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Abstract

We propose a simulation framework for generating realistic instance-dependent1

noisy labels via a pseudo-labeling paradigm. We show that this framework gener-2

ates synthetic noisy labels that exhibit important characteristics of the label noise3

in practical settings via comparison with the CIFAR10-H dataset. Equipped with4

controllable label noise, we study the negative impact of noisy labels across a few5

realistic settings to understand when label noise is more problematic. Additionally,6

with the availability of annotator information from our simulation framework, we7

propose a new technique, Label Quality Model (LQM), that leverages annotator8

features to predict and correct against noisy labels. We show that by adding LQM9

as a label correction step before applying existing noisy label techniques, we can10

further improve the models’ performance.11

1 Introduction12

In many applications, training machine learning models requires labeled data. In practice, the training13

data labeled by human raters are often noisy, leading to inferior model performance. The study of14

learning in the presence of label noise dates back to the eighties [Angluin and Laird, 1988], and still15

receives significant attention in recent years [Natarajan et al., 2013, Reed et al., 2014, Malach and16

Shalev-Shwartz, 2017, Han et al., 2018, Li et al., 2020a].17

In the research community, some datasets with real noisy human ratings are available, such as18

Clothing 1M [Xiao et al., 2015], Food 101-N [Lee et al., 2018] (only a small subset has clean19

labels), WebVision [Li et al., 2017a], and CivilComments [Borkan et al., 2019], which allow testing20

approaches that address label noise. However, since the level and type of label noise in these datesets21

cannot be controlled, it becomes hard to conduct ablation study to understand the impact of noisy22

labels. As a result, the majority of research work in this area uses benchmark datasets generated by23

simulations. For example, many prior works simulate noisy labels by flipping the labels according24

to certain transition matrix [Natarajan et al., 2013, Khetan et al., 2017, Patrini et al., 2017, Han25

et al., 2018, Hendrycks et al., 2018], independently from the model inputs, e.g., the raw images.26

However, this type of random label noise may not be an ideal way to simulate realistic noisy labels,27

since the errors in human ratings are often instance-dependent, i.e., harder examples are easier to28

get wrong labels, whereas the noisy labels generated by random flipping do not have this type of29

dependency, even if the transition matrix is asymmetric, i.e., class-conditional. In addition, in many30

applications, we often have additional features of the raters, such as tenure, historical biases, and31

expertise level [Cabitza et al., 2020]. Leveraging these features properly can potentially lead to better32
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model performance. However, neither the commonly used public datasets with human ratings nor the33

synthetic datasets created by random label noise have such rater features available.34

In this work, we focus on creating realistic benchmarks for the research on label noise. We propose35

a simulation method that is easy to implement, more realistic than random label flipping, and can36

convert any commonly used public dataset with clean labels into a noisy label dataset with additional37

rater features. More specifically, we propose a simulation method based on a pseudo-labeling38

paradigm: given a dataset with clean labels, we use a subset of it to train a set of models (rater39

models), and use them to label the rest of the data. In this way, we obtain a dataset whose size is40

smaller than the original one with clean labels, but with multiple instance-dependent noisy labels.41

Moreover, some characteristics of the rater models, such as the number of training epochs, the number42

of samples used, the validation performance metrics, and the number of parameters in the model can43

be used as a proxy for the rater features.44

We note that this simulation approach is very similar to self-training in semi-supervised learning45

[Chapelle et al., 2006]. In the research on label noise, methods inspired by semi-supervised learning46

have been adopted in several prior works for training robust models [Han et al., 2018, Li et al., 2020a]47

or generate synthetic noisy label dataset [Lee et al., 2019, Robinson et al., 2020]. We intend to48

exploit this approach for both providing a comprehensive study of how practical label noise affects49

the performance of machine learning models, and the research of better training algorithm in the50

presence of label noise. Our main contributions are summarized as follows:51

• We propose a pseudo-labeling simulation framework for learning with realistic label noise. We52

provide detailed description, including the generation of rater features (Section 2.2).53

• We propose a systematic protocol for evaluating the synthetic dataset generated by our framework.54

The evaluation protocol focuses on testing whether the synthetic datasets exhibit some important55

characteristics of realistic label noise (Section 2.3).56

• We study the negative impact of label noise on deep learning models using our synthetic datasets.57

We find that noisy labels are more detrimental under class imbalanced settings, when pretraining58

is not used, and on tasks that are easier to learn with clean labels (Section 3).59

