperation captures realistic behaviors but scales poorly. Early
 132 systems like MOCA (Wu et al., 2019) and MOMA-Force (Yang et al., 2023) recorded only end-
 133 effector trajectories, omitting full joint-space motion. Recent platforms such as Mobile ALOHA (Fu
 134 et al., 2024) and TeleMoMa (Dass et al., 2024) collect high-fidelity joint-space data, yet remain
 135 constrained by operator fatigue, hardware availability, and limited environment diversity, restricting
 136 datasets to thousands rather than millions of demonstrations.

137 **Standalone Mobile Manipulation Datasets** Despite increasing interest, large-scale datasets for
 138 mobile manipulation remain scarce. BC-Z (Jang et al., 2022) includes 25,000 demonstrations but
 139 mostly involves stationary bases and end-effector poses only. Mobile ALOHA (Fu et al., 2024)
 140 contributes 276 joint-space demonstrations coupling a base with a 7-DoF arm, but is limited to a
 141 single platform and lacks scale. Overall, current datasets are narrow in task coverage, robot diversity,
 142 and physically valid coordination.

143 In contrast, our AutoMoMa platform enables scalable, automated generation of diverse, constraint-
 144 compliant whole-body trajectories across multiple robots, articulated objects, and realistic
 145 environments—providing the breadth and quality of data required to advance learning-based mo-
 146 bile manipulation.

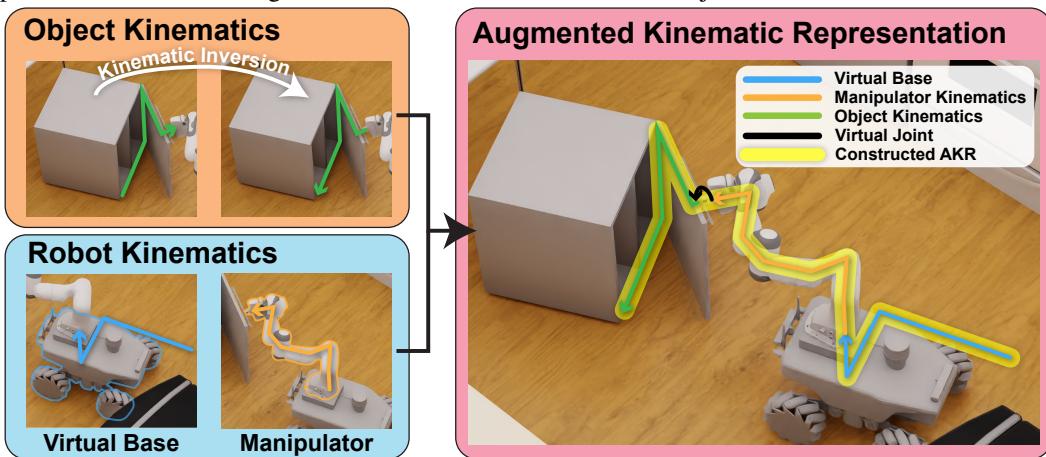
147 3 PRELIMINARY

148 This section briefs AKR-based mobile manipulation planning, illustrating how the AKR formula-
 149 tion enables scalable whole-body trajectory generation for manipulating both rigid and articulated

162 objects. We begin by introducing the AKR modeling, then formulate motion planning problems from
 163 the AKR perspective, and finally describe how task and environmental constraints are incorporated
 164 into this framework.

166 3.1 AKR MODELING

168 The objective of the modeling is to construct a serial AKR by composing the kinematics of the
 169 mobile base, manipulator arm, and the object to be manipulated (Jiao et al., 2025). This requires
 170 three inputs: 1) the robot’s kinematic tree, 2) the object’s kinematic tree, and 3) the transformation
 171 between the robot’s end-effector and the object’s attachable frame (*i.e.*, the grasping pose). The
 172 procedure for constructing the AKR consolidates the robot and object kinematic models as follows.



187 **Figure 2: Augmented Kinematic Representation (AKR) Construction.** The AKR unifies the kinematics of
 188 the mobile base, manipulator, and object into a single serial chain by introducing a virtual base and a virtual
 189 joint that connects the manipulator to the object. For articulated objects (*e.g.*, cabinets), the object model is
 190 inverted to maintain a valid serial structure suitable for trajectory optimization.

191 The kinematic structures of the robot and the object are each represented as separate kinematic trees
 192 (*e.g.*, Unified Robot Description Format (URDF)), as shown in Sec. 3.1. To form a serial AKR,
 193 we insert a virtual joint, corresponding to the grasping pose, between the robot’s end-effector and
 194 the object. This requires inverting the object’s kinematic model. Importantly, inverting a kinematic
 195 tree is not simply a matter of reversing the parent-child relationships; all associated transformations,
 196 including those branching structures, must be carefully updated, as revolute and prismatic joints typi-
 197 cally define motion relative to the child link’s frame. Moreover, the geometry of branching structures
 198 must also be considered during trajectory optimization to ensure safety and feasibility.

199 To jointly optimize locomotion and manipulation, we further insert a virtual base that models the
 200 mobile base’s planar motion. This is implemented using two orthogonal prismatic joints and one rev-
 201 olute joint between the virtual base and the robot’s base, allowing for planar motion while preserving
 202 a serial kinematic structure.

203 Sec. 3.1 illustrates a constructed AKR for a door-opening task. The resulting AKR begins with a
 204 fixed virtual link and ends at the object link connected to the ground (*e.g.*, a door’s frame). The
 205 mobile base and manipulator are embedded within this serial chain. Consequently, the states of the
 206 mobile base, arm, and object are jointly represented within the AKR configuration space. Task goals
 207 and kinematic constraints are subsequently imposed during trajectory optimization, as described in
 208 the next section.

209 3.2 AKR-BASED MOBILE MANIPULATION PLANNING

211 The mobile manipulation planning problem can be modeled as finding a collision-free trajectory
 212 within the configuration space of the AKR. Formally, the resulting AKR state is defined as:

$$\mathbf{x} = [\mathbf{q}_B^\top, \mathbf{q}_M^\top, \mathbf{q}_O^\top]^\top \in \mathcal{X}_{\text{free}}, \quad (1)$$

213 where $\mathbf{q}_B \in \mathbb{R}^3$ is the mobile base pose, $\mathbf{q}_M \in \mathbb{R}^n$ is the manipulator joint state (n is the Degree of
 214 Freedom (DoF) of the manipulator), $\mathbf{q}_O \in \mathbb{R}^m$ is the articulated object’s joint state (m is the DoF of

