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ABSTRACT

Bayesian-based methods have emerged as an effective approach in continual
learning (CL) to solve catastrophic forgetting. One prominent example is Varia-
tional Continual Learning (VCL), which demonstrates remarkable performance in
task-incremental learning (task-IL). However, class-incremental learning (class-
IL) is still challenging for the VCL, and the reasons behind this limitation remain
unclear. Relying on the sophisticated neural mechanisms, particularly the mech-
anism of memory consolidation during sleep, the human brain possesses inherent
advantages for both task-IL and class-IL scenarios, which provides insight for a
brain-inspired VCL. To identify the reasons for the inadequacy of VCL in class-IL,
we first conduct a comprehensive theoretical analysis of VCL. On this basis, we
propose a novel bayesian framework named as Learning within Sleeping (LwS) by
leveraging the memory consolidation. By simulating the distribution integration
and generalization observed during memory consolidation in sleep, LwS achieves
the idea of prior knowledge guiding posterior knowledge learning as in VCL. In
addition, with emulating the process of memory reactivation of the brain, LwS im-
poses a constraint on feature invariance to mitigate forgetting learned knowledge.
Experimental results demonstrate that LwS outperforms both Bayesian and non-
Bayesian methods in task-IL and class-IL scenarios, which further indicates the
effectiveness of incorporating brain mechanisms on designing novel approaches
for CL.

1 INTRODUCTION

Continual Learning (CL) aims to train neural networks on sequential tasks while retaining memories
acquired from past tasks within limited resources (Wang et al. (2022)). One significant challenge in
CL is the occurrence of catastrophic forgetting (Kim et al. (2022)), which refers to the phenomenon
where training a model with new information disrupts previously learned knowledge (Parisi et al.
(2019)). In recent years, there has been a growing body of research focusing on the application of
Bayesian inference frameworks in CL, which is well-suited due to their larger parameter space and
recursive nature. One notable approach is the online variational inference (VI) method combined
with Monte Carlo VI, as demonstrated in VCL (Nguyen et al. (2018)). VCL effectively combines
the previous posterior distribution from old tasks as the prior distribution for the current task, along
with the likelihood from the current task serving as the new posterior distribution. Building upon
VCL, subsequent studies have further utilized VI in CL, such as VCL meta-learning (Zhang et al.
(2021)) and uncertainty-VCL (Ahn et al. (2019)). These VCL-based methods are often categorized
as regularization-based approaches, as they employ Kullback-Leibler (KL) divergence as a regular-
ization term within the variational lower bound.

Although these methods have proven to be highly effective in various CL benchmarks, it is worth
noting that many of the VCL approaches primarily utilize multi-head neural networks (Nguyen et al.
(2018), Ahn et al. (2019), Wang et al. (2021)). As a result, these methods are mainly evaluated in
task-incremental (task-IL) scenario. In task-IL scenario, the model is provided with the task ID
during testing, enabling it to focus solely on classification within the given task. However, In most
cases, a model is not aware of the specific task it is facing. This scenario is known as the class-
incremental (class-IL) scenario (van de Ven et al. (2022)). Class-IL scenario requires the network
to infer the right class label among all those seen (Buzzega et al. (2020)), which presents a greater
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level of difficulty compared to the task-IL scenario. Hence, the use of a multi-head neural network
is unfeasible any more.

Few studies explore the performance of VCL in class-IL scenario. A recent study (Kessler et al.
(2021)) has demonstrated that VCL is insufficient in handling continual learning in the class-IL
scenario, in which the researchers attempted to replicate VCL by using a single-head neural network
yet found that it resulted in severe catastrophic forgetting. More importantly, this study suggests that
the superiority of multi-head VCL over other methods is not due to the propagation of the posterior,
but rather because of the task-specific parameters in each head. In other words, the propagation of
the posterior and the constraints of the posterior distribution on old and new tasks are not adequate
for preventing forgetting in the class-IL scenario. Despite the important conclusion, this study only
subject to simple experimental analysis on custom datasets without theoretical analysis. As a result,
the exact reasons why VCL underperforms in class-IL scenario remain unclear.

As it is known to all, the human brain exhibits a strong advantage in addressing catastrophic for-
getting, whether it is in task-IL or class-IL scenarios (Nguyen et al. (2018)), and this advantage
is related to the memory consolidation mechanisms during sleep (Tadros et al. (2022)). Multiple
studies in neuroscience suggest that there exist consolidation mechanisms during sleep that involve
the reactivation of memory encoding from daytime learning (Buhry et al. (2011), Schreiner et al.
(2021)). This reactivation process allows for the brain to review and reinforce the learned knowl-
edge. Additionally, during the process of relearning, memories undergo distribution integration and
generalization, enabling the extraction of more representative feature distributions (Klinzing et al.
(2019)). This mechanism is the neural foundation for achieving CL of the brain, and hence pro-
vides valuable insights for designing brain-inspired online variational inference continual learning
methods.

