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ABSTRACT

Hybrid offline–online reinforcement learning (O2O RL) promises both sample efficiency
and robust exploration, but suffers from instability due to distribution shift between offline
and online data. We introduce RLPD-GX, a framework that decouples policy optimization
from safety enforcement: a reward-seeking learner explores freely, while a projection-
based guardian guarantees rule-consistent execution and safe value backups. This design
preserves the exploratory value of online interactions without collapsing to conservative
policies. To further stabilize training, we propose dynamic curricula that gradually extend
temporal horizons and anneal offline–online data mixing. We prove convergence via a con-
traction property of the guarded Bellman operator, and empirically show state-of-the-art
performance on Atari-100k, achieving a normalized mean score of 3.02 (+45% over prior
hybrid methods) with stronger safety and stability. Beyond Atari, ablations demonstrate
consistent gains across safety-critical and long-horizon tasks, underscoring the generality
of our design. Extensive and comprehensive results highlight decoupled safety enforce-
ment as a simple yet principled route to robust O2O RL, suggesting a broader paradigm
for reconciling exploration and safety in reinforcement learning.

1 INTRODUCTION

Deep reinforcement learning (DRL) has demonstrated remarkable performance in complex decision-making
tasks such as strategy games and robotic control (Mnih et al., 2015; Arulkumaran et al., 2017; Li, 2018;
Dulac-Arnold et al., 2021). However, its mainstream paradigms, i.e., purely online learning and purely
offline learning, are constrained by sample inefficiency and out-of-distribution (OOD) generalization chal-
lenges, respectively (Fujimoto et al., 2019; Kumar et al., 2020; Gu et al., 2024b). To address these issues,
Offline-to-Online (O2O) reinforcement learning introduces a two-stage paradigm, (Gulcehre et al., 2021;
Sönmez et al., 2024; Figueiredo Prudencio et al., 2024) where the agent is first pretrained on offline data and
then fine-tuned online, thereby alleviating the weaknesses of both approaches. While effective in principle,
this rigid two-stage design often exacerbates distributional shifts, induces compounded Bellman errors, and
causes performance regressions (Figueiredo Prudencio et al., 2024; Shakya et al., 2023). Recent research
has thus moved toward integrated training loops, where offline data serve as a regularizing prior to guide
safe exploration and suppress overgeneralization, while online samples immediately correct value overes-
timation caused by incomplete offline coverage (Shin et al., 2025; Niu et al., 2023). This synergy ensures
a smooth transition between exploration and exploitation, yielding more stable and efficient performance
improvements.

Nevertheless, hybrid offline-online reinforcement learning in practice often struggles to reconcile the mis-
match between the behavior policy underlying offline trajectories and the evolving target policy of the
agent (Wen et al., 2024; Sönmez et al., 2024). This distribution gap leads to overly conservative behav-
iors, where the model performs well near the offline distribution but fails to explore new actions; to over-
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optimism, where values are overestimated in out-of-distribution regions; and to training oscillations, where
conflicting learning signals undermine convergence (Figueiredo Prudencio et al., 2024; Chen et al., 2023).
Although prior approaches, such as RLPD and Hy-Q attempt to mitigate this issue, they remain limited.
Specifically, both rely on injecting strong conservative biases: RLPD (Ball et al., 2023b) constrains explo-
ration strictly within the offline distribution at the policy level, while Hy-Q (Song et al., 2023)systemati-
cally underestimates values of unknown actions at the critic level. Despite their different mechanisms, both
approaches converge to the same dilemma: in order to stabilize the transition phase, they suppress the ex-
ploratory value of online data, leading to suboptimal policies that remain tethered to the offline distribution
and fail to fully exploit the potential of online interaction.

To overcome this limitation, we propose the RLPD-GX framework, whose central contribution lies in de-
coupling policy learning from safety enforcement: a constraint-free Learner is responsible for exploration
and reward maximization, while a Guarded Bellman Operator projects online actions onto a predefined
safe subspace to guarantee verifiable execution. This design preserves the intrinsic exploratory value of on-
line interactions, while effectively filtering out spurious signals arising from random exploration that could
misguide policy updates. To ensure a smooth transition from offline pretraining to online fine-tuning, our
RLPD-GX further introduces dynamic curriculum sampling: (i) Dynamic Temporal Sampling (DTS) es-
tablishes a temporal curriculum that transitions from dense (Narvekar et al., 2020; Portelas et al., 2020),
short-horizon sampling to sparse, long-horizon sampling, thereby balancing local rule learning with long-
term planning; and (ii) Dynamic Symmetric Sampling (DSS) smoothly adjusts the mixing ratio between
offline and online data, starting with an offline-biased phase to distill prior knowledge and converging to a
balanced 1:1 mixture, thereby avoiding conflicts and instabilities. This framework fundamentally reshapes
the relationship between safety and optimality by decoupling the two, turning the pursuit of optimal policies
under safety constraints from a zero-sum trade-off into a feasible, synergistic goal.

Extensive experiments are conducted to validate these claims. First, on the challenging Atari 100k bench-
mark (Ye et al., 2021), we demonstrate that RLPD-GX achieves superior performance and sample efficiency
compared to state-of-the-art online, offline, and hybrid baselines. Second, we perform a targeted analysis
showing that our decoupled Guardian mechanism provides stronger safety guarantees and higher task re-
turns than representative safe RL algorithms. Finally, a series of ablation studies confirms that the proposed
dynamic sampling mechanisms are critical for achieving faster and more stable convergence. These results
set a new benchmark, showing our design breaks the safety–performance trade-off.

2 PROBLEM FORMULATION

We formalize the problem of safe reinforcement learning within a hybrid offline-online data regime. Our
formulation is grounded in the established framework of Markov Decision Processes (MDPs) (Puterman,
1994; Gu et al., 2024b; White, 1993), extended to accommodate externally specified safety constraints and
a composite data stream.

2.1 MDPS IN A HYBRID DATA REGIME

We model the environment as a Markov Decision Process (MDP), defined by the tuple (S,A, P,R, γ),
representing the state space, action space, transition probability function P : S ×A×S → [0, 1], a bounded
reward function R : S×A → R, and a discount factor γ ∈ [0, 1). The agent’s learning process is fueled by a
hybrid data stream. Let doff(s, a) be the state-action marginal distribution of the static offline datasetDoff,
and let don(s, a) be the corresponding distribution for the dynamically populated online replay buffer Bon.
The composite training distribution dtrain from which data is sampled is a time-varying convex combination:

dtrain(s, a; t) = λ(t)don(s, a) + (1− λ(t))doff(s, a) (1)
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where λ(t) ∈ [0, 1] is a mixing coefficient at training step t, for which we propose a dynamic annealing
schedule (detailed in Section 3.2). The primary theoretical challenge arises from the distributional shift
between doff and the distribution induced by the evolving online policy dπϕ . This shift can lead to severe
extrapolation errors and value overestimation for out-of-distribution (OOD) actions.

