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Abstract

Automatic metrics for evaluating translation001
quality are typically validated by measuring002
how well they correlate with human assess-003
ments. However, correlation methods tend to004
capture only the ability of metrics to differen-005
tiate between good and bad source-translation006
pairs, overlooking their reliability in distin-007
guishing alternative translations for the same008
source. In this paper, we confirm that this is009
indeed the case by showing that current met-010
rics are insensitive to nuanced differences in011
translation quality. This effect is most pro-012
nounced when the quality is high and the vari-013
ance among alternatives is low. Given this find-014
ing, we shift towards detecting high-quality cor-015
rect translations, an important problem in prac-016
tical decision-making scenarios where a binary017
check of correctness is prioritized over a nu-018
anced evaluation of quality. Using the MQM019
framework as the gold standard, we systemati-020
cally stress-test the ability of current metrics to021
identify translations with no errors as marked022
by humans. Our findings reveal that current023
metrics often over or underestimate translation024
quality, indicating significant room for improve-025
ment in machine translation evaluation.026

1 Introduction027

The automatic evaluation of machine or human-028

generated translations has gained widespread atten-029

tion over the past few years. Evaluation metrics030

act as proxies for translation quality in the absence031

of human judgments, offering immediate feedback.032

They are widely used not only to provide quality033

indicators to users and translators (Béchara et al.,034

2021; Castilho and O’Brien, 2017; Mehandru et al.,035

2023a), but also to improve machine translation036

(MT) systems themselves (He et al., 2024; Xu et al.,037

2024a; Fernandes et al., 2022).038

Judging whether, and to what extent, these met-039

rics concur with human evaluation is important040

to ensuring their effectiveness and applicability041

LP N % ZERO-MQM

WMT 2023 METRICS DATASET

EN-DE (P) 5520 25.4%
HE-EN 9840 50.8%
ZH-EN 17655 19.1%

WMT 2022 METRICS DATASET

EN-DE 18410 51.5%
EN-RU 19725 42.7%
ZH-EN 26250 46.4%

WMT 2022 CHAT DATASET

XX-EN 4756 63.2%
EN-XX 5901 60.2%

Table 1: Gold MQM scores distribution in recent WMT
datasets. High-quality translations are represented in
shades of green (darker for MQM = 0 and lighter for
MQM ≥ −5); red represents translations with at least
one major error (MQM ≤ −5). P: paragraph-level.

in diverse scenarios. A recent human evaluation 042

study by the Conference on Machine Translation 043

(WMT) revealed that translations produced by cur- 044

rent MT systems often achieve very high-quality 045

scores (ranging from 80 to 90) when judged by 046

humans on a direct assessment (DA) scale of 0 to 047

100 (Kocmi et al., 2023). Similarly, Deutsch et al. 048

(2023) observe that these systems increasingly gen- 049

erate numerous “perfect” translations (translations 050

with zero errors), especially for high-resource lan- 051

guage pairs, as shown in Table 1. As MT quality 052

advances, evaluating whether evaluation metrics 053

accurately reflect this progress is essential. The 054

absence of clear criteria for assessing these high- 055

quality translations can introduce bias, leading to 056

inconsistent assessments based on metric prefer- 057

ences rather than objective measures of accuracy. 058

Most evaluations of automatic metrics primarily 059

assess their ability to distinguish between good and 060

bad source-translation pairs (Freitag et al., 2023, 061

2022b), often overlooking their capacity to discern 062

subtle differences in quality for a given source. Fur- 063

thermore, in many practical and high-risk applica- 064

tions (e.g., within the medical or legal domains), 065
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the main concern is not measuring the accuracy066