• We propose a label correction approach, named Label Quality Model (LQM), that leverages rater60

features to significantly improve model performance. We also show that LQM can be combined61

with other existing noisy label techniques to further improve the performance (Section 4).62

Moreover, we examine the performance of several existing noisy label algorithm on our synthetic63

datasets without LQM label correction. We find that the behavior of these techniques on our synthetic64

datasets is different from the datasets generated by independent random label flipping. We present65

these results in Appendix A.66

2 Generating synthetic datasets with realistic label noise67

In this section, we discuss the formulation of generating synthetic noisy labels, and provide details for68

the dataset generation procedure and the methods we use to evaluate whether the synthetic datasets69

share certain characteristics of real human labeled data.70

2.1 Formulation71

We consider a K-class classification problem with input space X and label space Y = {1, . . . ,K}.72

In addition, we assume that there is a rater space R, with each element being the feature of a rater who73

can label any element in X . Suppose that there is an unknown distribution over X ⇥ Y ⇥R⇥ Ym,74

and each tuple (x, y⇤, r, y) in this space corresponds to the input feature of an example x, clean label75

of the example y⇤, a rater r, and the label y provided by the rater.76

The problem of generating synthetic noisy labels can be modeled as generating a noisy label y given77

a pair of input feature and clean label y⇤. Ideally, the probability distribution of the noisy label y78

should depend on all of x, y⇤, and r, i.e., we should generate y according to p(y | x, y⇤, r). This79

means that the label noise should depend on the input—harder and more nuanced examples such80

as blurred images are more likely to have incorrect labels, as well as the rater—raters with higher81

expertise level are less likely to make mistakes.82

However, many prior studies on generating synthetic noisy labels ignore such dependency on x and r83

and only generate y according to y⇤. Here, we specify three approaches for generating noisy labels.84
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• Independent random flipping. In this method, with probability �, the label of each example is85

flipped to an incorrect one, uniformly chosen from all the other K � 1 labels [Zhang et al., 2021,86

Rolnick et al., 2017, Han et al., 2018]. The method is sometimes called symmetric label noise.87

More specifically, we have p(y = k | y⇤) = (1� �)1(k = y⇤) + �
K�11(k 6= y⇤).88

• Class-conditional random flipping. In this method, we assume that there is a stochastic matrix89

T 2 RK⇥K . The i-th row of T corresponds to the probability distribution of the noisy label90

y given that the clean label y⇤ = i, i.e., p(y = j | y⇤ = i) = Ti,j . This method is sometimes91

called the asymmetric label noise, and is usually considered more realistic than symmetric noise,92

since classes that are semantically close are more likely to be confused than classes that have93

clearer decision boundaries. As mentioned in Section 1, this method has been used in many prior94

works [Angluin and Laird, 1988, Han et al., 2018, Zhang et al., 2017, Wang et al., 2019, Jiang95

et al., 2018]; the matrix can be designed with human knowledge or estimated from a small subset96

of clean data [Patrini et al., 2017, Hendrycks et al., 2018]. Here, we emphasize that the noisy97

labels in class-conditional label flipping still do not depend on the input feature x and the rater r.98

• Instance-dependent, i.e., generating noisy labels according to p(y | x, y⇤, r). The method that we99

propose in this paper satisfies this criterion.100

2.2 Dataset generation101

In our framework, we first identify a public dataset that we would like to generate noisy labels for,102

e.g., CIFAR10 [Krizhevsky and Hinton, 2009] for image classification. We observe that many public103

datasets already have default training, validation, and test splits. For those without a validation104

split, we can randomly partition the training data into training and validation splits. We note that in105

our paper we assume that public datasets have “clean” labels. We acknowledge that many widely106

used public datasets such as CIFAR10 or ImageNet [Deng et al., 2009] may have mislabeled data107

points [Northcutt et al., 2021b]; however, the amount of label noise in these public datasets is108

significantly smaller than what the noisy label research community usually consider [Han et al., 2018,109

Lee et al., 2019], including our work. Therefore, we believe it is reasonable to consider the labels in110

public datasets as clean, i.e., less noisy, labels, and we do not expect the label noise in public datasets111

changes the conclusions in our paper.112

Figure 1: Pseudo-labeling paradigm for simulating
realistic noisy labels.