In this study, to clarify why VCL fails in the class-IL scenario, we first conduct a comprehensive the-
oretical analysis of VCL in the class-IL scenario. By decomposing CL methods in class-IL scenario
into feature extractor and feature classifier components, we demonstrate that effective mitigation of
catastrophic forgetting can only be achieved when the parameters of both the extractor and classifier
remain as similar as possible to those used for previous tasks while learning new tasks. However,
VCL fails to ensure this similarity, which no doubt results in poorer performance in the class-IL sce-
nario. To tackle these issues, we seek a solution from the brain and propose a brain-inspired approach
called Learning within Sleeping (LwS). By simulating the distribution integration and generaliza-
tion observed during memory consolidation in sleep, LwS achieves the concept of prior knowledge
guiding posterior knowledge learning. Furthermore, LwS emulates the process of memory reac-
tivation during sleep to impose a constraint on feature invariance. We have conducted extensive
experiments on both task-IL settings and class-IL settings using a diverse range of continual learn-
ing benchmark tasks. The results show that, we proposed LwS, exhibits exceptional performance
surpassing state-of-the-art methods across all these experiments.

2 RELATED WORKS

In this section, we first summarize the current mainstream approaches in the field of continual learn-
ing. We then focus on VCL and its related extensions. Finally, we introduce some recent brain-
inspired CL methods.

Continual Learning: To address the issue of catastrophic forgetting, researchers have developed
three types of methods. Firstly, replay-based methods consolidate memory by replaying a subset of
past data stored in a buffer such as LiDER (Bonicelli et al. (2022)), ER (Rolnick et al. (2019)), A-
GEM (Chaudhry et al. (2019)) and iCaRL (Rebuffi et al. (2017)). This type of method is currently the
most effective approach, but it relaxes the constraint of CL by retaining old samples to some extent,
allowing access to them. Secondly, parameter isolation methods assign independent parameters
to each task like HAT (Serra et al. (2018)). These methods avoid accessing old samples while
ensuring task isolation and optimum performance. However, they face several challenges such as an
exponentially increasing parameter space with the number of tasks and poor performance in class-
incremental setting. Finally, regularization-based methods penalize parameter changes related to
previous tasks when learning new tasks like EWC (Kirkpatrick et al. (2017)) and SI (Zenke et al.
(2017)). These methods utilize a smaller parameter space, but due to multiple tasks sharing the
same network, they tend to perform less effectively in long sequential tasks. For instance, EWC
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utilizes the diagonal Fisher information matrix and SI employs path integrals of gradient vector
fields. Recent research has started combining these three types of methods to further enhance model
performance.

Variational Continual Learning: The key concept in VCL is efficiently approximating the pos-
terior distribution on models. The work introduced in (Nguyen et al. (2018)) merges online VI
with Monte Carlo VI for continual learning. In (Ahn et al. (2019)), it is identified that VCL suffers
from two limitations, namely increased memory cost for parameters and the absence of an effec-
tive forgetting mechanism. To address these concerns, uncertainty-regularized continual learning
is proposed. Another work introduces meta-learning to VCL, leveraging dynamic mixtures at the
meta-parameter level to enhance adaptability to diverse tasks. However, it is worth noting that these
studies ignore the drawback that VCL can only be applied in task-IL scenario.

Brain-inspired Continual Learning: In recent years, there has been a growing interest among
researchers in the field of CL in incorporating mechanisms from neuroscience to enhance CL meth-
ods. One such approach leverages the interaction between the hippocampus and prefrontal cortex
in memory formation and proposes brain-inspired replay-based method (van de Ven et al. (2020)).
This method trains a generator to simulate the brain’s process of memory replay, allowing for the
replay of past experiences without explicitly storing them. However, it requires extensive training
of the generator and may struggle to avoid systematic errors. In (Iscen1 et al. (2020)), a remapping
method is proposed, which takes advantage of the generalization process of old knowledge in the
neocortex. It maps features from old tasks to the feature space of new tasks. However, this method
overlooks the preservation of the feature space of the old tasks, resulting in limited effectiveness in
long sequential tasks. Overall, current brain-inspired CL methods have shown some performance
improvements, but they lack detailed simulation of neural mechanisms and theoretical explanations.