level of a translation but determining whether the067

translation is accurate and fit for that specific use068

(Nida, 1964; Church and Hovy, 1993; Bowker,069

2019; Vieira et al., 2021; Mehandru et al., 2023b).070

While correlations provide valuable insights into071

the performance of automatic metrics, they do not072

offer a definitive measure of whether these metrics073

can reliably confirm translation accuracy.074

Hence, in this work, we systematically investi-075

gate how existing MT metrics assess high-quality076

(HQ) correct translations, defined as translations077

with zero or minor errors only. We find that au-078

tomatic metrics struggle to distinguish between079

translations for a given source, especially when080

comparing HQ translations, with reference-free or081

quality estimation (QE) metrics achieving close082

correlation scores to reference-based ones. We083

further show that current metrics severely overes-084

timate (for non-HQ translations) or underestimate085

(for HQ translations) translation quality. GEMBA-086

MQM (Kocmi and Federmann, 2023), a GPT-based087

QE metric, achieves the highest F1 score in detect-088

ing the HQ translations with no errors (HQ-ZERO).089

However, it also assigns high scores to erroneous090

GPT-4 translations, suggesting a preferential bias091

towards the LLM’s own outputs. These findings092

highlight the necessity for more robust evaluation093

protocols to assess the quality of automatic metrics.094

2 How good are current MT systems?095

The most reliable way to assess translation qual-096

ity has been through human evaluations, with097

several frameworks proposed over the years for098

this purpose. While earlier works consider two099

dimensions—adequacy and fluency—with a 5-100

point Likert scale (King, 1996), subsequent work101

on direct assessments (DA) considers a single con-102

tinuous scale of 0 − 100 (Graham et al., 2017).103

However, several studies have questioned the cred-104

ibility of DA-based evaluation (Toral et al., 2018;105

Läubli et al., 2020; Fischer and Läubli, 2020;106

Mathur et al., 2020b; Freitag et al., 2021).107

Unlike DAs, which assign a numeric score to108

a translation, the recent Multidimensional Quality109

Metrics (Burchardt, 2013, MQM) framework relies110

on explicit error judgments (error types and sever-111

ity) marked within specific spans of the source-112

translation pair, providing a more accurate and fine-113

grained evaluation. Translations receive a score114

of 0 if they contain no errors, a penalty of −1 for115

minor errors, and −5 for major errors that impact 116

the usage or understanding of the content.1 117

We present the distribution of gold MQM scores 118

from the WMT23 Metrics task (Freitag et al., 2023), 119

WMT22 Metrics task (Freitag et al., 2022b), and 120

WMT22 Chat Translation task (Farinha et al., 2022) 121

in Table 1. Across settings and language pairs, the 122

percentage of translations achieving a zero MQM 123

score ranges from 19.1% to 63.2%. At least 52.6% 124

translations across language pairs and settings have 125

no major errors (MQM > -5). This shows that 126

a large percentage of the datasets include transla- 127

tions with no or only minor errors, emphasizing 128

the importance of accurately identifying these high- 129

quality translations in the evaluation process. 130

3 How well do MT metrics assess HQ 131

translations? 132

We define HQ translations as those that achieve an 133

MQM score > −5, i.e., translations without any 134

major errors according to human evaluators. By 135

definition, these translations do not contain errors 136

that impede their comprehension or usability. We 137

consider a subset of QE and reference-based auto- 138

matic metrics evaluated by the shared tasks (see 139

App. A for more details). 140

3.1 How do metrics rank HQ translations? 141

We first investigate how automatic metrics rank HQ 142

translations, which is particularly relevant today, as 143

these metrics are often used to guide MT training 144

or decoding processes. Recent work employs both 145

reference-based and QE metrics to rerank multi- 146

ple hypotheses generated by dedicated MT models 147

or large language models (LLMs), aiming to im- 148

prove translation quality (Fernandes et al., 2022; 149

Freitag et al., 2022a; Farinhas et al., 2023). These 150

metrics are also used to provide quality feedback 151

signals during training, either explicitly in loss sig- 152

nals (Ramos et al., 2023; Yan et al., 2023; He et al., 153

2024) or implicitly via the creation of preference 154

datasets (Xu et al., 2024b; Yang et al., 2023). 155

Consider N systems and M source segments. 156

Typically, segment-level correlations are computed 157

between the N × M translations. However, this 158

differs from the practical setting where metrics are 159

used to rerank several translations for the same 160

source. Therefore, we follow Deutsch et al. (2023) 161

and compute the average correlation between the N 162

1Although MQM includes critical errors—errors that could
render a text unusable—they are not marked in many datasets
due to their highly contextual interpretation.
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NO-GROUPING GROUP-BY-SRC
METRIC