We further split the training and validation splits113

into two disjoint sets, respectively. More specif-114

ically, we partition the training set into Clean-115

LabelTrain and NoisyLabelTrain, and the valida-116

tion set into CleanLabelValid and NoisyLabel-117

Valid. We use the data in CleanLabelTrain with118

clean labels to train a set of rater models, which119

can be any standard models for the problem do-120

main. The data in the CleanLabelValid split can121

be used to evaluate the rater models. For exam-122

ple, the test accuracy with respect to the clean123

labels on the CleanLabelValid split can be used124

as a feature of a rater model. We can obtain a125

pool of rater models by choosing different ar-126

chitectures, training epochs, and other training127

configurations, which can all be used as rater128

features. Then we use all or a subset of models from the rater pool to run inference on the data in129

the NoisyLabelTrain and NoisyLabelValid splits. In this way we obtain multiple noisy labels for130

every data in these two splits, and we replace the clean labels with these noisy labels. We find that in131

order to control the amount of label noise in these two splits, it is important to train a diverse set of132

rater models using different combinations of architectures, training steps, learning rate, and batch133

size. The details for the rater models that we use throughout this paper are provided in Appendix B.134

To perform label noise research, we can use the NoisyLabelTrain split to train models and use the135

NoisyLabelValid split for hyperparameter tuning.1 For the Test split, we use the original clean labels.136

We illustrate our framework in Figure 1.137

1The NoisyLabelValid split also contains noisy labels, which may affect the hyperparameters that we select.
Understanding the impact of label noise in the validation set is beyond the scope of this paper and will be a
future direction.
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Figure 2: Qualitative comparison among real human labels, our pseudo-labeling framework, and
random label flipping. First row: histogram of rater error rate; second row: histogram of rater entropy.
Left column: real human labels in CIFAR10-H [Peterson et al., 2019]; middle column: synthetic
datasets generated by our pseudo-labeling framework (NoisyLabelTrain split); right column: dataset
generated by random label flipping. Both CIFAR10-H and our synthetic dataset show right-skewed
distribution; whereas the dataset with random label flipping does not.

In most of our experiments, the sizes of the CleanLabelTrain and NoisyLabelTrain splits are around138

50% of the original training and validation splits. However, this ratio can be adjusted depending on the139

problem of interest. For a synthetic dataset with multiple noisy labels, i.e., the NoisyLabelTrain and140

NoisyLabelValid splits, we use the following two metrics to measure the amount of noise in the141

dataset: (1) overall rater error rate, which is defined as the fraction of the incorrect labels among all the142

labels given by all the raters, and (2) Krippendorff’s alpha (k-alpha) [Hayes and Krippendorff, 2007],143

which measures the agreement between the raters. We note that the computation of Krippendorff’s144

alpha does not require the clean labels. Usually, datasets with higher k-alpha are less noisy. All145

model training in this and the following sections are performed on TPUs in our internal cluster.146

2.3 Dataset evaluation147

Once we have the synthetic datasets, the next step is to evaluate how realistic the synthetic datasets148

that we generate are. Here, we qualitatively show that the distribution of the label noise in our dataset149

is closer to real human labels, at least when compared to independent label flipping. We evaluate the150

following two evaluation criteria for noisy label synthetic datasets:151

(a) The distribution of rater errors should be qualitatively similar to real human labels.152

(b) Label noise should be class-conditional.153

Remark 1 For criterion (a), we note that since the label noise is instance-dependent, when we have154

multiple labels for every data, the distribution of rater error rate, defined as the ratio of the number of155

raters that gave wrong labels for a particular data to the total number of raters that labeled this data,156

should have certain dataset-specific characteristics. For example, in a dataset where the majority of157

the data are easy to be labeled correctly, while the fraction of the hard examples is relatively small,158

we should observe a right-skewed distribution, i.e., the majority of the data have small rater error159

rate, and data with large rater error rates account for the tail of the distribution. The similar trend160

should also be observed for the entropy (measuring consistency) of the noisy labels. We note that this161

right-skewed distribution should not be observed in datasets where labels are flipped with a fixed162

probability, even if the label flipping is class-conditional. This is because with random flipping, the163

rater error rate and rate entropy of the data should concentrate around certain values when we have164

multiple labels per data.165

We emphasize that our evaluation focuses on the overall trend of the distribution of label noise, rather166

than each individual instance. This means that we do not expect that our synthetic noisy labels closely167

match a certain human labeled dataset for every single data point. Instead, we qualitatively compare168

the distribution of the rater error rate (or entropy) and show that the datasets have similar trends.169

Making the predictions of the rater models (neural networks) more close to human behavior is an170

interesting problem to study, but is beyond the scope of this paper.171

Remark 2 For criterion (b), we aim to show that the class confusion matrix has non-uniform off-172

diagonal entries. We acknowledge that this can only show that our method is class-conditional rather173

than instance-dependent. However, one important difference from prior work is that the confusion174

among classes in our framework occurs after the rater models are trained; whereas in prior works it175

needs to be designed by human or estimated from a subset of data.176

4



Figure 3: Class confusion matrix for our synthetic dataset.
Columns and rows in the CIFAR100 figure (right) are
grouped by the 20 coarse labels.

