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Abstract

Given an observational study with n independent but heterogeneous units and one
p-dimensional sample per unit containing covariates, interventions, and outcomes,
our goal is to learn the counterfactual distribution for each unit. We consider
studies with unobserved confounding which introduces statistical biases between
interventions and outcomes as well as exacerbates the heterogeneity across units.
Modeling the underlying joint distribution as an exponential family and under
suitable conditions, we reduce learning the n unit-level counterfactual distributions
to learning n exponential family distributions with heterogeneous parameters and
only one sample per distribution. We introduce a convex objective that pools all
n samples to jointly learn all n parameters and provide a unit-wise mean squared
error bound that scales linearly with the metric entropy of the parameter space. For
example, when the parameters are s-sparse linear combination of k known vectors,
the error is O(s log k/p). En route, we derive sufficient conditions for compactly
supported distributions to satisfy the logarithmic Sobolev inequality.

1 Introduction

We are interested in the problem of unit-level counterfactual inference owing to the increasing
importance of personalized decision-making in many domains. As a motivating example, consider
a recommender system interacting with a user over time. At each time, the user is exposed to a
product based on observed demographic factors as well as certain unobserved factors, and the user’s
engagement level is recorded. The engagement level at any time can depend sequentially on the prior
interaction in addition to the ongoing interaction (see Fig. 1(a)). The system can also sequentially
adapt its recommendation. Given historical data of many heterogeneous users, the system wants to
infer each user’s average engagement level if it were exposed to a different sequence of products while
the observed and the unobserved factors remain unchanged. This task is challenging since: (a) the
unobserved factors could give rise to spurious associations, (b) the users could be heterogeneous in
that they may have different responses to same sequence of products, and (c) each user only provides
a single interaction trajectory.

In a general problem, we consider an observational setting where a unit undergoes interventions
denoted by a. We denote the outcomes of interest by y, and allow the interventions a and the
outcomes y to be confounded by observed covariates v as well as unobserved covariates z. The
graphical structure shown in Fig. 1(b) captures these interactions and is at the heart of our problem.
We consider n heterogeneous and independent units indexed by i ∈ [n] ≜ {1, · · · , n}, and assume
access to one observation per unit with v(i), a(i), and y(i) denoting the realizations of v, a, and y for
unit i respectively.

We operate within the Neyman-Rubin potential outcomes framework [21, 24] and denote the
potential outcome of unit i ∈ [n] under interventions a by y(i)(a). Given the realizations{
(v(i),a(i),y(i))

}n
i=1

, our goal is to answer counterfactual questions for these n units, e.g., what
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(a) A graphical model for sequential recommender system (b) A generic model for our setting

Figure 1: Two graphical models illustrating aspects of our work. The directed and the bi-directed
arrows indicate causation and association respectively. The arrows involving the unobserved
factors/covariates z are colored red. Panel (a) visualizes a sequential recommender system interacting
with a user for 3 time points where vt, at, and yt denote the user’s observed demographic factors, the
product exposed to the user, and the user’s engagement level respectively at time t, and z denotes
unobserved factors. The left plot illustrates the dependency of the observed variables (vt, at, yt) at
time t, on the observed variables at time t− 1 via 99K, and on the unobserved covariates z via L9999K;
these dependencies for time 1 and 2 are expanded in the right plot. We do not assume any knowledge
of such low-level causal links between elements of z, v, a, and y. Panel (b) exhibits a generic
graphical model depicting the relationship between z, v, a, and y for every unit. Our methodology
works for any graphical model consistent with the graphical model in Panel (b).

would the potential outcomes y(i)(ã(i)) for interventions ã(i) ̸= a(i) be, while the observed and
unobserved covariates remain unchanged? Under the stable unit treatment value assumption (SUTVA),
i.e., the potential outcomes of unit i are not affected by the interventions at other units, learning
unit-level counterfactual distributions is equivalent to learning unit-level conditional distributions{

fy|a,z,v(y = ·|a = ·, z(i),v(i))
}n
i=1

. (1)

Here, the i-th distribution represents the conditional distribution for the outcomes y as a function of
the interventions a, while keeping the observed covariates v and the unobserved covariates z fixed at
the corresponding realizations for unit i, i.e., v(i) and z(i) respectively.

It is infeasible to answer such questions without any structural assumptions due to two key challenges:
(a) unobserved confounding and (b) heterogeneity in unit-level conditional distributions. First,
the unobserved covariates z introduces spurious statistical dependence between interventions and
outcomes, known as unobserved confounding, which results in biased estimates. Second, the
realizations

{
(z(i),v(i))

}n
i=1

could be different for different units leading to heterogeneity in
conditional distributions across units. The heterogeneity is crucial since we only observe one
realization, namely the outcomes y(i)(a(i)) under the interventions a(i), that is consistent with
the unit-level conditional distribution fy|a,z,v(y|a, z(i),v(i)). As a result, one needs to learn n
heterogeneous conditional distributions while having access to only one sample from each of them.

In this work, we model the joint distribution of the unobserved covariates, the observed covariates,
the intervention, and the outcomes of interest as an exponential family distribution in accordance
with the principle of maximum entropy.1 With this modeling assumption, we show that both the
aforementioned challenges can be tackled. In particular, we show that the n unit-level conditional
distributions in (1) lead to n distributions from the same exponential family albeit with parameters
that vary across units. The parameter corresponding to the ith unit, say ϕ⋆(i), captures the effect of
z(i), and helps tackle the challenge of unobserved confounding. However, the challenge still remains
to learn n heterogeneous exponential family distributions with one sample per distribution. This
has been addressed in two specific scenarios in the literature: (a) if the unobserved confounding
is identical across units, i.e., the parameters {ϕ⋆(i)}ni=1 were all equal, then the challenge boils
down to learning parameters of a single exponential family distribution from n samples which has
been well-studied (see [26] for an overview); (b) if v, a, and y take binary values and have pairwise

1Exponential family distributions are the maximum entropy distributions given linear constraints on
distributions such as bounded moments (see [8, 10]). The exponential family considered in this work arise when
the first and second moments of the joint vector (z, v, a, y) are bounded.
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interactions, and the dependencies between them are known, then the challenge boils down to learning
certain parameters of an Ising model with one sample which has been studied in [12, 18]. In this
work, we consider a generalized setting, where v, a, and y can be either discrete, continuous, or both,
and assume no knowledge of the underlying dependencies.

Our contributions. As the main contribution, this work introduces a method to learn unit-level
counterfactual distributions from observational studies in the presence of unobserved confounding
with one sample per unit. Specifically, for every unit i ∈ [n], we reduce learning its counterfactual
distribution to learning ϕ⋆(i) from one sample (v(i),a(i),y(i)) where ϕ⋆(i) is the parameter of the
exponential family distribution corresponding to unit i. Our technical contributions are as follows.
1. We introduce a convex (and strictly proper) loss function (Def. 1) that pools the data{

(v(i),a(i),y(i))
}n
i=1

across all n samples to jointly learn all n parameters {ϕ⋆(i)}ni=1.

2. For every unit i, we establish that the mean squared errors of our estimates of (a) ϕ⋆(i) (Thm. 1),
and (b) the expected potential outcomes under alternate interventions (Thm. 2) scale linearly with
the metric entropy of the parameter space, i.e., the set ϕ⋆(i) comes from. In particular, when
ϕ⋆(i) is s-sparse linear combination of k known vectors (see Sec. 4), the error—just with one
sample—decays as O(s log k/p), where p is the dimension of the tuple (v, a, y).

3. As part of our analysis, we (a) derive sufficient conditions for a continuous random vector
supported on a compact set to satisfy the logarithmic Sobolev inequality (Prop. 2) and (b) provide
new concentration bounds for arbitrary functions of a continuous random vector that satisfies the
logarithmic Sobolev inequality (Prop. 3). These results could be of independent interest.

Notation. For a deterministic sequence u1, · · · , un, we let u := (u1, · · · , un). For a random
sequence u1, · · · , un, we let u := (u1, · · · , un). For a vector u ∈ Rp, we use ut to denote its tth

coordinate and u−t ∈ Rp−1 to denote the vector after deleting the tth coordinate. For a matrix
M ∈ Rp×p, we denote the element in tth row and uth column by Mtu, the tth row by Mt, and the
matrix maximum norm by |||M|||max.

Related work. We provide an overview of related work that focus either on exponential family
learning or on unit-level counterfactual inference with unobserved confounding. We refer the reader
to [17, 15] for counterfactual inference with no unobserved confounding (as well as closely related
concepts of ignorability in statistics and selection on the observables in economics). Likewise, we
refer the reader to [22, 23] for counterfactual inference when the underlying causal mechanism (i.e.,
the directed acyclic graph) is known unlike our work.

Exponential family learning. There has been extensive work on learning parameters of a single
exponential family distribution from multiple samples (see [26] for an overview). Of particular
interest are the works that focus on learning sparse Markov random fields with (a) discrete variables
[28] and (b) continuous variables [27] which inspire our loss function. Recently, a few works [18, 12]
have focused on learning Ising model, i.e., sparse Markov random fields with binary variables, with
one sample. However, these works focus on special cases where either the dependencies between the
variables or a specific subset of the parameters are already known.

Unit-level counterfactual inference. For unit-level inference with unobserved confounding, prior
work has largely focused on latent factor models, where the interventions and potential outcomes
are assumed to be independent conditional on latent factors. These include popular frameworks of
difference-in-differences [9, 5], synthetic controls [2, 1], synthetic difference-in-differences [6], and
synthetic interventions [3]. A recent work [13] provides a latent factor model based approach for
counterfactual inference in sequential experiments where the treatment mechanism is designed and
known, and there is no confounding by definition. Notably these works allow only for finitely many
interventions, and need multiple units to be simultaneously treated with the same interventions for a
period of time (for their estimation strategies to work). Another key difference is that these works
directly learn the outcomes, and not the distributions like we do.

2 Problem formulation

We consider a counterfactual inference task where units go through pa ≥ 1 interventions. For
every unit, we observe py ≥ 1 outcomes of interest. The interventions and the outcomes could be
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confounded by pv ≥ 1 observed covariates as well as pz ≥ 1 unobserved covariates. Additionally,
the observed covariates and the unobserved covariates could be arbitrarily associated. We denote
the random vector associated with the interventions, the outcomes, the observed covariates, and the
unobserved covariates by a ≜ (a1, · · · , apa) ∈ Apa , y = (y1, · · · , ypy ) ∈ Ypy , v ≜ (v1, · · · , vpv ) ∈
Vpv , and z ≜ (z1, · · · , zpz ) ∈ Zpz respectively where A,Y,V , and Z denote the support of
interventions, outcomes, observed covariates, and unobserved covariates respectively. We allow these
sets to contain discrete, continuous, or mixed values. We summarize the causal relationship between
the random vectors z, v, a, and y in Fig. 1(b) where we denote the arbitrary association between z
and v by a bi-directed arrow, and the causal association between (i) (z, v) and a, (ii) (z, v) and y, and
(iii) a and y by directed arrows. Fig. 1(a) provides an example for sequential recommender systems
covered by our work where (i) at+1 depends on at in addition to vt+1 and z, and (ii) yt+1 depends on
at and yt in addition to at+1, vt+1 and z. We do not assume any knowledge of such low-level causal
links between elements of z, v, a, and y. Our methodology works for any graphical model consistent
with the graphical model in Fig. 1(b).

Data We are interested in answering counterfactual questions regarding n independent but
heterogeneous units in a population. To do so, we assume access to one observation of the observed
covariates, the interventions, and the outcomes per unit, and index it by i ∈ [n], i.e., v(i), a(i), and y(i)

denote the realizations of v, a, and y for unit i respectively. For every realized tuple (v(i),a(i),y(i)),
there is a corresponding realization z(i) of the unobserved covariates z that is unobserved.

Potential outcomes framework We adopt the potential outcomes framework and denote the
potential outcomes of unit i ∈ [n] under interventions a ∈ Apa by y(i)(a). We work under the
stable unit treatment value assumption (SUTVA) where the potential outcomes of any unit i are
unaffected by the interventions at other units. In fact, we assume independence across units implying
the potential outcomes of any unit i are also unaffected by the covariates and the potential outcomes
at other units. Then, the observations are related to the potential outcomes as y(i) = y(i)(a(i)) for
all i ∈ [n]. To establish equivalence between unit-level counterfactual distribution and unit-level
conditional distribution, consider unit i ∈ [n] and fix the observed covariates and the unobserved
covariates at v(i) and z(i) respectively. Then, let ỹ(i) be a realization of y when a = ã(i). We
are interested in the distribution of the potential outcomes of unit i for interventions ã(i), i.e., the
distribution of y(i)(ã(i))|z = z(i), v = v(i). Under the causal framework considered here (see
Fig. 1(b)), it is equivalent to the distribution of y(i)(ã(i))|a = ã(i), z = z(i), v = v(i) since (z, v)
satisfy ignorability [22, 17], i.e., the potential outcomes are independent of the interventions given
(z, v). Further, under SUTVA, it is equivalent to the distribution of ỹ(i)|a = ã(i), z = z(i), v = v(i),
i.e., fy|a,z,v(y = ·|a = ã(i), z(i),v(i)). Therefore, our goal is to learn the n unit-level conditional
distributions in (1). To that end, we model the joint distribution of the z, v, a, and y belong to an
exponential family.

Modeling data as exponential family Let p̃ ≜ pz + pv + pa + py. We parameterize the joint
probability distribution fw of the p̃-dimensional random vector w ≜ (z, v, a, y) by natural statistics
w and ww⊤, and by natural parameters ϕ ∈ Rp̃×1 and Φ ∈ Rp̃×p̃ as follows

fw(w;ϕ,Φ) ∝ exp
(
ϕ⊤w +w⊤Φw

)
, where w ≜ (z,v,a,y),

and z ≜ (z1, · · · , zpz ), v ≜ (v1, · · · , vpv ), a ≜ (a1, · · · , apa), and y ≜ (y1, · · · , ypy ) denote
realizations of z, v, a, and y respectively. Without loss of generality, we can assume Φ to be a
symmetric matrix. Then, recognizing that the (unit-level) conditional distribution of y conditioned on
a = a, z = z, and v = v belongs to an exponential family with natural statistics y and yy⊤, we can
write

fy|a,z,v(y|a, z,v) ∝ exp
([
ϕ(y)

⊤
+ 2z⊤Φ(z,y) + 2v⊤Φ(v,y) + 2a⊤Φ(a,y)

]
y + y⊤Φ(y,y)y

)
, (2)

where ϕ(y) ∈ Rp×1 is the component of ϕ corresponding to y and Φ(u,y) ∈ Rpu×py is the component
of Φ corresponding to u and y for all u ∈ {z, v, a, y}. We make two key observations: (a) The term
Φ(z,y)⊤z captures the effect of unobserved covariates z on fy|a,z,v(y= ·|a= ·, z,v) in (2). (b) The
task of learning fy|a,z,v(y = ·|a = ·, z,v) in (2) as a function of a reduces to learning

(i) ϕ(y) + 2Φ(z,y)⊤z + 2Φ(v,y)⊤v, (ii) Φ(a,y), and (iii) Φ(y,y). (3)
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Now, we argue that learning (i), (ii), and (iii) in (3) is subsumed in learning the parameters of the
(unit-level) conditional distribution fx|z of the random vector x ≜ (v, a, y) conditioned on z = z. To
that end, we recognize that fx|z belongs to an exponential family with natural statistics x and xx⊤. For
all u ∈ {v, a, y}, let ϕ(u) ∈ Rpu×1 be the component of ϕ corresponding to u, and Φ(z,u) ∈ Rpz×pu
be the component of Φ corresponding to z and u. We parameterize fx|z as

fx|z
(
x|z; θ(z),Θ

)
∝exp

(
[θ(z)]⊤x+x⊤Θx

)
where θ(z) ≜

ϕ(v)+2Φ(z,v)⊤z
ϕ(a)+2Φ(z,a)⊤z
ϕ(y)+2Φ(z,y)⊤z

 ∈Rp×1, x≜

[
v
a
y

]
,

(4)

p ≜ pv + pa + py, Θ ∈ Rp×p denotes the component of Φ corresponding to x, and v, a, and y
denote realizations of v, a, and y respectively. Now, if we learn θ(z) and Θ, we can obtain (i), (ii),
and (iii) in (3) for any v = v by using the appropriate components of θ(z) and Θ.

Inference tasks Let fw(·;ϕ∗,Φ∗) denote the true data generating distribution (Sec. 2) of w, and let
fx|z

(
· |z ; θ⋆(z),Θ⋆

)
denote the true distribution of x conditioned on z = z. Then, for all i ∈ [n],

we note that the realization x(i) ≜ (v(i),a(i),y(i)) is consistent with the conditional distribution
fx|z

(
· |z(i); θ⋆(z(i)),Θ⋆

)
where we do not observe z(i). Our primary goal is to learn the n unit-level

counterfactual distributions, which, as per our earlier discussion simplifies to estimating

(i) Unit-level parameters θ⋆(i) ≜ θ⋆(z(i)) for i ∈ [n], and (ii) Population-level parameter Θ⋆. (5)

Our secondary goal is to estimate the expected potential outcomes for any given unit i (with z =
z(i), v = v(i)) and an alternate intervention ã(i). In particular, our estimand of interest is

µ(i)(ã(i)) ≜ E[y(i)(ã(i))|z = z(i), v = v(i)]. (6)

Assumptions We now state the assumptions we require to estimate the parameters in (5) and
the expected potential outcomes in (6). For the ease of exposition, we let the sets V , A, and Y be
continuous valued. However, our results apply equally to discrete and mixed cases. Without loss of
generality, we let these sets be equal, and let X ≜ V = A = Y be bounded and symmetric around 0,
i.e., X = {−xmax, xmax} where xmax <∞.

Assumption 1 (Bounded and sparse parameters). The true model parameters satisfy the following:

(a) θ⋆(i) and Θ⋆ are bounded for all i ∈ [n],2 i.e., max
{
maxi∈[n]

∥∥θ⋆(i)∥∥∞ , |||Θ⋆|||max

}
≤ α.

(b) Θ⋆ is row-wise sparse and has zeros on the diagonal, i.e., ∥Θ⋆t ∥0 ≤ β and Θ⋆tt = 0 for all
t ∈ [p]. These imply that each xt ∈ x interacts with only a few other xu ∈ x in (4).

Below, we define the set Λθ such that it contains all p× 1 vectors θ satisfying Assum. 1(a) and the
set ΛΘ such that it contains all p× p symmetric matrices Θ satisfying Assum. 1(a) and (b).

Λθ ≜
{
θ ∈ Rp×1 : ∥θ∥∞ ≤ α

}
and

ΛΘ ≜

{
Θ ∈ Rp×p : Θ = Θ⊤,Θtt = 0 for all t ∈ [p], |||Θ|||max ≤ α,max

t∈[p]
∥Θt∥0 ≤ β

}
. (7)

3 Algorithm

We propose a computationally tractable loss function to estimate the unit-level and the population-level
parameters in (5). Our algorithm jointly learns all the parameters of interest by pooling the
observations across all n units and exploiting the exponential family structure of v, a, and y
conditioned on z = z in (4). In particular, our loss explicitly utilizes the fact that the population-level
parameter Θ⋆ is shared across units. We defer our estimate of the expected potential outcomes in (6)
to App. A.1.

2This bound is necessary for model identifiability [25].
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Loss function and parameter estimate. Consider any t ∈ [p]. Our loss function is inspired by
the conditional distribution fxt|x−t,z of the random variable xt conditioned on x−t = x−t and z = z
which is given by

fxt|x−t,z

(
xt|x−t, z; θt(z),Θt

)
∝ exp

(
[θt(z) + 2Θ⊤

t x]xt

)
, (8)

where θt(z) is the tth element of θ(z), Θt is the tth row of Θ, and x denotes a realization of x.

Definition 1 (Loss function). Given a sample x(i) for every unit i ∈ [n], our loss function maps
Θ ∈ Rp×(n+p) to L

(
Θ
)
∈ R defined as

L
(
Θ
)
=

1

n

∑
t∈[p]

∑
i∈[n]

exp

(
−[θ

(i)
t +2Θ⊤

t x
(i)]x

(i)
t

)
where Θ≜

Θ
⊤
1
...

Θ⊤
p

, with Θt≜
{
θ
(1)
t , · · · , θ(n)t ,Θt

}
.

(9)

The loss function defined above has many useful properties. We state one such property below with a
proof in App. B.
Proposition 1 (Proper loss function). The loss function L(·) is strictly proper, i.e., Θ⋆ =
argminΘ∈Λn

θ ×ΛΘ
E
[
L
(
Θ
)]

.

Our estimate of Θ⋆ (defined analogous to Θ) is obtained by minimizing the convex function L
(
Θ
)

over all θ(i) ∈ Λθ for all i ∈ [n] and Θ ∈ ΛΘ, i.e.,

Θ̂ ∈ argmin
Θ∈Λn

θ ×ΛΘ

L
(
Θ
)
. (10)

We note (10) is a convex optimization problem, and a projected gradient descent algorithm returns
an ϵ-optimal estimate with τ = O(p/ϵ) iterations3 where Θ̂ϵ is said to be an ϵ-optimal estimate if
L
(
Θ̂ϵ

)
≤ L

(
Θ̂
)
+ ϵ for any ϵ > 0.