ALL ALL† ALL† HQ
R

E
F
-B

A
S

E
D

chrF 0.262 0.227 0.267 0.136
BLEU 0.193 0.190 0.303 0.146
BERTscore 0.355 0.367 0.325 0.134
COMET 0.578 0.584 0.461 0.202
BLEURT-20 0.618 0.603 0.449 0.220
XCOMET-XL 0.713 0.705 0.461 0.250
XCOMET-XXL 0.708 0.716 0.481 0.326
MetricX-23 0.682 0.680 0.450 0.301
MaTESe 0.591 0.593 0.341 0.254

R
E

F
-F

R
E

E

GEMBA-MQM 0.614 0.621 0.462 0.368
CometKiwi 0.565 0.561 0.411 0.182
CometKiwi-XL 0.542 0.550 0.427 0.223
CometKiwi-XXL 0.525 0.504 0.456 0.327
MetricX-23-QE 0.683 0.681 0.470 0.292

Table 2: Spearman correlation on WMT23 EN-DE. †:
Subsampled to match GROUP-BY-SRC HQ’s size.

translation scores grouped by the source sentences.163

We refer to the former setting as NO-GROUPING164

and the latter as GROUP-BY-SRC. We also study165

to what extent these metrics distinguish between166

HQ translations. As the number of segments with167

all HQ translations, K, is less than M , we report168

mean correlations on subsampled datasets (ran-169

domly sampled 10 times) that match the sample170

size, N ×K, marked with the symbol † in Table 2.171

This is motivated by Mathur et al. (2020a), who172

study how these metrics rank HQ systems, where173

a limited number of samples (typically 4 or 5) was174

shown to yield unreliable conclusions. However,175

our focus is on segment-level evaluation, where176

the number of subsampled items is much larger.177

Table 2 presents Spearman correlation of auto-178

matic metrics with MQM scores for configurations179

described above on the WMT23 EN-DE dataset180

(see App. B for other datasets and correlation met-181

rics). We first note that the correlation observed182

on the entire (NO-GROUPING ALL) and the sub-183

sampled datasets (NO-GROUPING ALL†) is close,184

establishing that the observed differences cannot185

be merely attributed to changes in sample size.186

Metrics exhibit only a low-to-fair correlation187

with human judgments when evaluating trans-188

lations for the same source. Automatic metrics189

are less effective in differentiating between good190

and bad translations for the same source, as evi-191

denced by the drop in correlation from the NO-192

GROUPING ALL to the GROUP-BY-SRC ALL set-193

ting. A possible reason for this disparity lies in how194

these metrics are typically trained—most metrics195

are trained to predict translation quality for a given196

instance (e.g., source-reference-hypothesis trio in 197

Comet or xCOMET). While this can still be useful 198

for ranking two systems based on averaged scores 199

across different texts, it may provide limited infor- 200

mation for gauging translation quality for different 201

translations of the same source.2 This highlights 202

the limitations of using automatic metrics as the 203

sole measure of translation quality, particularly in 204

scenarios where fine-grained distinctions between 205

translations of the same source are required. 206

QE metrics are on par with reference-based ones 207

for differentiating translations. QE metrics 208

show promising results in differentiating transla- 209

tions for the same source, often achieving com- 210

parable or better correlation than reference-based 211

metrics. For EN-DE, the QE metrics MetricX-23- 212

QE and GEMBA-MQM rank second and third, re- 213

spectively in the ALL setting, following xCOMET- 214

XXL. When contrasting HQ translations, GEMBA- 215

MQM outperforms all other metrics. The relatively 216

strong performance of QE metrics, particularly in 217

this setting, highlights their potential as valuable 218

tools for translation generation and ranking tasks. 219

Metrics fail to distinguish HQ translations. 220

There is a consistent drop in correlation scores 221

across all metrics in the HQ relative to the ALL 222

setting, possibly because most translations in the 223

HQ setting receive scores in the narrow range of 224

(−5, 0] and often are tied in quality. Deutsch et al. 225

(2023) show that most metrics struggle to predict 226

translation ties accurately, i.e., give the same score 227

to two translations with similar quality, except 228

for error-predicting metrics like GEMBA-MQM 229

or MaTESe. This decreased correlation from the 230

HQ to the ALL setting has significant implications, 231

especially when they are used to rerank translations 232

produced by strong MT systems. It may result in 233

an artificial boost or bias towards specific systems 234

or outputs, inadvertently prioritizing translations 235