Evaluation results We now proceed177

to present our evaluation results. We178

create a synthetic dataset based on the179

CIFAR10/100 dataset. For criterion180

(a), in order to obtain real human la-181

bels, we use the CIFAR10-H dataset,182

recently published by Peterson et al.183

[2019]. This dataset contains the 10K184

data points from the CIFAR10 test185

split, and a total of 500K human labels186

were crowdsourced, i.e., on average187

around 50 labels for each data. In our188

proposed simulation framework, we189

train 10 rater models using the Clean-190

LabelTrain split and use them to label the NoisyLabelTrain split. Details of our synthetic dataset191

can be found in Appendix B. For independent random label flipping, we generate 50 labels for each192

data, and flipping probability � = 10.8%. matching our synthetic dataset. As we can see in Figure 2,193

the synthetic datasets generated by our pseudo-labeling framework produce similar right-skewed194

distribution to the datasets with real human labels in CIFAR10-H, whereas the datasets generated195

by random label flipping have different trends. Thus, we conclude that our proposed simulation196

framework is more realistic on the first evaluation criterion. As for criterion (b), we compute the197

class confusion matrix two synthetic datasets generated by our method for CIFAR10 and CIFAR100,198

respectively. As shown in Figure 3, the label noise in our dataset is class-conditional. We note that199

one can verify that the class confusion matrix of CIFAR10-H is also class-conditional; however,200

ensuring that the confusion matrix of our synthetic dataset closely matches certain human labeled201

dataset is non-trivial and is beyond the scope of this paper.202

3 Impact of realistic label noise on deep learning models203

With the realistic synthetic datasets with noisy labels, our next step is to study the impact of noisy204

labels on deep learning models. Interestingly, there exist different views for the impact of noisy205

labels to deep neural networks. While most of the recent research works on noisy labels try to design206

algorithms that can tackle the negative impact of label noise, some other works claim that deep207

learning models are robust to independent random label noise [Rolnick et al., 2017, Li et al., 2020b]208

without using sophisticated algorithms. A prominent example is the weak supervision paradigm209

[Ratner et al., 2016, 2017], where massive training datasets are generated by weak raters and labeling210

functions. Other lines research indicate that large neural network can easily fit all the noisy labels in211

the training data [Zhang et al., 2021], while smaller models may be more robust against label noise212

due to the regularization effect [Advani et al., 2020, Belkin et al., 2019, Northcutt et al., 2021b].213

We hypothesize that the negative impact of noisy labels is problem-dependent. While in most cases214

the incorrect labels can impair models’ performance, the impact may depend on factors related to the215

data distribution and the model. In this section, we choose the following factors to measure the impact216

of label noise: the class imbalance, the inductive bias of the model (in particular, pretraining vs217

random initialization), and the difficulty of the task (test accuracy that models can achieve when clean218

labels are accessible). Note that for better understanding, we decouple these factors with algorithm219

design: In this section, we choose simple SGD-style training algorithms with cross-entropy loss and220

focus on analyzing the impact of label noise; the discussion on more sophisticated algorithms to221

tackle label noise is presented in Sections A and 4. We do not aim to study label aggregation methods222

either. Instead, in this and the following sections, given a synthetic dataset with multiple noisy labels,223

we generate a dataset with a single noisy label by independently and uniformly selecting a random224

noisy label for every data point. This is a simulation of the realistic setting where we have a pool of225

raters and for each data, we choose a random rater from the pool and request a label.226

3.1 Label noise has higher impact on more imbalanced datasets227

One of the important characteristics of many real world datasets is that the classes are usually228

imbalanced. When the classes are more imbalanced, the impact of noisy labels may become more229

pronounced since the number of data in the minority classes is already small, and noisy labels can230

further corrupt these data, making the learning procedure more difficult. We validate this hypothesis231

in this section. We use two binary classification tasks, PatchCamelyon (PCam) [Veeling et al., 2018,232
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Figure 4: Impact of label noise for tasks with different class imbalance. The x-axis represents
class imbalance, measured by the fraction of the majority class. For PCam, we use MobileNet-v1
[Howard et al., 2017] model, and for Cats vs Dogs, we use ResNet50 [He et al., 2016]. The k-alphas
correspond to the synthetic datasets before subsampling.