2.2 SAFETY AS A STATE-ACTION CONSTRAINT

We depart from safe RL formulations that integrate safety as a penalty or cost. Instead, we define safety
as a hard constraint on the policy’s support. This is enforced by an external, deterministic predicate g :
S ×A → {0, 1}, where g(s, a) = 1 signifies that action a is permissible in state s.

This predicate defines a state-dependent safe action set:

Asafe(s) ≜ {a ∈ A | g(s, a) = 1} (2)
Consequently, the space of valid policies is constrained to Πsafe, where

Πsafe = {π ∈ Π | supp(π(·|s)) ⊆ Asafe(s), ∀s ∈ S} (3)
where Π is the set of all possible stochastic policies. This reframes the problem as a constrained optimization
task rather than a multi-objective one.

2.3 THE MAXIMUM ENTROPY LEARNING OBJECTIVE

The agent’s goal is to find a policy πϕ ∈ Π that maximizes the maximum entropy objective. This objective
encourages exploration and improves robustness by seeking both high returns and high policy entropy:

J(πϕ) = E st∼ρπϕ

at∼πϕ(·|st)

[ ∞∑
t=0

γt (R(st, at) + αH(πϕ(· | st)))

]
, (4)

where ρπϕ
is the state distribution induced by policy πϕ, and H is the Shannon entropy. The corresponding

soft Q-function, Q∗(s, a), is the unique fixed point of the soft Bellman operator T soft:

(T softQ)(s, a) = R(s, a) + γEs′∼P (·|s,a) [Vsoft(s
′)] , (5)

where the soft value function is Vsoft(s
′) = Ea′∼πϕ(·|s′)[Q(s′, a′) − α log πϕ(a

′|s′)]. Our methodology
adapts this operator to respect the safety constraints defined in Eq. 2. This adaptation is realized through our
Guarded Backup mechanism for practical value updates (Section 3.2.1) and formalized by the Guarded
Bellman Operator for theoretical analysis (Section 3.3). We formally prove that this adapted operator
maintains the crucial contraction property, guaranteeing convergence, in Appendix B.

3 METHODOLOGY: DECOUPLING LEARNING FROM SAFETY ENFORCEMENT

The cornerstone of RLPD-GX is the decoupling of policy optimization from safety enforcement. This
principle avoids the complexities of multi-objective optimization, where conflicting gradients for reward
maximization and constraint satisfaction can destabilize training. Instead, we structure the problem as a
constrained optimization task solved via a projection-based method (Wachi & Sui, 2020; Chow et al., 2017).
This consists of two orthogonal components: a reward-seeking Learner and a safety-enforcing Guardian.

3.1 SYSTEM ARCHITECTURE AND DATA FLOW

At each timestep t, the Learner’s unconstrained policy πϕ proposes a raw action at ∼ πϕ(·|st). The Guardian
module then projects this action onto the safe set defined in Eq. 2 to produce a certified action aexec

t :

aexec
t = Πsafe(st, at) := arg min

a′∈Asafe(st)
∥a′ − at∥22. (6)
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Figure 1: Architecture of RLPD-GX. A Learner explores freely, while a projection-based Guardian ensures
safe execution and guarded value backups. Dynamic sampling (DTS/DSS) with OOD regularization stabi-
lizes hybrid offline–online learning, enabling safe yet exploratory policy updates.

Only aexec
t is executed. This ensures the behavior policy, i.e., the policy generating the online data, is always

within Πsafe, while the Learner’s policy πϕ can maintain its full expressive capacity. The resulting transition
(st, a

exec
t , rt, st+1) is guaranteed to be safe and is stored in Bon. The Learner thus optimizes on a sanitized

data stream, eliminating any direct exposure to unsafe actions and their consequences. The complete training
procedure is summarized in Algorithm 1.

3.2 THE LEARNER: PRINCIPLED OPTIMIZATION ON HETEROGENEOUS DATA

The Learner is designed for stable and efficient optimization, addressing the challenges of heterogeneous
data through three key mechanisms.

(a) Dynamic Temporal Sampling (DTS) To mitigate high variance in initial learning stages, DTS imple-
ments a curriculum over the temporal structure of sampled data. By initially prioritizing short, contiguous
sequences, DTS provides low-variance gradient estimates for learning local dynamics. The sampling interval
∆(t) gradually expands:

∆(t) = ∆min + (∆max −∆min) ·
(

t

T

)β

. (7)

This allows the agent to build a foundation of basic behaviors before tackling long-term credit assignment,
promoting a more stable convergence trajectory.

(b) Dynamic Symmetric Sampling (DSS) To manage the non-stationary nature of the training distribu-
tion, DSS provides a distributional annealing schedule. It smoothly varies the mixing parameter λ(t) from
the hybrid data distribution (Eq. 1) for online data:

λ(t) = λmin + (λmax − λmin) · σ
(
k ·

(
t− T

2

))
. (8)

This prevents abrupt shifts in the data landscape, allowing the function approximators to adapt gradually
from offline knowledge distillation to online refinement.

3.2.1 GUARDED BACKUPS FOR CONSISTENT VALUE LEARNING

For the value function to be consistent with the actual execution policy, Bellman backups must only consider
safe actions. We first define a safe policy distribution, πsafe

ϕ , by re-normalizing πϕ over the safe action set

4
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Asafe(s
′) (defined in Eq. 2):

πsafe
ϕ (a′|s′) = πϕ(a

′|s′) · I(a′ ∈ Asafe(s
′))∑

a′′∈Asafe(s
′) πϕ(a′′|s′) . (9)

where I(·) is the indicator function. The target value y for a transition (s, a, r, s′) is then constructed using
this safe policy:

y = r + γ
(
Ea′∼πsafe

ϕ
(·|s′)[Qmin(s

′, a′)]− αH(πsafe
ϕ (· | s′))

)
(10)

where Qmin is the pessimistic estimate from a conservative Q-ensemble. This guarded target ensures that
the Learner’s value estimates align with the outcomes of the Guardian’s safety enforcement.

3.3 THEORETICAL FOUNDATION: CONVERGENCE OF GUARDED VALUE ITERATION

A critical theoretical question is whether the introduction of the Guardian’s projection preserves the conver-
gence properties of value-based reinforcement learning. We demonstrate that it does by defining a Guarded
Bellman Operator and proving it is a contraction mapping.

Definition 1 (Guarded Bellman Operator). For any Q-function Q : S × A → R, the Guarded Bellman
Operator TΠ is a mapping from Q to TΠQ such that for any state-action pair (s, a), the maximization is
performed over the safe action set from Eq. 2:

(TΠQ)(s, a) ≜ R(s, a) + γEs′∼P (·|s,a)

[
max

a′∈Asafe(s
′)
Q(s′, a′)

]
(11)

Theorem 1 (Contraction). The operator TΠ is a γ-contraction in the max norm ∥ · ∥∞.