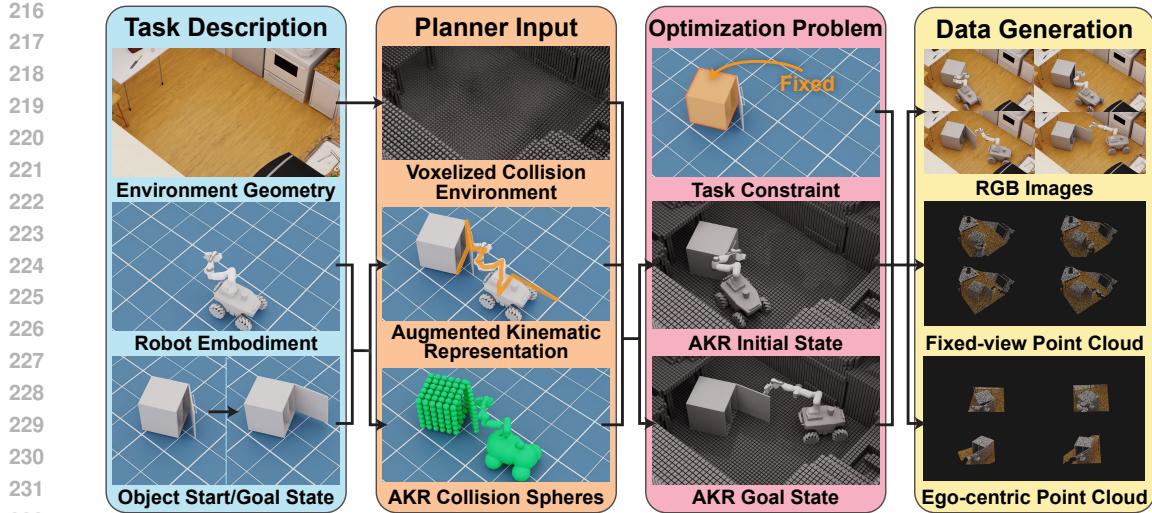


Figure 3: **AutoMoMa data generation pipeline.** The pipeline begins by preprocessing planning contexts through AKR construction and collision processing. It then models mobile manipulation tasks from the AKR perspective and solves them via trajectory optimization. Finally, the data undergoes postprocessing to enforce constraints and generate multi-modal outputs.

the articulated object, 0 for rigid object), and $\mathcal{X}_{\text{free}}$ is the collision-free configuration space. Then, the motion planning problem seeks a collision-free path of length T : $\mathbf{x}_{1:T} = \langle \mathbf{x}_{[1]}, \dots, \mathbf{x}_{[T]} \rangle \subset \mathcal{X}_{\text{free}}$.

During trajectory optimization (following Jiao et al. (2025)), we enforce:

$$h_{\text{chain}}(\mathbf{x}_{[t]}) = 0, \quad \forall t = 1, \dots, T, \quad (2)$$

$$\|f_{\text{task}}(\mathbf{x}_{[T]}) - \mathbf{g}_{\text{goal}}\|_2^2 \leq \xi_{\text{goal}}, \quad (3)$$

$$\mathbf{x}_{\text{min}} \leq \mathbf{x}_{[t]} \leq \mathbf{x}_{\text{max}}, \quad \forall t = 1, \dots, T, \quad (4)$$

$$\|\Delta \mathbf{x}_{[t]}\|_{\infty} \leq \Delta \mathbf{x}_{\text{max}}, \quad \forall t = 1, \dots, T-1, \quad (5)$$

$$\|\Delta \dot{\mathbf{x}}_{[t]}\|_{\infty} \leq \Delta \dot{\mathbf{x}}_{\text{max}}, \quad \forall t = 2, \dots, T-1. \quad (6)$$

Here, Eq. (2) enforces the physical constraints arising from robot-environment interactions (e.g., a door hinged to the ground, or a chair constrained to planar motion along the floor); Eq. (3) bounds the task goal via $f_{\text{task}} : \mathcal{X} \rightarrow \mathcal{G}$ with tolerance ξ_{goal} ; and Eq. (4)-Eq. (6) impose joint limits, velocity, and acceleration bounds. Collision avoidance is handled by the underlying motion planner’s self- and environment-collision checks.

4 DATA GENERATION PIPELINE

Our data generation pipeline consists of four stages. First, we prepare the task description by loading the environment, robot embodiment, objects, and start/goal configurations into the planning scene. Second, we prepare the planner input by calculating voxelized environment collision models, constructing AKR representations for robot-object pairs, and create sphere-based collision approximations. Third, we solve the trajectory optimization problem, where the AKR start and goal states are computed and whole-body trajectories are generated under task-specific constraints. Finally, we post-process the optimized trajectories and render multi-modal outputs in Isaac Sim, including RGB-D images and both egocentric and fixed-viewpoint point clouds. Detailed information about our scene generation process is described at Appx. C

4.1 TASK DESCRIPTIONS

The AutoMoMa pipeline receives a triplet $(\mathcal{S}, \mathcal{O}, \mathcal{R})$ that jointly defines the motion planning problem: a *scene* \mathcal{S} , a finite set of *interactive objects* \mathcal{O} , and a *robot embodiment* \mathcal{R} , together with start and goal configurations for each task.

270 **Household scene layouts.** Each scene \mathcal{S} specifies the geometry, appearance, and semantic tags for
 271 static elements such as floors, walls, countertops, and fixed appliances. A world frame is anchored at
 272 the scene’s geometric center, and all elements include both visual and collision meshes for rendering
 273 and collision checking. To enrich environmental diversity, scenes are constructed either by procedu-
 274 rally generating new layouts with articulated objects or by augmenting existing layouts through the
 275 replacement of static assets with articulated counterparts.

277 **Interactive objects:** The object set $\mathcal{O} = \mathcal{O}_{\text{rigid}} \cup \mathcal{O}_{\text{art}}$ contains *rigid bodies* $\mathcal{O}_{\text{rigid}}$ and *articulated*
 278 *objects* \mathcal{O}_{art} . Every rigid object $o \in \mathcal{O}_{\text{rigid}}$ consists of a watertight mesh and a set of grasp poses ex-
 279 pressed in the object’s base frame. For each articulated object $o \in \mathcal{O}_{\text{art}}$, we require a URDF specifying
 280 joint types, axes, limits, and inertial parameters. Grasp poses are state-dependent—for example, a
 281 closed cabinet may afford different grasps than when open. The articulated objects are inverted for
 282 AKR modeling, as introduced in [Sec. 3.1](#).

284 **Robot embodiments:** A robot embodiment \mathcal{R} consists of a virtual mobile base and a manipula-
 285 tor. Both are defined following URDF; an auxiliary file provides (i) a spherical approximation of
 286 collision geometry, (ii) a self-collision mask, and (iii) a joint-weight vector $\mathbf{w} \in \mathbb{R}^{n+m+3}$ used by
 287 the trajectory optimization. Any robot embodiment that satisfies the above description can be loaded
 288 without further modification. This paper has validated it on a Franka arm mounted on a Summit base,
 289 the R1 robot adopted from OmniGibson ([Li et al., 2023](#)), and the Tiago model from PAL Robotics.

291 4.2 AKR CONSTRUCTION AND COLLISION PROCESSING

293 Manipulated objects are integrated into robotic manipulation pipelines via the following workflow.

295 **Preprocessing:** Since standalone datasets typically provide objects at a fixed scale, we resize them
 296 to fit the scene and update grasp poses accordingly. In this process, the geometric components of
 297 each link are merged into a single mesh and scaled accordingly. Since scaling alters the spatial
 298 configuration, joint origins are updated to preserve valid kinematic relationships.

300 **AKR construction:** To construct a AKR, the post-inversion object model is treated as an extended
 301 limb of the robot. The grasp pose defines the transformation between the robot’s end-effector and
 302 the target object link. This transformation, along with the two associated links, forms a virtual joint
 303 that connects the object to the robot, yielding a unified kinematic model \mathcal{K}_{akr} for integrated motion
 304 planning.