3 VARIATIONAL CONTINUAL LEARNING IN CLASS-IL SCENARIO

In this section, the reasons that VCL fails in class-IL scenario are analyzed in detail. First, via
decomposing the CL algorithm in class-IL scenario into a Feature Extractor (FE) component and a
Feature Classifier (FC) component, it is revealed that, in class-IL scenario, the performance of the
CL algorithm improves when both the parameters of the FE and the FC remain as similar as possible
during the learning process. Subsequently, with EWC and iCaRL as comparisons, the limitaions of
VCL in both FE and FC are demonstrated.

3.1 CLASS-IL SCENARIO DECOMPOSITION

In this subsection, we present the fundamental setup of CL and discussed the formulations of task-IL
scenario and class-IL scenario. CL involves training models to classify new classes in new tasks after
being well-trained in old tasks. Given T tasks, we partition C classes into T subsets C1, C2, . . . , CT ,
where C = C1∪C2∪· · ·∪CT and Ci∩Cj = ∅ for i ̸= j. We denote Dt = {(xt, yt)|xt ∈ Xt, yt ∈
Yt} as the training dataset for each task t, where Xt is a set of images and Yt represents the labels
belonging to Ct.

There are two classical CL experiment settings named task-IL scenario and class-IL scenario. The
formal expression of task-IL is:

Training: p(αt|Dtrain
t ) Testing: p(Dtest

t |αt), where t is available,
and class-IL is:

Training: p(αt|Dtrain
t ) Testing: p(Dtest

t |αt), where t is unavailable,
where αt is the parameters of the model in task t. The expression above indicates that the class-IL
scenario imposes stricter testing conditions compared to the task-IL scenario, and closer to the real
world environment. Some studies (Kim et al. (2022)) divide the algorithms in a class-IL scenario
into two components: within-task prediction (WP) and task-ID prediction (TP). TP is responsible
for identifying the task that the model is currently performing, while WP performs class predictions
within that particular task. In a word, it becomes a task-IL algorithm which the task id t is predicted
by another model.

In contrast, in our study, we approach class-IL algorithms from a different perspective. We split
such an algorithm into two components: the Feature Extractor (FE) and Feature Classifier (FC).
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Consider a class-IL model denoted as fθ,W : X → RK , where K represents the number of classes.
In this model, θ and W correspond to the parameters of the network. Specifically, θ refers to the
parameter of a feature extractor hθ : X → Rd, where d denotes the dimension of the feature space.
Additionally, W represents the parameters of a feature classifier gW : Rd → RK . The network
fθ,W is represented as:

fθ,W (x) = gW (hθ(x)), x ∈ X
Due to the non-i.i.d. (independent and identically distributed) nature of datasets across different
tasks, the parameters θ and W undergo changes as tasks arrive. For instance, after being trained on
dataset Dt, we obtain a subset of features denoted as Zt that is extracted by the feature extractor hθt .
Subsequently, based on Zt, we train a feature classifier denoted as gWt

. However, when task t + 1
is introduced, the feature extractor is adjusted using the new dataset Dt+1 resulting in hθt+1

, and
similarly, the feature classifier becomes gWt+1

. Consequently, when some previously encountered
samples from Dt reappear, the features extracted by hθt+1

denoted as Ẑt no longer reside in the same
feature space as Zt in most cases, and these features remain unseen by gWt+1

. This phenomenon
leads to catastrophic forgetting.

To address this problem, it is crucial to maintain the ability to perform feature extraction and clas-
sification for old tasks with the same proficiency as when initially learning them. This requires
retaining the capability for feature extraction and classification of previous tasks even after learning
new ones.

3.2 THE FEATURE EXTRACTOR (FE) AND FEATURE CLASSIFIER (FC)

As stated in subsection 3.1, catastrophic forgetting occurs due to the transformation of the model in a
new task, resulting in changes in the feature space and feature classifier for that task. Consequently,
the feature space obtained for old data using the new model is inconsistent with the feature space
of new data. This inconsistency renders the new feature classifier unable to recognize the features
extracted from the old samples.

An intuitive hypothesis suggests that if the new FE can effectively extract features from both old
samples in the original feature space and new samples in the updated feature space, while the FC
maintains its ability to classify in the original feature space and learns to classify in the new feature
space, then the performance of the CL model is expected to improve.