4 Main results

In this section, we provide our guarantee on estimating the unit-level and the population-level
parameters in (5). We defer our guarantee on estimating the expected potential outcomes in (6) to
App. A.2. Our guarantees depend on the metric entropy of the set Λθ which provides some notion of
the richness of Λθ. To that end, we define the notions of ε-covering number and metric entropy.
Definition 2 (ε-covering number and metric entropy). Given a set V ⊂ Rp and a scalar ε > 0,
we use C(V, ε) to denote the ε-covering number of V with respect to ∥·∥2, i.e., C(V, ε) denotes the
minimum cardinality over all possible covers U ⊂ V that satisfy

V ⊂ ∪u∈UB(u; ε),

where B(u; ε) ≜ {v ∈ Rp : ∥u− v∥2 ≤ ε} denotes a ball of radius ε in Rp centered at u. Further,
we use M(V, ε) to denote the metric entropy of V , i.e., M(V, ε) ≜ log C(V, ε). Lastly, we use the
shorthand notation Mθ(ε) = M(Λθ, ε) to denote the metric entropy of Λθ.

The following result provides the estimation error for the estimate Θ̂ obtained in (10). We divide the
proof across App. C and App. D.4

Theorem 1 (Guarantee on parameter estimate). Fix an ε > 0 and δ ∈ (0, 1), and define

R(ε, δ)≜max{cec
′β
√
log log(2p/δ))+Mθ(η), εγ}, η≜

ce−c
′β

γ
, and γ≜ max

θ,θ∈Λθ

∥θ−θ∥1
∥θ−θ∥2

. (11)

3This follows from [7, Theorem 10.6] by noting that L(Θ) is O(p) smooth function of Θ.
4To simplify presentation, we use c and c′ to denote universal constants or constants that depend on the

model-parameters α and xmax, and can take a different value in each appearance.
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Then, with probability at least 1− δ, the estimates Θ̂, θ̂(1), · · · , θ̂(n) defined in (10) satisfy

max
t∈[p]

∥Θ̂t−Θ⋆t ∥2 ≤ ε whenever n ≥
cec

′β log p
δ

ε4
and

max
i∈[n]

∥θ̂(i)−θ⋆(i)∥2 ≤ R(ε, δ/n) whenever n ≥
cec

′β(log np
δ +Mθ(η))

ε4
.

Example. Consider the case where θ⋆(i) is s-sparse linear combination of k known vectors for
all i ∈ [n], i.e., θ⋆(i) = Ba(i) for a known matrix B ∈ Rp×k and a(i) ∈ Rk×1 with ∥a(i)∥0 ≤ s
such that ∥θ⋆(i)∥∞ ≤ α. Then, the parameter set Λθ can be re-parameterized as the set Λa ={

a ∈ Rk×1 : ∥a∥0 ≤ s and ∥Ba∥∞ ≤ α
}

whose metric entropy is given by Ma(η) =
(
1 + c

η

)s(k
s

)
for some constant c [12, Corollary 4]. Using this bound, and substituting the worst case γ =

√
p, the

guarantees in Thm. 1 simplify. We capture this in the following corollary by focusing on the mean
sqaured error.

Corollary 1. Fix an ε > 0 and δ ∈ (0, 1). Suppose θ⋆(i) is s-sparse linear combination of k known
vectors for all i ∈ [n]. Then, with probability at least 1− δ, the estimates {θ̂(i)}ni=1 defined in (10)
satisfy

max
i∈[n]

MSE(θ̂(i), θ⋆(i)) ≤ max{ε2, cec′βs log pk}
p

whenever n ≥
cec

′βsp2 log npk
δ

ε4
.

As a result, we see that the unit-wise mean squared error for parameter estimation scale as
O(s log k)/p when (i) the true parameters are s-sparse linear combination of k known vectors
and (ii) n scales as O(sp2 log spk).
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A Causal estimate and associated guarantees

In this section, we provide our estimate of the expected potential outcomes under alternate intervention
and the corresponding estimation error.
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A.1 Causal estimate

Assuming the estimate Θ̂ of Θ⋆ is given from Sec. 3, we define our estimate of the expected potential
outcome µ(i)(ã(i)) (see (6)) for any given unit i ∈ [n] under an alternate intervention ã(i) ∈ Apa .
First, we identify Φ̂(u,y) ∈ Rpu×py to be the component of Θ̂ corresponding to u and y for all
u ∈ {v, a, y} and θ̂(i,y) ∈ Rpy to be the component of θ̂(i) corresponding to y. Then, our estimate of
the conditional distribution of y as a function of the interventions a, while keeping v (observed) and
z (unobserved) fixed at the corresponding realizations for unit i, i.e., v(i) and z(i) respectively, is as
follows:

f̂
(i)
y|a(y|a) ∝ exp

([
θ̂(i,y) + 2v(i)⊤Φ̂(v,y) + 2a⊤Φ̂(a,y)

]
y + y⊤Φ̂(y,y)y

)
. (12)

Finally, our estimate of µ(i)(ã(i)) is given by

µ̂(i)(ã(i)) ≜ E
f̂
(i)

y|a
[y|a = ã(i)]. (13)

A.2 Guarantee on outcome estimate

The following result provides the estimation error for the estimate µ̂(i)(ã(i)) (see (13)) of the expected
potential outcomes for any unit i ∈ [n] under an alternate intervention ã(i) ∈ Apa . The result
requires the operator norms of the following matrices to remain bounded for minor perturbation in
the parameters: (i) the covariance matrix of y conditioned on a, z, and v and (ii) the cross-covariance
matrix of y and yty conditioned on a, z, and v for all t ∈ [py]. We note that the expectation in the
aforementioned covariance matrix and cross-covariance matrices is with respect to the conditional
distribution of y conditioned on a = a, z = z, and v = v which is fully parameterized by θ and Θ,
i.e., replace θ(z) by θ in (4), and we require the operator norms of these matrices to remain bounded
for perturbations in θ and Θ. Formally, for perturbations in θ and Θ such that θ,Θ belong to the set
B, we have

sup
θ,Θ∈B

max
{
|||Covθ,Θ(y, y|a, z,v)|||op, max

t∈[py ]
|||Covθ,Θ(y, yty|a, z,v)|||op

}
≤M(B), (14)

where M(B) is a constant that depends on the set B. For simplicity, we assume pv = pa = py. See
the proof below for the general case.

Theorem 2 (Guarantee on outcome estimate). Fix an ε > 0 and δ ∈ (0, 1). Then, with probability
at least 1− δ, the estimates {µ̂(i)(ã(i))}ni=1 defined in (13) for any {ã(i) ∈ Apa}ni=1 satisfy

max
i∈[n]

∥µ(i)(ã(i))− µ̂(i)(ã(i))∥2
M(Bi)

≤R(ε, δ/n)+pε whenever n≥
cec

′β(log np
δ +Mθ(η))

ε4
,

where R(ε, δ) and η were defined in (11), M(B) was defined in (14), and

Bi ≜
{
θ ∈ Λθ : ∥θ−θ⋆(i)∥2 ≤ R(ε, δ/n)

}
×
{
Θ ∈ ΛΘ : max

t∈[p]
∥Θt−Θ⋆t ∥2 ≤ ε

}
.

Proof. Fix any unit i ∈ [n] and an alternate intervention ã(i) ∈ Apa . Then, we have

µ(i)(ã(i))
(6)
= E[y(i)(ã(i))|z = z(i), v = v(i)]

(a)
= E[y|a = ã(i), z = z(i), v = v(i)],

where (a) follows because the unit-level counterfactual distribution is equivalent to unit-level
conditional distribution under the causal framework considered as described in Sec. 2. To obtain
a convenient expression for E[y|a = ã(i), z = z(i), v = v(i)], we identify Φ⋆(u,y) ∈ Rpu×py to be
the component of Θ⋆ corresponding to u and y for all u ∈ {v, a, y} and θ⋆(i,y) ∈ Rpy to be the
component of θ⋆(i) corresponding to y. Then, the conditional distribution of y as a function of the
interventions a, while keeping v and z fixed at the corresponding realizations for unit i, i.e., v(i) and
z(i) respectively, can be written as

f
(i)
y|a(y|a) ∝ exp

([
θ⋆(i,y) + 2v(i)⊤Φ⋆(v,y) + 2a⊤Φ⋆(a,y)

]
y + y⊤Φ⋆(y,y)y

)
. (15)
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Therefore, we have

E[y|a = ã(i), z = z(i), v = v(i)] = E
f
(i)

y|a
[y|a = ã(i)].

Now, consider the pu dimensional random vector u supported on X pu with distribution fu
parameterized by ψ ∈ Rpy and Ψ ∈ Rpy×py as follows

fu(u|ψ,Ψ) ∝ exp(ψ⊤u+ u⊤Ψu). (16)

Then, note that f̂ (i)y|a(y|a) in (12) and f (i)y|a(y|a) in (15) belong to the set {fu(·|ψ,Ψ) : ψ ∈ Rpy ,Ψ ∈
Rpy×py} for some ψ and Ψ. Now, we consider any two distributions in this set, namely fu(u|ψ̂, Ψ̂)
and fu(u|ψ⋆,Ψ⋆). Then, we claim that the two norm of the difference of the mean vectors of these
distributions is bounded as below. We provide a proof at the end.

Lemma 1 (Perturbation in the mean vector). For any ψ ∈ Rpy and Ψ ∈ Rpy×py , let µψ,Ψ(u) ∈
Rpu and Covψ,Ψ(u,u) ∈ Rpu×pu denote the mean vector and the covariance matrix of u respectively
with respect to fu in (16). Then, for any ψ̂, ψ⋆ ∈ Rpy and Ψ̂,Ψ⋆ ∈ Rpy×py , there exists some
t ∈ (0, 1), ψ̃ ≜ tψ̂ + (1− t)ψ⋆ and Ψ̃ ≜ tψ̃ + (1− t)ψ̃ such that

∥µψ̂,Ψ̂(u)− µψ⋆,Ψ⋆(u)∥2 ≤ |||Covψ̃,Ψ̃(u,u)|||op∥(ψ̂−ψ
⋆)∥2

+
∑
t3∈[p]

|||Covψ̃,Ψ̃(u, ut3u)|||op∥(Ψ̂t3−Ψ⋆t3)∥2.

Given this lemma, we proceed with the proof. By applying this lemma to f̂ (i)y|a(y|a) in (12) and

f
(i)
y|a(y|a) in (15), we see that it is sufficient to show the following bound

∥(θ⋆(i,y) − θ̂(i,y)) + 2v(i)⊤(Φ⋆(v,y) − Φ̂(v,y)) + 2ã(i)⊤(Φ⋆(a,y) − Φ̂(a,y))∥2
+

∑
t∈[py ]

∥Φ⋆(y,y)t − Φ̂
(y,y)
t ∥2 ≤ R(ε, δ/n) + pε.

To that end, we have ∑
t∈[py ]

∥Φ⋆(y,y)t − Φ̂
(y,y)
t ∥2

(a)

≤
∑
t∈[py ]

∥Θ⋆t − Θ̂t∥2, (17)

where (a) follows because ℓ2 norm of any sub-vector is no more than ℓ2 norm of the vector. Similarly,
we have

∥(θ⋆(i,y) − θ̂(i,y)) + 2v(i)⊤(Φ⋆(v,y) − Φ̂(v,y)) + 2ã(i)⊤(Φ⋆(a,y) − Φ̂(a,y))∥2
(a)

≤ ∥θ⋆(i,y) − θ̂(i,y)∥2 + 2∥v(i)⊤(Φ⋆(v,y) − Φ̂(v,y))∥2 + 2∥ã(i)⊤(Φ⋆(a,y) − Φ̂(a,y))∥2
(b)

≤ ∥θ⋆(i,y) − θ̂(i,y)∥2 + 2∥v(i)∥2|||Φ⋆(v,y) − Φ̂(v,y)|||op + 2∥ã(i)∥2|||(Φ⋆(a,y) − Φ̂(a,y))|||op
(c)

≤ ∥θ⋆(i) − θ̂(i)∥2 + 2
(
∥v(i)∥2 + ∥ã(i)∥2

)
|||Θ⋆ − Θ̂|||op

(d)

≤ ∥θ⋆(i) − θ̂(i)∥2 + 2
(
∥v(i)∥2 + ∥ã(i)∥2

)
|||Θ⋆ − Θ̂|||1

(e)

≤ ∥θ⋆(i) − θ̂(i)∥2 + 2xmax

(√
pv +

√
pa
)
|||Θ⋆ − Θ̂|||1, (18)

where (a) follows from triangle inequality, (b) follows because induced matrix norms are
submultiplicative, (c) follows because operator norm of any sub-matrix is no more than operator
norm of the matrix and ℓ2 norm of any sub-vector is no more than ℓ2 norm of the vector, (d)
follows because Θ⋆ − Θ̂ is symmetric and because matrix operator norm is bounded by square
root of the product of matrix one norm and matrix infinity norm, and (e) follows because
max{∥v(i)∥∞, ∥a(i)∥∞} ≤ xmax for all i ∈ [n].
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Now, combining (17) and (18), we have

∥(θ⋆(i,y)−θ̂(i,y))+2v(i)⊤(Φ⋆(v,y)−Φ̂(v,y))+2ã(i)⊤(Φ⋆(a,y)−Φ̂(a,y))∥2+
∑
t∈[py ]

∥Φ⋆(y,y)t −Φ̂
(y,y)
t ∥2

≤ ∥θ⋆(i) − θ̂(i)∥2 + 2xmax

(√
pv +

√
pa
)
|||Θ⋆ − Θ̂|||1 +

∑
t∈[py ]

∥Θ⋆t − Θ̂t∥2

(a)

≤ R(ε, δ/n) + 2xmax

(√
pv +

√
pa
)√
pε+ pyε,

and (a) follows from Thm. 1 by using the relationship between vector norms. The proof is complete
by rescaling ε and absorbing the constants in c.

Proof of Lem. 1: Perturbation in the mean vector: Let Z(ψ,Ψ) ∈ R+ denote the log-partition
function of fu(·|ψ,Ψ) in (16). Then, from [11, Theorem 1], we have

∥µψ̂,Ψ̂(u)− µψ⋆,Ψ⋆(u)∥2 = ∥∇ψ̂Z(ψ̂, Ψ̂)−∇ψ⋆Z(ψ⋆,Ψ⋆)∥2. (19)

For t1, t2, t3 ∈ [p], consider ∂2Z(ψ,Ψ)
∂ψt1

∂ψt2
and ∂2Z(ψ,Ψ)

∂ψt1
∂Ψt2,t3

. Using the fact that the Hessian of the
log partition function of any regular exponential family is the covariance matrix of the associated
sufficient statistic, we have

∂2Z(ψ,Ψ)

∂ψt1∂ψt2
= Covψ,Ψ(ut1 , ut2) and

∂2Z(ψ,Ψ)

∂ψt1∂Ψt2,t3
= Covψ,Ψ(ut1 , ut2ut3). (20)

Now, for some c ∈ (0, 1), ψ̃ ≜ cψ̂+ (1− c)ψ⋆ and Ψ̃ ≜ cψ̃+ (1− c)ψ̃, we have the following from
the mean value theorem

∂Z(ψ̂, Ψ̂)

∂ψ̂t1
− ∂Z(ψ⋆,Ψ⋆)

∂ψ⋆t1

=
∑
t2∈[p]

∂2Z(ψ̃, Ψ̃)

∂ψ̃t2∂ψ̃t1
· (ψ̂t2 − ψ⋆t2) +

∑
t2∈[p]

∑
t3∈[p]

∂2Z(ψ̃, Ψ̃)

∂Ψ̃t2,t3∂ψ̃t1
· (Ψ̂t2,t3 −Ψ⋆t2,t3)

(20)
=

∑
t2∈[p]

Covψ̃,Ψ̃(ut1 , ut2) · (ψ̂t2−ψ
⋆
t2)+

∑
t3∈[p]

∑
t2∈[p]

Covψ̃,Ψ̃(ut1 , ut3ut2) · (Ψ̂t3,t2−Ψ⋆t3,t2).

Now, using the triangle inequality and sub-multiplicativity of induced matrix norms, we have

∥∇ψ̂Z(ψ̂, Ψ̂)−∇ψ⋆Z(ψ⋆,Ψ⋆)∥2 ≤ |||Covψ̃,Ψ̃(u,u)|||op∥(ψ̂−ψ
⋆)∥2

+
∑
t3∈[p]

|||Covψ̃,Ψ̃(u, ut3u)|||op∥(Ψ̂t3−Ψ⋆t3)∥2.

(21)

Combining (19) and (21) completes the proof.

B Proof of Prop. 1: Proper loss function

Fix any z ∈ Zpz . For every t ∈ [p], define the following parametric distribution

ux|z
(
x|z; θt(z),Θt

)
∝

fx|z
(
x|z; θ⋆(z),Θ⋆

)
fxt|x−t,z(xt|x−t, z; θt(z),Θt)

(22)

where fx|z
(
x|z; θ⋆(z),Θ⋆

)
is as defined in (4) and fxt|x−t,z(xt|x−t, z; θt(z),Θt) is as defined in

(8). Using (8), we can write ux|z
(
x|z; θt(z),Θt

)
in (22) as

ux|z
(
x|z; θt(z),Θt

)
∝ fx|z

(
x|z; θ⋆(z),Θ⋆

)
exp

(
− [θt(z) + 2Θ⊤

t x]xt
)
.

Then, we have

ux|z
(
x|z; θt(z),Θt

)
=

fx|z
(
x|z; θ⋆(z),Θ⋆

)
exp

(
− [θt(z) + 2Θ⊤

t x]xt
)∫

x∈Xp fx|z
(
x|z; θ⋆(z),Θ⋆

)
exp

(
− [θt(z) + 2Θ⊤

t x]xt
)
dx
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=
fx|z

(
x|z; θ⋆(z),Θ⋆

)
exp

(
− [θt(z) + 2Θ⊤

t x]xt
)

Ex|z

[
exp

(
− [θt(z) + 2Θ⊤

t x]xt
)] . (23)

Further, for θt(z) = θ⋆t (z), and Θt = Θ⋆t , we can write an expression for ux|z
(
x|z; θ⋆t (z),Θ⋆t

)
which does not depend on xt functionally. From (8), we have

ux|z
(
x|z; θ⋆t (z),Θ⋆t

)
∝ fx−t|z

(
x−t|z; θ⋆(z),Θ⋆

)
. (24)

Now, consider the difference between KL
(
ux|z

(
x|z; θ⋆t (z),Θ⋆t

) ∥∥ux|z(x|z; θt(z),Θt)) and
KL

(
ux|z

(
x|z; θ⋆t (z),Θ⋆t

) ∥∥fx|z(x|z; θ⋆(z),Θ⋆)). We have

KL
(
ux|z

(
·|z; θ⋆t (z),Θ⋆t

) ∥∥ux|z(·|z; θt(z),Θt))−KL
(
ux|z

(
·|z; θ⋆t (z),Θ⋆t

) ∥∥fx|z( · |z ; θ⋆(z),Θ⋆))
(a)
=

∫
x∈Xp

ux|z
(
x|z; θ⋆t (z),Θ⋆t

)
log

fx|z
(
x|z; θ⋆(z),Θ⋆

)
ux|z

(
x|z; θt(z),Θt

) dx
(23)
=

∫
x∈Xp

ux|z
(
x|z; θ⋆t (z),Θ⋆t

)
log

Ex|z

[
exp

(
− [θt(z) + 2Θ⊤

t x]xt
)]

exp
(
− [θt(z) + 2Θ⊤

t x]xt
) dx

= logEx|z

[
exp

(
−[θt(z)+2Θ⊤

t x]xt
)]
−
∫
x∈Xp

ux|z
(
x|z; θ⋆t (z),Θ⋆t

)(
[θt(z)+2Θ⊤

t x]xt
)
dx

(b)
= logEx|z

[
exp

(
−[θt(z)+2Θ⊤

t x]xt
)]
, (25)

where (a) follows from the definition of KL-divergence and (b) follows because integral is zero since
(i) ux|z

(
x|z; θ⋆t (z),Θ⋆t

)
does not functionally depend on xt as in (24), (ii) θt(z)+2Θ⊤

t x does not
functionally depend on xt as Θtt = 0, and (iii)

∫
xt∈X xtdxt = 0. Now, we can write

E
[
L
(
Θ
)]

=
1

n

∑
t∈[p]

∑
i∈[n]

E
[
exp

(
− [θt(z

(i)) + 2Θ⊤
t x

(i)]x
(i)
t

)]
(25)
=

1

n

∑
t∈[p]

∑
i∈[n]

Ez

[
exp

(
KL

(
ux|z

(
· |z(i); θ⋆t (z

(i)),Θ⋆t
) ∥∥∥ux|z( · |z(i); θt(z

(i)),Θt
))

− KL
(
ux|z

(
· |z(i); θ⋆t (z

(i)),Θ⋆t
) ∥∥∥fx|z( · |z(i); θ⋆(z(i)),Θ⋆

)))]
.