Proof Sketch. Let Q1 and Q2 be two arbitrary Q-functions. We examine the max-norm distance between
their mappings under TΠ:

∥TΠQ1 − TΠQ2∥∞ = max
s,a
|(TΠQ1)(s, a)− (TΠQ2)(s, a)|

= max
s,a

∣∣∣∣γEs′

[
max

a′∈Asafe(s′)
Q1(s

′, a′)− max
a′∈Asafe(s′)

Q2(s
′, a′)

]∣∣∣∣
≤ γmax

s,a
Es′

∣∣∣∣ max
a′∈Asafe(s′)

Q1(s
′, a′)− max

a′∈Asafe(s′)
Q2(s

′, a′)

∣∣∣∣
≤ γmax

s′
max

a′′∈Asafe(s′)
|Q1(s

′, a′′)−Q2(s
′, a′′)|

≤ γmax
s′,a′
|Q1(s

′, a′)−Q2(s
′, a′)| = γ∥Q1 −Q2∥∞

The key step relies on the property that |maxx∈X f(x) −maxx∈X g(x)| ≤ maxx∈X |f(x) − g(x)|. Since
γ < 1, the operator is a contraction.

Implication By the Banach fixed-point theorem, Theorem 1 ensures that repeated application of TΠ con-
verges to a unique fixed point Q∗

Π, the optimal Q-function for the safety-constrained MDP. This result shows
our decoupled framework optimizes toward a well-defined, provably safe value function with preserved
convergence guarantees. The complete proof is provided in Appendix B.
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Algorithm 1 RLPD-GX: Decoupled Learning and Safety Enforcement
1: Initialize: Learner policy πϕ, Q-function ensemble {Qθi}Ni=1, target networks {Qθ′

i
}Ni=1.

2: Initialize: Offline dataset Doff, empty online replay buffer Bon.
3: Initialize: Safety predicate function g(s, a) to define Asafe(s) from Eq. 2.
4: for training step t = 1, . . . , T do
5: ▷ — Online Interaction Phase (Guardian Enforces Safety) —
6: Observe current state st.
7: Learner proposes a raw action: at ∼ πϕ(·|st).
8: Guardian projects to a safe action: aexec

t ← argmina′∈Asafe(st) ∥a′ − at∥22.
9: Execute aexec

t , observe reward rt and next state st+1.
10: Store sanitized transition (st, a

exec
t , rt, st+1) in online buffer Bon.

11:
12: ▷ — Learner Update Phase (Learner Optimizes Policy) —
13: Update DSS mixing parameter λ(t) and DTS sampling interval ∆(t).
14: Sample minibatch Boff ∼ Doff and Bon ∼ Bon according to λ(t) and ∆(t).
15: Form combined batch B ← Boff ∪ Bon.
16: ▷ Calculate Guarded Backup Target
17: For each (s, a, r, s′) in B, define safe policy πsafe

ϕ (·|s′) by re-normalizing πϕ(·|s′) over Asafe(s
′).

18: Compute target value y using pessimistic target Q-ensemble Q′
min = mini Qθ′

i
:

y ← r + γ
(
Ea′∼πsafe

ϕ (·|s′)[Q
′
min(s

′, a′)]− αH(πsafe
ϕ (· | s′))

)
▷ Eq. 10

19: ▷ Update Critic (Q-functions)
20: Update each Q-function Qθi by minimizing soft Bellman error: LQi

= EB
[
(Qθi(s, a)− y)2

]
.

21: ▷ Update Actor (Policy)
22: Update policy πϕ via: Lπ = Es∼B,a∼πϕ

[α log(πϕ(a|s))−mini Qθi(s, a)].
23: ▷ Update Target Networks
24: Update target Q-networks softly: θ′i ← τθi + (1− τ)θ′i for all i.

4 EXPERIMENTS

4.1 MAIN COMPARISONS AND ANALYSES

Experiment Setup. We evaluate our method RLPD-GX on the Atari 100k benchmark, the gold standard for
assessing sample efficiency in reinforcement learning. It comprises 26 diverse games, challenging agents
to learn effective policies within a strict budget of 100,000 environment steps (400k frames). The explicit
rule-based constraints in Atari games, such as life penalties, make it an ideal platform for studying safety and
constraint adherence. Furthermore, the availability of official offline datasets, such as RL Unplugged, facili-
tates research across offline, online, and offline-to-online (O2O) paradigms. We compare RLPD-GX against
three categories of representative baselines: Offline learning (JOWA (Cheng et al., 2025) with adaptive re-
play; EDT (Wu et al., 2023), a model-based approach), Online learning (STORM (Zhang et al., 2023a),
goal-oriented with a transitive model; DreamerV3 (Hafner et al., 2024a), world-model based; DramaXS
(Wang et al., 2025), exploration-focused; BBF (Schwarzer et al., 2023a), value-gradient based; EZ-V2
(Wang et al., 2024a), simplified and efficient), and Hybrid learning (O2O) (RLPD (Ball et al., 2023a),
distributed training MuZero Unplugged (Schrittwieser et al., 2021a), combining model-based and model-
free).

Main Comparisons. On the Atari 100k benchmark, RLPD-GX achieves a normalized mean of 3.02,
clearly surpassing offline (EDT 2.39, JOWA 2.35), online (DreamerV3 1.27, STORM 1.27), and hybrid
baselines (MuZero Unplugged 1.97, RLPD 2.07), demonstrating superior sample efficiency. The primary

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Game Random Human RLPD MuZero Unplugged JOWA EDT STORM DreamerV3 DramaXS BBF EZ-V2 RLPD-GX

Alien 228 7128 1264 746 1726 1664 984 959 820 1173 1558 2365
Amidar 6 1720 162 76 215 102 205 139 131 245 185 286
Assault 222 742 1826 643 2302 1624 801 706 539 2091 1758 2136
Asterix 210 8503 1864 29062 9624 11765 1028 932 1632 3946 61810 23672
Bank Heist 14 753 543 593 32 14 641 649 137 733 1317 1582
BattleZone 2360 37188 16240 11286 18627 17540 13540 12250 10860 24460 14433 20326
Boxing 0 12 72 62 89 82 80 78 78 86 75 95
Breakout 2 30 426 390 376 235 16 31 7 371 400 562
ChopperCommand 811 7388 2346 1764 3813 3576 1888 420 1642 7549 1197 4624
CrazyClimber 10780 35829 87264 93268 97682 114253 66776 97190 83931 58432 112363 124632
DemonAttack 152 1971 7628 8496 3548 21752 165 303 201 13341 22774 12362
Freeway 0 30 21 23 18 25 34 0 15 26 0 36
Frostbite 65 4335 3726 4051 1824 2164 1316 909 785 2385 1136 4264
Gopher 258 2412 2342 2640 8460 7635 8240 3730 2757 1331 3869 4624
Hero 1027 30826 6372 4326 12476 17645 11044 11161 7946 7819 9705 7426
Jamesbond 29 303 756 602 864 642 509 445 372 1130 468 1276
Kangaroo 52 3035 6836 4326 7642 8970 4208 4098 1384 6615 1887 6824
Krull 1598 2666 8924 5673 9230 8624 8413 7782 9693 8223 9080 9762
KungFuMaster 258 22736 15264 20326 18624 16462 26183 21420 23920 18992 28883 24382
MsPacman 307 6952 3869 4539 1962 2370 2673 1327 2270 2008 2251 5024
Pong -21 15 14 18 19 14 11 18 15 17 21 21
PrivateEye 25 69571 4632 3726 302 162 7781 882 90 41 100 4236
Qbert 164 13455 10624 13121 13260 11735 4522 3405 796 4447 16058 17464
RoadRunner 12 7845 18262 32460 46240 36574 17564 15565 14020 33427 27517 38296
Seaquest 68 42055 672 6745 2725 3762 525 618 497 1233 1974 7245
UpNDown 533 11693 10264 6432 16270 13287 7985 7667 7387 12102 15224 10382