that align well with metric biases but deviate from 236

true quality improvements, as discussed in §3.3. 237

3.2 How well do metrics detect HQ 238

translations with no errors? 239

Ranking translations of similar quality is a difficult 240

task, so we also evaluate how automatic metrics 241

score HQ translations with zero MQM scores. (HQ- 242

ZERO). We consider normalized scores ≥ 0.99 as 243

2Using contrastive objectives or exposing the metric to
multiple translations could potentially help mitigate this issue
(Briakou and Carpuat, 2020).
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EN-DE (1402) HE-EN (5001) ZH-EN (11309)METRIC P R F1 P R F1 P R F1
xCOMET-XL 72 40 51 78 17 28 47 28 35
xCOMET-XXL 58 59 58 74 54 62 36 63 46
MaTESe 49 69 58 66 65 65 29 75 42
MetricX-23 70 33 45 80 16 27 52 11 19
GEMBA-MQM 52 70 60 71 65 68 37 77 50
MetricX-23-QE 66 14 23 70 64 67 55 20 29

Figure 1: Top: Metric Scores distribution for HQ-ZERO translations on
WMT23. Bottom: Precision, recall, and F1.

Figure 2: Absolute difference of the
number of times a metric assigns a valid
score to HQ-ZERO and non HQ-ZERO
translations.

valid scores as 1.0 is the highest score a metric244

should assign to HQ-ZERO translations. Fig. 1245

shows the results on WMT23 dataset. See App. C246

for results in other datasets.247

Metric scores have high variance for HQ trans-248

lations. 9 out of 15 metrics do not assign valid249

scores to HQ-ZERO translations. Lexical metrics250

(chrF and BLEU) produce the lowest absolute val-251

ues, possibly due to over-reliance on a reference252

translation. Neural metrics trained to regress on253

DA scores (BLEURT, COMET, and variants) also254

do not assign valid scores for these translations,255

likely due to low agreement between DA and MQM256

scores, as discussed by Freitag et al. (2021).257

Metrics over or underestimate translation qual-258

ity. Metrics that do score these translations within259

the valid range (xCOMET, MaTESe, MetricX,260

and GEMBA-MQM), exhibit different tradeoffs be-261

tween precision (P) and recall (R). For example,262

while xCOMET-XL and MetricX prioritizes preci-263

sion, MaTESe and GEMBA-MQM excels at rec-264

ognizing many HQ-ZERO translations, leading to265

increased recall. This difference might stem from266

the specific task each metric is optimized for: while267

the former predicts sentence-level quality, the latter268

is optimized to predict word-level error spans. As269

expected, xCOMET-XXL significantly outperforms270

xCOMET-XL across all language pairs. Finally,271

the QE metric, GEMBA-MQM, based on GPT-4,272

achieves the highest F1 score across all language273

pairs, demonstrating the capabilities of LLM-based274

evaluation in more nuanced MT evaluation.275

3.3 Which HQ translations are detected? 276

To study preference bias from metrics towards spe- 277

cific systems, we compute the absolute difference 278

in the number of times a metric assigns a valid 279

score to HQ-ZERO and non-HQ-ZERO translations. 280

Fig. 2 shows that MaTESe equally overestimates 281

translation quality for many systems, as suggested 282

by its high R and low P scores (Fig. 1). GEMBA- 283

MQM frequently assigns zero MQM scores to GPT- 284

4 translations, even when humans identify errors in 285

them. This aligns with concurrent works showing 286

a preference bias of LLMs towards their outputs 287

(Panickssery et al., 2024; Xu et al., 2024c), under- 288

scoring the need for a more detailed evaluation to 289

better understand the outputs these metrics prefer 290

and whether they align with human preferences. 291

4 Conclusions and Future Work 292

This work systematically investigates how auto- 293

matic metrics assess HQ translations. We find that 294

current metrics correlate poorly with human judg- 295

ments when contrasting translations for a given 296

source, with the correlation being even lower for 297

HQ translations. We then study whether metrics 298

can detect HQ translations that attain zero MQM 299

scores (HQ-ZERO) and find that many metrics fail 300

to assign them valid scores. While the GPT-4-based 301

GEMBA-MQM attains the highest F1 for detecting 302

HQ-ZERO, it shows some preference for GPT-4 303

outputs. Therefore, despite its promise, it is es- 304

sential to complement GEMBA-MQM with other 305

metrics to ensure robust evaluation. 306
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Limitations307