(26)

We note that the parameters only up in the first KL-divergence term in the right-hand-side of (26).
Therefore, it is easy to see that E

[
L
(
Θ
)]

is minimized uniquely when θt(z(i)) = θ⋆t (z
(i)) and

Θt = Θ⋆t for all t ∈ [p] and all i ∈ [n], i.e., when Θ = Θ⋆.

C Proof of Thm. 1 Part I: Recovering population-level parameter

To analyze our estimate of the population-level parameter, we note that the set ΛΘ in (7) places
independent constraints on the rows of Θ5. Therefore, we look at p independent convex optimization
problems by decomposing the loss function L in (9) and the estimate Θ̂ in (10) as follows:

Lt
(
Θt

)
≜

1

n

∑
i∈[n]

exp
(
−[θ

(i)
t +2Θ⊤

t x−t]x
(i)
t

)
and Θ̂t ∈ argmin

Θ∈Λn
θ ×ΛΘ

Lt
(
Θt

)
for all t ∈ [p], (27)

where Θt =
{
θ
(1)
t , · · · , θ(n)t ,Θt

}
as defined in (9). Fix any t ∈ [p]. From (27), we have Lt(Θ̂t) ≤

Lt(Θ⋆t ). Using contraposition, to prove this part, it is sufficient to show that all points Θt that satisfy
∥Θt −Θ⋆t ∥2 ≥ ε also uniformly satisfy

Lt(Θt) ≥ Lt(Θ⋆t ) +O(ε2) for n ≥
c exp(cβ) log p

δ

ε4
, (28)

5To ensure that the final estimate is symmetric, we can take the average of Θ and Θ⊤.
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with probability at least 1− δ, uniformly for all t ∈ [p]. The guarantee in Thm. 1 follows.

To that end, first, we claim that for any fixed Θt, if Θt is far from Θ⋆t , then with high probability
Lt

(
Θt

)
will be significantly larger than Lt

(
Θ⋆t

)
. We provide a proof in App. C.1. First, we define

the following constants that depend on model-parameters τ ≜ (α, β, xmax):

C1,τ ≜α(1+4βxmax) and C2,τ ≜ exp (αxmax(1 + 2βxmax)). (29)

Lemma 2 (Gap between the loss function for a fixed parameter). Consider any Θ ∈ Λnθ × ΛΘ.
Fix any δ ∈ (0, 1). Then, we have uniformly for all t ∈ [p]

Lt
(
Θt

)
≥ Lt

(
Θ⋆t

)
+

x2max

2π2e2(β + 1)C5
2,τ

∥Θt −Θ⋆t ∥22 for n ≥ c exp(cβ) log(p/δ)

∥Ωt∥42
,

with probability at least 1− δ where C2,τ was defined in (29).

Next, we claim that the loss function Lt is Lipschitz and capture this property via the following
lemma. We provide a proof in App. C.2.

Lemma 3 (Lipschitzness of the loss function). Consider any Θ, Θ̃ ∈ Λnθ ×ΛΘ such that θ(i) = θ̃(i)

for all i ∈ [n]. Fix any t ∈ [p]. Then, the loss function Lt is Lipschitz with respect to the ℓ1 norm
∥·∥1 and with Lipschitz constant x2maxC2,τ , i.e.,∣∣Lt(Θ̃t)− Lt

(
Θt

)∣∣ ≤ x2maxC2,τ∥Θ̃t −Θt∥1, (30)

where the constant C2,τ was defined in (29).

Given these lemmas, we now proceed with the proof.

Proof strategy: As mentioned earlier, the idea is to show that all points Θt ∈ ΛΘ that satisfy
∥Θt −Θ⋆t ∥2 ≥ ε also uniformly satisfy (28) with probability at least 1− δ. To do so, we consider
the set of points Λε,tΘ ⊂ ΛΘ whose distance from Θ⋆t is at least ε > 0 in ℓ2 norm. Then, using an
appropriate covering set of Λε,tΘ and the Lipschitzness of Lt, we show that the value of Lt at all points
in Λε,tΘ is uniformly O(ε2) larger than the value of Lt at Θ⋆t with high probability. We ensure that the
failure probability smaller than δ.

Gap between the loss function for all parameters in the covering set: Consider the set of
elements Λε,tΘ ≜ {Θt ∈ ΛΘ : ∥Θ⋆t −Θt∥2 ≥ ε}. Let C(Λε,tΘ , ε′) be the ε′-covering number of the set
Λε,tΘ and let U(Λε,tΘ , ε′) be the associated ε′-cover (see Def. 2) where

ε′ ≜
ε2

8π2e2β(β + 1)C6
2,τ

(31)

Now, we apply Lem. 2 to each element in U(Λε,tΘ , ε′) and argue by a union bound that the value of Lt
at all points in U(Λε,tΘ , ε′) is uniformly O(ε2) larger than the value of Lt at Θ⋆t with high probability.
We start by considering any Θt ∈ U(Λε,tΘ , ε′). We have

∥Θ⋆t −Θt∥2
(a)

≥ ε, (32)

where (a) follows because U(Λε,tΘ , ε′) ⊆ Λε,tΘ . Now, applying Lem. 2 with δ0 = δ/C(Λε,tΘ , ε′), we
have

Lt
(
Θt

)
≥ Lt

(
Θ⋆t

)
+

x2max

2π2e2(β + 1)C5
2,τ

∥Θ⋆t −Θt∥22
(32)
≥ Lt

(
Θ⋆t

)
+

x2maxε
2

2π2e2(β + 1)C5
2,τ

,

with probability at least 1− δ/C(Λε,tΘ , ε′) whenever

n ≥
c exp(cβ) log

(
C(Λε,tΘ , ε′) · p/δ

)
∥Θ⋆t −Θt∥42

.
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Using (32), it suffices to choose n such that

n ≥
c exp(cβ) log

(
C(Λε,tΘ , ε′) · p/δ

)
ε4

. (33)

By applying the union bound over U(Λε,tΘ , ε′), as long as n satisfies (33), we have

Lt
(
Θt

)
≥ Lt

(
Θ⋆t

)
+

x2maxε
2

2π2e2(β + 1)C5
2,τ

uniformly for every Θt ∈ U(Λε,tΘ , ε′), (34)

with probability at least 1− δ.

Generalize beyond the covering set: Next, we assume that (34) holds, and generalize from
U(Λε,tΘ , ε′) to all of Λε,tΘ . Consider any Θ̃t ∈ Λε,tΘ and let Θt be any point in U(Λε,tΘ , ε′) that satisfies
∥Θt − Θ̃t∥2 ≤ ε′ (see Def. 2). Then, from Lem. 3, we have

Lt
(
Θ̃t

)
≥ Lt

(
Θt

)
−x2maxC2,τ∥Θt−Θ̃t∥1

(a)

≥ Lt
(
Θt

)
− 2x2maxC2,τβ∥Θt − Θ̃t∥2

(b)

≥ Lt
(
Θt

)
− 2x2maxC2,τβε

′

(31)
≥ Lt

(
Θt

)
− x2maxε

2

4π2e2(β + 1)C5
2,τ

(34)
≥ Lt

(
Θ⋆t

)
+

x2maxε
2

4π2e2(β + 1)C5
2,τ

,

where (a) follows by using ∥Θt − Θ̃t∥1 ≤ 2β∥Θt − Θ̃t∥2 which follows from the order of norms on
Euclidean space as well as Θ ∈ ΛΘ and Θ̃ ∈ ΛΘ and (b) follows because ∥Θt − Θ̃t∥2 ≤ ε′. Recall
that Θ̃t is any point in Λε,tΘ , i.e., ∥Θ⋆t − Θ̃t∥2 ≥ r. Therefore, we have an inequality that looks like
(28).

Bounding n: To bound n in (54), we bound the covering number C(Λε,tΘ , ε′) as follows

C(Λε,tΘ , ε′)
(a)

≤ C(ΛΘ, ε
′/2) (35)

where (a) follows from the fact that for any sets U ⊆ V and any ε, it holds that C(U , ε) ≤ C(V, ε/2).
Then using (35) in (54) and observing that ε′ = ε2

c exp(cβ) , it is sufficient for

n ≥ c exp(cβ)

ε4
·
(
log

p

δ
+MΘ

( ε2

c exp(cβ)

))
.

The proof is complete by noting that MΘ

(
ε2

c exp(cβ)

)
= O(β log p) since Θt ∈ Rp×1 is such that

∥Θt∥0 ≤ β.

C.1 Proof of Lem. 2: Gap between the loss function for a fixed parameter

Fix any ε > 0, any δ ∈ (0, 1), and t ∈ [p]. Consider any direction Ωt ≜
{
ω
(1)
t , · · · , ω(n)

t ,Ωt
}
∈

Rn+p along the parameter Θt, i.e.,

Ωt = Θt −Θ⋆t , and Ωt = Θt −Θ⋆t . (36)

Without loss of generality, we let Ωtt = 0 since Θ⋆tt = 0. We denote the first-order and the
second-order directional derivatives of the loss function Lt in (27) along the direction Ωt evaluated
at Θt by ∂Ωt

Lt(Θt) and ∂2
Ω2

t
Lt(Θt) respectively. Below, we state a lemma (with proof divided

across App. C.1.1 and App. C.1.2) that provides us a control on ∂Ωt
Lt(Θt) and ∂2

Ω2
t
Lt(Θt). The

assumptions of Lem. 2 remain in force.
Lemma 4 (Control on first and second directional derivatives). For any fixed ε1, ε2 > 0, δ1, δ2 ∈
(0, 1), t ∈ [p], Θ ∈ Λnθ × ΛΘ defined in (9) with Ωt and Ωt defined in (36), we have the following:
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(a) Concentration of first directional derivative: with probability at least 1− δ1,

∣∣∂Ωt
Lt(Θ⋆t )

∣∣ ≤ ε1 for n ≥
8C2

1,τC
2
2,τx

2
max · log(2p/δ1)
ε21

,

and uniformly for all t ∈ [p].

(b) Anti-concentration of second directional derivative: with probability at least 1− δ2,

∂2Ω2
t
Lt(Θt) ≥

4x2max ∥Ωt∥
2
2

π2e2(β + 1)C5
2,τ

− ε2 for n ≥
32C4

1,τx
4
max · log(2p/δ2)
ε22C

2
2,τ

,

and uniformly for all t ∈ [p].

Given this lemma, we now proceed with the proof. Define a function g : [0, 1] → Rn+p

g(a) ≜ Θ⋆t + a(Θt −Θ⋆t ).

Notice that g(0) = Θ⋆t and g(1) = Θt as well as

dLt(g(a))
da

= ∂Ωt
Lt(Θt)

∣∣
Θt=g(a)

and
d2Lt(g(a))

da2
= ∂2Ω2

t
Lt(Θt)

∣∣
Θt=g(a)

. (37)

By the fundamental theorem of calculus, we have

dLt(g(a))
da

≥ dLt(g(a))
da

∣∣
a=0

+ a min
a∈(0,1)

d2Lt(g(a))
da2

. (38)

Integrating both sides of (38) with respect to a, we obtain

Lt(g(a))− Lt(g(0)) ≥ a
dLt(g(a))

da

∣∣
a=0

+
a2

2
min
a∈(0,1)

d2Lt(g(a))
da2

(37)
= a∂Ωt

Lt(Θt)
∣∣
Θt=g(0)

+
a2

2
min
a∈(0,1)

∂2Ω2
t
Lt(Θt)

∣∣
Θt=g(a)

(a)
= a∂Ωt

Lt(Θ⋆t ) +
a2

2
min
a∈(0,1)

∂2Ω2
t
Lt(Θt)

∣∣
Θt=g(a)

(b)

≥ −a
∣∣∂Ωt

Lt(Θ⋆t )
∣∣+ a2

2
min
a∈(0,1)

∂2Ω2
t
Lt(Θt)

∣∣
Θt=g(a)

, (39)

where (a) follows because g(0) = Θ⋆t and (b) follows by the triangle inequality. Plugging in a = 1
in (39) as well as using g(0) = Θ⋆t and g(1) = Θt, we find that

Lt(Θt)− Lt(Θ⋆t ) ≥ −
∣∣∂Ωt

Lt(Θ⋆t )
∣∣+ 1

2
min
a∈(0,1)

∂2Ω2
t
Lt(Θt)

∣∣
Θt=g(a)

.

Now, we use Lem. 4 with

ε1 =
x2max∥Ωt∥22

2π2e2(β + 1)C5
2,τ

, δ1 =
δ

2
, and ε2 =

2x2max∥Ωt∥22
π2e2(β + 1)C5

2,τ

, δ2 =
δ

2
.

Therefore, with probability at least 1 − δ as long as n ≥ O

(
exp

(
O(β)

)
log(p/δ)

∥Ωt∥42

)
, we have

uniformly for all t ∈ [p]

Lt(Θt)− Lt(Θ⋆t ) ≥ − x2max∥Ωt∥22
2π2e2(β + 1)C5

2,τ

+
1

2

(
4x2max∥Ωt∥22

π2e2(β + 1)C5
2,τ

− 2x2max∥Ωt∥22
π2e2(β + 1)C5

2,τ

)
=

x2max∥Ωt∥22
2π2e2(β + 1)C5

2,τ

.

16



C.1.1 Proof of Lem. 4 (a): Concentration of first directional derivative

For every t ∈ [p] with Ωt defined in (36), we claim that the first-order directional derivative of the
loss function defined in (27) is given by

∂Ωt
Lt(Θt) = − 1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)
exp

(
− [θ

(i)
t + 2Θ⊤

t x
(i)]x

(i)
t

)
, (40)

where ∆
(i)
t ≜

[
ω
(i)
t

2Ωt

]
∈ Rp+1 and x̃(i) ≜

[
1

x(i)

]
∈ Rp+1 for all i ∈ [n]. We provide a proof in

App. C.1.1.

Next, we claim that the mean of the first-order directional derivative evaluated at the true parameter is
zero. We provide a proof in App. C.1.1
Lemma 5 (Zero-meanness of first directional derivative). For every t ∈ [p] with Ωt defined in
(36), we have E

[
∂Ωt

Lt(Θ⋆t )
]
= 0.

Given these, we proceed to show the concentration of the first-order directional derivative evaluated
at the true parameter. Fix any t ∈ [p]. From (40), we have

∂Ωt
Lt(Θ⋆t )

(40)
= − 1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)
exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤t x(i)]x

(i)
t

)
.

Each term in the above summation is an independent random variable and is bounded as follows:∣∣∣([∆(i)
t ]⊤x̃(i)x

(i)
t

)
× exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤t x(i)]x

(i)
t

)∣∣∣
(a)
=

∣∣∣(ω(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

)
× exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤t x(i)]x

(i)
t

)∣∣∣
(b)

≤
∣∣ω(i)
t + 2Ω⊤

t x
(i)
∣∣× xmax × exp

(
|θ⋆(i)t + 2Θ⋆⊤t x(i)|xmax

)
(c)

≤
∣∣|ω(i)

t |+ 2∥Ωt∥1∥x(i)∥∞
∣∣× xmax × exp

((
|θ⋆(i)t |+ 2∥Θ⋆t ∥1∥x(i)∥∞

)
xmax

)
(d)

≤
(
2α+ 8αβxmax

)
× xmax × exp

(
(α+ 2αβxmax)xmax

)
(29)
= 2C1,τC2,τxmax,

where (a) follows by plugging in ∆
(i)
t and x̃(i), (b) follows because ∥x(i)∥∞ ≤ xmax for all

i ∈ [n], (c) follows by triangle inequality and Cauchy–Schwarz inequality, and (d) follows because
θ⋆(i) ∈ Λθ for all i ∈ [n], Θ⋆ ∈ ΛΘ, ω(i) ∈ 2Λθ for all i ∈ [n], Ω ∈ 2ΛΘ, and ∥x(i)∥∞ ≤ xmax for
all i ∈ [n].

Further, from Lem. 5, we have E
[
∂Ωt

Lt(Θ⋆t )
]
= 0. Therefore, using the Hoeffding’s inequality

results in

P
(∣∣∂Ωt

Lt(Θ⋆t )
∣∣ > ε1

)
< 2 exp

(
− nε21

8C2
1,τC

2
2,τx

2
max

)
.

The proof follows by using the union bound over all t ∈ [p].

Proof of (40): Expression for first directional derivative: Fix any t ∈ [p]. The first-order partial
derivatives of Lt with respect to entries of Θt defined in (27) are given by

∂Lt(Θt)
∂θ

(i)
t

= − 1

n
x
(i)
t exp

(
−[θ

(i)
t +2Θ⊤

t x
(i)]x

(i)
t

)
for all i ∈ [n], and

∂Lt(Θt)
∂Θtu

=

{
− 2
n

∑
i∈[n] x

(i)
t x

(i)
u exp

(
−[θ

(i)
t +2Θ⊤

t x
(i)]x

(i)
t

)
for all u ∈ [p] \ {t} .

0 for u = t

Now, we can write the first-order directional derivative of Lt as

∂Ωt
Lt(Θt) ≜ lim

h→0

Lt(Θt + hΩt)− Lt(Θt)
h

=
∑
i∈[n]

ω
(i)
t

∂Lt(Θt)
∂θ

(i)
t

+
∑
u∈[p]

Ωtu
∂Lt(Θt)
∂Θtu
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= − 1

n

∑
i∈[n]

(
ω
(i)
t x

(i)
t + 2

∑
u∈[p]\{t}

Ωtux
(i)
t x(i)u

)
exp

(
−[θ

(i)
t +2Θ⊤

t x
(i)]x

(i)
t

)
= − 1

n

∑
i∈[n]

(
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

)
exp

(
−[θ

(i)
t +2Θ⊤

t x
(i)]x

(i)
t

)
(a)
= − 1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)
exp

(
−[θ

(i)
t +2Θ⊤

t x
(i)]x

(i)
t

)
,

where (a) follows from the definitions of ∆(i)
t and x̃(i).

Proof of Lem. 5: Zero-meanness of first directional derivative: Fix any t ∈ [p]. From (40), we
have

E
[
∂Ωt

Lt(Θ⋆t )
] (40)
= − 1

n

∑
i∈[n]

E
[(

[∆
(i)
t ]⊤x̃(i)x

(i)
t

)
exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤t x(i)]x

(i)
t

)]
(a)
= − 1

n

∑
i∈[n]

∑
u∈[p+1]

∆
(i)
tuEx(i),z(i)

[
x̃(i)
u x

(i)
t exp

(
− [θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)]
(b)
= − 1

n

∑
i∈[n]

∑
u∈[p+1]\{i+1}

∆
(i)
tuEx(i),z(i)

[
x̃(i)
u x

(i)
t exp

(
− [θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)]
,

where (a) follows by linearity of expectation and by plugging in θ⋆(i)t = θ⋆t (z
(i)) and (b) follows

because ∆
(i)
tu = Ωtt = 0 for u = t+ 1 for every i ∈ [n]. To complete the proof, we show

Ex(i),z(i)

[
x̃(i)
u x

(i)
t exp

(
− [θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)]
= 0,

for all t ∈ [p], i ∈ [n], u ∈ [p+1]\{t+ 1}. To that end, fix any t ∈ [p], i ∈ [n], u ∈ [p+1]\{t+ 1}.
We have

Ex(i),z(i)

[
x̃(i)
u x

(i)
t exp

(
− [θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)]
=

∫
Xp×Zpz̃

x(i)u x
(i)
t exp

(
− [θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
fx,z

(
x(i), z(i)

)
dx(i)dz(i)

=

∫
Xp×Zpz̃

x(i)u x
(i)
t exp

(
−[θ⋆t (z

(i))+2Θ⋆⊤t x(i)]x
(i)
t

)
fx−t,z

(
x
(i)
−t, z

(i)
)

× fxt|x−t,z

(
x
(i)
t |x(i)

−t, z
(i); θ⋆t (z

(i)),Θ⋆t
)
dx(i)dz(i)

(a)
=

∫
Xp×Zpz

x̃
(i)
u x

(i)
t fx−t,z

(
x
(i)
−t, z

(i)
)
dx(i)dz(i)∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
dx

(i)
t

(b)
=

∫
Xp−1×Zpz

[ ∫
X
x
(i)
t dx

(i)
t

]
x̃
(i)
u fx−t,z

(
x
(i)
−t, z

(i)
)
dx

(i)
−tdz

(i)∫
X exp

(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
dx

(i)
t

(c)
= 0.

where (a) follows by plugging in fxt|x−t,z

(
x
(i)
t |x(i)

−t, z
(i); θ⋆t (z

(i)),Θ⋆t
)

from (8), (b) follows by

re-arranging and observing that x̃(i)u ̸= x
(i)
t for any u ∈ [p+ 1] \ {t+ 1}, and (c) follows because∫

X x
(i)
t dx

(i)
t = 0 when X is symmetric around 0.

C.1.2 Proof of Lem. 4 (b): Anti-concentration of second directional derivative

We start by claiming that the second-order directional derivative can be lower bounded by a quadratic
form. We provide a proof in App. C.1.2.
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Lemma 6 (Lower bound on the second directional derivative). For every t ∈ [p] with Ωt defined
in (36), we have

∂2Ω2
t
Lt(Θt) ≥

1

nC2,τ

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)2

,

where ∆
(i)
t ≜

[
ω
(i)
t

2Ωt

]
∈ Rp+1 and x̃(i) ≜

[
1

x(i)

]
∈ Rp+1 for all i ∈ [n], and the constant C2,τ was

defined in (29).