To formally describe our hypothesis, we use cross-entropy as the performance measure of the model,
the loss function of a class-IL model is denoted as:

LCIL(x) = H(y, fθ(gW (x))) = −
∑
i

yi log fθ(gW (xi)) (1)

After learning task t, we obtain θ∗t ,W
∗
t = argminθt∈Θ,Wt∈W H(yt, gWt

(hθt(xt)))
where (xt, yt) ∈ Dt. Also after learning task t + 1, we obtain θ∗t+1,W

∗
t+1 =

argminθt+1∈Θ,Wt+1∈W H(yt+1, gWt+1(hθt+1(xt+1))) where (xt+1, yt+1 ∈ Dt+1). Dt and Dt+1

are non-i.i.d.. With these notations, our hypothesis can be formally described as follows.

Hypothesis 1: catastrophic forgetting happens as H(yt, gW∗
t
(hθ∗

t
(xt))) ≪

H(yt, gW∗
t+1

(hθ∗
t+1

(xt))) where (xt, yt) ∈ Dt.

Theorem 1: if the condition |θ∗
′(i,j)

t+1 − θ
∗(i,j)
t | < ϵ1, |W ∗′(i,j)

t+1 − W
∗(i,j)
t | < ϵ2 and

θ∗
′

t+1,W
∗′

t+1 ≈ argminθt+1∈Θ,Wt+1∈W H(yt+1, gWt+1
(hθt+1

(xt+1))), (xt+1, yt+1) ∈ Dt+1 hold,
where i and j are indicators of matrix θ,W , and ϵ1, ϵ2 are small positive numbers, then we have
H(yt, gW∗′

t+1
(hθ∗′

t+1
(xt))) ≤ H(yt, gW∗

t+1
(hθ∗

t+1
(xt))).

Proof: In most cases, the objective function H(y, fθ(gW (x))) is continuous and differentiable in
the parameter space Θ and W . When |θ∗

′(i,j)
t+1 − θ

∗(i,j)
t | < ϵ1 and |W ∗′(i,j)

t+1 − W
∗(i,j)
t | < ϵ2,

We have H(yt, gW∗′
t+1

(hθ∗′
t+1

(xt))) ≈ H(yt, gW∗
t
(hθ∗

t
(xt))). Since H(yt, gW∗

t
(hθ∗

t
(xt))) ≪

H(yt, gW∗
t+1

(hθ∗
t+1

(xt))), it follows that H(yt, gW∗′
t+1

(hθ∗′
t+1

(xt))) ≤ H(yt, gW∗
t+1

(hθ∗
t+1

(xt))).

Theorem 1 suggests that if we can maintain similarity between the parameters of FE and FC trained
on task t and those trained on task t+1 while training our model on task t+1, catastrophic forgetting
can be mitigated.
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3.3 VCL COMPARED WITH EWC AND ICARL IN CLASS-IL SCENARIO

Based on Theorem 1, we further analyze why VCL fails in the class-IL scenario. To this
end, we compare VCL with two classical CL algorithms that perform well in class-IL scenario,
regularization-based classic CL algorithm Elastic Weight Consolidation (EWC), and replay-based
classic CL algorithm Incremental Classifier and Representation Learning (iCaRL).

The classical regularization-based method EWC use the diagonal of the Fisher information matrix
as a regularization term. The loss function of EWC is

LEWC = L(αt) +
λ

2

∑
i

F i(αi
t − αi

t−1)
2, F i =

1

|Dt|
∑
d∈Dt

∂
L(d, αi

t−1)
2

∂(αi
t−1)

2
, (2)

where λ is a importance weight for regularization term and α is the parameters of model
including θ and W . As we can see, though EWC does not explicitly divide the algo-
rithm into FE and FC phases, it effectively preserves the important parameters by con-
straining their changes as much as possible. The LEWC is to find θ∗

′

t+1,W
∗′

t+1 ≈
argminθt+1∈Θ,Wt+1∈W H(yt+1, gWt+1(hθt+1(xt+1))), (xt+1, yt+1) ∈ Dt+1 while θ∗

′

t+1 ≈ θ∗t and
W ∗′

t+1 ≈W ∗
t . As a result, EWC can guarantee a certain level of performance in class-IL scenario.

The classical replay-based method iCaRL retains the old parameters by knowledge distillation and
prototype rehearsal. It involves storing newly encountered data in a exemplar set. Those data sam-
ples are replayed alongside the new data during training. Specifically, a distillation loss is used to
reproduce the prediction scores stored in the previous step. The FE and FC are trained not only on
the current task dataset Dt but also on a subset of samples from the previous tasks dataset D1:t−1.
The loss function is:

LiCaRL = H(yt, fαt(xt)) +H(fαt−1(xbuffer), fαt(xbuffer)), (3)

whereM is a sample buffer, (xt, yt) ∈ Dt and (xbuffer, ybuffer) ∈M.