We highlight the main limitations of our work.308

First, we rely on human MQM annotations as the309

gold standard for identifying high-quality transla-310

tions, despite their potential subjectivity and occa-311

sional inaccuracy. These annotations are collected312

for individual translations, and the ratings might313

vary if annotators were asked to evaluate and com-314

pare multiple translations simultaneously.315

Second, although our analysis spans multiple316

datasets across six language pairs (EN-DE, ZH-EN,317

HE-EN, EN-RU, EN-FR, and EN-PT-BR) and mul-318

tiple domains, we do not necessarily account for319

the distribution of high-quality translations across320

different domains within a dataset. As shown by321

Zouhar et al. (2024), learned metrics can be sensi-322

tive to the domain of evaluation.323

Lastly, our analysis in §3.3 identifies one poten-324

tial bias, but it remains unclear whether automatic325

metrics have preferential biases towards other out-326

put properties such as length, stylistic choices, etc.327
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A Automatic Metrics607

We present details about all automatic metrics used across different datasets in Table 3. We refer the608

reader to the relevant papers (Freitag et al., 2022b, 2023; Agrawal et al., 2024) for more details.609

We used the datasets and scores from the WMT 2022 and WMT 2023 Metrics Shared Task cam-610

paign, which are available at https://github.com/google-research/mt-metrics-eval under the611

Apache License Version 2.0. For WMT 2022 Chat Shared task human assessments, we used human as-612

sessments from https://github.com/WMT-Chat-task/data-and-baselines/tree/main/data/613

mqm-annotations released under a CC-BY-NC license. In our work, we ensured that our usage was614

consistent with their intended purposes as specified by the licenses.615
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Table 3: Details about the automatic metrics considered in our paper. ∗: submission is an ensemble; †: {SRC, REF}
pairs are also added to the training data.
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B Ranking results 616

Tables 4 and 5 report the Spearman and Pearson correlation results for WMT23 EN-DE, respectively. 617

Tables 6 and 7 show the Spearman Correlation for the WMT22 and WMT23 datasets, respectively. We do 618

not perform this analysis on chat data because the number of systems is ≤ 5. 619

NO-GROUPING NO-GROUPING † GROUP-BY-SRC
METRIC

ALL HQ ∆ ALL HQ ∆ ALL† HQ ∆

chrF 0.262 0.137 −0.124 0.227 ±0.030 0.132 ±0.022 −0.094 0.267 ±0.050 0.136 −0.131
BLEU 0.193 0.094 −0.099 0.190 ±0.032 0.087 ±0.022 −0.103 0.303 ±0.056 0.146 −0.156
BERTscore 0.355 0.190 −0.165 0.367 ±0.039 0.183 ±0.032 −0.184 0.325 ±0.035 0.134 −0.191
COMET 0.578 0.385 −0.194 0.584 ±0.024 0.390 ±0.031 −0.194 0.461 ±0.041 0.202 −0.259
BLEURT-20 0.618 0.357 −0.262 0.603 ±0.020 0.357 ±0.033 −0.246 0.449 ±0.043 0.220 −0.229
XCOMET-XL 0.713 0.454 −0.259 0.705 ±0.020 0.449 ±0.018 −0.256 0.461 ±0.030 0.250 −0.211
XCOMET-XXL 0.708 0.399 −0.309 0.716 ±0.020 0.382 ±0.032 −0.335 0.481 ±0.041 0.326 −0.155
MetricX-23 0.682 0.433 −0.249 0.680 ±0.018 0.446 ±0.027 −0.233 0.450 ±0.043 0.301 −0.149
MaTESe 0.591 0.353 −0.238 0.593 ±0.028 0.370 ±0.044 −0.223 0.341 ±0.042 0.254 −0.087