306 **Collision Processing:** To enable efficient collision checking in the GPU-accelerated motion plan-
 307 ner, each AKR’s geometry is approximated using a set of fitted spheres. To avoid overestimating the
 308 original shape, the merged mesh is slightly downsampled before fitting spheres to its geometry. In rare
 309 cases of translational shifts, the sphere cloud’s centroid is aligned with that of the original mesh to
 310 preserve geometric consistency. Finally, we identify negligible collision pairs (*e.g.*, adjacent links
 311 that are always in contact) in the AKR, ensuring efficient collision checking.

313 **Environment Collision Models:** Each scene is converted into an Euclidean Signed-distance Field
 314 (ESDF) to accelerate collision checking. During planning, only the ESDF voxels within an axis-
 315 aligned bounding box, defined by the target object’s start and goal states, are considered, further
 316 limiting collision checks to the local workspace and reducing unnecessary computations.

318 4.3 TRAJECTORY GENERATION

321 We generate trajectories by solving an optimization problem in the AKR space, which jointly opti-
 322 mizes the base, arm, and object states. This enables object-centric goals and task-specific constraints,
 323 and supports both rigid-object relocation and articulated-object manipulation with grasp switching
 when needed.

324 **Defining Task Objectives and Goals:** The mobile manipulation planning objective minimizes
 325 total traveling distance and trajectory non-smoothness:
 326

$$327 \quad \mathcal{J}(\mathbf{x}_{1:T}) = \sum_{t=1}^{T-1} \|\mathbf{w}_v \Delta \mathbf{x}_{[t]}\|_2^2 + \sum_{t=2}^{T-1} \|\mathbf{w}_a \Delta \dot{\mathbf{x}}_{[t]}\|_2^2, \quad (7)$$

$$330 \quad \mathbf{x}_{1:T}^* = \arg \min_{\mathbf{x}_{1:T}} \mathcal{J}(\mathbf{x}_{1:T}). \quad (8)$$

331 where \mathbf{w}_v and \mathbf{w}_a are diagonal weight matrices over each DoF, enabling modulation of base-arm
 332 coordination strategies. Task goals are object-centric: for rigid-object relocation, the goal is the grasp
 333 pose to the object or a target placement pose of the object; for articulated objects, the goal is a desired
 334 object state (e.g., a door opened to a specific joint angle).
 335

336 **Specifying Task Constraints:** Trajectory constraints are defined based on the object-scene
 337 relationship and task type. For rigid object relocation, the object is treated as a free joint. For tasks
 338 involving large objects or specific task requirements—such as pushing a chair or sweeping a table—
 339 we impose planar constraints on the AKR’s end-effector (*i.e.*, the object’s base link) to ensure stable,
 340 planar motion. When manipulating articulated objects fixed to the environment, we enforce a fixed
 341 constraint on the AKR’s end-effector, penalizing deviations of the object’s location from its initial
 342 pose via a pose cost.
 343

344 **Start and Goal Configurations:** To initialize the motion planning problem, we compute start
 345 and goal AKR configurations under the assumption of a fixed grasp pose during execution. These
 346 configurations are obtained by solving Inverse Kinematics (IK) for both object states. Similar AKR
 347 configurations are removed through clustering, yielding a compact yet diverse set of candidate con-
 348 figurations. This reduces planning overhead while maintaining broad workspace coverage, facilitat-
 349 ing efficient trajectory optimization.
 350

351 **Grasp Switching:** Grasp switching is critical when a single grasp cannot maintain stability or
 352 reachability, such as opening a dishwasher with a handle positioned near the floor, making it inac-
 353 cessible to the robot in one continuous grasp. To address this, we first sample an intermediate object
 354 state ϕ_{mid} between the start ϕ_0 and goal ϕ_T . We then solve for two sets of IK solutions: one using
 355 the initial grasp for $[\phi_0 \rightarrow \phi_{\text{mid}}]$ and the other using the final grasp for $[\phi_{\text{mid}} \rightarrow \phi_T]$. A short transi-
 356 tion trajectory is planned between the two grasp configurations to enable collision-free detachment
 357 and reattachment. The three segments are concatenated into a continuous motion, yielding smooth
 358 trajectories with grasp switches executed only when necessary. This mechanism substantially ex-
 359 pands task feasibility, as many articulated-object interactions (*e.g.*, dishwashers, drawers) cannot be
 360 completed under a single grasp.
 361

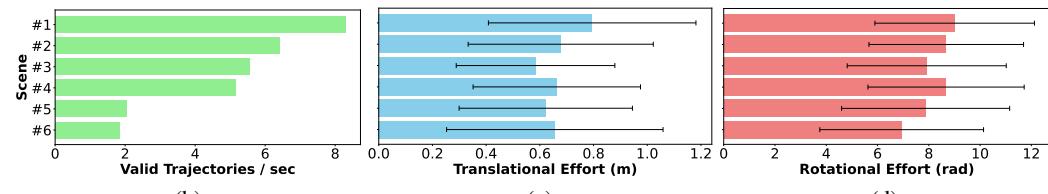
4.4 DATA GENERATION

362 After trajectory optimization, we refine optimized trajectories to prone constraint-violated trajec-
 363 tories and synthesize realistic sensor observations for downstream tasks.
 364

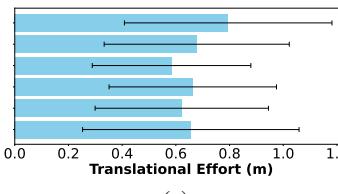
365 **Trajectory Post-Processing:** This stage verifies that each trajectory waypoint $x_{[t]}$ satisfies the
 366 required motion constraints. For fixed-base tasks, we compute the translational deviation $d =$
 367 $|p(x_{[t]}) - p(x_{\text{ref}})|$ and rotational deviation $\theta = \cos^{-1}(2\langle r(x_{[t]}), r(x_{\text{ref}}) \rangle^2 - 1)$, where $p(\cdot)$ and
 368 $r(\cdot)$ denote the translational and rotational components of the AKR forward kinematics, and x_{ref}
 369 is the reference configuration. For planar constraints, such as requiring motion constrained to the
 370 XY plane, we evaluate the vertical displacement $d_z = |p_z(x_{[t]}) - p_z(x_{\text{ref}})|$ and roll-pitch deviation
 371 $\theta_{\text{planar}} = |\psi(x_{[t]}) - \psi(x_{\text{ref}})|$, where $p_z(\cdot)$ is the z-axis translation and $\psi(\cdot)$ denotes roll and pitch.
 372 Trajectories violating any thresholded constraint are discarded. This process ensures all retained
 373 trajectories satisfy the specified kinematic constraints for stable, physically plausible execution.
 374

375 **Multi-Modal Data Rendering:** We integrate both egocentric and fixed RGB-D cameras into each
 376 scene using NVIDIA Isaac Sim, configuring synchronized color and depth sensors on the robot and
 377 in the environment. At each trajectory waypoint, Isaac Sim renders high-fidelity RGB images and
 378 aligned depth maps, which are directly converted into point clouds in the simulation’s coordinate
 379

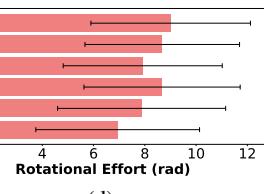
(a)



(b)



(c)



(d)

Figure 4: **Evaluation of trajectory generation performance across six representative household scenes.** (a) Visualizations of test scenes, with increasing confinement for realistic mobile manipulation. (b) Generation speed is measured as valid trajectories per second; simpler layouts result in higher throughput. (c) Average translational effort of the mobile base per trajectory, with error bars indicating standard deviation. (d) Average rotational effort of the manipulator, reflecting the compensatory motion required in constrained environments.

frame. Camera placements are fully customizable, and scenes can be re-rendered by replaying the generated trajectories. The resulting dataset supports a wide range of downstream tasks, including imitation learning (Fang et al., 2019; Hua et al., 2021), visual servoing (Sun et al., 2018; Janabi-Sharifi et al., 2011), and affordance detection (Chu et al., 2019; Do et al., 2018).