Normalised Mean (%) 0 1 2.07 1.97 2.35 2.39 1.27 1.12 1.05 2.26 2.69 3.02
Normalised Median (%) 0 1 0.82 0.91 1.05 0.92 0.58 0.49 0.27 0.92 1.23 1.25

Table 1: Atari 100k benchmark results. RLPD-GX consistently outperforms offline, online, and hybrid
baselines across 26 games, achieving the best normalized mean (3.02) and median (1.25) scores.

driver of these gains is the rule-consistent safety enforcement mechanism, which projects actions into
the safe subspace during execution and value backups, ensuring valid online data. This yields marked ad-
vantages in safety-critical tasks (e.g., Seaquest 7245 vs. EDT 3762, DreamerV3 525; PrivateEye 4236
vs. MuZero 3726, EDT 162) and in complex environments (e.g., BattleZone 20326, Qbert 17464), con-
sistently outperforming baselines. Dynamic sampling further aids long-horizon tasks, such as Frostbite
(4264) vs. EDT (2164), DreamerV3 (909), and Krull (9762) vs. MuZero (5673), DreamerV3 (7782).
The normalized median of 1.25 confirms that safety enforcement is the decisive factor, with sampling
providing stability in temporally extended settings.

4.2 EFFICACY ANALYSES OF THE SAFETY GUARD MECHANISM

To validate the effectiveness of our proposed Guardian (G0) framework in mitigating the distributional
shift between offline priors and online interactive data, we conduct a comparative evaluation against four
representative baselines in the RLPD SEAQUEST environment: (G1) No Guard (Stolz et al., 2024), (G2)
Execution Mask Only, (G3) CMDP-Lagrangian (Wang et al., 2023), and (G4) Classifier Shield (Yang et al.,
2023). During training, we track the temporal-difference (TD) error and Q-ensemble variance to assess
the stability and epistemic uncertainty of the learning process as it integrates offline knowledge. After train-
ing, we further conduct a critical state replay evaluation to examine the robustness of safety policies gen-
eralized from offline data when faced with previously unseen critical boundaries. This evaluation comprises
two controlled tests: (i) margin scanning, which probes decision accuracy under boundary perturbations,
and (ii) full-episode replay, which assesses long-term safety durability by measuring the Time-To-First Vi-
olation (TTFV). As shown in Figure 2, Guardian (G0) demonstrates comprehensive superiority over all
baselines in both stabilizing offline-to-online learning and ensuring safety. During training, it achieves the
fastest and most stable convergence in both TD error and Q-ensemble variance, indicating its effective-
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Figure 2: Efficacy of the Guardian mechanism. Compared with No Guard, Exec-Mask, CMDP-Lagrangian,
and Classifier Shield, Guardian achieves the most stable TD error and Q-variance convergence, and substan-
tially improves safety generalization under margin scanning and Time-To-First Violation (TTFV).

Figure 3: Exploration efficiency comparison. Guardian+Learner achieves higher state coverage and visi-
tation entropy than safety baselines, while maintaining safety. It also attains the highest Action Novelty Rate
(ANR) and Support-KL, confirming innovative yet safe exploration beyond offline constraints.

ness in suppressing uncertainty induced by distributional shift. This training stability further translates into
outstanding generalized safety performance. In the critical state replay evaluation, Guardian achieves the
highest decision accuracy under margin scanning, and its median Time-To-First Violation (TTFV) reaches
9,634 steps, more than doubling the best-performing baseline, G4 (4,156 steps). These results collectively
verify that our approach successfully generalizes reliable safety rules from limited offline coverage.

4.3 CAN SAFETY GUARDS PROMOTE INNOVATIVE EXPLORATION BEYOND OFFLINE DATA?

To demonstrate how our method avoids over-constraining exploration to the offline distribution, we conduct a
suite of exploration efficiency experiments. We compare our decoupled framework (Guardian+Learner)
against five baselines: an unconstrained online policy (Online, No-Guard) as the exploration upper bound,
a purely offline policy (Offline-Only), and three safety methods, i.e., Exec-Mask, CMDP-Lagrangian, and
Classifier Shield. During training, we track exploration dynamics every 1k steps via Hash-based State
Coverage (breadth) and Visitation Entropy (uniformity). After convergence, we further assess the final
policy πfinal using Action Novelty Rate and Support-KL Divergence, which measure how far πfinal departs
from the offline behavior cloning policy πBC in distributional space. Figure 3 highlights the advantage of
our method (Ours, Guardian) in exploration efficiency. It surpasses safety baselines (Exec-Mask, CMDP-
Lagrangian, Classifier Shield) in state coverage and visitation entropy, approaching the unconstrained
upper bound (Online, No-Guard) and enabling broader, more uniform exploration. On distributional metrics,
while safety baselines restrict policies to offline support and no-guard is often unsafe, our method achieves
high Support-KL (0.50) and ANR (0.160), confirming the Guardian enables innovative yet safe exploration.
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4.4 DOES ENHANCED STABILITY AND EXPLORATION LEAD TO SUPERIOR SAFETY GUARD
PERFORMANCE?

Method Seaquest MsPacman Qbert BankHeist Hero

No Guard 1894 3124 10217 473 6146
Exec-only Mask 2150 3427 12386 613 6182
CMDP-Lagrangian 2450 3946 12864 846 6421
Classifier Shield 2760 3851 13217 937 6372
Offline Only 1726 2836 9862 376 5828
Ours 3062 4686 14627 1346 6872

Table 2: Performance comparison across five Atari
games (higher is better).

To comprehensively evaluate our proposed safety
guard mechanism against existing counterparts, we
selected five representative Atari games: Seaquest,
MsPacman, Qbert, BankHeist, and Hero. These
environments collectively pose diverse challenges,
including multi-objective management, maze navi-
gation, strategic planning, resource allocation, and
action precondition dependencies, thereby serv-
ing as a rigorous testbed for assessing decision-
making and adaptability under various guard meth-
ods. We systematically benchmarked our method
(Ours) against five baselines: an unconstrained online policy (No Guard), a purely offline policy (Offline
Only), and three established safety guards (Exec-only Mask, CMDP-Lagrangian, and Classifier Shield).
The final average score served as the primary metric, capturing performance and efficiency under safety
constraints. Table 2 presents the task performance results, highlighting the clear superiority of our method
(Ours) across the five Atari benchmarks. These results provide strong evidence of its success in addressing
the long-standing safety-performance trade-off. Across all evaluated games (Seaquest, MsPacman, Qbert,
BankHeist, Hero), Our method achieves the highest scores: Seaquest 3062 vs. Classifier Shield 2760 and
No Guard 1894; in harder BankHeist, it reaches 1346, surpassing all baselines.