quality estimation

GEMBA-MQM 0.614 0.345 −0.269 0.621 ±0.027 0.358 ±0.028 −0.263 0.462 ±0.044 0.368 −0.094
CometKiwi 0.565 0.286 −0.279 0.561 ±0.019 0.268 ±0.021 −0.293 0.411 ±0.044 0.182 −0.229
CometKiwi-XL 0.542 0.240 −0.302 0.550 ±0.023 0.254 ±0.032 −0.296 0.427 ±0.029 0.223 −0.204
CometKiwi-XXL 0.525 0.236 −0.289 0.504 ±0.031 0.244 ±0.032 −0.260 0.456 ±0.029 0.327 −0.129
MetricX-23-QE 0.683 0.425 −0.258 0.681 ±0.012 0.439 ±0.027 −0.242 0.470 ±0.028 0.292 −0.177

Table 4: Spearman correlation on WMT23 EN-DE. †: Subsampled to match GROUP-BY-SRC HQ’s sample size.

NO-GROUPING NO-GROUPING † GROUP-BY-SRC
METRIC

ALL HQ ∆ ALL HQ ∆ ALL† HQ ∆

chrF 0.232 0.112 −0.120 0.244 ±0.028 0.121 ±0.028 −0.123 0.322 ±0.041 0.124 −0.198
BLEU 0.192 0.086 −0.106 0.210 ±0.029 0.079 ±0.025 −0.131 0.297 ±0.049 0.148 −0.149
BERTscore 0.325 0.150 −0.175 0.331 ±0.038 0.148 ±0.031 −0.182 0.363 ±0.043 0.150 −0.213
COMET 0.432 0.337 −0.095 0.421 ±0.037 0.367 ±0.031 −0.055 0.513 ±0.044 0.266 −0.246
BLEURT-20 0.484 0.324 −0.160 0.488 ±0.021 0.308 ±0.024 −0.180 0.469 ±0.047 0.245 −0.223
XCOMET-XL 0.680 0.414 −0.266 0.680 ±0.028 0.409 ±0.040 −0.272 0.510 ±0.054 0.359 −0.150
XCOMET-XXL 0.695 0.362 −0.333 0.688 ±0.019 0.355 ±0.038 −0.333 0.484 ±0.068 0.385 −0.098
MetricX-23 0.585 0.406 −0.179 0.576 ±0.023 0.406 ±0.025 −0.169 0.512 ±0.024 0.371 −0.141
MaTESe 0.554 0.238 −0.316 0.547 ±0.035 0.221 ±0.032 −0.325 0.345 ±0.045 0.253 −0.092

quality estimation

GEMBA-MQM 0.502 0.223 −0.279 0.497 ±0.027 0.238 ±0.021 −0.260 0.485 ±0.055 0.386 −0.099
CometKiwi 0.475 0.210 −0.265 0.476 ±0.037 0.198 ±0.049 −0.277 0.458 ±0.057 0.226 −0.232
CometKiwi-XL 0.446 0.185 −0.262 0.445 ±0.033 0.198 ±0.032 −0.247 0.499 ±0.041 0.328 −0.171
CometKiwi-XXL 0.417 0.171 −0.245 0.411 ±0.024 0.167 ±0.040 −0.244 0.531 ±0.040 0.378 −0.152
MetricX-23-QE 0.626 0.371 −0.255 0.640 ±0.036 0.372 ±0.029 −0.268 0.536 ±0.048 0.407 −0.129

Table 5: Pearson correlation on WMT23 EN-DE. †: Subsampled to match GROUP-BY-SRC HQ’s sample size.
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WMT23 HE-EN WMT23 ZH-EN