Both EWC and iCaRL align with Theorem 1, hence exhibiting favorable performance in class-IL
scenario.

Unfortunately, VCL fails to adhere to Theorem 1. Consider a VCL discriminative neural network
model. Following an online bayesian approach, the prior distribution when learning task t can be
replaced by the posterior distribution after learning task 1 : t− 1:

p(α|D1:T ) ∝ p(α)p(D1:T |α) ∝ p(α|D1:T−1)p(DT |α) (4)

In most cases the posterior distribution is intractable and approximation is required. Variational
inference use a tractable and normalized distribution q(αt) ∈ Q as a approximation of p(α|Dt). In
VCL, it employs a projection operator defined through a KL divergence minimization over the set
of allowed approximation posteriors Q:

q(αt) = argmin
q∈Q

KL

(
q(α) ∥ 1

Ct−1
q(αt−1)p(Dt|α)

)
(5)

Ct is the intractable normalizing constant and is not required to compute the optimum. After a series
of transformations (detailed in Appendix 7.1), we obtain the loss function for VCL:

LV CL = KL[q(αt) ∥ q(αt−1)]︸ ︷︷ ︸
(a)

−Eq(αt)[log p(Dt|αt)]︸ ︷︷ ︸
(b)

(6)

In Gaussian mean-field approximation approach, term (a) can be more specifically expressed as
(detailed in Appendix 7.2):

KL[q(αt) ∥ q(αt−1)] =

[
log

(
σ1

σ2

)
+

σ2
2

σ2
1

]
︸ ︷︷ ︸

(1)

+
(µ2 − µ1)

2

2σ2
1︸ ︷︷ ︸

(2)

−1

2
,

(7)

where αt−1 ∼ N (µ1, σ
2
1) and αt ∼ N (µ2, σ

2
2). In essence, VCL attempts to maintain the simi-

larity of old parameters by constraining the distribution that each parameter follows and minimize
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their KL divergence. However, this approach is inadequate because even if the distributions that
each parameter follows are similar, the sampled parameter instances may still differ. As a result,
although these parameters perform well on new samples, they fail to capture similar features of the
old samples with old parameters.

Therefore, due to only the parameter distribution constraint, VCL is unable to effectively preserve
the feature extraction and feature prediction of old samples, resulting in catastrophic forgetting.

4 LEARNING WITHIN SLEEPING

Considering the inherent continual learning ability of the human brain, based on the neural mech-
anisms behind this advantage, i.e. the memory consolidation during sleep, we propose a Learning
within Sleeping (LwS) framework to enhance the variational inference, rendering it can cope with
the class-IL scenario.

Figure 1: Memory consolidation during sleep involves two mechanisms. One is memory reactiva-
tion, which refers to the reactivation of memories encoded during the day to strengthen old knowl-
edge, similar to the replay method in CL. The other mechanism is the integration and generalization
of feature distributions during the learning process to adapt to new knowledge, corresponding to
feature alignment and parameter constraints in our method.

Neuroscience studies have begun to focus on the memory consolidation mechanisms during sleep
for addressing catastrophic forgetting (Brodt et al. (2023)). During sleep, previously learned ex-
periences are reactivated, facilitating the process of memory consolidation (Buhry et al. (2011),
Schreiner et al. (2021)). This reactivation is not simply a replay of the same patterns, while it in-
volves relearning experiences, particularly the relearning of distributions (Klinzing et al. (2019)).
As a result, memories obtained through new learning exhibit enhanced generalization performance.
This memory consolidation mechanism during sleep bears similarities to the theoretical analysis we
conducted earlier, inspiring the design of our Learning within Sleeping approach.

Inspired by the memory consolidation during sleep, we reconsider the loss function of VCL in
equation (6), and introduce two main contributions:

Memory Reactivation: Neuronal representations are repeatedly replayed during sleep, which is
crucial for memory consolidation. Taking inspiration from this, we introduce a sample buffer to
store and replay samples from previous tasks alongside new data while learning new tasks. To
ensure the fairness of the selected samples, we employ the reservoir sampling algorithm, which
guarantees that each exemplar from the data stream has an equal probability of being selected in the
buffer (Buzzega et al. (2020)). The loss function incorporating this term can be expressed as:

LLwS = H(y, fαt(x)), (x, y) ∈ Dt ∪M. (8)
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Additionally, to improve the generalization performance of replayed samples, we propose a feature
distillation term that replays features from the old parameters and constrains the features obtained
from the new parameters to remain unchanged. On one hand, features possess more abstract and
high-level representational power compared to samples, leading to improved model generalization.
On the other hand, ensuring similarity of features for the same sample between the old and new
models facilitates the ability to express old samples in the new model. Therefore, the loss function
becomes:

LLwS = H(y, fαt(x)) + Lmse(hθt−1(xM), hθt(xM)), (x, y) ∈ Dt ∪M, (xM, yM) ∈M (9)

Distribution Generalization: The theory of Bayes brain suggests that the human brain operates in
a manner consistent with Bayesian inference when it comes to memory. Memories acquired during
the day are consolidated and integrated during the sleep process at night, leading to the phenomenon
of generalization. In VCL, the distributions of parameters serve as the memory and are integrated
by preventing changes between the prior and posterior distributions. This approach aims to enable
the newly learned parameter distribution to perform well not only on new tasks but also on old tasks,
achieving distributional generalization. However, our analysis in section 3 suggests that constraining
the distribution each parameter follows is inefficient. In this work, we attempt to constrain only
the distribution of parameters in the FE after learning through point estimation. We then use this
distribution as a prior to guide the new posterior distribution of parameters, treating the parameters
themselves instead of the distributions they follow as memory. This process involves integrating and
generalizing memory. The final loss function is as follows:

LLwS = H(y, fαt(x)) + Lmse(hθt−1(xM), hθt(xM)) +KL[q(θt) ∥ q(θt−1)],

(x, y) ∈ Dt ∪M, (xM, yM) ∈M.
(10)

In addition, the aforementioned constraints on new and old features can actually serve as a means of
distributional generalization.

Algorithm 1 LwS Framework

Require: Sequence of datasets: D = {D1, D2, . . . , DT }, data bufferM,
1: Initialize the buffer:M← ∅
2: run network training on task 0 with loss function:

LLwS = H(y0, fαt
(x0)), (x0, y0) ∈ D0

3: Put selected samples into bufferM using herding algorithm.M←M∪ subset(D0)
4: for dot = 1 . . . T
5: Observe the next dataset Dt

6: Update the working net posterior with loss function:

LLwS = H(y, fαt(x)) + Lmse(hθt−1(xM), hθt(xM)) +KL[q(θt) ∥ q(θt−1)],

(x, y) ∈ Dt ∪M, (xM, yM) ∈M.

7: Update bufferM using reservoir sampling algorithm.M←M∪ subset(Dt)

Inspired by the memory consolidation mechanisms during sleep, we propose sample replay and fea-
ture alignment constraints by simulating memory reactivation. Moreover, we propose a parameter
distribution constraint method by simulating distribution generalization. These components collec-
tively form our LwS framework. With these components, LwS satisfies the description of Theorem
1 and effectively avoids the occurrence of catastrophic forgetting in class-IL scenario.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

We test our proposal in two continual learning settings: Task-IL and Class-IL on the Mammoth
framework (Pietro Buzzega (2020)), which is a CL benchmark contains many classical CL methods.
When tested on the MNIST dataset, we adopted MNISTMLP model which is a two-layer fully
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connected network with 100 ReLU units per layer. For the CIFAR10 and TinyImageNet datasets,
we used a Resnet18 convolutional neural network. All models in this study are trained without the
use of pre-training models. We use the SGD optimizer for all settings. We experiment with the
following datasets: Split MNIST(Lecun et al. (1998)): MNIST datasets which split into 5 tasks
for each task contains 2 classes. Split CIFAR-10(Krizhevsky (2009)): CIFAR-10 datasets which
split into 5 tasks for each task contains 2 classes. Split Tiny-ImageNet(Le & Yang (2015)): Tiny-
ImageNet datasets which split into 10 tasks for each task contains 20 classes. We evaluate the
performance of LwS together with the classical bayesian method VCL, some famous regularization-
based methods such as EWC, SI and some famous replay-based methods like iCaRL and A-GEM.
A sample buffer is set to store samples of old tasks. We test all methods in 200, 500, 5120 three
kinds of buffer size.