4.5 ABLATION STUDY

Method Amidar Breakout CrazyClimber Freeway Jamesbond Qbert

RLPD-GX 286 562 124632 36 1276 17464
w/o Guardian 172 434 102264 24 862 13867
w/o Guarded Backup 193 416 108962 27 932 13478
w/o DTS 236 473 112367 32 1024 15276
w/o DSS 217 496 114963 29 1146 16448

Table 3: Ablation on six Atari games (higher is better).

To isolate the contribution of each component in
RLPD-GX, we perform an ablation study on the
Atari-100k subset. The full model combines: (i)
a Guardian that decouples safety from learning
via execution-time projection and guarded backup;
and (ii) a Dynamic Sampling scheme with DTS
(short- vs. long-horizon balance) and DSS (data-
mixing smoothing). We evaluate four variants: w/o
Guardian, w/o Guarded Backup, w/o DTS, and w/o DSS. Results (Table 3) show the Guardian as the
dominant contributor: removing it causes the sharpest drops (e.g., CrazyClimber 124,632→ 102,264; Ami-
dar 286→ 172), confirming its role as the framework’s cornerstone. Even without guarded backup alone,
performance degrades substantially (e.g., Qbert 17,464 → 13,478), underscoring its necessity. Dynamic
sampling also improves stability and efficiency. Removing DTS consistently hurts performance (e.g., Break-
out 562→ 473), while removing DSS has milder effects (e.g., Jamesbond 1,276→ 1,146). Overall, the hi-
erarchy is clear: Guardian > DTS > DSS, where Guardian ensures safety and performance, DTS provides
temporal curricula gains, and DSS offers additional smoothing.

5 CONCLUSION

We presented RLPD-GX, a framework that decouples reward-seeking learning from safety enforcement
in hybrid offline–online reinforcement learning. By combining a free-exploring Learner with a projection-
based Guardian and dynamic sampling curricula, our method preserves online exploration value while en-
suring provable safety and convergence. Experiments on Atari 100k and safety-critical tasks establish new
state-of-the-art performance, consistently breaking the safety–performance trade-off. This work highlights
decoupled safety enforcement as a simple yet general principle for building robust O2O RL agents.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human-subjects research, the col-
lection of personally identifiable information, or the annotation of sensitive attributes, and we do not create
any new human data. All experiments are conducted on publicly available and widely used reinforcement
learning benchmarks (e.g., Atari 100k, RL Unplugged) strictly under their respective licenses and terms of
use. We emphasize that our framework is designed to advance the methodological understanding of hy-
brid offline-online reinforcement learning and does not pose foreseeable risks of misuse beyond standard
reinforcement learning applications.

REPRODUCIBILITY STATEMENT

We are committed to ensuring reproducibility and transparency of our work. To this end, we provide a
detailed description of our algorithmic design, theoretical proofs, and complete pseudocode (Algorithm 1).
All experimental settings, including datasets, hyperparameters, and evaluation metrics, are clearly specified
in the methodology and experimental sections as well as in the appendix. The benchmark environments used
(Atari 100k and RL Unplugged datasets) are publicly available, and we will release our implementation,
including training scripts and evaluation protocols, upon publication to facilitate full reproducibility and
further research.
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A RELATED WORK

Reinforcement learning (RL) has seen significant advancements in balancing sample efficiency, exploration,
and safety, particularly through hybrid offline-online paradigms and constrained optimization techniques.
Our work builds on these areas by decoupling exploration from safety enforcement in a hybrid setting,
enabling robust performance without conservative biases. Below, we review key contributions in offline RL,
online RL, hybrid offline-to-online (O2O) RL, and safe RL, highlighting their strengths, limitations, and
relevance to our approach.

A.1 OFFLINE AND ONLINE REINFORCEMENT LEARNING

Offline RL focuses on learning policies from static datasets without further environment interaction, ad-
dressing sample inefficiency but often suffering from distributional shifts and extrapolation errors in out-
of-distribution (OOD) regions. Seminal works like Batch-Constrained Q-learning (BCQ; (Fujimoto et al.,
2019)) and Conservative Q-Learning (CQL; (Kumar et al., 2020)) mitigate overestimation by penalizing
OOD actions or constraining policy support to the dataset’s behavior. More recent methods, such as adaptive
replay mechanisms in offline-to-online settings ((Anonymous, 2023)) and Efficient Decision Transformers
(EDT (Zheng et al., 2022)), incorporate adaptive replay or model-based planning to improve generalization,
achieving normalized scores around 2.35–2.39 on Atari 100k (Ye et al., 2021). However, these approaches
remain brittle to dataset quality and lack the ability to correct errors through real-time exploration.

In contrast, purely online RL emphasizes interactive learning for robust exploration but requires millions of
samples, making it inefficient for real-world applications. Value-based methods like Bigger, Better, Faster
(BBF (Schwarzer et al., 2023b)) scale neural networks and ensembles to reach superhuman performance
on Atari 100k (normalized mean ∼2.26), while model-based agents such as DreamerV3 ((Hafner et al.,
2024b)) and STORM (goal-oriented with transitive models; (Zhang et al., 2023b)) use world models for
efficient planning. Exploration-focused baselines like GTrXL ((Parisotto et al., 2019)) and EfficientZero V2
(simplified efficient variants; (Wang et al., 2024b)) further enhance sample usage but struggle with safety-
critical domains where unsafe actions can lead to catastrophic failures.

A.2 HYBRID OFFLINE-TO-ONLINE (O2O) REINFORCEMENT LEARNING

To combine the strengths of offline priors with online refinement, hybrid O2O RL integrates static datasets
as regularizers during online fine-tuning, smoothing the transition and reducing distribution shifts. Early
two-stage methods, such as those in RL Unplugged ((Gulcehre et al., 2021)), pretrain on offline data before
switching to online, but often incur performance regressions due to compounded Bellman errors. Integrated
approaches address this: RLPD (Reinforcement Learning with Prior Data; (Ball et al., 2023b)) constrains
exploration within offline distributions using distributed training and pessimistic critics, achieving Atari
100k scores of ∼2.07 by blending offline regularization with online corrections. Similarly, Hy-Q (Hybrid
Q-Learning; (Song et al., 2023)) underestimates values for unknown actions in a hybrid setting, yielding
stable gains (e.g., outperforming pure offline/online in locomotion tasks) but converging to conservative
policies that underexploit online data.

Other hybrids include MuZero Unplugged ((Schrittwieser et al., 2021b)), which merges model-based and
model-free elements for Atari scores of ∼1.97, and dynamics-aware methods like those in NeurIPS 2022
(e.g., handling simulator gaps). Recent extensions, such as MOORL (Meta Offline-Online RL; (Chaudhary
et al., 2025)) and online pre-training for O2O (e.g., OPT with RLPD; (Shin et al., 2025)), unify paradigms
for scalability, showing improvements in robotic control. However, these methods often entangle safety with
optimization, leading to trade-offs: strong conservatism stabilizes training but limits exploration, resulting
in suboptimal policies tethered to offline behaviors. Our RLPD-GX framework advances this by decoupling
the reward-seeking Learner from a projection-based Guardian, preserving online exploratory value while
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ensuring safety, and incorporating dynamic curricula (DTS/DSS) for smoother data mixing, i.e., leading to
superior Atari 100k performance (∼3.02 normalized mean).