Next, we claim that the conditional variance of x(i)t conditioned on x−t = x
(i)
−t and z = z(i) is lower

bounded by a constant for every t ∈ [p] and i ∈ [n]. We provide a proof in App. C.1.2.

Lemma 7 (Lower bound on the conditional variance). For every t ∈ [p] and i ∈ [n], we have

Var
(
x
(i)
t

∣∣x(i)
−t, z

(i)
)
≥ xmax

πeC2
2,τ

,

where the constant C2,τ was defined in (29).

Given these, we proceed to show the anti-concentration of the second-order directional derivative.
Fix any t ∈ [p] and any Θ ∈ Λnθ × ΛΘ. From Lem. 6, we have

∂2Ω2
t
Lt(Θt) ≥

1

nC2,τ

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)2

. (41)

First, using the Hoeffding’s inequality, let us show concentration of 1
n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)2
around its mean. We observe that each term in the summation is an independent random variable and
is bounded as follows(

[∆
(i)
t ]⊤x̃(i)x

(i)
t

)2 (a)
=

(
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

)2 (b)

≤
(
ω
(i)
t + 2Ω⊤

t x
(i)
)2
x2max

(c)

≤
(
|ω(i)
t |+ 2∥Ωt∥1∥x(i)∥∞

)2
x2max

(d)

≤
(
2α+ 8αβxmax

)2
x2max

(29)
= 4C2

1,τx
2
max,

where (a) follows by plugging in ∆
(i)
t and x̃(i), (b) follows because ∥x(i)∥∞ ≤ xmax for all i ∈ [n],

(c) follows by triangle inequality and Cauchy–Schwarz inequality, and (d) follows because Ω ∈ 2ΛΘ,
ω(i) ∈ 2Λθ, and ∥x(i)∥∞ ≤ xmax for all i ∈ [n]. Then, from the Hoeffding’s inequality, we have

P
(∣∣∣∣ 1n ∑

i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)2

− 1

n

∑
i∈[n]

E
[(

[∆
(i)
t ]⊤x̃(i)x

(i)
t

)2
]∣∣∣∣ > ε

)
< 2 exp

(
− nε2

32C4
1,τx

4
max

)
.

Applying the union bound over all t ∈ [p], for any δ ∈ (0, 1) and uniformly for all t ∈ [p], we have

1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)2

≥ 1

n

∑
i∈[n]

E
[(

[∆
(i)
t ]⊤x̃(i)x

(i)
t

)2
]
− ε (42)

with probability at least 1− δ as long as

n ≥
32C4

1,τx
4
max

ε2
log

(
2p

δ

)
.

Now, we lower bound E
[(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)2]
for every t ∈ [p] and every i ∈ [n]. Fix any t ∈ [p] and

i ∈ [n]. We have

E
[(

[∆
(i)
t ]⊤x̃(i)x

(i)
t

)2
]

(a)

≥ Var
[
[∆

(i)
t ]⊤x̃(i)x

(i)
t

]
= Var

[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

]
, (43)
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where (a) follows from the fact that for any random variable a, E[a2] ≥ Var[a]. We define the
following set to lower bound Var

[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

]
:

E(Θ⋆) ≜
{
(t, u) ∈ [p]2 : t < u,Θ⋆tu ̸= 0

}
, (44)

and consider the graph G(Θ⋆) = ([p], E(Θ⋆)) with [p] as nodes and E(Θ⋆) as edges such that
fx|z

(
x|z; θ⋆(z),Θ⋆

)
is Markov with respect to G(Θ⋆). We claim that there exists a non-empty set

Rt ⊂ [p] \ {t} such that

(i) Rt is an independent set of G(Θ⋆), i.e., there are no edges between any pair of nodes in Rt,
and

(ii) the row vector Ωt satisfies
∑
u∈Rt

|Ωtu|2 ≥ 1
β+1 ∥Ωt∥

2
2.

Taking this claim as given at the moment, we continue our proof. Denoting Rc
t ≜ [p] \ Rt, and using

the law of total variance, the variance term in (43) can be lower bounded as

Var
[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

]
≥ E

[
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[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

∣∣∣x(i)
Rc

t
, z(i)

]]
(a)
= 4E

[(
x
(i)
t

)2Var
( ∑
u∈Rt

Ωtux
(i)
u

∣∣∣x(i)
Rc

t
, z(i)

)]
(b)
= 4E

[(
x
(i)
t

)2 ∑
u∈Rt

Ω2
tuVar

(
x(i)u

∣∣∣x(i)
Rc

t
, z(i)

)]
(c)
= 4E

[(
x
(i)
t

)2 ∑
u∈Rt

Ω2
tuVar

(
x(i)u

∣∣∣x(i)
−u, z

(i)
)]

(d)

≥ 4xmax

πeC2
2,τ

∑
u∈Rt

Ω2
tuE

[(
x
(i)
t

)2]
(e)

≥ 4xmax

πeC2
2,τ

∑
u∈Rt

Ω2
tuVar

(
x
(i)
t

∣∣∣x(i)
−t, z

(i)
)

(f)

≥ 4x2max

π2e2C4
2,τ

∑
u∈Rt

Ω2
tu

(ii)

≥
4x2max ∥Ωt∥

2
2

π2e2(β + 1)C4
2,τ

, (45)

where (a) follows because (x
(i)
u )u∈Rc

t
are deterministic when conditioned on themselves, and

t ∈ Rc
t , (b) follows because (x(i)u )u∈Rt are conditionally independent given x

(i)
Rc

t
and z(i) which is a

direct consequence of (i), (c) follows because of the local Markov property (as the conditioning set
includes all the neighbors in G(Θ⋆) of each node in Rt), (d) and (f) follow from Lem. 7, and (e)

follows because E
[(
x
(i)
t

)2]
= E

[
E
[(
x
(i)
t

)2∣∣∣x(i)
−t, z

(i)
]]

≥ Var
(
x
(i)
t

∣∣∣x(i)
−t, z

(i)
)

.

Combining (41) to (43) and (45), for any δ ∈ (0, 1) and uniformly for all t ∈ [p], we have

∂2Ω2
t
Lt(Θt) ≥

1

C2,τ

(
4x2max ∥Ωt∥

2
2

π2e2(β + 1)C4
2,τ

− ε

)
with probability at least 1− δ as long as

n ≥
32C4

1,τx
4
max

ε2
log

(
2p

δ

)
.

Choosing ε2 = ε/C2,τ and δ2 = δ yields the claim.

It remains to construct the set Rt that is an independent set of G(Θ⋆) and satisifies (ii).
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Construction of the set Rt: We select r1 ∈ [p] \ {t} such that

|Ωtr1 | ≥ |Ωtu| for all u ∈ [p] \ {t, r1} .
Next, we identify r2 ∈ [p] \ {t, r1,N (r1)} such that

|Ωtr2 | ≥ |Ωtu| for all u ∈ [p] \ {t, r1,N (r1), r2} .
We continue identifying r3, . . . , rs in such a manner till no more nodes are left, where s denotes
the total number of nodes selected. Now we define Rt ≜ {r1, · · · , rs}. Further, for any u ∈ [p],
let N (u) denote the set of neighbors of u in G(Θ⋆). We have |N (u)| ≤ ∥Θ⋆u∥0 ≤ β from (44) and
Assum. 1(b). We can now see that Rt is an independent set of G(Θ⋆) as claimed in (i) such that it
satisfies (ii) by construction.

Proof of Lem. 6: Lower bound on the second directional derivative: For every t ∈ [p] with Ωt
defined in (36), we claim that the second-order directional derivative of the loss function defined in
(27) is given by

∂2Ω2
t
Lt(Θt) =

1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)x

(i)
t

)2

exp
(
− [θ

(i)
t + 2Θ⊤

t x
(i)]x

(i)
t

)
, (46)

where ∆
(i)
t ≜

[
ω
(i)
t

2Ωt

]
∈ Rp+1 and x̃(i) ≜

[
1

x(i)

]
∈ Rp+1 for all i ∈ [n]. We provide a proof at the

end.

Given this, we proceed to prove the lower bound on the second directional derivative. Fix any t ∈ [p].
From (46), we have

∂2Ω2
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Lt(Θt) =

1
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∑
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(
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(i)
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)
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≥ 1

n
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(
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≥ 1
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t ]⊤x̃(i)x

(i)
t

)2

,

where (a) follows because ∥x(i)∥∞ ≤ xmax for all i ∈ [n], (b) follows by triangle inequality and
Cauchy–Schwarz inequality, and (c) follows because θ(i) ∈ Λθ for all i ∈ [n], Θ ∈ ΛΘ, and
∥x(i)∥∞ ≤ xmax for all i ∈ [n].

Proof of (46): Expression for second directional derivative: Fix any t ∈ [p]. The second-order
partial derivatives of Lt with respect to entries of Θt defined in (9) are given by

∂2Lt(Θt)
∂
[
θ
(i)
t
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[
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(i)
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]2
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t x
(i)]x

(i)
t

)
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for all u, v ∈ [p] \ {i} , and
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(i)]x
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)
for all i ∈ [n], u ∈ [p] \ {t} .

Now, we can write the second-order directional derivative of Lt as

∂2Ω2
t
Lt(Θt) ≜ lim

h→0

∂Ωt
Lt(Θt + hΩt)−∂Ωt

Lt(Θt)
h
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=
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where (a) follows from the definitions of ∆(i)
t and x̃(i).

Proof of Lem. 7: Lower bound on the conditional variance: For any random variable x , let h(x)
denote the differential entropy of x . Fix any t ∈ [p] and i ∈ [n]. Then, we have
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where (a) follows from Shannon’s entropy inequality (h(·) ≤ log
√

2πVar(·)), (b) follows because
∥x(i)∥∞ ≤ xmax for all i ∈ [n], (c) follows by triangle inequality and Cauchy–Schwarz inequality,
and (d) follows because θ⋆(z(i)) ∈ Λθ for all i ∈ [n], Θ⋆ ∈ ΛΘ, ∥x(i)∥∞ ≤ xmax for all i ∈ [n],
and (e) follows because

∫
X dx

(i)
t = 2xmax.

C.2 Proof of Lem. 3: Lipschitzness of the loss function

Fix any t ∈ [p]. Consider the direction Ωt = Θ̃t − Θt and note that ω(i)
t = 0 for all i ∈ [n]. Now,

define the function q : [0, 1] → R as follows:

q(a) = Lt
(
Θt + a(Θ̃t −Θt)

)
. (47)

Then, the desired inequality in (30) is equivalent to |q(1)− q(0)| ≤ x2maxC2,τ∥Ωt∥1. From the mean
value theorem, there exists a′ ∈ (0, 1) such that

|q(1)− q(0)| =
∣∣∣∣dq(a′)da

∣∣∣∣. (48)
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Therefore, we have∣∣q(1)− q(0)
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where (a) follows from triangle inequality, Cauchy–Schwarz inequality, θ(i), θ̃(i) ∈ Λθ, Θ, Θ̃ ∈ ΛΘ,
and ∥x(i)∥∞ ≤ xmax for all i ∈ [n], (b) follows from (29), the triangle inequality, and because
∥x(i)∥∞ ≤ xmax for all i ∈ [n], (c) follows from the definitions of ∆(i)

t and x̃(i) because ω(i)
t = 0

for all i ∈ [n], and (d) follows from the triangle inequality, and because ∥x(i)∥∞ ≤ xmax for all
i ∈ [n].

D Proof of Thm. 1 Part II: Recovering unit-level parameters

Throughout the proof, c denotes either a universal constant or a constant depending on the
model-parameters α and xmax, and may change appearance line by line.

To analyze our estimate of the unit-level parameters, we use the estimate Θ̂ of the population-level
parameter Θ⋆ along with the associated guarantee provided in Thm. 1. We note that the constraints
on the unit-level parameters in (10) are independent across units, i.e., θ(i) ∈ Λθ independently for all
i ∈ [n]. Therefore, we look at n independent convex optimization problems by decomposing the loss
function L in (9) and the estimate Θ̂ in (10) as follows:

L(i)
(
θ(i)

)
≜

∑
t∈[p]

exp
(
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(i)
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t x
(i)]x
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)
and θ̂(i) = argmin

θ(i)∈Λθ
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(
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)
for all i ∈ [n],

(49)

Now, fix any i ∈ [n]. From (49), we have L(i)
(
θ̂(i)

)
≤ L(i)

(
θ⋆(i)

)
. Using contraposition, to prove

this part, it is sufficient to show that all points θ(i) ∈ Λθ that satisfy ∥θ(i) − θ⋆(i)∥2 ≥ R(ε, δ) also
uniformly satisfy

L(i)
(
θ(i)

)
≥ L(i)

(
θ⋆(i)

)
+R2(ε, δ) for n ≥ c exp(cβ)

ε4
·
(
log

p

δ
+Mθ(η)

)
, (50)

with probability at least 1− δ where R(ε, δ) and η were defined in (11), and the metric entropy M
was defined in Def. 2. Then, the guarantee in Thm. 1 follows by applying a union bound over all
i ∈ [n].

To that end, first, we claim that for any fixed θ(i) ∈ Λθ, if θ(i) is far from θ⋆(i), then with high
probability L(i)

(
θ(i)

)
will be significantly larger than L(i)

(
θ⋆(i)

)
. We provide a proof in App. D.1.

Lemma 8 (Gap between the loss function for a fixed parameter). Fix any ε1 > 0, δ1 ∈ (0, 1),
and i ∈ [n]. Then, for any θ(i) ∈ Λθ such that ∥θ(i) − θ⋆(i)∥2 ≥ ε1γ (see (11)), we have

L(i)
(
θ(i)

)
≥ L(i)

(
θ⋆(i)

)
+

2
√
2αβx3max

πeC4
2,τ

∥θ(i) − θ⋆(i)∥22 for n ≥ c exp(cβ) log(p/δ1)

ε41
,
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with probability at least 1−δ1−cβ2 log p ·exp(− exp(−cβ)∥θ(i) − θ⋆(i)∥22) where C2,τ was defined
in (29).

Next, we claim that the loss function L(i) is Lipschitz and capture this property via the following
lemma. We provide a proof in App. D.2.

Lemma 9 (Lipschitzness of the loss function). Consider any i ∈ [n]. Then, the loss function L(i) is
Lipschitz with respect to the ℓ1 norm ∥·∥1 and with Lipschitz constant xmaxC2,τ , i.e.,∣∣L(i)

(
θ̃(i)

)
− L(i)

(
θ(i)

)∣∣ ≤ xmaxC2,τ∥θ̃(i) − θ(i)∥1 for all θ(i), θ̃(i) ∈ Λθ, (51)

where the constant C2,τ was defined in (29).

Given these lemmas, we now proceed with the proof.

Proof strategy: As mentioned earlier, the idea is to show that all points θ(i) ∈ Λθ that satisfy
∥θ(i) − θ⋆(i)∥2 ≥ R(ε, δ) also uniformly satisfy (50) with probability at least 1 − δ. To do so, we
consider the set of points Λr,iθ ⊂ Λθ whose distance from θ⋆(i) is at least r > 0 in ℓ2 norm. Then,
using an appropriate covering set of Λr,iθ and the Lipschitzness of L(i), we show that the value of L(i)

at all points in Λr,iθ is uniformly O(r2) larger than the value of L(i) at θ⋆(i) with high probability.
Finally, we choose an r small enough to make the failure probability smaller than δ.

Gap between the loss function for all parameters in the covering set: Consider any r ≥ εγ

(where γ is defined in (11)) and the set of elements Λr,iθ ≜
{
θ(i) ∈ Λθ : ∥θ⋆(i) − θ(i)∥2 ≥ r

}
. Let

C(Λr,iθ , ε′) be the ε′-covering number of the set Λr,iθ and let U(Λr,iθ , ε′) be the associated ε′-cover
(see Def. 2) where

ε′ ≜

√
2αβx2maxr

2

πeC5
2,τγ

. (52)

Now, we apply Lem. 8 to each element in U(Λr,iθ , ε′) and argue by a union bound that the value of
L(i) at all points in U(Λr,iθ , ε′) is uniformly O(r2) larger than the value of L(i) at θ⋆(i) with high
probability. We start by considering any θ(i) ∈ U(Λr,iθ , ε′). We have

∥θ⋆(i) − θ(i)∥2
(a)

≥ r, (53)

where (a) follows because U(Λr,iθ , ε′) ⊆ Λr,iθ . Now, applying Lem. 8 with ε1 = ε and δ1 =

δ/2C(Λr,iθ , ε′), we have

L(i)
(
θ(i)

)
≥ L(i)

(
θ⋆(i)

)
+

2
√
2αβx3max

πeC4
2,τ

∥θ⋆(i) − θ(i)∥22
(53)
≥ L(i)

(
θ⋆(i)

)
+

2
√
2αβx3maxr

2

πeC4
2,τ

,

with probability at least 1− δ/2C(Λr,iθ , ε′)− cβ2 log p · exp(− exp(−cβ)∥θ(i) − θ⋆(i)∥22) whenever

n ≥
c exp(cβ) log

(
2C(Λr,iθ , ε′) · p/δ

)
ε4

. (54)

By applying the union bound over U(Λr,iθ , ε′), as long as n satisfies (54), we have

L(i)
(
θ(i)

)
≥ L(i)

(
θ⋆(i)

)
+

2
√
2αβx3maxr

2

πeC4
2,τ

uniformly for every θ(i) ∈ U(Λr,iθ , ε
′), (55)

with probability at least 1− δ/2− cβ2C(Λr,iθ , ε′) log p · exp(− exp(−cβ)∥θ(i) − θ⋆(i)∥22) which can
lower bounded by 1− δ/2− cβ2C(Λr,iθ , ε′) log p · exp(− exp(−cβ)r2) using (53).
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Generalize beyond the covering set: Next, we assume that (55) holds, and generalize from
U(Λr,iθ , ε′) to all of Λr,iθ . Consider any θ̃(i) ∈ Λr,iθ and let θ(i) be any point in U(Λr,iθ , ε′) that satisfies
∥θ(i) − θ̃(i)∥2 ≤ ε′ (see Def. 2). Then, from Lem. 9, we have

L(i)
(
θ̃(i)

)
≥ L(i)

(
θ(i)

)
−xmaxC2,τ∥θ(i)−θ̃(i)∥1

(11)
≥ L(i)

(
θ(i)

)
− xmaxC2,τγ∥θ(i) − θ̃(i)∥2

(a)

≥ L(i)
(
θ(i)

)
− xmaxC2,τγε

′

(52)
≥ L(i)

(
θ(i)

)
−
√
2αβx3maxr

2

πeC4
2,τ

(55)
≥ L(i)

(
θ⋆(i)

)
+

√
2αβx3maxr

2

πeC4
2,τ

,

where (a) follows because ∥θ(i) − θ̃(i)∥2 ≤ ε′. Recall that θ̃(i) is any point in Λr,iθ , i.e.,
∥θ⋆(i) − θ̃(i)∥2 ≥ r. Therefore, we have an inequality that looks like (50). It remains to bound n and
the failure probability.

Bounding n: To bound n in (54), we bound the covering number C(Λr,iθ , ε′) as follows

C(Λr,iθ , ε
′)

(a)

≤ C(Λθ, ε′/2) (56)

where (a) follows from the fact that for any sets U ⊆ V and any ε, it holds that C(U , ε) ≤ C(V, ε/2).
Then using (56) in (54) and observing that ε′ = r2

c exp(cβ)γ , it is sufficient for

n ≥ c exp(cβ)

ε4
·
(
log

p

δ
+Mθ(r

2η)

)
.

Bounding the failure probability: To bound the failure probability by δ, it is sufficient to chose r
such that

δ ≥ δ/2 + cβ2C(Λr,iθ , ε
′) log p · exp(− exp(−cβ)r2)

(56)
≥ δ/2 + cβ2C(Λθ, ε′/2) log p · exp(− exp(−cβ)r2). (57)

Re-arranging and taking logarithm on both sides of (57), and observing that ε′ = r2

c exp(cβ)γ , we have

log δ ≥ c

[
log

(
β2 log p

)
+Mθ(r

2η)− exp(−cβ)r2
]
. (58)

Finally, (58) holds whenever

r ≥ c exp
(
cβ

)√
log

β2 log p

δ
+Mθ(r2η).

Recalling that the choice of r was such that r ≥ εγ completes the proof.

D.1 Proof of Lem. 8: Gap between the loss function for a fixed parameter

Fix any ε1 > 0, any δ1 ∈ (0, 1), and any i ∈ [n]. Consider any direction ω(i) ∈ Rp along the
parameter θ(i), i.e.,

ω(i) = θ(i) − θ⋆(i). (59)

We denote the first-order and the second-order directional derivatives of the loss function L(i) in
(49) along the direction ω(i) evaluated at θ(i) by ∂ω(i)(L(i)(θ(i))) and ∂2

[ω(i)]2
L(i)(θ(i)) respectively.

Below, we state a lemma (with proof divided across App. D.1.1 and App. D.1.2) that provides us a
control on ∂ω(i)(L(i)(θ⋆(i))) and ∂2

[ω(i)]2
L(i)(θ(i)). The assumptions of Lem. 8 remain in force.