5 DATASET

5.1 TRAJECTORY GENERATION PERFORMANCE

To evaluate the effectiveness and generalizability of our trajectory generation framework, we conduct experiments across six representative kitchen scenes from the data environment. Each scene poses unique spatial constraints and increasing layout complexity (lower complexity means more collision-free IK could be found in that scene) (Fig. 4a). We deploy the Summit Franka mobile manipulator and execute a common articulated object manipulation task, opening a wall-mounted cabinet with an unwieldy door, in each environment.

We evaluate three key metrics:

- **Generation Speed:** Measured as valid trajectories (*i.e.*, trajectories that passed trajectory post processing) generated per second. The results are shown in Fig. 4b. Simpler layouts (*e.g.*, Scene #1 and #2) achieve higher data generation speed, while tightly constrained environments (*e.g.*, Scene #5 and #6) reduce generation speed due to limited spaces that constrain base movement.
- **Translational Effort:** Defined as the average distance traveled by the mobile base per trajectory. As shown in Fig. 4c, variations in base effort result in a diverse set of trajectories within the dataset.
- **Rotational Effort:** Measured by the cumulative angular motion of the arm. Similarly, Fig. 4d illustrates that variation in arm effort also contributes to the diversity of trajectories in the dataset.

These results highlight the adaptability of our planner to diverse spatial layouts and the ability to generate feasible whole-body trajectories in challenging, real-world scenarios.

432 5.2 DOWNSTREAM VALIDATION
433

434 To assess the utility of our dataset for training learning-based policies, we conducted downstream
435 validation experiments under varying robot embodiments, scene diversity, and training set sizes.
436 [Tab. 2](#) reports the number of successful executions (out of 100 trials) for three representative policy
437 classes: diffusion-based policy (DP), action-conditioned transformer (ACT), and diffusion policy
438 with trajectory priors (DP3).

439 **Table 2: Downstream validation results.** Success counts (out of 100 trials) across robot embodiments and
440 training set sizes.

441 Embodiment	442 Training Size	443 ACT Successes	444 DP Successes	445 DP3 Successes
443 Fixed	444 100	445 0	446 13	447 5
444 Mobile	445 100	446 0	447 0	448 6
445 Fixed	446 300	447 7	448 31	449 23
446 Mobile	447 300	448 0	449 0	450 18
447 Fixed	448 1,000	449 37	450 52	451 83
448 Mobile	449 1,000	450 2	451 13	452 55

449 **Effect of training data scale.** Across both mobile-based and fixed-based settings, increasing the
450 number of training trajectories consistently improves success rates. For instance, in the mobile-based
451 setting with a single scene, DP3 improves from 6 successes with 100 trajectories to 55 successes with
452 1,000 trajectories, while DP increases from 0 to 13 successes over the same range. This highlights
453 the importance of large-scale data availability for generalizable mobile manipulation.

454 **Mobile vs. fixed embodiments.** Results reveal a persistent performance gap between mobile-
455 based and fixed-based setups. With 1,000 trajectories in a single scene, DP3 achieves 83% success on
456 the fixed-base but only 55% on the mobile-base. Similarly, DP and ACT obtain 52 and 37 successes
457 respectively in the fixed-base, compared to only 13 and 2 in the mobile-base. This gap illustrates the
458 amplified difficulty of coordinated whole-body planning when base motions are involved.

460 **Scene diversity.** To better evaluate the impact of environmental diversity, we test mobile-based
461 DP3 across five distinct scenes using 5,000 training trajectories (1,000 per scene). The policy
462 achieves only 22 successes in 100 trials, significantly lower than the 55 successes obtained with
463 1,000 trajectories in a single scene. This substantial performance drop highlights the challenges
464 posed by scene diversity and underscores the need for both broader environmental coverage and
465 larger data volumes to achieve robust generalization. Moreover, we conduct single-object gener-
466 alization tests across 15 procedurally generated scenes, collecting 1,000 trajectories per scene, to
467 systematically assess how scene count and data scale influence planning robustness.

468 Overall, these results demonstrate that current learning-based policies struggle to generalize across
469 embodiments and diverse scenes without large-scale, physically valid data. By enabling efficient
470 generation of such data, our dataset provides a critical resource for advancing robust mobile manip-
471 ulation.

473 6 LIMITATIONS AND CONCLUSION
474

475 AutoMoMa presents a scalable framework for generating large-scale, physically valid whole-body
476 trajectories for coordinated mobile manipulation, producing over half a million examples across
477 diverse scenes, objects, and robot embodiments. Despite its efficiency and extensibility, several lim-
478 itations remain. First, the reliance on fixed layouts and known kinematic models restricts coverage
479 of highly cluttered and outdoor scenarios. Second, the use of sphere-based collision approxima-
480 tions, while critical for GPU acceleration, can occasionally introduce geometric inaccuracies that
481 lead to planning failures (see [Appx. D](#)). Finally, the current pipeline does not account for dynamic
482 human–robot interaction or deformable object manipulation, which are important for real-world de-
483 ployment. Looking forward, we plan to integrate learning-based components to further automate
484 data generation and to develop community-driven tools that enable seamless extension with new
485 robots, assets, and environments. These directions will broaden the applicability of AutoMoMa and
strengthen its role as a foundation for advancing embodied AI.