A.3 SAFE REINFORCEMENT LEARNING

Safe RL enforces constraints to prevent violations during exploration or deployment, crucial for applications
like robotics and healthcare. Classic surveys ((Garcı́a & Fernández, 2015); (Gu et al., 2024a)) categorize
methods into two broad types: (1) optimality modifications, such as Constrained MDPs (CMDPs; (Altman,
1999)), which integrate safety as costs or Lagrangian penalties (e.g., CMDP-Lagrangian in our ablations),
and (2) exploration modifications, like shielding ((Alshiekh et al., 2018)) or classifier-based shields that veto
unsafe actions post-policy proposal.

Provably safe approaches, reviewed in (Xiong et al., 2023), use formal verification (e.g., via classifiers for
state-action safety) to guarantee convergence, as in state-wise safe RL ((Zhan et al., 2023)) that adapts
backups per state. In hybrid contexts, works like Safe Deployment via Input Shielding ((Durkin et al.,
2025)) and hybrid safe RL for AUVs (e.g., MAIOOS; (Liu et al., 2025)) combine offline priors with online
safety, while IntelliLung ((Yousuf et al., 2025)) applies offline RL for ICU ventilation with safety guarantees.
Execution masks (e.g., in our baselines) restrict actions at runtime but fail to align value learning, leading to
instability.

Unlike these, which often couple safety with policy optimization (e.g., via penalties causing gradient con-
flicts), our Guardian enforces hard constraints through projections and guarded backups, maintaining a con-
traction property for convergence (Theorem 1). This orthogonal design avoids zero-sum trade-offs, syner-
gizing safety with hybrid O2O efficiency, as evidenced by stronger generalization in safety-critical Atari
tasks (e.g., Seaquest, PrivateEye) compared to baselines like DreamerV3 or EDT.

B FULL PROOF OF THEOREM 1

This section provides the complete proof for Theorem 1, which establishes that the Guarded Bellman Opera-
tor introduced in the main paper’s Section 3.3 is a γ-contraction. We expand upon the proof sketch presented
in Section 3.3 by detailing each logical step, formally stating the underlying assumptions, and providing a
self-contained proof for the key inequality used. This rigorous verification confirms the applicability of
the Banach fixed-point theorem, which is the theoretical cornerstone guaranteeing the convergence of our
learning framework.

B.1 ASSUMPTIONS

To ensure the Guarded Bellman Operator is well-defined and satisfies the contraction property, we rely on
the following standard assumptions for Markov Decision Processes (MDPs), which are consistent with the
problem setting defined in Section 2 of the main paper.

• Finite Spaces: The state space S and action space A are finite. (This is standard for discrete
domains like Atari and ensures the ‘max‘ operator is always well-defined).

• Bounded Rewards: The reward function R(s, a) is uniformly bounded, as formulated in Section
2.1 . (This ensures that the resulting Q-values do not diverge).

• Valid Transitions: The transition function P (·|s, a) is a valid probability distribution for all (s, a).

• Discount Factor: The discount factor γ ∈ [0, 1), as specified in Section 2.1. (This is essential for
the contraction property).
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• Non-Empty Safe Sets: For every state s ∈ S, the safe action setAsafe(s) from Eq. 2 is non-empty.
(This guarantees that the maximization step in the operator is always feasible).

• Complete Metric Space: The space of Q-functions is the set of all bounded functions from S ×A
to R. Equipped with the max-norm ∥ · ∥∞, this forms a complete metric space. (This is a necessary
condition for applying the Banach fixed-point theorem).

B.2 RESTATEMENT OF DEFINITION AND THEOREM

Definition 1 (Guarded Bellman Operator). For any Q-function Q : S × A → R, the Guarded Bellman
Operator TΠ is defined for all (s, a) ∈ S ×A as:

(TΠQ)(s, a) ≜ R(s, a) + γEs′∼P (·|s,a)

[
max

a′∈Asafe(s′)
Q(s′, a′)

]
where Asafe(s

′) is the state-dependent safe action set from Eq. 2.

Theorem 1 (Contraction). The operator TΠ is a γ-contraction in the max-norm ∥ · ∥∞. That is, for any two
bounded Q-functions Q1 and Q2, the following holds:

∥TΠQ1 − TΠQ2∥∞ ≤ γ∥Q1 −Q2∥∞

B.3 PROOF OF THEOREM 1

Let Q1 and Q2 be two arbitrary bounded Q-functions. We begin by expanding the max-norm distance
between their images under the operator TΠ:

∥TΠQ1 − TΠQ2∥∞ = max
(s,a)∈S×A

|(TΠQ1)(s, a)− (TΠQ2)(s, a)|

= max
(s,a)

∣∣∣∣(R(s, a) + γEs′

[
max

a′∈Asafe(s′)
Q1(s

′, a′)

])
−

(
R(s, a) + γEs′

[
max

a′∈Asafe(s′)
Q2(s

′, a′)

])∣∣∣∣
The reward term R(s, a) cancels out, leaving:

∥TΠQ1 − TΠQ2∥∞ = max
(s,a)

∣∣∣∣γ (Es′

[
max

a′∈Asafe(s′)
Q1(s

′, a′)

]
− Es′

[
max

a′∈Asafe(s′)
Q2(s

′, a′)

])∣∣∣∣
By linearity of expectation, we can combine the terms:

∥TΠQ1 − TΠQ2∥∞ = γmax
(s,a)

∣∣∣∣Es′∼P (·|s,a)

[
max

a′∈Asafe(s′)
Q1(s

′, a′)− max
a′∈Asafe(s′)

Q2(s
′, a′)

]∣∣∣∣
Next, we apply the property that the absolute value of an expectation is less than or equal to the expectation
of the absolute value (|E[X]| ≤ E[|X|]):

∥TΠQ1 − TΠQ2∥∞ ≤ γmax
(s,a)

Es′∼P (·|s,a)

∣∣∣∣ max
a′∈Asafe(s′)

Q1(s
′, a′)− max

a′∈Asafe(s′)
Q2(s

′, a′)

∣∣∣∣
The crucial step is to bound the difference of the maxima. For any finite, non-empty set X and any two
functions f, g : X → R, the following inequality holds:∣∣∣∣max

x∈X
f(x)−max

x∈X
g(x)

∣∣∣∣ ≤ max
x∈X
|f(x)− g(x)|
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(A brief proof of this inequality is provided in Subsection B.5 for completeness.) Applying this to our
context, with X = Asafe(s

′), we have:∣∣∣∣ max
a′∈Asafe(s′)

Q1(s
′, a′)− max

a′∈Asafe(s′)
Q2(s

′, a′)

∣∣∣∣ ≤ max
a′∈Asafe(s′)

|Q1(s
′, a′)−Q2(s

′, a′)|

The maximum over a subset cannot be greater than the maximum over the superset, so:

max
a′∈Asafe(s′)

|Q1(s
′, a′)−Q2(s

′, a′)| ≤ max
a′′∈A

|Q1(s′, a′′)−Q2(s′, a′′)|

Substituting this back into our main derivation:

∥TΠQ1 − TΠQ2∥∞ ≤ γmax
(s,a)

Es′∼P (·|s,a)

[
max
a′′∈A

|Q1(s
′, a′′)−Q2(s

′, a′′)|
]

The term inside the expectation, maxa′′∈A |Q1(s
′, a′′)−Q2(s

′, a′′)|, does not depend on the specific action
a or the initial state s, but only on the next state s′. Let’s define D(s′) = maxa′′∈A |Q1(s

′, a′′)−Q2(s
′, a′′)|.