Lemma 10 (Control on first and second directional derivatives). For any fixed ε2, ε3 > 0,
δ2 ∈ (0, 1), i ∈ [n], θ(i) ∈ Λθ with ω(i) defined in (59), we have the following:

25



(a) Concentration of first directional derivative:∣∣∂ω(i)(L(i)(θ⋆(i)))
∣∣ ≤ ε2∥ω(i)∥1 + ε3∥ω(i)∥22 for n ≥ O

(
exp

(
O(β)

)
log(p/δ2)

ε42

)
,

with probability at least 1− δ2 −O

(
β2 log p exp

(
−ε23∥ω(i)∥22
exp

(
O(β)

))).

(b) Anti-concentration of second directional derivative:

∂2[ω(i)]2L
(i)(θ(i)) ≥ 16

√
2αβx3max

πeC3
2,τ

∥ω(i)∥22,

with probability at least 1−O

(
β2 log p exp

(
−∥ω(i)∥22
exp

(
O(β)

))) where C2,τ was defined in

(29).

Given this lemma, we now proceed with the proof. Define a function g : [0, 1] → Rp as follows:

g(a) = θ⋆(i) + a(θ(i) − θ⋆(i)).

Notice that g(0) = θ⋆(i) and g(1) = θ(i) as well as

dL(i)(g(a))

da
= ∂ω(i)(L(i)(θ(i)))

∣∣
θ(i)=g(a)

and
d2L(i)(g(a))

da2
= ∂2[ω(i)]2L

(i)(θ(i))
∣∣
θ(i)=g(a)

.

(60)

By the fundamental theorem of calculus, we have

dL(i)(g(a))

da
≥ dL(i)(g(a))

da

∣∣
a=0

+ a min
a∈(0,1)

d2L(i)(g(a))

da2
(61)

Integrating both sides of (61) with respect to a, we obtain

L(i)(g(a))− L(i)(g(0)) ≥ a
dL(i)(g(a))

da

∣∣
a=0

+
a2

2
min
a∈(0,1)

d2L(i)(g(a))

da2

(60)
= a∂ω(i)(L(i)(θ(i)))

∣∣
θ(i)=g(0)

+
a2

2
min
a∈(0,1)

∂2[ω(i)]2L
(i)(θ(i))

∣∣
θ(i)=g(a)

(a)
= a∂ω(i)(L(i)(θ⋆(i))) +

a2

2
min
a∈(0,1)

∂2[ω(i)]2L
(i)(θ(i))

∣∣
θ(i)=g(a)

(b)

≥ −a
∣∣∂ω(i)(L(i)(θ⋆(i)))

∣∣+ a2

2
min
a∈(0,1)

∂2[ω(i)]2L
(i)(θ(i))

∣∣
θ(i)=g(a)

, (62)

where (a) follows because g(0) = θ⋆(i), and (b) follows by the triangle inequality. Plugging in a = 1
in (62) as well as using g(0) = θ⋆(i) and g(1) = θ(i), we find that

L(i)(θ(i))− L(i)(θ⋆(i)) ≥ −
∣∣∂ω(i)(L(i)(θ⋆(i)))

∣∣+ 1

2
min
a∈(0,1)

∂2[ω(i)]2L
(i)(θ(i))

∣∣
θ(i)=g(a)

Now, we use Lem. 10 with ε2 = 2
√
2αβx3maxε1/πeC

4
2,τ , ε3 = 4

√
2αβx3max/πeC

4
2,τ , and δ2 = δ1.

Therefore, with probability at least 1 − δ1 − O

(
β2 log p exp

(
−∥ω(i)∥22
exp

(
O(β)

))) and as long as

n ≥ O

(
exp

(
O(β)

)
log(p/δ1)

ε41

)
, we have

L(i)(θ(i))−L(i)(θ⋆(i)) ≥−2
√
2αβx3maxε1
πeC4

2,τ

∥ω(i)∥1−
4
√
2αβx3max

πeC4
2,τ

∥ω(i)∥22 +
8
√
2αβx3max

πeC4
2,τ

∥ω(i)∥22

= −2
√
2αβx3maxε1
πeC4

2,τ

∥ω(i)∥1 +
4
√
2αβx3max

πeC4
2,τ

∥ω(i)∥22
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(11)
≥ −2

√
2αβx3maxε1γ

πeC4
2,τ

∥ω(i)∥2 +
4
√
2αβx3max

πeC4
2,τ

∥ω(i)∥22

(a)

≥ −2
√
2αβx3max

πeC4
2,τ

∥ω(i)∥22+
4
√
2αβx3max

πeC4
2,τ

∥ω(i)∥22 =
2
√
2αβx3max

πeC4
2,τ

∥ω(i)∥22,

where (a) follows because ∥ω(i)∥2 = ∥θ(i) − θ⋆(i)∥2 ≥ ε1γ according to the lemma statement.

D.1.1 Proof of Lem. 10 (a): Concentration of first directional derivative

Fix some i ∈ [n] and some θ(i) ∈ Λθ. Let ω(i) defined in (59). We claim that the first-order
directional derivative of L(i) defined in (49) is given by

∂ω(i)(L(i)(θ(i))) = −
∑
t∈[p]

ω
(i)
t x

(i)
t exp

(
− [θ

(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
. (63)

We provide a proof at the end. For now, we assume the claim and proceed.

We note that the pair {x, z} corresponds to a τ-SGM (see Def. 8) with τ ≜ (α, αβ, xmax,Θ). To
show the concentration, we decompose ∂ω(i)(L(i)(θ⋆(i))) as a sum of L = 1024α2β2x4max log 4p
terms using Prop. 4 (see App. F) with λ = 1

4
√
2x2

max

and focus on these L terms. Consider the L

subsets S1, · · · , SL ∈ [p] obtained from Prop. 4 with λ = 1
4
√
2x2

max

and define

ψu(x
(i);ω(i)) ≜

∑
t∈Su

ω
(i)
t x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
for every u ∈ L. (64)

Now, we decompose ∂ω(i)(L(i)(θ⋆(i))) as a sum of the L terms defined above. More precisely, we
have

∂ω(i)(L(i)(θ⋆(i)))
(63)
= −

∑
t∈[p]

ω
(i)
t x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
(a)
= − 1

L′

∑
u∈[L]

∑
t∈Su

ω
(i)
t x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
(64)
= − 1

L′

∑
u∈[L]

ψu(x
(i);ω(i)) (65)

where (a) follows because each t ∈ [p] appears in exactly L′ = ⌈L/32
√
2αβx2max⌉ of the sets

S1, · · · , SL according to Prop. 4(a) (with λ = 1
4
√
2x2

max

). Now, we focus on the L terms in (65).

Consider any u ∈ [L]. We claim that conditioned on x
(i)
−Su

and z(i), the expected value of
ψu(x

(i);ω(i)) can be upper bounded uniformly across all u ∈ [L]. We provide a proof at the
end.
Lemma 11 (Upper bound on expected ψu). Fix ε5 > 0, δ5 ∈ (0, 1), i ∈ [n] and θ(i) ∈ Λθ. Then,
with ω(i) defined in (59) and given z(i) and x

(i)
−Su

for all u ∈ [L], we have

max
u∈[L]

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
≤ ε5∥ω(i)∥1 for n ≥ O(exp(β)) log(4p/δ5)

ε45
with probability at least 1− δ5.

Consider again any u ∈ [L]. Now, we claim that conditioned on x
(i)
−Su

and z(i), ψu(x(i);ω(i))
concentrates around its conditional expected value. We provide a proof at the end.
Lemma 12 (Concentration of ψu). Fix ε6 > 0, i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ. Then, with ω(i)

defined in (59) and given z(i) and x
(i)
−Su

, we have∣∣∣ψu(x(i);ω(i))− E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]∣∣∣ ≤ ε6,

with probability at least 1− exp

(
−ε26

exp
(
O(β)

)
∥ω(i)∥22

)
.
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Given these lemmas, we proceed to show the concentration of ∂ω(i)(L(i)(θ⋆(i))). To that end, for any
u ∈ [L], given x

(i)
−Su

and z(i), let Eu denote the event that

ψu(x
(i);ω(i)) ≤ E

[
ψu(x

(i);ω(i))|x(i)
−Su

, z(i)
]
+

1

32
√
2αβx2max

ε3∥ω(i)∥22. (66)

Since Eu in an indicator event, using the law of total expectation results in

P(Eu) = E
[
P(Eu|x(i)

−Su
, z(i))

] (a)

≥ 1− exp

(
−ε23∥ω(i)∥22
exp

(
O(β)

)).
where (a) follows from Lem. 12 with ε6 =

ε3∥ω(i)∥22
32

√
2αβx2max

. Now, by applying the union bound over

all u ∈ [L] where L = 1024α2β2x4max log 4p, we have

P
( ⋂
u∈L

Eu

)
≥ 1−O

(
β2 log p exp

(
−ε23∥ω(i)∥22
exp

(
O(β)

))).
Now, assume the event ∩u∈LEu holds. Whenever this holds, we also have∣∣∂ω(i)(L(i)(θ⋆(i)))

∣∣ (65)
≤ 1

L′

∑
u∈[L]

∣∣ψu(x(i);ω(i))
∣∣

(66)
≤ 1

L′

∑
u∈[L]

∣∣∣E[ψu(x(i);ω(i))|x(i)
−Su

, z(i)
]
+

1

32
√
2αβx2max

ε3∥ω(i)∥22
∣∣∣ (67)

where L′ = ⌈L/32
√
2αβx2max⌉. Further, using Lem. 11 in (67) with ε5 =

ε2

32
√
2αβx2max

and

δ5 = δ2, whenever

n ≥ O

(
exp

(
O(β)

)
log(p/δ2)

ε42

)
,

with probability at least 1− δ2, we have,∣∣∂ω(i)(L(i)(θ⋆(i)))
∣∣ ≤ 1

L′

∑
u∈[L]

( 1

32
√
2αβx2max

ε2∥ω(i)∥1 +
1

32
√
2αβx2max

ε3∥ω(i)∥22
)

=
L

32
√
2αβx2maxL

′

(
ε2∥ω(i)∥1 + ε3∥ω(i)∥22

) (a)

≤ ε2∥ω(i)∥1 + ε3∥ω(i)∥22,

where (a) follows because L′ = ⌈L/32
√
2αβx2max⌉.

Proof of (63): Expression for first directional derivative: Fix any i ∈ [n]. The first-order partial
derivatives of L(i) (defined in (49)) with respect to the entries of the parameter vector θ(i) are given
by

∂L(i)(θ(i))

∂θ
(i)
t

= −x(i)t exp
(
− [θ

(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
for all t ∈ [p].

Now, we can write the first-order directional derivative of L(i) as

∂ω(i)(L(i)(θ(i))) ≜ lim
h→0

L(i)(θ(i) + hω(i))− L(i)(θ(i))

h
=

∑
t∈[p]

ω
(i)
t

∂L(i)(θ(i))

∂θ
(i)
t

= −
∑
t∈[p]

ω
(i)
t x

(i)
t exp

(
− [θ

(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
.
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Proof of Lem. 11: Upper bound on expected ψu: Fix any i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ. Then,
given x

(i)
−Su

and z(i), we have

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
(a)
= E

[ ∑
t∈Su

ω
(i)
t x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

) ∣∣∣ x(i)
−Su

, z(i)
]

(b)
=

∑
t∈Su

ω
(i)
t E

[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

) ∣∣∣ x(i)
−Su

, z(i)
]

(c)
=

∑
t∈Su

ω
(i)
t E

[
E
[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

) ∣∣∣ x(i)
−t, z

(i)
] ∣∣∣∣ x(i)

−Su
, z(i)

]
, (68)

where (a) follows from the definition of ψu(x(i);ω(i)) in (64), (b) follows from linearity of
expectation, and (c) follows from the law of total expectation, i.e., E[E[Y |X,Z]|Z] = E[Y |Z]
since x

(i)
−Su

⊆ x
(i)
−t.

Now, for every t ∈ Su, we will bound E
[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t , z(i)

) ∣∣∣ x(i)
−t, z

(i)
]
. We

have

E
[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

) ∣∣∣ x(i)
−t, z

(i)
]

=

∫
X
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
fxt|x−t,z

(
x
(i)
t |x(i)

−t, z
(i); θ⋆t (z

(i)),Θ⋆t
)
dx

(i)
t

(8)
=

∫
X x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
exp

(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
dx

(i)
t∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
dx

(i)
t

(a)
=

∫
X x

(i)
t exp

(
2[Θ⋆t − Θ̂t]

⊤x(i)x
(i)
t

)
dx

(i)
t∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
dx

(i)
t

(b)
=

∫
X x

(i)
t

[
1+2

(
[Θ⋆t−Θ̂t]

⊤x(i)x
(i)
t

)
+4

(
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t

)2
+o

(
[Θ⋆t−Θ̂t]
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(i)
t

)3]
dx

(i)
t∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
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(i)
t

(c)
=

4x3max[Θ
⋆
t − Θ̂t]

⊤x(i)

3
∫
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(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
dx

(i)
t

+
x5max

(
[Θ⋆t − Θ̂t]

⊤x(i)
)3
o(1)∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤t x(i)]x
(i)
t

)
dx

(i)
t

,

(69)

where (a) follows because θ⋆(i) = θ⋆(z(i)) ∀i ∈ [n], (b) follows by using the Taylor series expansion
exp(y) = 1+ y+ y2 + o(y3) around zero, (c) follows because

∫
X x

(i)
t dx

(i)
t = 0,

∫
X
(
x
(i)
t

)2
dx

(i)
t =

2x3max/3,
∫
X
(
x
(i)
t

)3
dx

(i)
t = 0, and

∫
X
(
x
(i)
t

)4
dx

(i)
t = 2x5max/5.

Now, we bound the numerators in (69) by using ∥Θ⋆t − Θ̂t∥1 ≤ 2β∥Θ⋆t − Θ̂t∥∞ ≤ 2β∥Θ⋆t − Θ̂t∥2
which follows from the order of norms on Euclidean space as well as Θ⋆ ∈ ΛΘ and Θ̂ ∈ ΛΘ. Then,

we invoke Thm. 1 to bound ∥Θ⋆t − Θ̂t∥2 by ε =
3ε5

4βC2,τx
3
max

. Therefore, we subsume the second

term by the first term resulting in the following bound:

E
[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

) ∣∣∣ x(i)
−t, z

(i)
]
≤

4βC2,τx
3
max∥Θ⋆t − Θ̂t∥2

3
, (70)

where we have used the triangle inequality, ∥x(i)∥∞ ≤ xmax for all i ∈ [n] as well as ∥Θ⋆t − Θ̂t∥1 ≤
2β∥Θ⋆t − Θ̂t∥2 to upper bound the numerator, and the arguments used in the proof of Lem. 7 as well
as

∫
X dx

(i)
t = 2xmax to lower bound the denominator.
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Using Thm. 1 in (70) with ε =
3ε5

4βC2,τx
3
max

and δ = δ5, we have

E
[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

) ∣∣∣ x(i)
−t, z

(i)
]
≤ ε5, (71)

with probability at least 1− δ5 as long as

n ≥ O(exp(β)) log(4p/δ5)

ε45
. (72)

Using (71) and triangle inequality in (68), we have

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
≤ ε5

∑
t∈Su

∣∣ω(i)
t

∣∣ ≤ ε5∥ω(i)∥1,

with probability at least 1− δ5 as long as n satisfies (72).

Proof of Lem. 12: Concentration of ψu: To show this concentration result, we use Cor. 2 (140)
for the function q2. To that end, we note that the pair {x, z} corresponds to a τ-SGM (Def. 8)
with τ ≜ (α, αβ, xmax,Θ). However, the random vector x conditioned on z need not satisfy the
Dobrushin’s uniqueness condition (Def. 4). Therefore, we cannot apply Cor. 2 (140) as is. To resolve
this, we resort to Prop. 4 with λ = 1

4
√
2x2

max

to reduce the random vector x conditioned on z to
Dobrushin’s regime.

Fix any u ∈ [L]. Then, from Prop. 4(b), (i) the pair of random vectors {xSu , (x−Su , z)} corresponds
to a τ1-SGM with τ1 ≜ (α + 2αβxmax,

1
4
√
2x2

max

, xmax,ΘSu
), and (ii) the random vector xSu

conditioned on (x−Su , z) satisfies the Dobrushin’s uniqueness condition (Def. 4) with coupling
matrix 2

√
2x2maxΘSu with 2

√
2x2max|||ΘSu |||op ≤ 2

√
2x2maxλ ≤ 1/2. Now, for any fixed i ∈ [n], we

apply Cor. 2 (140) for the function q2 with ε = ε6 for a given x
(i)
−Su

and z(i), to obtain

P
(∣∣∣ψu(x(i);ω(i))− E

[
ψu(x

(i);ω(i))
∣∣∣ x(i)

−Su
, z
]∣∣∣ ≥ ε6

∣∣∣ x(i)
−Su

, z

)
≤ exp

(
−ε26

exp
(
O(β)

)
∥ω(i)∥22

)
.

D.1.2 Proof of Lem. 10 (b): Anti-concentration of second directional derivative

Fix some i ∈ [n] and some θ(i) ∈ Λθ. Let ω(i) defined in (59). We claim that the second-order
directional derivative of L(i) defined in (49) is given by

∂2[ω(i)]2L
(i)(θ(i)) =

∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2
exp

(
− [θ

(i)
t + 2Θ̂⊤

t x
(i)]x

(i)
t

)
. (73)

We provide a proof at the end. For now, we assume the claim and proceed. Now, we lower bound
∂2
[ω(i)]2

L(i)(θ(i)) by a quadratic form as follows:

∂2[ω(i)]2L
(i)(θ(i))

(a)

≥
∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 × exp
(
− |θ(i)t + 2Θ̂⊤

t x
(i)|xmax

)
(b)

≥
∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 × exp
(
−

(
|θ(i)t |+ 2∥Θ̂t∥1∥x(i)∥∞

)
xmax

)
(c)

≥
∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 × exp
(
− (α+ 2αβxmax)xmax

)
(29)
=

1

C2,τ

∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2
,

(74)

where (a) follows from (73) because ∥x(i)∥∞ ≤ xmax for all i ∈ [n], (b) follows by triangle
inequality and Cauchy–Schwarz inequality, and (c) follows because Θ̂ ∈ ΛΘ, θ(i) ∈ Λθ, and
∥x(i)∥∞ ≤ xmax for all i ∈ [n].
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Now, to show the anti-concentration of ∂2
[ω(i)]2

L(i)(θ(i)), we show the anti-concentration of the
quadratic form in (74). To that end, we note that the pair {x, z} corresponds to a τ-SGM (Def. 8)
with τ ≜ (α, αβ, xmax,Θ). Then, we decompose the quadratic form in (74) as a sum of L =
1024α2β2x4max log 4p terms using Prop. 4 (see App. F) with λ = 1

4
√
2x2

max

and focus on these L

terms. Consider the L subsets S1, · · · , SL ∈ [p] obtained from Prop. 4 and define

ψu(x
(i);ω(i)) ≜

∑
t∈Su

(
ω
(i)
t x

(i)
t

)2
for every u ∈ L. (75)

Then, we have∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 (a)
=

1

L′

∑
u∈[L]

∑
t∈Su

(
ω
(i)
t x

(i)
t

)2 (75)
=

1

L′

∑
u∈[L]

ψu(x
(i);ω(i)) (76)

where (a) follows because each t ∈ [p] appears in exactly L′ = ⌈L/32
√
2αβx2max⌉ of the sets

S1, · · · , SL according to Prop. 4(a) (with λ = 1
4
√
2x2

max

). Now, we focus on the L terms in (76).

Consider any u ∈ [L]. We claim that conditioned on x
(i)
−Su

and z(i), the expected value of
ψu(x

(i);ω(i)) can be upper bounded uniformly across all u ∈ [L]. We provide a proof at the
end.

Lemma 13 (Lower bound on expected ψu). Fix i ∈ [n] and θ(i) ∈ Λθ. Then, with ω(i) defined in
(59) and given z(i) and x

(i)
−Su

, we have given x
(i)
−Su

and z(i),

min
u∈[L]

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
≥ xmax

πeC2
2,τ

∥ω(i)∥22,

where the constant C2,τ was defined in (29).

Consider again any u ∈ [L]. Now, we claim that conditioned on x
(i)
−Su

and z(i), ψu(x
(i);ω(i))

concentrates around its conditional expected value. We provide a proof at the end.

Lemma 14 (Concentration of ψu). Fix ε7 > 0, i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ. Then, with ω(i)

defined in (59) and given z(i) and x
(i)
−Su

, we have∣∣∣ψu(x(i);ω(i))− E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]∣∣∣ ≤ ε7,

with probability at least 1− exp

(
−ε27

exp
(
O(β)

)
∥ω(i)∥22

)
.