486 REPRODUCIBILITY STATEMENT
487488 We have taken several measures to ensure the reproducibility of our work. A detailed description of
489 the dataset generation pipeline, including scene layouts, object assets, robot embodiments, and motion
490 planning algorithms, is provided in [Sec. 4](#). To facilitate re-use and verification, we will release
491 an **anonymous code repository** containing the GPU-accelerated planning scripts, trajectory post-
492 processing modules, and rendering pipeline. The complete dataset of generated episodes, together
493 with metadata (scene/task configuration files, robot models, and collision sphere parameters), will
494 also be made available upon publication.
495496 LLM USAGE
497498 We used large language models (LLMs), specifically OpenAI’s ChatGPT, to assist in polishing the
499 writing and improving the clarity of exposition. The LLM was employed exclusively for language
500 refinement (e.g., grammar corrections, style adjustments, and conciseness), while all technical
501 contributions, experiments, analyses, and claims were implemented and validated by the authors. No
502 LLM-generated text was used without careful human verification, and the models did not contribute
503 novel ideas, experimental results, or theoretical insights. Thus, the role of LLMs in this work was
504 limited to aiding readability and presentation, similar to the function of a language editor.
505506 REFERENCES
507508 Oussama Khatib. Mobile manipulation: The robotic assistant. *Robotics and Autonomous Systems*,
509 26(2-3):175–183, 1999.510 Mayank Mittal, David Hoeller, Farbod Farshidian, Marco Hutter, and Animesh Garg. Articulated
511 object interaction in unknown scenes with whole-body mobile manipulation. In *2022 IEEE/RSJ*
512 *International Conference on Intelligent Robots and Systems (IROS)*, pages 1647–1654. IEEE,
513 2022.515 Jean-Pierre Sleiman, Farbod Farshidian, and Marco Hutter. Versatile multicontact planning and
516 control for legged loco-manipulation. *Science Robotics*, 8(81):eadg5014, 2023.517 Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
518 Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
519 benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In *Conference*
520 *on Robot Learning*, pages 80–93. PMLR, 2023.522 Zeyu Zhang, Sixu Yan, Muzhi Han, Zaijin Wang, Xinggang Wang, Song-Chun Zhu, and Hangxin
523 Liu. M3Bench: Benchmarking whole-body motion generation for mobile manipulation in 3D
524 scenes. *arXiv preprint arXiv:2410.06678*, 2024.525 Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu, Li Yi, Siyuan Huang, and He Wang. Gapartnet:
526 Cross-category domain-generalizable object perception and manipulation via generalizable and
527 actionable parts. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
528 *Recognition*, pages 7081–7091, 2023.530 Wenbo Cui, Chengyang Zhao, Songlin Wei, Jiazhao Zhang, Haoran Geng, Yaran Chen, and
531 He Wang. GAPartManip: A large-scale dataset for generalizable and actionable part manipu-
532 lation with material-agnostic articulated objects. In *IEEE International Conference on Robotics*
533 *and Automation*. IEEE, 2025.534 Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
535 The surprising effectiveness of representation learning for visual imitation. *arXiv preprint*
536 *arXiv:2112.01511*, 2021.538 Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from hu-
539 man videos as a versatile representation for robotics. In *Proceedings of the IEEE/CVF Conference*
540 *on Computer Vision and Pattern Recognition*, pages 13778–13790, 2023.

540 Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
 541 Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance with
 542 large language models. *Autonomous Robots*, 47(8):1087–1102, 2023.

543

544 Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-body control: Learning a unified policy
 545 for manipulation and locomotion. In *Conference on Robot Learning*, pages 138–149. PMLR,
 546 2023.

547

548 Fei Xia, Chengshu Li, Roberto Martín-Martín, Or Litany, Alexander Toshev, and Silvio Savarese.
 549 Relmogen: Integrating motion generation in reinforcement learning for mobile manipulation. In
 550 *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pages 4583–4590.
 551 IEEE, 2021.

552

553 Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
 554 with low-cost whole-body teleoperation. *arXiv preprint arXiv:2401.02117*, 2024.

555

556 Ziyuan Jiao, Yida Niu, Zeyu Zhang, Yangyang Wu, Yao Su, Yixin Zhu, Hangxin Liu, and Song-Chun
 557 Zhu. Integration of robot and scene kinematics for sequential mobile manipulation planning. *IEEE*
 558 *Transactions on Robotics*, 2025.

559

560 Ziyuan Jiao, Zeyu Zhang, Weiqi Wang, David Han, Song-Chun Zhu, Yixin Zhu, and Hangxin Liu.
 561 Efficient task planning for mobile manipulation: A virtual kinematic chain perspective. In *IROS*,
 562 2021a.

563

564 Ziyuan Jiao, Zeyu Zhang, Xin Jiang, David Han, Song-Chun Zhu, Yixin Zhu, and Hangxin Liu.
 565 Consolidating kinematic models to promote coordinated mobile manipulations. In *IROS*, 2021b.

566

567 Giulio Schiavi, Paula Wulkop, Giuseppe Rizzi, Lionel Ott, Roland Siegwart, and Jen Jen Chung.
 568 Learning agent-aware affordances for closed-loop interaction with articulated objects. In *2023*
 569 *IEEE International Conference on Robotics and Automation (ICRA)*, pages 5916–5922. IEEE,
 570 2023.

571

572 Federico Ceola, Lorenzo Natale, Niko Sünderhauf, and Krishan Rana. LHManip: A dataset for long-
 573 horizon language-grounded manipulation tasks in cluttered tabletop environments. *arXiv preprint*
 574 *arXiv:2312.12036*, 2023.

575

576 Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam Fishman, Caelan Garrett, Karl Van Wyk,
 577 Valts Blukis, Alexander Millane, Helen Oleynikova, Ankur Handa, Fabio Ramos, et al. Curobo:
 578 Parallelized collision-free robot motion generation. In *2023 IEEE International Conference on*
 579 *Robotics and Automation (ICRA)*, pages 8112–8119. IEEE, 2023.

580

581 Advait Jain and Charles C Kemp. Pulling open doors and drawers: Coordinating an omni-directional
 582 base and a compliant arm with equilibrium point control. In *International Conference on Robotics*
 583 and *Automation (ICRA)*, 2010.

584

585 Yiannis Karayannidis, Christian Smith, Francisco Eli Vina Barrientos, Petter Ögren, and Danica
 586 Kragic. An adaptive control approach for opening doors and drawers under uncertainties. *Trans-*
 587 *actions on Robotics (T-RO)*, 32(1):161–175, 2016.

588

589 Marvin Stuede, Kathrin Nuelle, Svenja Tappe, and Tobias Ortmaier. Door opening and traversal
 590 with an industrial cartesian impedance controlled mobile robot. In *International Conference on*
 591 *Robotics and Automation (ICRA)*, 2019.

592

593 Dmitry Berenson, James Kuffner, and Howie Choset. An optimization approach to planning for
 594 mobile manipulation. In *International Conference on Robotics and Automation (ICRA)*, 2008.

595

596 Kalin Gochev, Alla Safonova, and Maxim Likhachev. Planning with adaptive dimensionality for
 597 mobile manipulation. In *International Conference on Robotics and Automation (ICRA)*, 2012.

598

599 Daniel M Bodily, Thomas F Allen, and Marc D Killpack. Motion planning for mobile robots using
 600 inverse kinematics branching. In *International Conference on Robotics and Automation (ICRA)*,
 601 2017.

594 Charles Sun, Jędrzej Orbik, Coline Manon Devin, Brian H Yang, Abhishek Gupta, Glen Berseth, and
 595 Sergey Levine. Fully autonomous real-world reinforcement learning with applications to mobile
 596 manipulation. In *Conference on Robot Learning*, pages 308–319. PMLR, 2022.

597

598 Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
 599 and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In *Confer-
 600 ence on Robot Learning*, pages 991–1002. PMLR, 2022.

601 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 602 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 603 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE
 604 International Conference on Robotics and Automation (ICRA)*, pages 6892–6903. IEEE, 2024.

605 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
 606 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
 607 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

608

609 Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Structured world models from human videos.
 610 *CoRL*, 2023.

611 Peter Mitrano and Dmitry Berenson. Conq hose manipulation dataset, v1.15.0.
 612 <https://sites.google.com/view/conq-hose-manipulation-dataset>, 2024.