Bejnordi et al., 2017] and Cats vs Dogs (CvD) [Elson et al., 2007]. We generate synthetic noisy233

label datasets with different k-alphas, and for each of these datasets, we subsample the two classes234

to create several smaller datasets with different class imbalance but the same total number of data.235

We note that here we control the class imbalance to be the same for all of the NoisyLabelTrain,236

NoisyLabelValid, and Test splits. We train models with clean and noisy labels and use the difference237

in mean average precision (mAP) [Zhang and Zhang, 2009] and area under the precision-recall curve238

(AUCPR) [Raghavan et al., 1989] as the indicators for the impact of label noise. The results are239

shown in Figure 4. As we can see, the impact of label noise becomes more significant as the classes240

become more imbalanced.241

3.2 Pretraining improves robustness to label noise242

One model training technique that is often used in practice, especially for computer vision and natural243

language tasks, is to pretrain the models on some large benchmark datasets and then fine-tune them244

using the data for specific tasks. It has been observed that model pretraining can improve robustness245

to independent random label noise [Hendrycks et al., 2019] and the web label noise considered by246

Jiang et al. [2020]. Here we show that this can still be observed in our synthetic framework. A simple247

explanation is that model pretraining adds strong inductive bias to the models and thus they are less248

sensitive to a fraction of noisy labels during fine-tuning.249

We validate this hypothesis using two datasets, Cats vs Dogs (CvD) and CIFAR10. For both datasets,250

we generate three synthetic noisy label datasets using our framework with different rater error rates.251

We compare the test accuracy on the Test split (with clean labels) between the models that are trained252

from random initialization and those that are fine-tuned from models pretrained on ImageNet [Deng253

et al., 2009]. We experiment with three different architectures, including Inception-v4 [Szegedy254

et al., 2017], ResNet152, and ResNet50 [He et al., 2016]. As we can see in Figure 5, models that255

are pretrained on ImageNet achieve better test accuracy. In addition, for pretrained models, the test256

accuracy tends to drop more slowly compared to models that are trained from random initialization257

as we increase the amount of noise (rater error rate).258

Meanwhile, we also observe that ImageNet pretraining does not improve the test accuracy under259

noisy labels for the PatchCamelyon dataset. This can be explained by the fact that the PatchCamelyon260

dataset consists of histopathologic scans of lymph node sections, and these medical images have very261

different distribution from the data in ImageNet. Therefore, the inductive bias that the model learned262

from ImageNet pretraining may not be helpful on PCam.263

3.3 Easier tasks are more sensitive to label noise264

We also study the impact of label noise on tasks with different difficulty levels (the test accuracy265

models can achieve when clean labels are accessible). Our hypothesis here is that when a task is266

already hard to learn even given clean labels, then the impact of label noise is smaller. The reason267

can be that when a classification task is hard, the data distributions of different classes are relatively268

close such that even if some data are mislabeled, the final performance may not be heavily impacted.269

On the contrary, label noise may be more detrimental to easier tasks as the data distribution can270

significantly change when well-separated data points get mislabeled. We validate this hypothesis271

with two experiments.272

Setup. Our first experiment involves two binary classification tasks, i.e., PatchCamelyon (PCam)273

with MobileNet-v1 [Howard et al., 2017] and Cats vs Dogs with ResNet50 [He et al., 2016]. We274
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Figure 5: Pretrained models achieve better test accuracy on CvD and CIFAR10. Moreover, as the
amount of label noise increases, the amount of test accuracy drop is smaller for pretraining (e.g. the
slope is smaller) than training from random initialization.

Figure 6: Impact of label noise on tasks with different difficulty levels. The numbers in the legend
correspond to test accuracies when training with clean labels for every task. The x-axis represents the
amount of noise, measured by 1.0�k-alpha. The y-axis represents the negative impact of label noise,
measured by the difference in test accuracy when training with clean and noisy labels. Scattered
points represent the pairs of noise level and the accuracy drop, and solid lines show the linear fit of
the scattered points in the same color.

generate synthetic noisy label datasets with different k-alphas using our framework, and compare275

the accuracies when the models are trained with clean and noisy labels. We observe that CvD is276

easier than PCam (clean label accuracy 97.8 ± 0.1% vs 87.7 ± 0.4%). In our second experiment,277

we design three 20-way classification tasks with the same number of data but different difficulty278

levels by subsampling different classes from the CIFAR100 dataset. We call the three tasks the easy,279

medium, and hard tasks. Details for the design of the three tasks are provided in Appendix C, and we280

observe that with clean labels, we can obtain test accuracies of 79.9 ± 1.4%, 65.2 ± 2.4%, and 55.4281