Given these lemmas, we proceed to show the anti-concentration of the quadratic form in (74) implying
the anti-concentration of ∂2

[ω(i)]2
L(i)(θ(i)). To that end, for any u ∈ [L], given x

(i)
−Su

and z(i), let Eu
denote the event that

ψu(x
(i);ω(i)) ≥ E

[
ψu(x

(i);ω(i))|x(i)
−Su

, z(i)
]
− xmax

2πeC2
2,τ

∥ω(i)∥22. (77)

Since Eu in an indicator event, using the law of total expectation results in

P(Eu) = E
[
P(Eu|x(i)

−Su
, z(i))

] (a)

≥ 1− exp

(
∥ω(i)∥22

exp
(
O(β)

)),
where (a) follows from Lem. 14 with ε7 =

xmax

2πeC2
2,τ

∥ω(i)∥22. Now, by applying the union bound

over all u ∈ [L] where L = 1024α2β2x4max log 4p, we have

P
( ⋂
u∈L

Eu

)
≥ 1−O

(
β2 log p exp

(
∥ω(i)∥22

exp
(
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))).
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Now, assume the event ∩u∈LEu holds. Whenever this holds, we also have∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 (76)
=

1

L′

∑
u∈[L]

ψu(x
(i);ω(i))

(77)
≥ 1
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−Su
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where L′ = ⌈L/32
√
2αβx2max⌉ and (a) follows from Lem. 13. Finally, approximating L′ =

L/32
√
2αβx2max and using (74), we have

∂2[ω(i)]2L
(i)(θ(i)) ≥ 1

C2,τ
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ω
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t x
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)2 (78)
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2αβx3max

πeC3
2,τ
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which completes the proof.

Proof of (73): Expression for second directional derivative: Fix any i ∈ [n]. The second-order
partial derivatives of L(i) (defined in (49)) with respect to the entries of the parameter vector θ(i) are
given by

∂2L(i)(θ(i))

∂
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t

]2 =
[
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]2
exp

(
− [θ
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)
for all t ∈ [p].

Now, we can write the second-order directional derivative of L(i) as
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.

Proof of Lem. 13: Lower bound on expected ψu: Fix any i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ. Then,
given x

(i)
−Su

and z(i), we have

E
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(75)
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≥ xmax

πeC2
2,τ

∥ω(i)∥22,

where (a) follows from linearity of expectation, (b) follows from the law of total expectation i.e.,
E[E[Y |X,Z]|Z] = E[Y |Z] since x(i)

−Su
⊆ x

(i)
−t, (c) follows follows from the fact that for any random

variable a, E[a2] ≥ Var[a], and (d) follows from Lem. 7.

Proof of Lem. 14: Concentration of ψu: To show this concentration result, we use Cor. 2 (140)
for the function q1. To that end, we note that the pair {x, z} corresponds to a τ-SGM (Def. 8)
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with τ ≜ (α, αβ, xmax,Θ). However, the random vector x conditioned on z need not satisfy the
Dobrushin’s uniqueness condition (Def. 4). Therefore, we cannot apply Cor. 2 (140) as is. To resolve
this, we resort to Prop. 4 with λ = 1

4
√
2x2

max

to reduce the random vector x conditioned on z to
Dobrushin’s regime.

Fix any u ∈ [L]. Then, from Prop. 4(b), (i) the pair of random vectors {xSu , (x−Su , z)} corresponds
to a τ1-SGM with τ1 ≜ (α + 2αβxmax,

1
4
√
2x2

max

, xmax,ΘSu
), and (ii) the random vector xSu

conditioned on (x−Su , z) satisfies the Dobrushin’s uniqueness condition (Def. 4) with coupling
matrix 2

√
2x2maxΘSu with 2

√
2x2max|||ΘSu |||op ≤ 2

√
2x2maxλ ≤ 1/2. Now, for any fixed i ∈ [n], we

apply Cor. 2 (140) for the function q1 with ε = ε7 for a given x
(i)
−Su

and z(i), to obtain
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)
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(
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(
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)
∥ω(i)∥22

)
.

D.2 Proof of Lem. 9: Lipschitzness of the loss function

Fix any i ∈ [n], any θ(i), θ̃(i) ∈ Λθ. Consider the direction ω(i) = θ̃(i) − θ(i), and define the function
q : [0, 1] → R as follows:

q(a) = L(i)
(
θ(i) + a(θ̃(i) − θ(i))

)
. (79)

Then, the desired inequality in (51) is equivalent to |q(1) − q(0)| ≤ xmaxC2,τ∥ω(i)∥1. From the
mean value theorem, there exists a′ ∈ (0, 1) such that

|q(1)− q(0)| =
∣∣∣∣dq(a′)da

∣∣∣∣. (80)

Therefore, we have∣∣q(1)− q(0)
∣∣ (80)
=
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(79)
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)
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=
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(i)
t

∣∣+ ∣∣a′θ̃(i)t ∣∣+ 2∥Θ̂t∥1∥x(i)∥∞
]
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)
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≤ xmax exp
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(1−a′)α+a′α+2αβxmax

)
xmax

) ∑
t∈[p]

∣∣ω(i)
t

∣∣ (29)
= xmaxC2,τ∥ω(i)∥1,

where (a) follows from triangle inequality, Cauchy–Schwarz inequality, and because ∥x(i)∥∞ ≤
xmax for all i ∈ [n] and (b) follows because θ(i), θ̃(i) ∈ Λθ, Θ̂ ∈ ΛΘ, and ∥x(i)∥∞ ≤ xmax for all
i ∈ [n].

E Logarithmic Sobolev inequality and tail bounds

In this section, we present two results which may be of independent interest. First, we show
that a random vector supported on a compact set satisfies the logarithmic Sobolev inequality (to
be defined) if it satisfies the Dobrushin’s uniqueness condition (to be defined). This result is a
generalization of the result in [20] for discrete random vectors to continuous random vectors
supported on a compact set. Next, we show that if a random vector satisfies the logarithmic Sobolev
inequality, then any arbitrary function of the random vector concentrates around its mean. This
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result is a generalization of the result in [12] for discrete random vectors to continuous random vectors.

Throughout this section, we consider a p-dimensional random vector x supported on X p with
distribution fx where p ≥ 1. We start by defining the logarithmic Sobolev inequality (LSI). We use
the convention 0 log 0 = 0.
Definition 3 (Logarithmic Sobolev inequality). A random vector x satisfies the logarithmic Sobolev
inequality with constant σ2 > 0 (abbreviated as LSIx(σ2)) if

Entx
(
q2
)
≤ σ2Ex

[
∥∇xq(x)∥22

]
for all q : X p → R, (81)

where Entx (g) ≜ Ex[g(x) log g(x)]−Ex[g(x)] logEx[g(x)] denotes the entropy of the function g :
X p→R+.

Next, we restate the Dobrushin’s uniqueness condition [20].
Definition 4. [20, Dobrushin’s uniqueness condition] A random vector x satisfies the Dobrushin’s
uniqueness condition with coupling matrix Θ ∈ Rp×p with Θtt = 0 for all t ∈ [p], if |||Θ|||op < 1,
and for every t ∈ [p], u ∈ [p]\{t}, and x−t, x̃−t ∈ X p−1 differing only in the uth coordinate,

∥fxt|x−t=x−t
−fxt|x−t=x̃−t

∥TV ≤ Θtu. (82)

From hereon, we let X p be compact unless otherwise specified. Moreover, we define

fmin ≜ min
t∈[p],x∈Xp

fxt|x−t
(xt|x−t). (83)

Now, we provide the first main result of this section with a proof in App. E.1.
Proposition 2 (Logarithmic Sobolev inequality). If a random vector x with fmin > 0 (see
(83)) satisfies (a) the Dobrushin’s uniqueness condition (Def. 4) with coupling matrix Θ ∈ Rp×p,
and (b) xt|x−t satisfies LSIxt|x−t=x−t

(σ2) for all t ∈ [p] and x−t ∈ X p−1, then it satisfies
LSIx(2σ

2/(fmin(1− |||Θ|||op)2)).

Next, we define the notion of pseudo derivative and pseudo Hessian that come in handy in our proofs
for providing upper bounds on the norm of the derivative and the Hessian.

Definition 5 (Pseudo derivative and Hessian). For a function q : X p → R, the functions ∇̃q :

X p → Rp1 and ∇̃2q : X p → Rp1×p2 (p1, p2 ≥ 1) are respectively called a pseudo derivative and a
pseudo Hessian for q if for all y ∈ X p and ρ ∈ Rp1×1, we have

∥∇̃q(y)∥2 ≥ ∥∇q(y)∥2 and ∥ρ⊤∇̃2q(y)∥2 ≥ ∥∇
[
ρ⊤∇̃q(y)

]
∥2. (84)

Finally, we provide the second main result of this section with a proof in App. E.2.
Proposition 3 (Tail bounds for arbitrary functions under LSI). Given a random vector x satisfying
LSIx(σ

2), any function q : X p → R with a pseudo derivative ∇̃q, and pseudo Hessian ∇̃2q (see
Def. 5) satisfies a tail bound, namely for any fixed ε > 0, we have

P
[∣∣q(x)−E

[
q(x)

]∣∣≥ε]≤exp

(
−c
σ4

min
( ε2

E
[
∥∇̃q(x)∥2

]2
+max

x∈Xp
|||∇̃2q(x)|||2F

,
ε

max
x∈Xp

|||∇̃2q(x)|||op

))
,

where c is a universal constant.

E.1 Proof of Prop. 2: Logarithmic Sobolev inequality

We start by defining the notion of W2 distance [20] which is useful in the proof. We note that W2

distance is a metric on the space of probability measures and satisfies triangle inequality.
Definition 6. [20, W2 distance] For random vectors x and y supported on X p with distributions f

and g respectively, the W2 distance is given by W 2
2 (gy, fx) ≜ infπ

∑
t∈[p]

[
Pπ(xt ̸= yt)

]2
, where

the infimum is taken over all couplings π(x, y) such that π(x) = f(x) and π(y) = g(y).
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Given Def. 6, our next lemma states that if appropriate W2 distances are bounded, then the KL
divergence and the entropy approximately tensorize. We provide a proof in App. E.1.1.

Lemma 15 (Approximate tensorization of KL divergence and entropy). Given random vectors x
and y supported on X p with distributions f and g respectively such that fmin > 0 (see (83)), if for
all subsets S ⊆ [p] (with SC ≜ [p] \ S) and all ySC ∈ X p−|S|,

W 2
2

(
gyS |ySC=ySC

, fxS |xSC=ySC

)
≤C

∑
t∈S

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC = ySC

]
, (85)

almost surely for some constant C ≥ 1, then

KL (gy ∥fx) ≤
2C

fmin

∑
t∈[p]

E
[
KL

(
gyt|y−t=y−t

∥∥fxt|x−t=y−t

) ]
, and (86)

Entx (q) ≤
2C

fmin

∑
t∈[p]

Ex−t

[
Entxt|x−t

(q)
]

for any function q : X p → R+. (87)

Next, we claim that if the random vector x satisfies Dobrushin’s uniqueness condition, then the
condition (85) of Lem. 15 is naturally satisfied. We provide a proof in App. E.1.2.

Lemma 16 (Dobrushin’s uniqueness implies approximate tensorization). Given random vectors
x and y supported on X p with distributions f and g respectively, if x satisfies Dobrushin’s uniqueness
condition (see Def. 4) with coupling matrix Θ ∈ Rp×p, then for all subsets S ⊆ [p] (with SC ≜ [p]\S)
and all ySC ∈ X p−|S|,

W 2
2

(
gyS |ySC=ySC

, fxS |xSC=ySC

)
≤ 1(

1−|||Θ|||op
)2∑

t∈S
E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC =ySC

]
,

(88)

almost surely.

Now to prove Prop. 2, applying Lem. 15 and 16 for an arbitrary function f : X p → R, we find that

Entx
(
q2
)
≤ 2

fmin

(
1− |||Θ|||op

)2 ∑
t∈[p]

Ex−t

[
Entxt|x−t

(
q2
) ]

(a)

≤ 2σ2

fmin

(
1− |||Θ|||op

)2 ∑
t∈[p]

Ex−t

[
Ext|x−t

[
∥∇xtq(xt; x−t)∥

2
2

]]
(b)
=

2σ2

fmin

(
1− |||Θ|||op

)2Ex−t

[
Ext|x−t

[ ∑
t∈[p]

∥∇xtq(xt; x−t)∥
2
2

]]
(c)
=

2σ2

fmin

(
1− |||Θ|||op

)2Ex

[
∥∇xq(x)∥22

]
,

where (a) follows because xt|x−t satisfies LSIxt|x−t=x−t
(σ2) for all t ∈ [p] and x−t ∈ X p−1, (b)

follows by the linearity of expectation and (b) follows by the law of total expectation. The claim
follows.

E.1.1 Proof of Lem. 15: Approximate tensorization of KL divergence and entropy

We start by establishing a reverse-Pinsker style inequality for distributions with compact support to
bound their KL divergence by their total variation distance. We provide a proof at the end..

Lemma 17 (Reverse-Pinsker inequality). For any distributions f and g supported on X ⊂ R such
that minx∈X f(x) > 0, we have KL (g ∥f) ≤ 4

minx∈X f(x)∥g−f∥
2
TV.

Given Lem. 17, we proceed to prove Lem. 15.
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Proof of bound (86): To prove (86), we show that the following inequality holds using the technique
of mathematical induction on p:

KL (gy ∥fx) ≤
4C

fmin

∑
t∈[p]

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
. (89)

Then, (86) follows by using Pinsker’s inequality to bound the right hand side of (89).

Base case: p = 1: For the base case, we need to establish that the claim holds for all distributions
supported on X that satisfy the required conditions. In other words, we need to show that

KL (gy ∥fx) ≤
4C

fmin
∥gy−fx∥2TV for every t ∈ [p].

for all random variables x and y supported on X such that fmin = minx∈X fx(x) > 0. This follows
from Lem. 17 by observing that C ≥ 1.

Inductive step: Now, we assume that the claim holds for all distributions supported on X p−1 that
satisfy the required conditions, and establish it for distributions supported on X p. From the chain
rule of KL divergence, we have

KL (gy ∥fx) = KL (gyt ∥fxt) + E
[
KL

(
gy−t|yt

∥∥fx−t|xt
) ]

for every t ∈ [p].

Taking an average over all t ∈ [p], we have

KL (gy ∥fx) =
1

p

∑
t∈[p]

KL (gyt ∥fxt) +
1

p

∑
t∈[p]

E
[
KL

(
gy−t|yt

∥∥fx−t|xt
) ]
. (90)

Now, we bound the first term in (90). Let π∗ be such that

π∗ = argmin
π:π(x)=f(x),π(y)=g(y)

∑
t∈[p]

[
Pπ(xt ̸= yt)

]2
. (91)

Then, we have
1

p

∑
t∈[p]

KL (gyt ∥fxt)
(a)

≤ 1

p

∑
t∈[p]

4

fmin
∥gyt−fxt∥2TV

(b)

≤ 4

pfmin

∑
t∈[p]

[
Pπ∗(xt ̸= yt)

]2
(c)
=

4

pfmin
W 2

2 (gy, fx)

(85)
≤ 4C

pfmin

∑
t∈[p]

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
(92)

where (a) follows from Lem. 17 by observing that the marginals are lower
bounded if the conditional are lower bounded, i.e., mint∈[p],xt∈X fxt(xt) =

mint∈[p],xt∈X
∫
x−t∈Xp−1 fxt|x−t

(xt|x−t)fx−t
(x−t)dx−t > fmin, (b) follows from the

connections of total variation distance to optimal transportation cost, i.e., ∥gy − fx∥TV =
infπ:π(x)=f(x),π(y)=g(y) Pπ(x ̸= y), and (c) follows from Def. 6 and (91).

Next, we bound the second term in (90). We have∑
t∈[p]

E
[
KL

(
gy−t|yt

∥∥fx−t|xt
) ] (a)

≤
∑
t∈[p]

E
[
4C

fmin

∑
u∈[p]\{t}

E
[
∥gyu|y−u=y−u

−fxu|x−u=y−u
∥2TV

∣∣∣yt = yt

]]
(b)
=

4C

fmin

∑
t∈[p]

∑
u∈[p]\{t}

E
[
∥gyu|y−u=y−u

−fxu|x−u=y−u
∥2TV

]
=

4C(p− 1)

fmin

∑
u∈[p]

E
[
∥gyu|y−u=y−u

−fxu|x−u=y−u
∥2TV

]
, (93)

where (a) follows from the inductive hypothesis and (b) follows from the law of total expectation.
Then, (89) follows by putting (90), (92), and (93) together.
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Proof of bound (87): To prove (87), we note that (86) holds for any random vector y supported on
X p. Consider y be such that q(x)/Ex[q(x)] is the Radon-Nikodym derivative of gy with respect to fx.
Then, we have

dgy−t

dfx−t

=
Ext|x−t

[
q(x)

]
Ex

[
q(x)

] and
dgyt|y−t

dfxt|x−t

=
q(x)

Ext|x−t

[
q(x)

] for all t ∈ [p]. (94)

We have

KL (gy ∥fx)
(a)
= Ex

[
dgy
dfx

log
dgy
dfx

]
(b)
= Ex

[
q(x)

Ex

[
q(x)

] log q(x)

Ex

[
q(x)

]]
=

1

Ex

[
q(x)

](Ex

[
q(x) log q(x)

]
− Ex

[
q(x)

]
logEx

[
q(x)

])
=

Entx (q)

Ex

[
q(x)

] , (95)

where (a) follows from the definition of KL divergence and (b) follows from the choice of y. Similarly,
for every t ∈ [p], we have

Ey−t

[
KL

(
gyt|y−t=y−t

∥∥fxt|x−t=y−t

) ]
(a)
= Ey−t

[
Eyt|y−t

[
log

dgyt|y−t

dfxt|x−t

]]
(b)
= Ey

[
log

dgyt|y−t

dfxt|x−t

]
(c)
= Ex

[
dgy
dfx

log
dgyt|y−t

dfxt|x−t

]
(d)
= Ex

[
q(x)

Ex

[
q(x)

] log q(x)

Ext|x−t

[
q(x)

]]
(e)
=

Ex−t

[
Ext|x−t

[
q(x) log q(x)

]
− Ext|x−t

[
q(x) logExt|x−t

[
q(x)

]]]
Ex

[
q(x)

] (f)
=

Ex−t

[
Entxt|x−t

(q)
]

E
[
q(x)

] .

(96)

where (a) follows from the definition of KL divergence, (b) follows from the law of total expectation,
(c) follows from the definition of Radon-Nikodym derivative, (d) follows from the choice of y and
(94), (e) follows from the law of total expectation, (f) follows from the definition of entropy. Then,
(87) follows by putting (86), (95), and (96) together.

Proof of Lem. 17: Reverse-Pinsker inequality: Using the facts (a) log a ≥ 1− 1
a for all a > 0,

and (b) minx∈X f(x) > 0, we find that

log
f(x)

g(x)
≥ 1− g(x)

f(x)
for every x ∈ X . (97)

Multiplying both sides of (97) by g(x) ≥ 0 and rearranging terms yields that

g(x) log
g(x)

f(x)
≤ g2(x)

f(x)
− g(x) for every x ∈ X . (98)

Now, we have

KL (g ∥f) =
∫
x∈X

g(x) log
g(x)

f(x)
dx

(98)
≤

∫
x∈X

(
g2(x)

f(x)
− g(x)

)
dx

(a)
=

∫
x∈X

(
g(x)− f(x)

)2
f(x)

dx

≤ 1

minx∈X f(x)

∫
x∈X

(
g(x)− f(x)

)2
dx
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(b)

≤ 1

minx∈X f(x)

(∫
x∈X

∣∣g(x)− f(x)
∣∣dx)2

(c)
=

1

minx∈X f(x)

(
2∥g−f∥TV

)2

=
4

minx∈X f(x)
∥g−f∥2TV,

where (a) follows by simple manipulations, (b) follows by using the order of norms on Euclidean
space, and (c) follows by the definition of the total variation distance.

E.1.2 Proof of Lem. 16: Dobrushin’s uniqueness implies approximate tensorization

We start by defining the notion of Gibbs sampler which is useful in the proof.
Definition 7. [20, Gibbs Sampler] For a random vector x with distribution f , define the Markov
kernels and the Gibbs sampler as follows:

Γt(x|x′) ≜ 1(x−t = x′
−t)fxt|x−t

(xt|x′
−t) and Γ(x|x′) ≜ p−1

∑
t∈[p]

Γt(x|x′), (99)

for all t ∈ [p] and x, x′ ∈ X p. That is, the kernel Γt leaves all but the tth coordinate unchanged, and
updates the tth coordinate according to fxt|x−t

, and the sampler Γ selects an index t ∈ [p] at random,
and applies Γt. Further, for a random vector y with distribution g supported on X p, we also define

gyΓt(y) ≜
∫
gy(y

′)Γt(y|y′)dy′ for t ∈ [p], and gyΓ(y) ≜
∫
gy(y

′)Γ(y|y′)dy′ for y ∈ X p.

(100)

We now proceed to prove Lem. 16 and split it in two cases: (i) S = [p], and (ii) S ⊂ [p].

Case (i) (S = [p]): Let Γ be the Gibbs sampler associated with the distribution f . Then,

W2

(
gyS |ySC

, fxS |xSC

)
=W2(gy, fx)

(a)

≤ W2(gy, gyΓ) +W2(gyΓ, fx), (101)

where (a) follows from the triangle inequality. We claim that

W2(gy, gyΓ) ≤
1

p

√∑
t∈[p]

Ey−t

[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
, and (102)

W2(gyΓ, fx) ≤
(
1− (1− |||Θ|||op)

p

)
W2(gy, fx). (103)

Putting (101) to (103) together, we have

W2(gy, fx) ≤
1

p

√∑
t∈[p]

Ey−t

[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
+

(
1− (1− |||Θ|||op)

p

)
W2(gy, fx).