613

614 Nur Muhammad Mahi Shafiullah, Anant Rai, Haritheja Etukuru, Yiqian Liu, Ishan Misra, Soumith
 615 Chintala, and Lerrel Pinto. On bringing robots home, 2023.

616 Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
 617 Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
 618 Training home assistants to rearrange their habitat. *Advances in neural information processing
 619 systems*, 34:251–266, 2021.

620 Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
 621 Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
 622 for visual ai. *arXiv preprint arXiv:1712.05474*, 2017.

623

624 Vikash Kumar, Rutav Shah, Gaoyue Zhou, Vincent Moens, Vittorio Caggiano, Abhishek Gupta, and
 625 Aravind Rajeswaran. Robohive: A unified framework for robot learning. *Advances in Neural
 626 Information Processing Systems*, 36:44323–44340, 2023.

627 Arth Shukla, Stone Tao, and Hao Su. ManiSkill-HAB: A benchmark for low-level manipulation in
 628 home rearrangement tasks. In *The Thirteenth International Conference on Learning Representa-
 629 tions*, 2025.

630

631 Yuqiang Wu, Pietro Balatti, Marta Lorenzini, Fei Zhao, Wansoo Kim, and Arash Ajoudani. A
 632 teleoperation interface for loco-manipulation control of mobile collaborative robotic assistant.
IEEE Robotics and Automation Letters, 4(4):3593–3600, 2019.

633

634 Taozheng Yang, Ya Jing, Hongtao Wu, Jiafeng Xu, Kuankuan Sima, Guangzeng Chen, Qie Sima,
 635 and Tao Kong. Moma-force: Visual-force imitation for real-world mobile manipulation. In *2023
 636 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 6847–6852.
 637 IEEE, 2023.

638

639 Shivin Dass, Wensi Ai, Yuqian Jiang, Samik Singh, Jiaheng Hu, Ruohan Zhang, Peter Stone, Ben
 640 Abbatematteo, and Roberto Martín-Martín. Telemoma: A modular and versatile teleoperation
 641 system for mobile manipulation. *arXiv preprint arXiv:2403.07869*, 2024.

642

643 Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun Sun. Survey of im-
 644 itation learning for robotic manipulation. *International Journal of Intelligent Robotics and
 645 Applications*, 3(4):362–369, December 2019. ISSN 2366-5971, 2366-598X. doi: 10.1007/
 s41315-019-00103-5.

646

647 Jiang Hua, Liangcai Zeng, Gongfa Li, and Zhaojie Ju. Learning for a Robot: Deep Reinforcement
 648 Learning, Imitation Learning, Transfer Learning. *Sensors*, 21(4):1278, February 2021. ISSN
 1424-8220. doi: 10.3390/s21041278.

648 Xiaoying Sun, Xiaojun Zhu, Pengyuan Wang, and Hua Chen. A Review of Robot Control with
649 Visual Servoing. In *2018 IEEE 8th Annual International Conference on CYBER Technology*
650 *in Automation, Control, and Intelligent Systems (CYBER)*, pages 116–121, Tianjin, China, July
651 2018. IEEE. ISBN 978-1-5386-7057-6. doi: 10.1109/CYBER.2018.8688060.

652 Farrokh Janabi-Sharifi, Lingfeng Deng, and William J. Wilson. Comparison of Basic Visual Servo-
653 ing Methods. *IEEE/ASME Transactions on Mechatronics*, 16(5):967–983, October 2011. ISSN
654 1083-4435, 1941-014X. doi: 10.1109/TMECH.2010.2063710.

655 Fu-Jen Chu, Ruinian Xu, Landan Seguin, and Patricio A. Vela. Toward Affordance Detection and
656 Ranking on Novel Objects for Real-World Robotic Manipulation. *IEEE Robotics and Automation*
657 *Letters*, 4(4):4070–4077, October 2019. ISSN 2377-3766, 2377-3774. doi: 10.1109/LRA.2019.
658 2930364.

659 Thanh-Toan Do, Anh Nguyen, and Ian Reid. AffordanceNet: An End-to-End Deep Learning Ap-
660 proach for Object Affordance Detection. In *2018 IEEE International Conference on Robotics and*
661 *Automation (ICRA)*, pages 1–5, Brisbane, QLD, May 2018. IEEE. ISBN 978-1-5386-3081-5. doi:
662 10.1109/ICRA.2018.8460902.

663 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
664 Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
665 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
666 11097–11107, 2020.

667 Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han, Hongyu
668 Wen, Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu Ma, and Jia Deng. In-
669 finigen indoors: Photorealistic indoor scenes using procedural generation. In *Proceedings of*
670 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 21783–
671 21794, June 2024.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A AUGMENTED KINEMATIC REPRESENTATION (AKR) CONSTRUCTION
703704 A.1 COLLISION-SPHERE FITTING PROCEDURE
705706 As the manipulated object becomes part of the robot representation during planning via AKR, we
707 approximate its collision geometry using a set of spheres. This procedure aligns seamlessly with
708 cuRobo’s sphere-based robot representation and enables GPU-accelerated parallel computation of
709 collision checking.710 Specifically, the collision-sphere fitting involves the following detailed steps:
711

1. **Mesh Preprocessing:** Since each link may contain multiple geometric components, these are first merged into a single link mesh.
2. **Mesh Scaling and Voxelization:** The merged link mesh is uniformly scaled down slightly to ensure conservative collision checking. This scaled mesh is then voxelized into discrete occupied volumetric regions, representing the shape of the object as an occupancy grid.
3. **Sphere Fitting:** For each occupied region identified through voxelization, an individual collision sphere is fitted. Each sphere is positioned at the centroid of the corresponding voxel region, with its diameter equal to the voxel edge length, thereby filling the voxel exactly.
4. **Spatial Alignment Adjustment:** Post voxelization, the resulting sphere cloud might experience translational offsets due to discretization. To maintain spatial consistency, we optionally realign the centroid of the fitted sphere cloud with the centroid of the original merged mesh, mitigating any significant translational drift introduced during voxelization.

725 The resulting compact, sphere-based collision representation ensures computationally efficient col-
726 lision queries during trajectory optimization, crucial for maintaining interactive performance in our
727 planning pipeline.728 **Algorithm 1:** AKR Construction Procedure

```

1 Function akr_construction (robot, object, init_state, scaling_factor, sphere_params,
2   grasp_pose, grasp_link, sample_n) :
3   update_object_state(object, init_state);
4   foreach link in object.links do
5     merged_mesh  $\leftarrow$  merge(link.geometries);
6     scaled_mesh  $\leftarrow$  scale(merged_mesh, scaling_factor);
7     link.visual  $\leftarrow$  scaled_mesh;
8     link.collision  $\leftarrow$  sphere_fit(scaled_mesh, sphere_params);
9   end
10  foreach joint in object.joints do
11    tf  $\leftarrow$  get_tf(object, joint.child, joint.parent);
12    joint.origin  $\leftarrow$  update(tf, scaling_factor);
13  end
14  scaled_object  $\leftarrow$  object;
15  fk_pose  $\leftarrow$  fk(scaled_object, grasp_link);
16  attached_origin  $\leftarrow$  grasp_pose $^{-1}$   $\cdot$  fk_pose;
17  inversed_object  $\leftarrow$  inverse(scaled_object, grasp_link);
18  akr  $\leftarrow$  attach(robot, inversed_object, attached_origin);
19  added_link_pairs  $\leftarrow$  filter(akr.link_pairs, robot.link_pairs);
20  sampled_cfg  $\leftarrow$  sample_cfg(akr, sample_n);
21  added_collision_pairs  $\leftarrow$  check_collision(added_link_pairs, sampled_cfg);
22  akr.collision_pairs  $\leftarrow$  union(robot.collision_pairs, added_collision_pairs);