5.2 COMPARING WITH BAYESIAN METHODS ON SPLIT-MNIST DATASET

Firstly, we compare the performance of our method with that of the bayesian methods using the
split-MNIST dataset. Figure 2 shows the comparison with VCL in both task-IL and class-IL on
three buffer sizes. LwS provides the highest performance in all of these scenarios. In task-IL, LwS
and VCL both have good performance in all tasks. But in class-IL, VCL almost forget what it learn
immediately, and shows very poor accuracy in old tasks. Instead, LwS is very suitable for class-IL
that provides a percentage gain of 440%, 448% and 487% over the VCL in buffer size 200, 500 and
5120. Regardless of the buffer size used, the standard deviations of the accuracy for LwS tasks were
9.70, 8.00, and 2.52, respectively. These results demonstrate that LwS exhibits strong continual
learning capabilities without significant forgetting of previously learned tasks.

Figure 2: VCL and LwS on Split-MNIST dataset in task-IL scenario and class-IL scenario

5.3 COMPARING WITH NON-BAYESIAN METHODS

Compared to Bayesian methods, non-Bayesian methods tend to have higher average accuracy on
old tasks. Table 1 shows the average test accuracy both in regularization-based methods like EWC,
SI and replay-based methods like iCaRL and A-GEM. Since regularization-based methods do not
require a sample buffer, we only conducted tests on different datasets. Usually the performance of
these methods are typically not as good as replay-based methods. As for replay-based methods, we
compared our method with them by testing the average accuracy on sample buffers of three different
sizes: 200, 500, and 5120 samples.

The results show that our method provide considerable performance on all three datasets. In par-
ticular, our algorithm demonstrates significantly higher average accuracy than existing algorithms,
especially when dealing with complex datasets like Split-CIFAR10 and Split-TinyImageNet. The
performance gap between LwS and A-GEM and iCaRL shows the clear advantages of our method
over both regularized-based and replay-based methods.

5.4 ABLATION STUDY

Sample replay has been repeatedly proven to be effective in addressing catastrophic forgetting.
Therefore, to further validate the effectiveness of the two constraints we introduced, we conduct ab-
lation experiments. We evaluat the performance improvement of our constraints on the split-MNIST

8
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Table 1: Comparison with other works on task-IL and class-IL

Buffer Method Split-MNIST Split-CIFAR10 Split-TinyImageNet
Task-IL Class-IL Task-IL Class-IL Task-IL Class-IL

- oEWC 96.95 21.87 68.29 19.49 19.20 7.58
SI 95.94 19.87 68.05 19.48 36.32 6.58

200 VCL 96.21 18.04 - - - -
iCaRL 98.81 61.93 88.99 49.02 28.19 7.53

A-GEM 98.66 80.11 83.88 20.04 22.77 8.07
LwS 97.34 83.57 87.62 48.96 31.04 8.63

500 VCL 95.80 19.92 - - - -
iCaRL 98.84 54.87 88.22 47.55 31.55 9.38

A-GEM 98.3 85.99 89.48 22.67 25.33 8.06
LwS 98.95 87.47 87.12 48.55 35.91 10.04

5120 VCL 95.82 19.60 - - - -
iCaRL 98.82 58.67 92.23 55.07 40.83 14.08

A-GEM 98.42 95.55 90.10 21.99 26.22 7.96
LwS 99.03 95.62 94.69 75.69 58.93 21.24

- indicates the experiments that the author were unable to run. Results of other methods referenced from
(Pietro Buzzega (2020), Arani et al. (2022))

dataset and observed positive results. We set LwS-non as LwS with only sample replya. The results
demonstrat that the constraint on parameter variation named as LwS-par improved accuracy across
almost all tasks, while the constraint on feature consistency named as LwS-fea exhibited even better
performance enhancement in the average results.

Figure 3: LwS ablation study in split-MNIST
in buffer size 200

class-IL task-IL

LwS 83.57 97.34
LwS-fea 82.02 (-1.55) 96.56 (-0.78)
LwS-par 82.51 (-1.06) 97.27 (-0.07)
LwS-non 77.96 (-5.61) 98.09 (+0.75)

Table 2: The average accuracy on the Split-
MNIST dataset after removing each component in
class-IL scenario and task-IL scenario.

6 CONCLUSION

In this work, with comprehensive theoretical analysis and experimental results, we reveal that VCL
can not solve the catastrophic forgetting on class-IL scenario, which mainly results from its inability
to effectively constrain the variation of model parameters across old and new tasks. To cope with this
challenge, we design a brain-inspired Learning within Sleep framework. The proposed LwS simu-
lates memory reactivation through replaying and applies parameter constraints based on distribution
generalization and feature constraints. The experiments validate that, our method achieves superior
results compared with both Bayesian and non-Bayesian methods. Furthermore, we indicates the
effectiveness of incorporating brain mechanisms on designing novel approaches for CL.