(104)

Rearranging (104) results in (88) for S = [p] as desired. It remains to prove our earlier claims (102)
and (103) which we now do one-by-one.

Proof of bound (102) on W2(gy, gyΓ): To bound W2(gy, gyΓ), we construct a random vector yΓ
such that it is coupled with the random vector y. We select an index b ∈ [p] at random, and define

yΓv ≜ yv for all v ∈ [p] \ {b}.

Then, given b and y−b = y−b, we define the joint distribution of (yb, yΓ
b ) to be the maximal coupling

of gyb|y−b=y−b
and fxb|x−b=y−b

that achieves ∥gyb|y−b=y−b
−fxb|x−b=y−b

∥TV. It is easy to see that the
marginal distribution of y is gy and the marginal distribution of yΓ is gyΓ (see Def. 7). Then, we have

W 2
2 (gy, gyΓ)

(a)

≤
∑
t∈[p]

[
P(b = t)P(yt ̸= yΓ

t |b = t) + P(b ̸= t)P(yt ̸= yΓ
t |b ̸= t)

]2
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(b)
=

∑
t∈[p]

[
1

p
P(yt ̸= yΓ

t |b = t)

]2
(c)
=

1

p2

∑
t∈[p]

[ ∫
y−t∈Xp−1

P(yt ̸= yΓ
t |b = t, y−t = y−t)gy−t|b=t(y−t|b = t)dy−t

]2
(d)
=

1

p2

∑
t∈[p]

[ ∫
y−t∈Xp−1

∥gyt|y−t=y−t
−fxt|x−t=y−t

∥TVgy−t(y−t)dy−t

]2

=
1

p2

∑
t∈[p]

[
Ey−t

[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥TV

]]2
, (105)

where (a) follows from Def. 6 and the Bayes rule, (b) follows because P(b = t) = 1
p and P(yt ̸=

yΓ
t |b ̸= t) = 0, (c) follows by the law of total probability, and (d) follows because gy−t|b=t(y−t|b =
t) = gy−t(y−t) and by the construction of the coupling between y and yΓ. Then, (102) follows by
using Jensen’s inequality in (105).

Proof of bound (103) on W2(gyΓ, fx): We first show that fx is an invariant measure for Γ, i.e.,
fx = fxΓ, implying W2(gyΓ, fx) = W2(gyΓ, fxΓ), and then Γ is a contraction with respect to the

W2 distance with rate 1− (1−|||Θ|||op)
p , i.e., W2(gyΓ, fxΓ) ≤

(
1− (1−|||Θ|||op)

p

)
W2(gy, fx), implying

(103).

Proof of fx being an invariant measure for Γ: We have

fxΓ(x)
(100)
=

∫
x′∈Xp

fx(x
′)Γ(x|x′)dx′ (99)

=

∫
x′∈Xp

fx(x
′)

(
1

p

∑
t∈[p]

Γt(x|x′)

)
dx′

(99)
=

1

p

∑
t∈[p]

∫
x′∈Xp

fx(x
′)1(x−t = x′

−t)fxt|x−t
(xt|x′

−t)dx
′

=
1

p

∑
t∈[p]

fxt|x−t
(xt|x−t)

∫
x′
t∈X

fx(x−t, x
′
t)dx

′
t

=
1

p

∑
t∈[p]

fxt|x−t
(xt|x−t)fx−t

(x−t) = fx(x).

Proof of Γ being a contraction w.r.t the W2 distance: Let π∗ be the coupling between x and y
that achieves W2(gy, fx) i.e.,

π∗ = argmin
π:π(x)=f(x),π(y)=g(y)

√√√√∑
t∈[p]

[
Pπ(xt ̸= yt)

]2
. (106)

We construct random variables x′ and y′ as well as a coupling π′ between them such that the marginal
distribution of x′ is fxΓ and the marginal distribution of y′ is gyΓ. We start by selecting an index
b ∈ [p] at random, and defining

y′v ≜ yv and x′v ≜ xv for all v ̸= b. (107)

Then, given b, y′−b = y−b, and x′−b = x−b, we define the joint distribution of (y ′
b, x

′
b) to be the

maximal coupling of fxb|x−b
(·|y−b) and fxb|x−b

(·|x−b) that achieves ∥fxb|x−b=y−b
−fxb|x−b=x−b

∥TV.

Now, for every t ∈ [p], we bound Pπ′(y ′
t ̸= x ′t) in terms of Pπ∗(yt ̸= xt). To that end, we have

Pπ′(y ′
t ̸= x ′t)

(a)
= P(b = t)Pπ′(y ′

t ̸= x ′t|b = t) + P(b ̸= t)Pπ′(y ′
t ̸= x ′t|b ̸= t)

(b)
=

1

p
Pπ′(y ′

t ̸= x ′t|b = t) +
(
1− 1

p

)
Pπ∗(yt ̸= xt), (108)
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where (a) follows from the Bayes rule and (b) follows because P(b = t) = 1
p and (107). Focusing on

Pπ′(y ′
t ̸= x ′t|b = t) and using the law of total probability, we have

Pπ′(y ′
t ̸= x ′t|b = t)

=

∫
y−t,x−t∈Xp−1

Pπ′(y ′
t ̸= x ′t|b = t, y′−t = y−t, x

′
−t = x−t)π

′
y′−t,x

′
−t|b=t

(y−t,x−t|b = t)dy−tdx−t

(a)
=

∫
y−t,x−t∈Xp−1

∥fxt|x−t=y−t
−fxt|x−t=x−t

∥TVπ∗
y−t,x−t

(y−t,x−t)dy−tdx−t

= Eπ∗
y−t,x−t

[
∥fxt|x−t=y−t

−fxt|x−t=x−t
∥TV

]
(b)

≤ Eπ∗
y−t,x−t

[∑
u∈[p]\{t}

1(ru=xu ̸=yu=su)1(rv=sv=xv∀v<u)

× 1(rv=sv=yv∀v>u)∥fxt|x−t=r−t
−fxt|x−t=s−t

∥TV
]

(82)
≤ Eπ∗

y−t,x−t

[ ∑
u∈[p]\{t}

Θtu1(yu ̸= xu)
]
=

∑
u∈[p]\{t}

ΘtuPπ∗(yu ̸= xu), (109)

where (a) follows by the construction of the coupling between y′ and x′, and (b) follows by triangle
inequality. Putting together (108) and (109), we have

Pπ′(y ′
t ̸= x ′t) ≤

1

p

∑
u∈[p]\{t}

ΘtuPπ∗(yu ̸= xu) +
(
1− 1

p

)
Pπ∗(yt ̸= xt). (110)

Next, we use (110) to show contraction of Γ. We have

W 2
2 (gyΓ, fxΓ)

(a)

≤
∑
t∈[p]

[
Pπ′(y ′

t ̸= x ′t)
]2

(110)
≤

∑
t∈[p]

[
1

p

∑
j∈[p]\{i}

ΘtuPπ∗(yj ̸= xj) +
(
1− 1

p

)
Pπ∗(yt ̸= xt)

]2
(b)

≤
∣∣∣∣∣∣∣∣∣∣∣∣(1− 1

p

)
I +

1

p
Θ

∣∣∣∣∣∣∣∣∣∣∣∣2
op

∑
t∈[p]

[
Pπ∗(yt ̸= xt)

]2
(c)
=

∣∣∣∣∣∣∣∣∣∣∣∣(1− 1

p

)
I +

1

p
Θ

∣∣∣∣∣∣∣∣∣∣∣∣2
op

W 2
2 (gy, fx)

(d)

≤
((

1− 1

p

)
+

1

p
|||Θ|||op

)2

W 2
2 (gy, fx), (111)

where (a) follows from Def. 6, (b) follows by some linear algebraic manipulations, (c) follows from
Def. 6 and (106), and (d) follows from the triangle inequality. Then, contraction of Γ follows by
taking square root on both sides of (111).

Case (ii) (S ⊂ [p]): We can directly verify that the matrix ΘS ≜ {Θtu}t,u∈S is such that |||ΘS |||op ≤
|||Θ|||op. Further, we note that for any ySC ∈ X p−|S|, the random vector xS |xSC = ySC with
distribution fxS |xSC=ySC

satisfies the Dobrushin’s uniqueness condition (Def. 4) with coupling
matrix ΘS . Then, by performing an analysis similar to the one above, we have

W2

(
gyS |ySC

, fxS |xSC

)
≤ 1(

1− |||ΘS |||op
)√∑

t∈S
E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC = ySC

]
(a)

≤ 1(
1− |||Θ|||op

)√∑
t∈S

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC = ySC

]
where (a) follows because 1

(1−|||ΘS |||op) ≤
1

(1−|||Θ|||op) . This completes the proof.
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E.2 Proof of Prop. 3: Tail bounds for arbitrary functions under LSI

Fix a function q : X p → R. Fix any pseudo derivative ∇̃q for q and any pseudo Hessian ∇̃2q for
q. To prove Prop. 3, we bound the p-th moment of q(x) − E

[
q(x)

]
by certain norms of ∇̃2q and

Ex

[
∇̃q(x)

]
. To that end, first, we claim that in order to control the p-th moment of q(x)−E

[
q(x)

]
, it

is sufficient to control the p-th moment of ∥∇q(x)∥2. Then, using (84), we note that the p-th moment
of ∥∇q(x)∥2 is bounded by the p-th moment of ∥∇̃q(x)∥2. Next, we claim that the p-th moment
of ∥∇̃q(x)∥2 is bounded by a linear combination of appropriate norms of ∇̃2q and Ex

[
∇̃q(x)

]
. We

formalize the claims below and divide the proof across App. E.2.1 and App. E.2.2.

Lemma 18 (Bounded p-th moments of q(x) − E
[
q(x)

]
and ∥∇̃q(x)∥2). If a random vector x

satisfies LSIx(σ2), then for any arbitrary function q : X p → R,∥∥q(x)− E
[
q(x)

]∥∥
Lp

≤ σ
√
2p ∥∥∇q(x)∥2∥Lp

for any p ≥ 2 . (112)

Further, for any pseudo derivative ∇̃q(x) and any pseudo Hessian ∇̃2q(x) for q, and even p ≥ 2,

∥∥∇̃q(x)∥2∥Lp ≤ 2cσ
(
max
x∈Xp

|||∇̃2q(x)|||F +
√
p max
x∈Xp

|||∇̃2q(x)|||op
)
+ 4∥Ex

[
∇̃q(x)

]
∥2 (113)

where c ≥ 0 is a universal constant.

Given these lemmas, we proceed to prove Prop. 3. Combining (112) and (113) for any even p ≥ 2,
there exists a universal constant c′ such that∥∥q(x)− E

[
q(x)

]∥∥
Lp

≤ c′σ2
(√

p max
x∈Xp

|||∇̃2q(x)|||F + p max
x∈Xp

|||∇̃2q(x)|||op +
√
p∥Ex

[
∇̃q(x)

]
∥2
)
.

(114)

Now, we complete the proof by using (114) along with Markov’s inequality for a specific choice of p.
For any even p ≥ 2, we have

P
[∣∣q(x)−E

[
q(x)

]∣∣>ec′σ2
(√

p max
x∈Xp

|||∇̃2q(x)|||F + p max
x∈Xp

|||∇̃2q(x)|||op +
√
p∥Ex

[
∇̃q(x)

]
∥2
)]

=P
[∣∣q(x)−E

[
q(x)

]∣∣p>(ec′σ2
)p(√

p max
x∈Xp

|||∇̃2q(x)|||F+p max
x∈Xp

|||∇̃2q(x)|||op+
√
p∥Ex

[
∇̃q(x)

]
∥2
)p]

(a)

≤
E
[∣∣q(x)− E

[
q(x)

]∣∣p](
ec′σ2

)p(√
pmaxx∈Xp |||∇̃2q(x)|||F + pmaxx∈Xp |||∇̃2q(x)|||op +

√
p∥Ex

[
∇̃q(x)

]
∥2
)p

(114)
≤ e−p,

where (a) follows from Markov’s inequality. The proof is complete by choosing an appropriate
universal constant c′′, and and performing basic algebraic manipulations after letting

p =
1

c′′σ2
min

( ε2

E
[
∥∇̃q(x)∥2

]2
+ max

x∈Xp
|||∇̃2q(x)|||2F

,
ε

max
x∈Xp

|||∇̃2q(x)|||op

)
.

We note that a even p ≥ 2 can be ensured by choosing appropriate c′′.

E.2.1 Proof of Lem. 18 (112): Bounded p-th moment of q(x)− E
[
q(x)

]
Fix any p ≥ 2. We start by using the following result from [4, Theorem 3.4] since x satisfies
LSIx(σ

2): ∥∥q(x)− E
[
q(x)

]∥∥2
Lp

≤
∥∥q(x)− E

[
q(x)

]∥∥2
L2

+ 2σ2(p− 2) ∥∥∇q(x)∥2∥
2
Lp
. (115)

Then, we bound the first term in (115) by using the fact that logarithmic Sobolev inequality implies
Poincare inequality with the same constant:∥∥q(x)− E

[
q(x)

]∥∥2
L2

= Var(q(x)) ≤ σ2Ex

[
∥∇q(x)∥22

]
. (116)
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Putting together (115) and (116), we have∥∥q(x)− E
[
q(x)

]∥∥2
Lp

≤ σ2Ex

[
∥∇q(x)∥22

]
+ 2σ2(p− 2) ∥∥∇q(x)∥2∥

2
Lp

(a)

≤ σ2
(
Ex

[
∥∇q(x)∥p2

])2/p

+ 2σ2(p− 2) ∥∥∇q(x)∥2∥
2
Lp

(b)
= σ2 ∥∥∇q(x)∥2∥

2
Lp

+ 2σ2(p− 2) ∥∥∇q(x)∥2∥
2
Lp

≤ 2σ2p ∥∥∇q(x)∥2∥
2
Lp
,

(117)

where (a) follows by Jensen’s inequality and (b) follows by the definition of p-th moment. Taking
square root on both sides of (117) completes the proof.

E.2.2 Proof of Lem. 18 (113): Bounded p-th moment of ∥∇̃q(x)∥2

Fix any even p ≥ 2. Fix any pseudo derivative ∇̃q and any pseudo Hessian ∇̃2q. We start by
obtaining a convenient bound on ∥∇̃q(x)∥2 for every x ∈ X p and then proceed to bound the p-th
moment of ∥∇̃q(x)∥2.

Consider a p-dimensional standard normal random vector g independent of x. For a given x = x ∈

X p, the random variable
∇̃q(x)⊤g
∥∇̃q(x)∥2

is a standard normal random variable. Then, for every x ∈ X p,

we have ∥∥∥∥∥ ∇̃q(x)⊤g
∥∇̃q(x)∥2

∥∥∥∥∥
Lp

(a)
=

(
Eg|x=x

[(
∇̃q(x)⊤g
∥∇̃q(x)∥2

)p])1/p (b)

≥
√
p

2
. (118)

where (a) follows from the definition of p-th moment, and (b) follows since ∥g∥Lp
≥

√
p

2 for any
standard normal random variable g and even p ≥ 2. Rearranging (118), we have

∥∇̃q(x)∥2 ≤ 2
√
p

(
Eg|x=x

[(
∇̃q(x)⊤g

)p])1/p

. (119)

Now, we proceed to bound the p-th moment of ∥∇̃q(x)∥2 as follows:

∥∥∇̃q(x)∥2∥Lp

(a)
=

(
Ex

[
∥∇̃q(x)∥p2

])1/p

(119)
≤ 2

√
p

(
Ex,g

[(
∇̃q(x)⊤g

)p])1/p

(b)
=

2
√
p

∥∥∥∇̃q(x)⊤g∥∥∥
Lp

(c)

≤ 2
√
p

(∥∥∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

+
∥∥∥Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

)
(120)

where (a) and (b) follow from the definition of p-th moment and (c) follows by Minkowski’s
inequality. We claim that∥∥∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

≤ cσ
(√

p max
x∈Xp

|||∇̃2q(x)|||F + p max
x∈Xp

|||∇̃2q(x)|||op
)
, and(121)∥∥∥Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

≤ 2
√
p
∥∥∥Ex

[
∇̃q(x)

]∥∥∥
2
, (122)

where c ≥ 0 is a universal constant. Putting together (120) to (122) completes the proof. It remains
to prove our claims (121) and (122) which we now do one-by-one.

Proof of bound (121): We start by obtaining a bound on
(
Ex|g=g

[(
∇̃q(x)⊤g −

Ex|g=g

[
∇̃q(x)⊤g

])p])1/p
for every g = g. Then, we bound ∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]
∥Lp

.
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To that end, we define hg(x) ≜ ∇̃q(x)⊤g−Ex|g=g

[
∇̃q(x)⊤g

]
and observe that Ex|g=g

[
hg(x)

]
= 0.

Now, applying Lem. 18 (112) to hg(·), we have

∥hg(x)∥Lp
≤ σ

√
2p

(
Ex|g=g

[
∥∇hg(x)∥p2

])1/p (a)

≤ σ
√
2p

(
Ex|g=g

[ ∥∥∥∇[
g⊤∇̃q(x)

]∥∥∥p
2

])1/p

(84)
≤ σ

√
2p

(
Ex|g=g

[ ∥∥∥g⊤∇̃2q(x)
∥∥∥p
2

])1/p

, (123)

where (a) follows from the definition of hg(x). Now, to obtain a bound on the RHS of (123), we
further fix x = x. Then, we let g′ be another p-dimensional standard normal vector and apply an
inequality similar to (119) to g⊤∇̃2q(x) obtaining∥∥∥g⊤∇̃2q(x)

∥∥∥
2
≤ 2

√
p

(
Eg′|x=x,g=g

[(
g⊤∇̃2q(x)g′

)p])1/p

,

which implies(
Ex|g=g

[ ∥∥∥g⊤∇̃2q(x)
∥∥∥p
2

])1/p

≤ 2
√
p

(
Ex,g′|g=g

[(
∇g⊤∇̃2q(x)g′

)p])1/p

. (124)

Putting together (123) and (124), and using the definition of hg(x), we have(
Ex|g=g

[(
∇̃q(x)⊤g − Ex|g=g

[
∇̃q(x)⊤g

])p])1/p

≤ 2
√
2σ

(
Ex,g′|g=g

[(
g⊤∇̃2q(x)g′

)p])1/p

.

(125)

Now, we proceed to bound ∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]
∥Lp as follows:∥∥∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

(a)
=

(
Ex,g

[(
∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

])p])1/p

(125)
≤ 2

√
2σ

(
Eg,x,g′

[(
g⊤∇̃2q(x)g′

)p])1/p

, (126)

where (a) follows from the definition of p-th moment. Finally, to bound the RHS of (126), we fix
x = x and bound the p-th norm of the quadratic form g⊤∇̃2q(x)g′ by the Hanson-Wright inequality
resulting in(

Eg,g′|x=x

[(
g⊤∇̃2q(x)g′

)p])1/p

≤ c
(√

p|||∇̃2q(x)|||F + p|||∇̃2q(x)|||op
)

≤ c
(√

p max
x∈Xp

|||∇̃2q(x)|||F + p max
x∈Xp

|||∇̃2q(x)|||op
)
, (127)

where c ≥ 0 is a universal constant. Then, (121) follows by putting together (126) and (127).

Proof of bound (122): By linearity of expectation, we have

∥Ex

[
∇̃q(x)⊤g

]
∥Lp = ∥

(
Ex

[
∇̃q(x)

])⊤
g∥Lp . (128)

We note that the random variable
(Ex[∇̃q(x)])⊤g
∥Ex[∇̃q(x)]∥2

is a standard normal random variable. Therefore,

∥∥∥∥∥
(
Ex

[
∇̃q(x)

])⊤
g

∥Ex

[
∇̃q(x)

]
∥2

∥∥∥∥∥
Lp

(a)
=

(
Eg

[((
Ex

[
∇̃q(x)

])⊤
g

∥Ex

[
∇̃q(x)

]
∥2

)p])1/p (b)

≤ 2
√
p, (129)

where (a) follows from the definition of p-th moment, and (b) follows since ∥g∥Lp
≤ 2

√
p for any

standard normal variable g . Then, (122) follows by using (129) in (128).
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F Identifying weakly dependent random variables

In App. E, we derived (in Prop. 2) that a random vector (supported on a compact set) satisfies
the logarithmic Sobolev inequality if it satisfies the Dobrushin’s uniqueness condition (in Def. 4).
Further, we also derived (Prop. 3) tail bounds for a random vector satisfying the logarithmic Sobolev
inequality. Combining the two, we see that in order to use the tail bound, the random vector needs
to satisfy the Dobrushin’s uniqueness condition, i.e, the elements of the random vector should be
weakly dependent. In this section, we show that any random vector (outside Dobrushin’s regime)
that is a τ -Sparse Graphical Model (to be defined) can be reduced to satisfy the Dobrushin’s
uniqueness condition. In particular, we show that by conditioning on a subset of the random vector,
the unconditioned subset of the random vector (in the conditional distribution) are only weakly
dependent. We exploit this trick in Lem. 12 and Lem. 14 to enable application of the tail bound
in App. E. The result below is a generalization of the result in [12] for discrete random vectors to
continuous random vectors.