± 2.6% for the three tasks, respectively. We generate synthetic datasets with different amounts of282

noise, measured by k-alpha and use the MobileNet-v2 model [Sandler et al., 2018].283

Results. We study the impact of label by measuring the absolute difference in test accuracy when284

training with clean and noisy labels. The results are shown in Figure 6. As we can see, the impact of285

noisy labels is higher on the easy task: On CvD, the drop in test accuracy grows faster as we increase286

the amount of label noise (indicated by 1.0�k-alpha) compared to PCam, and similar phenomenon287

can be observed on the three CIFAR100-based tasks.288

4 Leveraging rater features: Label Quality Model289

Existing work in the noisy label literature commonly assumes that training labels are the only output290

of the data curation process. In practice however, the data curation process often produces a myriad291

of additional features that can be leveraged in downstream training, e.g., which rater is responsible for292

a given label, as well as that rater’s tenure, historical errors, and time spent on a given task. With our293

proposed method of simulating instance-dependent noisy labels via rater models, we can additionally294

simulate these rater features by extracting metadata from the rater models, e.g., the number of epochs295

used to train the rater models is a proxy for rater tenure. Another common practice in label curation296

is assigning multiple raters for a single example. This is commonly used to reduce the label noise297

via aggregation, or to evaluate the performance of individual raters against the pool. This practice298

assumes that agreement among multiple raters are more accurate than individual responses.299
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With understanding of practical data collection setup, we introduce a technique for training with300

noisy labels, which we coin Label Quality Model (LQM). LQM is an intermediate supervised task301

aimed at predicting the clean labels from noisy labels by leveraging rater features and a paired subset302

for supervision. The LQM technique assumes the existence of rater features and a subset of training303

data with both noisy and clean labels, which we call paired-subset. We expect that in real world304

scenarios some level of label noise may be unavoidable. LQM approach still works as long as the305

clean(er) label is less noisy than a label from a rater that is randomly selected from the pool, e.g.,306

clean labels can be from either expert raters or aggregation of multiple raters. LQM is trained on the307

paired-subset using rater features and noisy label as input, and inferred on the entire training corpus.308

The output of LQM is used during model training as a more accurate alternative to the noisy labels.309

The intuition for LQM is to correct the labels in a rater-dependent manner. This means that by310

learning the patterns from the paired-subset, we can conduct rater-dependent label correction. For311

example, LQM can potentially learn that raters with a certain feature often mislabel two breeds of312

dogs, then it can possibly correct these two labels from similar raters for the rest of the data. Below313

we formally present the details of LQM.314

Algorithm design. Formally, let D := {(xi, yi, ri)}Ni=1 be a noisy label dataset, e.g., the Noisy-315

LabelTrain split,2 where xi is the input, yi is the one-hot encoded noisy label, and ri is the rater316

feature corresponding to yi. Let Dps = {(xj , yj , rj , y⇤j )}Mj=1 be the paired-subset, and y⇤j be a more317

accurate label than yj . We usually have M ⌧ N . We propose to optimize a parameterized model318

LQM(✓;x, r, y) to approximate the conditional probability P (y⇤|x, r, y) using Dps. We note that319

LQM leverages all the information from the input x, rater features r, and the noisy label y.320

Once we have the LQM, we proceed to tackle the main task using the noisy label dataset D. Instead of321

trying to predict P (yi|xi), we replace the noisy labels yi with the outputs of LQM and train a model322

to predict P (LQM(✓;xi, ri, yi)|xi). From experimentation, we find that by interpolating between323

noisy label yi and the output of LQM produces even stronger results. Therefore, we recommend324

training with target ỹi = �LQM(✓;xi, ri, yi) + (1� �)yi, where � is a hyperparameter between 0325

and 1 and can be selected using the validation set. This is particularly helpful for datasets with a large326

number of classes such as CIFAR100, since it prevents the training target from getting too far from327

the original labels yi. Moreover, since ỹi specifies a distribution over the labels, we can also sample a328

single one-hot label according to the distribution ỹi as the target.329

We use a small set of rater features in the simulated framework, such as the accuracy of the rater330

model on CleanLabelValid, the number of epochs trained, and the type of architecture. In addition,331

we also use the paired-subset to empirically calculate the confusion matrix for each rater and use it as332

a feature for the rater. Instead of training LQM with raw input x, we first train an auxiliary image333

classifier f(x) and train LQM using the output logits of f(x). The auxiliary classifier can be trained334

over either the full noisy dataset D or the paired-subset Dps. We find that the better option depends335

on the task and the amount of noise present. In our experimentation, we train f(x) on both dataset336

options and select the better one. Given that LQM has fewer training examples, using an auxiliary337

image classifier significantly simplifies training.338

Experiment setup and results. For uniformity, we assume M = 0.1N , i.e. 10% of training data339

has access to a clean label in all of our following experiments. For the main prediction model, i.e.,340