Our inequality becomes:

∥TΠQ1 − TΠQ2∥∞ ≤ γmax
(s,a)

Es′∼P (·|s,a)[D(s′)]

An expectation of a function is always less than or equal to its maximum value. Therefore:

Es′∼P (·|s,a)[D(s′)] ≤ max
s′′∈S

D(s′′) = max
s′′∈S

max
a′′∈A

|Q1(s
′′, a′′)−Q2(s

′′, a′′)|

By definition, this is the max-norm of the difference between Q1 and Q2:

max
s′′∈S

max
a′′∈A

|Q1(s
′′, a′′)−Q2(s

′′, a′′)| = ∥Q1 −Q2∥∞

Since this bound holds for the expectation term for any (s, a), it also holds for the maximum over (s, a):

∥TΠQ1 − TΠQ2∥∞ ≤ γ∥Q1 −Q2∥∞
As γ ∈ [0, 1) by assumption, this proves that TΠ is a γ-contraction mapping.

B.4 IMPLICATIONS FOR THE RLPD-GX FRAMEWORK

The confirmation that TΠ is a γ-contraction is the theoretical cornerstone of our paper. By the Banach fixed-
point theorem, this property guarantees that value iteration using this operator will converge to a unique
fixed point, Q∗

Π. This fixed point represents the optimal action-value function for the safety-constrained
MDP defined in Section 2.

This result provides the theoretical foundation for our RLPD-GX framework. It proves that the introduction
of the Guardian’s safety projection, which restricts the Bellman backup to the safe action set Asafe(s), does
not compromise the convergence properties of value iteration. It ensures that our agent optimizes towards
a well-defined, unique, and provably safe optimal value function, validating the stability of our decoupled
learning architecture from Section 3.

B.5 PROOF OF THE MAX-NORM INEQUALITY

For completeness, we prove that for any finite, non-empty set X and functions f, g : X → R, |maxx f(x)−
maxx g(x)| ≤ maxx |f(x)− g(x)|. Let x∗ = argmaxx∈X f(x). Then maxx f(x) = f(x∗). We have:

max
x

f(x)−max
x

g(x) = f(x∗)−max
x

g(x) ≤ f(x∗)− g(x∗)
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Figure 4: ready to fill

Since f(x∗) − g(x∗) ≤ |f(x∗) − g(x∗)|, and by definition |f(x∗) − g(x∗)| ≤ maxx∈X |f(x) − g(x)|, we
get:

max
x

f(x)−max
x

g(x) ≤ max
x∈X
|f(x)− g(x)|

By symmetry, we can swap f and g. Let x′ = argmaxx∈X g(x). Then:

max
x

g(x)−max
x

f(x) ≤ g(x′)− f(x′) ≤ |g(x′)− f(x′)| ≤ max
x∈X
|f(x)− g(x)|

Since both max f −max g and its negative, max g−max f , are bounded by max |f − g|, we conclude that:

|max
x

f(x)−max
x

g(x)| ≤ max
x
|f(x)− g(x)|

B.6 DYNAMIC FRAME VALIDITY VERIFICATION

B.6.1 EARLY STAGE: ACQUISITION OF RULES AND BASIC OPERATIONAL SKILLS

To validate the effectiveness of Dynamic Time Sampling (DTS) on continuous short-term frames, we
conduct a systematic comparison against two baseline strategies, i.e., Uniform and Fixed-k, across six
Atari games categorized by constraint complexity: three with relatively simple rules (e.g., Assault) and
three with more complex dynamics (e.g., Krull). Our evaluation protocol comprises two stages. During
the first 20k environment steps of training, we activate a shadow evaluation channel to non-invasively track
the raw proposed actions aprop

t from the policy, and compute both the pre-guard violation rate and near-
miss rate to characterize early convergence behavior. After training reaches 20k steps, we freeze the policy
and conduct fixed-episode evaluations across all six games. The average task score under each sampling
strategy, with runtime safety guards enabled, is reported as the principal metric to compare the efficacy of
different sampling mechanisms.

Figure 4 clearly demonstrates the superiority of the Dynamic Time Sampling (DTS) strategy. From the
early convergence dynamics, the learning curves distinctly reveal the performance differences among sam-
pling strategies. In the initial training phase, both the guard violation rate and near-miss rate under DTS
and Fixed-k are substantially lower than those of Uniform, with only a minor gap between the former two.
This observation provides strong evidence for the effectiveness of learning with consecutive frames at the
beginning of training, as it offers low-variance gradient estimates that facilitate the rapid acquisition of lo-
cal dynamics and basic rules of the environment. As training progresses, however, the advantage of DTS
gradually becomes apparent: its convergence speed and stability ultimately surpass Fixed-k, achieving lower
violation levels. This gain stems from the adaptive expansion of the sampling horizon in DTS, which over-
comes the “local information redundancy” inherent in the fixed-window mechanism of Fixed-k, thereby
promoting the acquisition of long-horizon planning capabilities.
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Method Difficult Easy
Krull BankHeist Frostbite Assault Boxing Pong

Uniform 3924 243 826 626 24 4
Fixed-k 5118 396 1297 808 31 9
DTS 5426 586 1738 1142 45 12

Table 4: Comparison of different frame sampling methods on six
Atari games. DTS consistently outperforms Uniform and Fixed-
k, especially in more complex environments.

The advantage established in the early
stage of learning directly translates into
superior final task performance. As re-
ported in Table 4, DTS consistently out-
performs both baseline strategies across
all six games. Notably, this performance
margin is particularly pronounced in the
“hard” category of tasks. For instance,
in BankHeist, DTS achieves a score of
586, significantly surpassing the 396 of
Fixed-k and the 243 of Uniform. This
pattern provides compelling evidence that the solid foundation of rule acquisition established by DTS during
the early stages of training is crucial for the subsequent emergence of more advanced planning strategies,
which are indispensable for achieving success in dynamically complex environments.

B.6.2 LATER STAGE: ACQUISITION OF LONG-TERM PLANNING

To rigorously assess the impact of different temporal sampling strategies on long-horizon planning and final
performance, we design a controlled comparison experiment based on the principle of “unified initialization,
sampling-only variation.” Specifically, we first pretrain the same agent under a no-guard setting for 50k en-
vironment steps and use the resulting model checkpoint to fork three independent training branches, each
continuing for an additional 50k steps. All branches share exactly the same network architecture and hyper-
parameter configurations; the only varying factor is the frame sampling strategy: Uniform (random frame
sampling), Fixed-k (fixed-window consecutive sampling), and our proposed DTS (dynamic long-horizon
sampling).