9
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7 APPENDIX

7.1 DERIVATION OF EQ. (6)

Since we use q(αt) ≈ p(αt|Dt) To find q(αt) = argminq∈Q KL
(
q(α) ∥ 1

Ct−1
q(αt−1)p(Dt|α)

)
,

we consider:

log p(D) =

∫
q(α) log p(D) dα

=

∫
q(α) log

p(D,α)

p(α|D)
dα

=

∫
q(α) log

p(D,α)q(α)

p(α|D)q(α)
dα

=

∫
q(α) log

p(D,α)

q(α)
dα+

∫
q(α) log

q(α)

p(α|D)
dα

= LELBO(q(α)) +KL[q(α) ∥ p(α|D)]
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Since log p(D) is independent of q(α), minimizing KL[q(α) ∥ p(α|D)] implies maximizing
LELBO(q(α)).

LELBO(q(αt)) =

∫
q(αt) log

p(Dt, αt)

q(αt)
dα

=

∫
q(αt) log

p(Dt|αt)p(αt)

q(αt)
dα

=

∫
q(αt) log p(Dt|αt) dα+

∫
q(αt) log

p(αt)

q(αt)
dαt

=

∫
q(αt) log p(Dt|αt) dα+

∫
q(αt) log

q(αt−1)

q(αt)
dα

= Eq(αt)[log p(Dt|αt)]−KL[q(αt) ∥ q(αt−1)]

Then we have:

LV CL = maxLELBO = min(−LELBO)

= KL[q(αt) ∥ q(αt−1)]− Eq(αt)[log p(Dt|αt)]

7.2 DERIVATION OF EQ. (7)

Let q(θt−1) = N (µ1, σ
2
1) and q(θt) = N (µ2, σ

2
2), which we have:

q(θt−1) =
1√
2πσ1

e
− (θ−µ1)2

2σ2
1

log q(θt−1) = −
1

2
log(2π)− log(σ1)−

1

2
(
θ − µ1

σ1
)2

q(θt) =
1√
2πσ2

e
− (θ−µ2)2

2σ2
2

log q(θt) = −
1

2
log(2π)− log(σ2)−

1

2
(
θ − µ2

σ2
)2

So the KL[q(θt) ∥ q(θt−1)] can be expressed as:
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KL[q(θt) ∥ q(θt−1)]

=

∫
q(θt) log

q(θt)

q(θt−1)
dθ

= −
∫

q(θt) log q(θt−1) dθ +

∫
q(θt) log q(θt) dθ

=

∫
1√
2πσ2

e
− (θ−µ2)2

2σ2
2 ×

[
1

2
log(2π) + log(σ1) +

1

2

(
θ − µ1

σ1

)2

− 1

2
log(2π)− log(σ2)−

1

2

(
θ − µ2

σ2

)2
]
dθ

=

∫
1√
2πσ2

e
− (θ−µ2)2

2σ2
2 ×

{
log

(
σ1

σ2

)
+

1

2

[(
θ − µ1

σ1

)2

−
(
θ − µ2

σ2

)2
]}

dθ

= Eq(θt)

{
log

(
σ1

σ2

)
+

1

2

[(
θ − µ1

σ1

)2

−
(
θ − µ2

σ2

)2
]}

= log

(
σ1

σ2

)
+

1

2σ2
1

Eq(θt)[(θ − µ1)
2]− 1

2σ2
2

Eq(θt)[(θ − µ2)
2]

= log

(
σ1

σ2

)
+

1

2σ2
1

Eq(θt)[(θ − µ1)
2]− 1

2

= log

(
σ1

σ2

)
+

1

2σ2
1

Eq(θt)[(θ − µ2 + µ2 − µ1)
2]− 1

2

= log

(
σ1

σ2

)
+

1

2σ2
1

Eq(θt)[(θ − µ2)
2 + 2(θ − µ2)(µ2 − µ1) + (µ2 − µ1)

2]− 1

2

= log

(
σ1

σ2

)
+

1

2σ2
1

{Eq(θt)[(θ − µ2)
2] + 2(µ2 − µ1)Eq(θt)[(θ − µ2)] + Eq(θt)[(µ2 − µ1)

2]} − 1

2

= log

(
σ1

σ2

)
+

1

2σ2
1

[σ2
2 + 0 + (µ2 − µ1)

2]− 1

2

= log

(
σ1

σ2

)
+

σ2
2 + (µ2 − µ1)

2

2σ2
1

− 1

2

=

[
log

(
σ1

σ2

)
+

σ2
2

σ2
1

]
+

(µ2 − µ1)
2

2σ2
1

− 1

2
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