P (LQM(✓;xi, ri, yi)|xi), we use the ResNet50 architecture. For the auxiliary model f(x), we use341

MobileNet-v2. The LQM itself is trained using a one-hidden-layer MLP architecture with cross-342

entropy loss. The number of hidden units in the MLP is chosen in {8, 16, 32} as a hyperparameter.343

We conduct the following two experiments (see the exact numbers for the results in Appendix D).344

• LQM vs baseline. First, we compare the performance of models trained with LQM and the345

baseline models that are trained using vanilla cross-entropy loss without leveraging rater features.346

Since LQM has access to clean labels of 10% of the data, for fair comparison, we ensure that347

the baseline models also have access to the same number of clean labels. The comparison is348

presented in Figure 7. As we can see, with rater features and the label correction step, in many349

cases, especially in the medium and high noise settings, LQM outperforms the baseline.350

• Combining LQM with other techniques. In the second experiment, we investigate the con-351

junction of LQM with other noisy labels techniques. We hypothesize that, depending on the352

2As mentioned in Section 2.2, the size of the NoisyLabelTrain split is around 50% of the training split of the
original dataset.
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Figure 7: Training with LQM adjusted labels outperforms baselines across all datasets. The improve-
ment from LQM is more prominent in medium and high noise settings. LQM models are trained by
randomly sampling a one-hot label from LQM output distribution, and tuning the � parameter.

technique, LQM may be correcting a different kind of noise from existing techniques, and thus353

can potentially lead to further performance improvement. To combine LQM with another tech-354

nique, we sample a hard label from the soft distribution specified by ỹi, and apply other noisy355

labels techniques on top of the sampled hard label. We consider the following 4 techniques:356

Bootstrap [Reed et al., 2014], Co-Teaching [Han et al., 2018], cross-entropy loss with Monte357

Carlo sampling (MCSoftMax) [Collier et al., 2020], and MentorMix [Jiang et al., 2020]. We find358

that on CIFAR10 and CIFAR100, combining LQM with other techniques usually lead to further359

performance improvement. The improvement can also be observed in the high noise setting for360

CvD. The results are illustrated in Figure 8.361

Figure 8: Accuracy improvement of LQM and the combinations of LQM and other techniques
compared to the baseline. In many settings (CIFAR10, CIFAR100 and high noise setting in CvD),
combining other techniques with LQM further improves the test accuracy. In other cases (PCam and
low/medium noise for CvD), the performance gain is less significant.

As a final note, since LQM assumes access to a subset of data with clean labels, and also uses an362

auxiliary classifier f(x), it has some similarity with semi-supervised learning (SSL). We notice that363

several state-of-the-art SSL techniques such as FixMatch [Sohn et al., 2020], UDA Xie et al. [2019],364

self-training with noisy student [Xie et al., 2020] use specifically designed data augmentations that365

are only suitable for specific types of data, whereas LQM can be applied to any type of data as366

long as we have rater features. We also expect that combining certain SSL techniques (e.g., data367

augmentation and consistency training) can further improve the results; however, these extensions are368

beyond the scope of this paper.369

5 Additional related work370

There is a large body of literature on learning with noisy labels. We mentioned several related work371

in the previous sections and it is certainly not an exhaustive list. Since our focus is a more realistic372

simulation framework for noisy label research, we first review prior works that try to simulate noisy373

labels using methods beyond random label flipping or permutation. As mentioned in Section 1, we374

are aware that two prior works by Lee et al. [2019] and Robinson et al. [2020] that also use similar375

pseudo-labeling paradigm to generate synthetic datasets with noisy labels. Seo et al. [2019] use a376

similar idea of nearest neighbor search in the feature space of a pretrained model with clean labels377
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to generate noisy labels. Compared with these works, our study is much more comprehensive with378

a diverse set of tasks and model architectures. We conduct a series of analysis on the impact of379