```

751 A.2 DETAILED IMPLEMENTATION FOR AKR INVERSION AND ASSEMBLY
752753 To facilitate efficient integration of articulated objects into robotic manipulation pipelines, we
754 present a structured workflow comprising the following steps: a) URDF preprocessing and kine-
755 matic inversion, b) collision spheres generation, c) object-to-robot attachment, and d) selective self-
collision checking. The process begins by applying a uniform scaling factor to the object URDF to

756 ensure physical consistency. This step is particularly important when working with grasp datasets
 757 derived from point cloud or RGB-D data, where object models are often normalized to fit within a
 758 standardized bounding volume. Since each link may contain multiple geometric components, these
 759 are first merged into a single link mesh and scaled accordingly. As mesh scaling alters the spatial
 760 relationships defined in the original kinematic chain \mathcal{K}_{raw} , all joint origins are subsequently recal-
 761 culated to preserve valid relative transformations. The resulting structure defines a new kinematic
 762 chain, denoted as $\mathcal{K}_{\text{scaled}}$.

763 The tip link ℓ_{tip} , corresponding to the grasping point, is identified along with its parent joint. To
 764 enable attachment of the object as an extension of the robot, we invert the kinematic structure by
 765 reassigning ℓ_{tip} as the new base link. The joint hierarchy along the kinematic chain $\mathcal{K}_{\text{scaled}}$, from the
 766 original base ℓ_{base} to the tip, is reversed accordingly, while the rest of the tree structure is preserved.
 767 The resulting kinematic chain is denoted as \mathcal{K}_{inv} .

768 The transformation that defines the attachment between the robot and the object is computed based
 769 on the grasp pose and the object’s forward kinematics(FK). Let $T_{\text{tip}}^{\text{base}}$ represent the pose of the
 770 selected tip link ℓ_{tip} frame relative to the object’s original base link ℓ_{base} frame under the joint con-
 771 figuration q_{init} corresponding to the grasp pose.

$$T_{\text{tip}}^{\text{base}} = \text{FK}_{\mathcal{K}_{\text{scaled}}}(\mathbf{q}_{\text{init}}, \ell_{\text{tip}}) \quad (9)$$

772 The grasp pose is denoted as $T_{\text{tcp}}^{\text{base}}$, which typically specifies the pose of the robot’s TCP frame with
 773 respect to the object’s base link frame. The final attachment transformation is computed as:

$$T_{\text{tip}}^{\text{tcp}} = (T_{\text{tcp}}^{\text{base}})^{-1} \cdot T_{\text{tip}}^{\text{base}} \quad (10)$$

774 The transformation is applied as a fixed joint between the robot’s TCP and the object’s new base link
 775 (formerly the selected tip link ℓ_{tip}), resulting in a unified kinematic model that integrates the robot
 776 and the object into a single tree structure.

777 Finally, we identify the additional self-collision link pairs introduced by the attached object, avoiding
 778 a full recomputation of the entire self-collision matrix. This selective check reduces computational
 779 overhead while ensuring sufficient coverage for motion planning and safety checks.

780 B IMPACT OF GRASP-SWITCHING (VS. FIXED-GRASP)

781 To evaluate the effect of grasp-switching on manipulation performance, we compare two trajec-
 782 tory sets: one using a fixed grasp throughout the task and another allowing grasp-switching when
 783 beneficial. Figure 5 presents example opening angles achieved by each method.

784 (a) Fixed-grasp trajectory.

785 (b) Grasp-switching trajectory.

800 Figure 5: Comparison of object opening angles under fixed-grasp and grasp-switching strategies.

801 In these examples, grasp-switching enables the robot to change the grasp pose, which increases the
 802 achievable opening angle by avoiding link collisions. Quantitatively, we observed that trajectories
 803 with grasp-switching attained larger maximum opening angles compared to fixed-grasp baselines,
 804 demonstrating the importance of grasp-switching in constrained manipulation tasks.

805 C GENERATION OF INTERACTIVE SCENES

806 AutoMoMa leverages two complementary sources of interactive household environments: manually
 807 curated scenes and procedurally generated layouts.

810 The first source consists of 30 high-fidelity scenes derived from AI2-THOR (Kolve et al., 2017)
 811 (shown in Fig. 6a). In each, we manually replace static objects such as microwave ovens, dishwashers,
 812 and cabinets with functionally equivalent articulated counterparts from the SAPIEN dataset (Xi-
 813 ang et al., 2020). These replacements are carefully positioned to respect semantic context and phys-
 814 ical plausibility, yielding semantically coherent scenes ideal for targeted evaluation.

815 To enable a large-scale dataset for the downstream task, we generate an additional 300 diverse scenes
 816 using a custom Infinigen-based pipeline (Raistrick et al., 2024). We convert the articulated object
 817 models into static placeholder assets and import them into Infinigen. Our generator supports con-
 818 trollable parameters—including object selection, placement optimization, and layout sparsity—to
 819 guide procedural generation toward manipulation-friendly configurations. The global layout is op-
 820 timized while ensuring each selected articulated object remains embedded in the final scene. The
 821 resulting layouts are exported in USD format for compatibility with GPU-accelerated planning in
 822 cuRobo (Sundaralingam et al., 2023), after which placeholders are replaced with the original artic-
 823 ulated objects to restore full kinematic fidelity, shown in Fig. 6b.

824 Together, these two complementary scene sources—30 curated and 300 procedural—provide a rich
 825 and diverse foundation for training and evaluating robust mobile manipulation policies across a wide
 826 range of household contexts.

827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838 (a) AI2-THOR(iTHOR) scene with asset replacement.

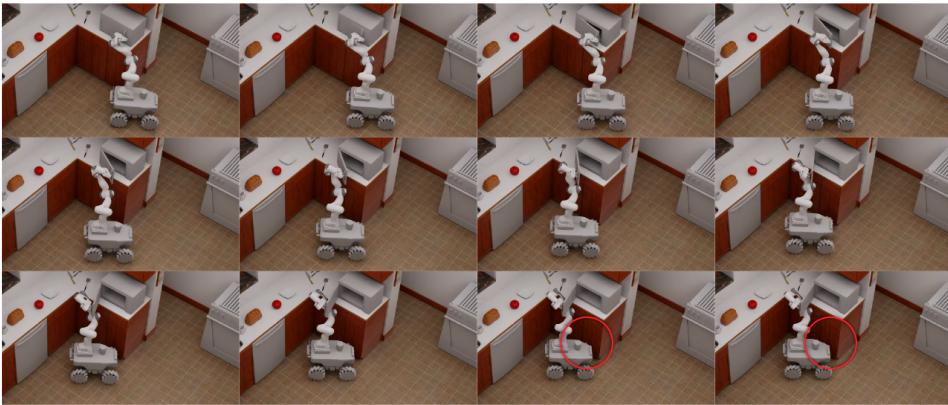
839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849 (b) Procedurally generated scene from Infinigen.