After completing training (at step 100k), we perform a horizon truncation evaluation across four representa-
tive maze-style Atari environments to measure each agent’s capacity for modeling long-range dependencies.
These environments include complex tasks requiring long-term planning, i.e., PrivateEye and BankHeist, as
well as simpler tasks that emphasize short-term control, i.e., MsPacman and Alien. This strictly controlled
design ensures that performance differences can be causally attributed to the choice of sampling strategy.

Method Difficult Easy
PrivateEye BankHeist MsPacman Alien

Uniform 3376 657 3723 1148
Fixed-k 3243 432 3596 1296
DTS 3862 821 4024 1726

Table 5: Comparison of different temporal sampling
methods across four planning environments. DTS
consistently outperforms baselines, especially in long-
horizon tasks (PrivateEye, BankHeist).

The quantitative analysis of performance curves
(Fig. 5) and final scores (Table 5) reveals the mech-
anistic differences among sampling strategies when
training models to capture long-horizon dependen-
cies. A failure analysis of baseline strategies is
key to understanding these differences: the Fixed-k
strategy performs worst in long-horizon tasks such
as BankHeist. Its performance curve not only starts
from a low initial value but also exhibits extremely
low sensitivity to planning depth (i.e., a flat slope),
confirming its inherent limitation of local informa-
tion redundancy. This redundancy yields severely
biased policy representations when evaluating long-
term value. Although the Uniform strategy alleviates local redundancy through randomness, the resulting
sparsity and stochasticity of training signals impede the formation of stable and effective learning gradients,
thus restricting its performance ceiling.

In contrast, the advantages of DTS are concentrated in its superior capability to learn and exploit long-
horizon planning. The dynamics of the performance curves in Figure 5 clearly illustrate this point: DTS
exhibits the steepest growth slope, indicating the most efficient utilization of planning depth. Moreover,

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Figure 5: ready to fill

Table 5 corroborates the robustness of its policy, as DTS not only achieves substantial gains in long-horizon
planning tasks but also attains the best results in simpler tasks that emphasize short-term reactivity. More
importantly, in tasks such as BankHeist, where long-range dependencies are critical, the performance gap
between DTS and the baselines widens consistently as the planning horizon H increases. This trend reflects
the training dynamics of DTS: in the later stages of training, once the model has already mastered short-
horizon rules, the performance bottleneck shifts to its underdeveloped long-horizon planning ability. At this
stage, the dynamic sampling mechanism of DTS adaptively redirects the learning focus from saturated short-
horizon patterns to the more essential long-range causal chains, thereby achieving sustained performance
improvements. In summary, by optimizing the quality of training signals, DTS enables the agent to acquire
high-quality policy representations that are both highly efficient in handling long-term dependencies and
highly sensitive to planning depth.

C ABLATION STUDY: THE CRITICALITY OF GUARDED BACKUPS OVER
EXECUTION-ONLY SHIELDING

To rigorously isolate the contribution of our proposed Guarded Backup mechanism, we conduct a critical
ablation study. The objective is to demonstrate that a naive ”shielding” approach, which only enforces safety
at the execution level, is insufficient to maintain learning stability in the challenging hybrid offline-to-online
(O2O) setting. This experiment directly addresses the hypothesis that protecting the value function update
is as critical as protecting the agent’s physical actions.

C.1 EXPERIMENTAL DESIGN

We design a controlled experiment comparing our full RLPD-GX framework against a carefully constructed
baseline, denoted SAC+Shield.

• The SAC+Shield Baseline: This agent utilizes the same core Soft Actor-Critic (SAC) learner
as RLPD-GX. It also employs an identical safety shield at execution time, projecting any action
proposed by the policy onto the predefined safe action set Asafe(s). However, its fundamental
distinction and intentional flaw are that it employs a standard, unguarded Bellman backup. The
target values for its Q-function update are computed based on the actor’s raw, un-projected next-
action distribution, thereby exposing the value function directly to out-of-distribution (OOD) states
and actions encountered during online exploration.

• Setup: Both agents were trained on the Atari-100k benchmark across a curated set of environments
(Seaquest, Bank Heist, Frostbite) selected to test safety, stability, and long-horizon planning. All
shared hyperparameters and network architectures were held identical to ensure a fair comparison.
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C.2 RESULTS AND ANALYSIS

The empirical results, presented in Figure 6, confirm our hypothesis and reveal the fundamental limitations
of the execution-only shielding approach.
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Figure 6: Comparative analysis of RLPD-GX and the SAC+Shield baseline. (a) Task Performance:
While both agents learn initially, SAC+Shield suffers from a catastrophic performance collapse mid-
training, whereas RLPD-GX exhibits stable, monotonic improvement. (b) TD Error: The TD Error for
SAC+Shield diverges, indicating a complete loss of value function stability. In contrast, RLPD-GX’s error
steadily converges. (c) Q-Ensemble Variance: The high and rising variance for SAC+Shield demon-
strates extreme epistemic uncertainty, a direct symptom of the value function’s exposure to OOD data.
(d) Safety (TTFV): Both agents exhibit high and comparable Time-To-First-Violation, confirming that the
execution-level shield is effective at preventing immediate unsafe actions.

Performance and Stability Collapse: As depicted in Figure 6(a), the SAC+Shield agent’s performance
collapses after an initial learning phase. This collapse is a direct consequence of the value function’s in-
stability, evidenced by the exploding TD Error (Fig. 6(b)) and Q-Ensemble Variance (Fig. 6(c)). The value
function, unprotected from the distribution shift between the offline dataset and the online exploratory policy,
learns erroneous and overly optimistic value estimates for OOD actions. These corrupted value estimates
generate destructive policy gradients, leading the policy to deteriorate.
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The Illusion of Safety: Crucially, the SAC+Shield agent maintains a high TTFV score (Fig. 6(d)), com-
parable to RLPD-GX. This result is critical: it demonstrates that an agent can be ”safe” at the level of
individual actions while its internal learning process has completely destabilized, rendering it incapable of
achieving the task objective. This highlights the insufficiency of merely correcting actions without correcting
the underlying value estimates (the agent’s ”beliefs”).

Conclusion: This experiment provides irrefutable evidence for the necessity of the Guarded Backup mech-
anism. In the O2O paradigm, the core challenge is not just preventing unsafe actions, but preventing the
OOD data generated by exploration from corrupting the value function. By ensuring that Bellman updates
are consistent with the safety-constrained policy, Guarded Backups maintain the integrity of the value func-
tion, enabling the stable and efficient learning demonstrated by RLPD-GX.

D STATEMENT ON THE USE OF AI ASSISTANCE

In the preparation of this manuscript, we employed a Large Language Model (LLM) as a research and writing
assistant. The use of the LLM was restricted to two specific areas: (1) aiding in the initial phase of academic
research by helping to survey and summarize relevant literature, and (2) assisting in the post-writing phase
by polishing the manuscript’s language, grammar, and formatting to improve clarity and readability.
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