noisy labels, and propose a method to generate synthetic rater features and use them for improving380

robustness. These points were not considered in the two prior works. Other approaches to simulating381

realistic label noise have also been studied in the literature. Jiang et al. [2020] proposes a framework382

to generate controlled web label noise, in which case new images with noisy labels are crawled from383

the web and then inserted to an existing dataset with clean labels. The framework differs from our384

approach and the two frameworks should be considered complementary for generating realistic noisy385

label datasets. In particular, the method by Jiang et al. [2020] is more suitable for web-based data386

collection, e.g., WebVision [Li et al., 2017a] whereas ours is more suitable for simulating human387

raters. Moreover, Wang et al. [2018] and Seo et al. [2019] consider open-set noisy labels, where the388

mislabeled data may not belong to any class of the dataset, similar to Jiang et al. [2020]. Another389

approach to generating datasets with controllable about of label noise is to first identify a dataset with390

noisy labels (potentially some public datasets [Northcutt et al., 2021a,b]) and then use the confident391

learning (CL) method [Northcutt et al., 2021a] to increase or decrease the amount of label noise392

proportionally to the distribution of real-world label noise in the dataset. The idea is to model the joint393

distribution of noisy and true labels and then generate the noisy labels based on the noise-increased394

or noise-decreased joint distribution of noisy and true labels. This differs from our method since we395

use rater models, which are trained neural networks to generate noisy labels for each instance.396

Tackling noisy labels using a small subset of data with clean labels has been considered in a few prior397

works. Common approaches include pretraining or fine-tuning the network using clean labels [Xiao398

et al., 2015, Krause et al., 2016], and distillation [Li et al., 2017b]. In loss correction approaches,399

a subset of clean labels are often used for estimating the confusion matrix [Patrini et al., 2017,400

Hendrycks et al., 2018]. Veit et al. [2017] propose a method that estimates the residuals between401

the noisy and clean labels. Ren et al. [2018] use the clean label dataset to learn to reweight the402

examples. Tsai et al. [2019] combine clean data with self-supervision to learn robust representations.403

Our approach differs from these prior works since we leverage the additional rater features to learn404

an auxiliary model that corrects noisy labels in a rater-dependent manner, and can be combined with405

other techniques to further improve the performance as shown in Section 4.406

Learning from multiple annotators has been a longstanding research topic. The seminal work407

by Dawid and Skene [1979] uses the EM algorithm to estimate rater reliability, and much progress408

has been made since then [Raykar et al., 2010, Zhang et al., 2014, Lakshminarayanan and Teh, 2013].409

Rater features is commonly available in many human annotation process. In crowdsourcing, several410

prior work focus on estimating the reliability of raters [Raykar et al., 2010, Tarasov et al., 2014,411

Moayedikia et al., 2019], and rater aggregation [Vargo et al., 2003, Chen et al., 2013]. Item response412

theory [Embretson and Reise, 2013] from the psychometrics literature uses a latent-trait model to413

estimate the proficiency of raters and the difficulty of examples, and has a similar underlying principle414

to our work.415

Our method is also broadly related to several other lines of research. Training a pool of rater models416

is similar to ensemble method [Dietterich, 2000], which is usually used to boost test accuracy [Freund417

and Schapire, 1997] or improve uncertainty estimation [Lakshminarayanan et al., 2017]. Training new418

models using noisy labels provided by the rater models is similar to knowledge distillation [Buciluǎ419

et al., 2006, Hinton et al., 2015]. Designing instance-dependent noisy label generation framework420

can be considered as reducing underspecification [D’Amour et al., 2020] in generating label noise.421

6 Conclusions422

We propose framework for simulating realistic label noise based on the pseudo-labeling paradigm.423

We show that the synthetic datasets that we generated are more realistic than independent random424

label noise. With our synthetic datasets, we evaluate the negative impact of label noise on deep425

learning models, and demonstrate scenarios where label noise is more detrimental. Using the rater426

features from our simulation framework, we propose a new technique, Label Quality Model, that427

leverages annotator features to predict and correct against noisy labels. Our work demonstrates the428

importance of using realistic datasets for noisy label research, and we hope our framework can serve429

as an option for the noisy label research community to develop more efficient methods for practical430

challenges. One limitation of our framework is that, as discussed in Section 5, it focuses more on431

simulating human errors, whereas there might be other types of label noise in practical settings that432

need other simulation methods. Another limitation is that LQM requires the paired-subset containing433

both clean and noisy labels. This requirement may not be satisfied in some applications.434
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