850 Figure 6: Two approaches for building interactive environments in AutoMoMa: replacing using SAPIEN assets
 851 in AI2-THOR(iTHOR) and generating layouts with Infinigen.

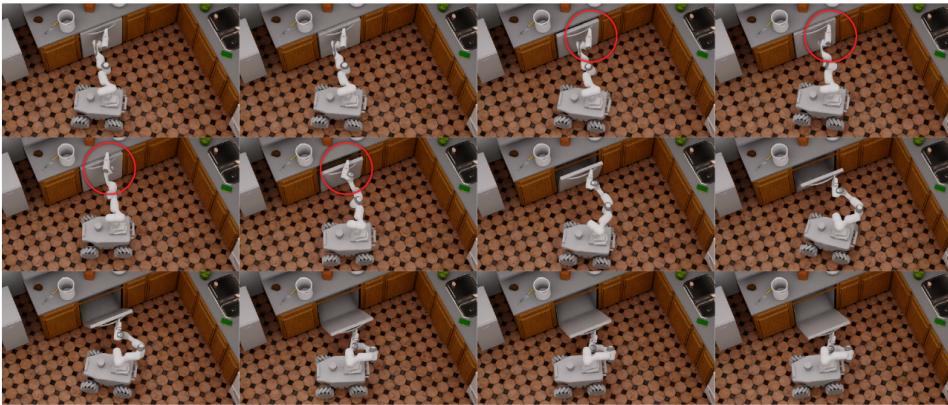
852 D REPRESENTATIVE SUCCESS AND FAILURE CASES

853
 854 We provide visual examples of both successful and unsuccessful trajectories generated by our
 855 pipeline, highlighting common issues encountered during planning.

856
 857 **Failure due to Collision:** Figure 7 illustrates a trajectory that resulted in a collision. Such col-
 858 lisions primarily occur because the robot and manipulated object representations are simplified as
 859 sphere-based models for computational efficiency. This spheroidization can occasionally lead to in-
 860 accuracies where the simplified geometry fails to precisely capture the original shape, resulting in
 861 unintended collisions during planning.



877 Figure 7: Example of trajectory failure due to collision from simplified robot model.



891 Figure 8: Example of trajectory failure due to fixed-base constraint violation.

892 **Failure due to Constraint Violation:** Figure 8 depicts a trajectory that violates constraints, specifically a fixed-base constraint violation. These constraint violations typically arise when the planned trajectory erroneously involves movements inconsistent with object fix-base constraints defined in the planning task. Ensuring strict adherence to constraints remains challenging, particularly in complex manipulation scenarios.

893 **Successful Trajectory:** Conversely, Figure 9 showcases an example of a successful trajectory, 894 demonstrating how effective trajectory generation appropriately respects both collision constraints 895 and the specified motion constraints. This example validates the pipeline’s capacity to generate feasible 896 and physically realistic robot motions, emphasizing the pipeline’s utility in diverse manipulation 897 tasks.

904 E FAILURE CASES OF LEARNED POLICIES

905 Despite achieving promising performance, policies trained on our dataset exhibit common failure 906 modes when deployed over long horizons. The most prevalent issue arises from the accumulation 907 of small prediction and execution errors, which progressively amplify into significant end-effector 908 drift and ultimately cause task failure. Figure 10 illustrates two representative examples.

911 F REAL-WORLD VALIDATION

912 We validate our planning pipeline on a physical UR5-Ridgeback system, which comprises two UR5 913 manipulators mounted on a Clearpath Ridgeback mobile base. Two representative tasks were tested: 914 opening a drawer and opening a cabinet door. In both tasks, the robot executed the planned trajectories 915 smoothly, accurately reproducing the motion patterns generated in simulation without collisions 916 or constraint violations.



Figure 9: Example of a successful trajectory.

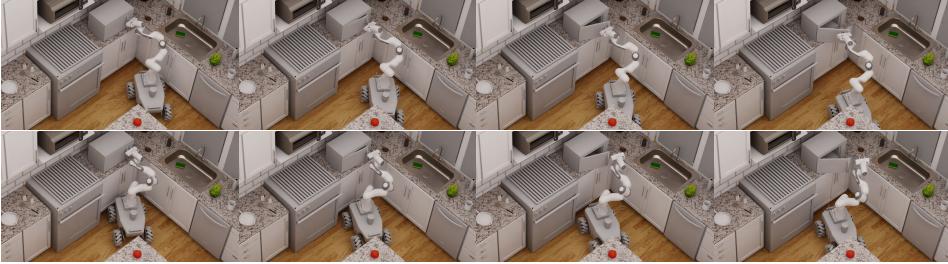
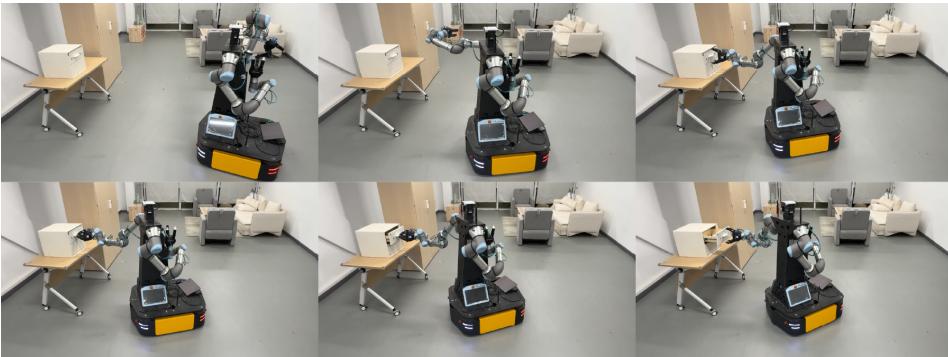
Figure 10: **Failure cases of mobile-base policies.** Small prediction and control errors accumulate over time, leading to drift, collisions, and eventual task failure.

Figure 11: UR5-Ridgeback executing a planned drawer-opening trajectory.

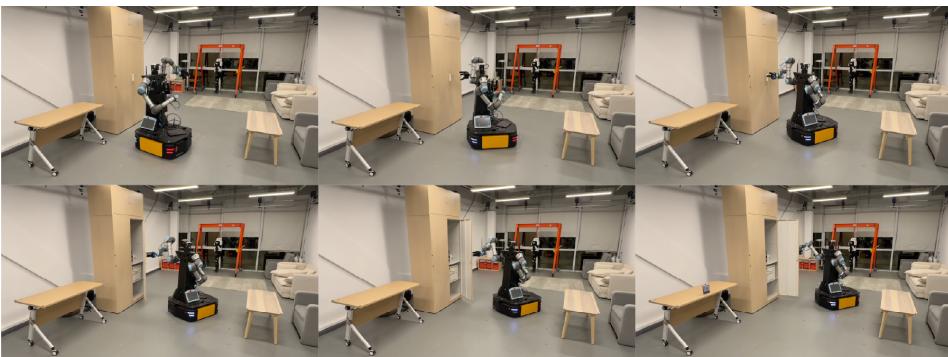


Figure 12: UR5-Ridgeback opening a cabinet door using the planned motion.