NO-GROUPING † GROUP-BY-SRC NO-GROUPING † GROUP-BY-SRC

METRIC All HQ All† HQ All HQ All† HQ

chrF 0.299 0.140 0.298 0.144 0.067 0.012 0.220 0.162
BLEU 0.248 0.145 0.270 0.161 0.129 0.065 0.190 0.139
BERTscore 0.391 0.210 0.368 0.191 0.269 0.129 0.273 0.154
COMET 0.485 0.226 0.383 0.167 0.457 0.268 0.315 0.183
BLEURT-20 0.459 0.216 0.379 0.173 0.434 0.241 0.332 0.189
XCOMET-XL 0.511 0.255 0.362 0.147 0.608 0.405 0.334 0.185
XCOMET-XXL 0.528 0.260 0.381 0.140 0.607 0.364 0.373 0.219
MetricX-23 0.549 0.258 0.357 0.171 0.603 0.408 0.339 0.202
MaTESe 0.415 0.207 0.353 0.266 0.467 0.277 0.322 0.216

quality estimation

GEMBA-MQM 0.493 0.245 0.420 0.227 0.580 0.358 0.423 0.264
CometKiwi 0.459 0.225 0.309 0.106 0.533 0.328 0.333 0.160
CometKiwi-XL 0.434 0.184 0.348 0.181 0.532 0.302 0.334 0.170
CometKiwi-XXL 0.468 0.213 0.389 0.202 0.504 0.288 0.352 0.161
MetricX-23-QE 0.495 0.235 0.307 0.126 0.621 0.411 0.322 0.159
XCOMET-QE-Ensemble 0.504 0.233 0.345 0.160 0.631 0.377 0.347 0.177

Table 6: Spearman correlation on WMT23 (HE-EN and ZH-EN). †: Subsampled to match GROUP-BY-SRC HQ’s
sample size.

WMT22 EN-DE WMT22 EN-RU WMT22 ZH-EN

NO-GROUPING † GROUP-BY-SRC NO-GROUPING † GROUP-BY-SRC NO-GROUPING † GROUP-BY-SRC

METRIC All HQ All† HQ All HQ All† HQ All HQ All† HQ

chrF 0.296 0.214 0.242 0.206 0.235 0.161 0.237 0.161 0.199 0.069 0.189 0.096
BLEU 0.233 0.176 0.221 0.210 0.194 0.161 0.198 0.127 0.200 0.086 0.146 0.089
BERTScore 0.318 0.244 0.239 0.207 0.265 0.210 0.240 0.158 0.428 0.189 0.265 0.155
COMET-22 0.497 0.392 0.358 0.314 0.534 0.387 0.394 0.282 0.428 0.189 0.265 0.155
BLEURT-20 0.467 0.346 0.352 0.283 0.483 0.342 0.354 0.257 0.488 0.194 0.305 0.170
MetricX-XL 0.499 0.379 0.395 0.349 0.511 0.392 0.379 0.290 0.550 0.253 0.314 0.210
MetricX-XXL 0.490 0.377 0.370 0.304 0.561 0.430 0.402 0.338 0.554 0.260 0.303 0.204
MaTESe 0.387 0.296 0.356 0.349 0.315 0.236 0.321 0.281 0.477 0.243 0.251 0.222

quality estimation

CometKiwi 0.404 0.300 0.273 0.223 0.482 0.341 0.306 0.228 0.488 0.223 0.263 0.205
MaTESe-QE 0.294 0.236 0.314 0.316 0.258 0.184 0.268 0.256 0.412 0.214 0.212 0.208

Table 7: Spearman correlation on WMT22 (EN-DE, EN-RU, annd ZH-EN). †: Subsampled to match GROUP-BY-
SRC HQ’s sample size.

C HQ-ZERO Detection Results620

We present the results for the detection task on the WMT22 Metrics and Chat datasets in Figures 3 and 4,621

respectively.622
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EN-DE EN-RU ZH-ENMETRIC P R F1 P R F1 P R F1
MaTESe 61 86 71 48 94 63 68 53 60
MaTESe-QE 58 87 70 46 95 62 64 55 59

Figure 3: Top: Scores distribution for HQ-ZERO translations on WMT22. Bottom: Precision, recall, and F1.

EN-XX XX-ENMETRIC P R F1 P R F1
chrF 88 38 53 92 42 58
BLEU 88 38 53 93 42 58
BERTScore 93 23 37 94 27 42
XCOMET-XL 75 33 46 87 38 53
MetricX-23-XL 76 64 69 87 62 72

XCOMET-XL-QE 66 29 40 84 49 62
MetricX-23-QE-XL 76 45 56 80 35 49

Figure 4: Top: Scores distribution for HQ-ZERO translations on WMT22 Chat. Bottom: Precision, recall, and F1.
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