We start by defining the notion of τ -Sparse Graphical Model.
Definition 8 (τ -Sparse Graphical Model). A pair of random vectors {x, z} supported on X p×Zpz

is a τ -Sparse Graphical Model for model-parameters τ ≜ (α, ζ, xmax,Θ) and denoted by τ-SGM if
X = {−xmax, xmax}, and

1. for any realization z ∈ Zpz , the conditional probability distribution of x given z = z is
given by fx|z

(
· |z; θ(z),Θ

)
in (4) for a vector θ(z) ∈ Rp depending on z and a symmetric

matrix Θ ∈ Rp×p (independent of z) with Θtt = 0 for all t ∈ [p],

2. max {maxz∈Zpz ∥θ(z)∥∞ , |||Θ|||max} ≤ α, and

3. |||Θ|||∞ ≤ ζ.

Now, we provide the main result of this section.
Proposition 4 (Identifying weakly dependent random variables). Given a pair of random vectors
{x, z} supported on X p × Zpz that is a τ-SGM (Def. 8) with τ ≜ (α, ζ, xmax,Θ), and a scalar
λ ∈ (0, ζ], there exists L ≜ 32ζ2 log 4p/λ2 subsets S1, · · · , SL ⊆ [p] that satisfy the following
properties:

(a) For any t ∈ [p], we have
∑L
u=1 1(t ∈ Su) = ⌈λL/(8ζ)⌉.

(b) For any u ∈ [L],

(i) the pair of random vectors {xSu
, (x−Su

, z)} correspond to a τ1-SGM with τ1 ≜ (α+

2xmaxζ, λ, xmax,ΘSu) where ΘSu ≜ {Θtv}t,v∈Su
, and

(ii) the random vector xSu conditioned on (x−Su , z) satisfies the Dobrushin’s uniqueness

condition (Def. 4) with coupling matrix 2
√
2x2maxΘSu whenever λ ∈

(
0, 1

2
√
2x2

max

]
with |||ΘSu

|||op ≤ λ.

Proof of Prop. 4: Identifying weakly dependent random variables. We prove each part one-by-one.

Proof of part (a): From Def. 8, for any realization z ∈ Zpz , the conditional probability distribution
of x given z = z is given by fx|z

(
· |z; θ(z),Θ

)
in (4) where θ(z) ∈ Rp is a vector and Θ ∈ Rp×p

is a symmetric matrix with Θtt = 0 for all t ∈ [p] and |||Θ|||∞ ≤ ζ. Consider the matrix A ≜ 1
ζΘ.

Since A has zeros on the diagonal and |||A|||∞ ≤ 1, we can apply [12, Lem. 12] on A with η = λ
ζ .

Then part (a) follows directly from [12, Lem. 12.1].

Proof of part (b) (i): To prove this part, consider the conditional distribution of xSu
conditioned on

x−Su
= x−Su

and z = z for any u ∈ [L]. We have

fxSu |x−Su ,z
(xSu

|x−Su
, z; θ(z),Θ) ∝ exp

( ∑
t∈Su

(
θt(z)+2

∑
v/∈Su

Θtvxv

)
xt+

∑
t∈Su

∑
v∈Su

Θtvxtxv

)
.

(130)
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We can re-parameterize fxSu |x−Su ,z
(xSu

|x−Su
, z; θ(z),Θ) in (130) as follows

fxSu |x−Su ,z
(xSu

|x−Su
, z; υ(z,x−Su

),Υ) ∝ exp
(
[υ(z,x−Su

)]⊤xSu
+ x⊤

Su
ΥxSu

)
, where

υ(z,x−Su
) ∈ R|Su|×1, with υt(z,x−Su

) ≜ θt(z) + 2
∑
k/∈Su

Θtvxk for t ∈ Su, and (131)

Υ = Υ⊤ ∈ R|Su|×|Su| with Υtv ≜ Θtv, and Υtt=0 for all t, v ∈ Su. (132)
Thus, to show that the random vector xSu

conditioned on x−Su
and z corresponds to an τ1-SGM with

τ1 ≜ (α+ 2xmaxζ, λ, xmax,ΘSu), it suffices to establish that

max

{
max
z∈Zpz

∥υ(z,x−Su
)∥∞ , |||Υ|||max

}
(i)

≤ α+ 2xmaxζ and |||Υ|||∞
(ii)

≤ λ. (133)

To establish (i) in (133), we note that

|||Υ|||max

(132)
≤ |||Θ|||max

(a)

≤ α and (134)

∥υ(z,x−Su)∥∞
(b)

≤ ∥θ(z)∥∞ + 2max
t∈Su

∥Θt∥1 ∥x∥∞
(c)

≤ ∥θ(z)∥∞ + 2xmax|||Θ|||∞
(d)

≤ α+ 2xmaxζ,

(135)
where (a) and (d) follow from Def. 8, (b) follows from (131) and the triangle inequality, and (c)
follows from the definition of ||| · |||∞ and Def. 8. Then, from (134) and (135), we have

max

{
max
z∈Zpz

∥υ(z,x−Su)∥∞ , |||Υ|||max

}
≤ α+ 2xmaxζ

as claimed. Next, to establish (ii) in (133), we again apply [12, Lem. 12] on the matrix A = 1
ζΘ with

η = λ
ζ . Then, [12, Lem. 12.2] implies that∑

v∈Su

∣∣∣∣Θtvζ
∣∣∣∣ ≤ λ

ζ
for all t ∈ Su, u ∈ [L]. (136)

Therefore, we have

|||Υ|||∞ = max
t∈Su

( ∑
v∈Su

∣∣Υtv∣∣) (132)
= max

t∈Su

( ∑
v∈Su

∣∣Θtv∣∣) (136)
≤ λ, (137)

as desired. The proof for this part is now complete.

Proof of part (b) (ii): We start by noting that the operator norm of a symmetric matrix is bounded
by the infinity norm of the matrix. Then, from the analysis in part (b) (i), for any u ∈ Su, we have

|||ΘSu |||op ≤ |||ΘSu |||∞
(132)
= |||Υ|||∞

(137)
≤ λ.

Therefore, |||2
√
2x2maxΘSu |||∞ ≤ 1 whenever λ ≤ 1/2

√
2x2max. It remains to show that for every

u ∈ [L], t ∈ Su, v ∈ Su\{t}, z = z, and x−t, x̃−t ∈ X p−1 differing only in the vth coordinate,

∥fxt|x−t=x−t,z=z−fxt|x−t=x̃−t,z=z∥TV ≤ 2
√
2x2maxΘtv.

To that end, fix any u ∈ [L], any t ∈ Su, any v ∈ Su\{t}, any z = z, and any x−t, x̃−t ∈ X p−1

differing only in the vth coordinate. We have

∥fxt|x−t=x−t,z=z−fxt|x−t=x̃−t,z=z∥2TV
(a)

≤ 1

2
KL

(
fxt|x−t=x−t,z=z

∥∥fxt|x−t=x̃−t,z=z

)
(b)
=

1

2
(2Θtvxv − 2Θtvx̃v)

2x2max

(c)

≤ 8x4maxΘ
2
tv,

where (a) follows from Pinsker’s inequality, (b) follows by (i) applying [11, Theorem 1] to
the exponential family parameterized as per fxt|x−t,z in (8), (ii) noting that fxt|x−t=x−t,z=z ∝
exp

(
[θt(z) + 2Θ⊤

t x]xt
)

and fxt|x−t=x̃−t,z=z ∝ exp
(
[θt(z) + 2Θ⊤

t x̃]xt
)
, and (iii) noting that the

Hessian of the log partition function for any regular exponential family is the covariance matrix of the
associated sufficient statistic which is bounded by x2max when X = {−xmax, xmax}, and (c) follows
because xv, x̃v ∈ {−xmax, xmax}. This completes the proof.
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G Supporting concentration results

In this section, we provide a corollary of Prop. 3 that is used to prove the concentration results in
Lem. 12 and Lem. 14. To show any concentration result for the random vector x conditioned on z via
Prop. 3, we need x|z to satisfy the logarithmic Sobolev inequality (defined in (81)). From Prop. 2,
for this to be true, we need the random vector xt conditioned on (x−t, z) to satisfy the logarithmic
Sobolev inequality for all t ∈ [p]. In the result below, we show this holds with a proof in App. G.1.
We define a τ ≜ (α, ζ, xmax,Θ)-dependent constant:

C3,τ ≜ exp (xmax(α+ 2ζxmax)). (138)

Lemma 19 (Logarithmic Sobolev inequality for xt|x−t, z). Given a pair of random vectors {x, z}
supported on X p × Zpz that is a τ-SGM (Def. 8) with τ ≜ (α, ζ, xmax,Θ), xt|x−t, z satisfies

LSIxt|x−t=x−t,z=z

(
8x2

max

π2 C2
3,τ

)
for all t ∈ [p], x−t ∈ X p−1, and z ∈ Zpz .

Now, we state the desired corollary of Prop. 3 with a proof in App. G.2. The corollary makes use of
some τ ≜ (α, ζ, xmax,Θ)-dependent constants:

C4,τ ≜ 1 + αxmax + 4x2maxζ and C5,τ ≜
32x3maxC

4
3,τ

π2
. (139)

Corollary 2. Suppose a pair of random vectors {x, z} supported on X p × Zpz corresponds to a
τ-SGM (Def. 8) with τ ≜ (α, ζ, xmax,Θ), and x conditioned on z satisfies the Dobrushin’s uniqueness
condition (Def. 4) with coupling matrix Θ. For any θ, θ ∈ Λθ and Θ ∈ ΛΘ, define the functions q1
and q2 as

q1(x) ≜
∑
t∈[p]

(ωtxt)
2 and q2(x) ≜

∑
t∈[p]

ωtxt exp
(
− [θt + 2Θ⊤

t x]xt
)

where ω = θ − θ.

Then, for any ε > 0

P
[∣∣qi(x)− E

[
qi(x)

∣∣z]∣∣ ≥ ε
∣∣∣z] ≤ exp

(−c
(
1− |||Θ|||op

)4
ε2

ci∥ω∥22

)
for i = 1, 2, (140)

where c is a universal constant, c1 ≜ 16α2x2maxC
2
5,τ , and c2 ≜ C2

3,τC
2
7,τC

2
5,τ with C3,τ defined in

(138) and C4,τ and C5,τ defined in (139).

G.1 Proof of Lem. 19: Logarithmic Sobolev inequality for xt|x−t, z

Let u be the uniform distribution on X . Then, u satisfies LSIu

(
8x2

max

π2

)
(see [14, Corollary 2.4]).

Then, using the Holley-Stroock perturbation principle (see [16, Page 31], [19, Lemma 1.2]), for
every t ∈ [p], x−t ∈ X p−1, and z ∈ Zpz , xt|x−t = x−t, z = z satisfies the logarithmic Sobolev
inequality with a constant bounded by

8x2max exp(supxt∈X ψ(xt;x−t, z)− infxt∈X ψ(xt;x−t, z))

π2

where ψ(xt;x−t, z) ≜ −[θt(z) + 2Θ⊤
t x]xt. We have

exp( sup
xt∈X

ψ(xt;x−t, z)− inf
xt∈X

ψ(xt;x−t, z))
(a)
= exp

(
2
∣∣θt(z)+2Θ⊤

t x
∣∣xmax

)
(b)

≤ exp
(
(2α+ 4ζxmax)xmax

) (138)
= C2

3,τ ,

where (a) follows from Def. 8 and (b) follows by using Def. 8 along with triangle inequality and
Cauchy–Schwarz inequality.
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G.2 Proof of Cor. 2

To apply Prop. 3 to the random vector x conditioned on z, we need x|z to satisfy
the logarithmic Sobolev inequality. From Prop. 2, this is true if (i) fmin =
mint∈[p],x∈Xp,z∈Xpz fxt|x−t,z(xt|x−t, z) > 0 (see (83)), (ii) x|z satisfies the Dobrushin’s uniqueness
condition, and (iii) xt|x−t, z satisfies the logarithmic Sobolev inequality for all t ∈ [p]. By assumption,
x|z satisfies the Dobrushin’s uniqueness condition with coupling matrix Θ. From Lem. 19, xt|x−t, z
satisfies LSIxt|x−t=x−t,z=z

(
8x2

maxC
2
3,τ

π2

)
. It remains to show that fmin > 0. Consider any t ∈ [p], any

x ∈ X p, and any z ∈ X pz . We have

fxt|x−t,z(xt|x−t, z)
(a)
=

exp
(
[θt(z) + 2Θ⊤

t x]xt

)
∫
X exp

(
[θt(z) + 2Θ⊤

t x]xt

)
dxt

(b)

≥
exp

(
− |θt(z) + 2Θ⊤

t x|xmax

)
∫
X exp

(
|θt(z) + 2Θ⊤

t x|xmax

)
dxt

(c)

≥
exp

(
−
(
|θ(z)|+ 2∥Θt∥1∥x∥∞

)
xmax

)
∫
X exp

((
|θ(z)|+ 2∥Θt∥1∥x∥∞

)
xmax

)
dxt

(d)

≥
exp

(
− (α+ 2ζxmax)xmax

)
∫
X exp

(
(α+ 2ζxmax)xmax

)
dxt

(e)
=

1

2xmaxC2
3,τ

,

where (a) follows from (8), (b) and (d) follow from Def. 8, (c) follows by triangle inequality and
Cauchy–Schwarz inequality, and (e) follows because

∫
X dxt = 2xmax. Therefore, fmin = 1

2xmaxC2
3,τ

.

Putting (i), (ii), and (iii) together, and using Prop. 2, we see that x|z satisfies LSIx

(
C5,τ

(1−|||Θ|||op)2

)
where C5,τ was defined in (139).

Now, we apply Prop. 3 to q1 and q2 one-by-one. The general strategy is to choose appropriate pseudo
derivatives and pseudo Hessians for both q1 and q2, and evaluate the corresponding terms appearing
in Prop. 3.

Concentration for q1: Fix any x ∈ X p. We start by decomposing q1(x) as follows:

q1(x) = ω⊤r(x) (141)

where ω ≜ (ω2
1 , · · · , ω2

p) and r(x) ≜ (r1(x), · · · , rp(x)) with rt(x) = x2t for every t ∈ [p]. Next,
we define H : X p → Rp×p such that

Htu(x) =
dru(x)

dxt
for every t, u ∈ [p]. (142)

Pseudo derivative: We bound the ℓ2 norm of the gradient of q1(x) as follows:

∥∇q1(x)∥22 =
∑
t∈[p]

(dq1(x)
dxt

)2 (141)
=

∑
t∈[p]

(ω⊤dr(x)

dxt

)2 (142)
= ∥H(x)ω∥22

(a)

≤ |||H(x)|||2op ∥ω∥
2
2

(b)

≤ |||H(x)|||1|||H(x)|||∞ ∥ω∥22 (143)

where (a) follows because induced matrix norms are submultiplicative and (b) follows because the
matrix operator norm is bounded by square root of the product of matrix one norm and matrix infinity
norm. Now, we claim that the one norm and the infinity norm of H(x) are bounded as follows:

max

{
max
x∈Xp

|||H(x)|||1, max
x∈Xp

|||H(x)|||∞
}

≤ 2xmax. (144)
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Taking this claim as given at the moment, we continue with our proof. Combining (143) and (144),
we have

max
x∈Xp

∥∇q1(x)∥22 ≤ 4x2max ∥ω∥
2
2 = 4x2max

∑
t∈[p]

ω4
t ≤ 4x2max max

u∈[p]
ω2
u

∑
t∈[p]

ω2
t

(a)

≤ 16x2maxα
2 ∥ω∥22 ,

where (a) follows because ω ∈ 2Λθ. Therefore, we choose the pseudo derivative (see Def. 5) as
follows:

∇̃q1(x) = 4xmaxα ∥ω∥2 . (145)

Pseudo Hessian: Fix any ρ ∈ R. We bound ∥∇(ρ⊤∇̃q1(x))∥22 (see Def. 5) as follows:

∥∇(ρ⊤∇̃q1(x))∥22 =
∑
u∈[p]

(dρ⊤∇̃q1(x)
dxu

)2 (145)
= 0.

Therefore, we choose the pseudo Hessian (see Def. 5) as follows:

∇̃2q1(x) = 0. (146)

The concentration result in (140) for q1 follows by applying Prop. 3 with the pseudo discrete
derivative defined in (145) and the pseudo discrete Hessian defined in (146).

It remains to show that the one-norm and the infinity-norm of H(x) are bounded as in (144).

Bounds on the one-norm and the infinity-norm of H(x): We have

Htu(x) =

{
2xt if t = u,

0 otherwise.
(147)

Therefore,

|||H(x)|||1 = max
u∈[p]

∑
t∈[p]

|Htu(x)|
(147)
≤ max

u∈[p]
2|xu|

(a)

≤ 2xmax and

|||H(x)|||∞ = max
t∈[p]

∑
u∈[p]

|Htu(x)|
(147)
≤ max

t∈[p]
2|xt|

(a)

≤ 2xmax,

where (a) follows from Def. 8.

Concentration for q2: Fix any x ∈ X p. We start by decomposing q2(x) as follows:

q2(x) = ω⊤r(x) (148)

where r(x) ≜ (r1(x), · · · , rp(x)) with rt(x) = xt exp
(
− [θt + 2Θ⊤

t x]xt
)

for every t ∈ [p]. Next,
we define H : X p → Rp×p such that

Htu(x) =
dru(x)

dxt
for every t, u ∈ [p]. (149)

Pseudo derivative: We bound the ℓ2 norm of the gradient of q2(x) as follows:

∥∇q2(x)∥22 =
∑
t∈[p]

(dq2(x)
dxt

)2 (148)
=

∑
t∈[p]

(ω⊤dr(x)

dxt

)2 (149)
= ∥H(x)ω∥22

(a)

≤ |||H(x)|||2op ∥ω∥
2
2

(b)

≤ |||H(x)|||1|||H(x)|||∞ ∥ω∥22 (150)
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where (a) follows because induced matrix norms are submultiplicative and (b) follows because the
matrix operator norm is bounded by square root of the product of matrix one norm and matrix infinity
norm. Now, we claim that the one norm and the infinity norm of H(x) are bounded as follows:

max

{
max
x∈Xp

|||H(x)|||1, max
x∈Xp

|||H(x)|||∞
}

≤ C3,τC4,τ . (151)

where C3,τ and C4,τ were defined in (138) and (139) respectively. Taking this claim as given at the
moment, we continue with our proof. Combining (150) and (151), we have

max
x∈Xp

∥∇q2(x)∥22 ≤ C2
3,τC

2
4,τ ∥ω∥

2
2 .

Therefore, we choose the pseudo derivative (see Def. 5) as follows:

∇̃q2(x) = C3,τC4,τ ∥ω∥2 . (152)

Pseudo Hessian: Fix any ρ ∈ R. We bound ∥∇(ρ⊤∇̃q2(x))∥22 (see Def. 5) as follows:

∥∇(ρ⊤∇̃q2(x))∥22 =
∑
u∈[p]

(dρ⊤∇̃q2(x)
dxu

)2 (152)
= 0.

Therefore, we choose the pseudo Hessian (see Def. 5) as follows:

∇̃2q2(x) = 0. (153)

The concentration result in (140) for q1 follows by applying Prop. 3 with the pseudo discrete
derivative defined in (152) and the pseudo discrete Hessian defined in (153).

It remains to show that the one-norm and the infinity-norm of H(x) are bounded as in (151).

Bounds on the one-norm and the infinity-norm of H: We have

Htu(x) =

{[
1− [θu + 2Θ⊤

u x]xu
]
exp

(
− [θu + 2Θ⊤

u x]xu
)

if t = u,

−2Θtux
2
u exp

(
− [θu + 2Θ⊤

u x]xu
)

otherwise.
(154)

Therefore,

|||H(x)|||1 = max
u∈[p]

∑
t∈[p]

|Htu(x)|

(154)
= max

u∈[p]

∣∣1−[θu+2Θ⊤
u x]xu

∣∣ exp (−[θu+2Θ⊤
u x]xu

)
+2max

u∈[p]
x2u exp

(
−[θu+2Θ⊤

u x]xu
)∑
t̸=u

|Θtu|

(a)

≤ (1 + αxmax + 4x2maxζ) exp (xmax(α+ 2ζxmax))
(b)
= C3,τC4,τ

where (a) follows from Def. 8 along with triangle inequality and Cauchy–Schwarz inequality and (b)
follows from (138) and (139). Similarly, we have

|||H(x)|||∞ = max
t∈[p]

∑
u∈[p]

|Htu(x)|

(154)
= max

t∈[p]

∣∣1−[θt+2Θ⊤
t x]xt

∣∣ exp (−[θt+2Θ⊤
t x]xt

)
+2max

t∈[p]

∑
u ̸=t

|Θtu|x2u exp
(
−[θu+2Θ⊤

u x]xu
)

(a)

≤ (1 + αxmax + 4x2maxζ) exp (xmax(α+ 2ζxmax))
(b)
= C3,τC4,τ

where (a) follows from Def. 8 along with triangle inequality and Cauchy–Schwarz inequality and (b)
follows from (138) and (139).
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