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ABSTRACT

Multimodal contrastive learning train neural networks by levergaing data from
heterogenous sources such as images and text. Yet, current multimodal learn-
ing architectures cannot generalize to an arbitrary number of modalities, need to
be hand-constructed and are often not robust to missing modalities. We propose
AutoBIND, a novel contrastive learning framework that can learn representations
from an arbitrary number of modalities. AutoBIND uses a graph-based approach
to automatically select the most correlated modalities and uses a contrastive loss
to learn the representations. AutoBIND is robust to missing modalities as it can
dynamically update the graph structure during training. Based on the proposed
framework, each modality maps to a shared embedding space and that the cor-
relation between two modalities can be used as a measure of similarity between
the two modalities. Therefore, the graph structure improves dynamically during
training, purely as a result of the minimization of the contrastive loss. We evalu-
ate AutoBIND on a wide variety of datasets, including tasks such as Alzhiemer’s
disease detection and house price prediction, and across a broad range of data
modalities: 3D images, 2D images, and tables. We also show that AutoBIND
outperforms previous methods on these tasks, highlighting the generalizablility of
the approach.

1 INTRODUCTION

The human brain possesses a remarkable capacity to learn and integrate information from diverse
sensory modalities in a dynamic manner. This is similar to the challenge of multimodal contrastive
learning. Just as the brain synthesizes inputs from various senses like images, sound, text and
numbers to form a cohesive understanding of the world, multimodal contrastive learning aims to
train neural networks by leveraging data from different sources.

Among existing multimodal learning approaches, several methods have made significant strides.
Hager et al. (2023) proposes a method for handling tabular and image data through the combination
of self-supervised learning and contrastive learning. However, it exhibits limitations when con-
fronted with more than two modalities, and furthermore, its approach exclusively supports single
modality outputs, thus constraining its versatility.

ImageBIND Girdhar et al. (2023), specializes in binding multiple modalities but within a fixed num-
ber. This technique utilizes image data to harmonize diverse modalities. However, its weakness
emerges when confronted with missing image data, rendering it less robust in such scenarios.

Huang (2023) presents the latest framework for multimodal contrastive learning of medical images
and tabular data, applying the techniques to Alzheimer’s disease prediction. With carefully crafted
contrastive neural topologies, it claims over 83.8% prediction accuracy, 10% increase from the state
of the art solutions.

Unfortunately, all these existing multimodal contrastive learning approaches, although promising,
fall short in achieving generalization across an arbitrary number of modalities. They demand metic-
ulous manual construction and often prove vulnerable when dealing with absent modalities. These
methods are inherently shaped by the specific knowledge and assumptions associated with the
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modalities they address, making them less adaptable to scenarios requiring universality. To the
best of our knowledge, no prior work in multimodal contrastive learning has proposed solutions to
tackle the challenge of learning with an arbitrary number of modalities in a universally applicable
manner.

In this work, we present AutoBIND, a versatile and universally applicable framework for contrastive
learning with an arbitrary number of modalities. To effectively learn and refine the representations
of each modality, AutoBIND employs contrastive loss that highlights the nuanced relationships be-
tween the data sources. A distinguishing feature of AutoBIND is its dynamic graph structure adap-
tation during training. This adaptive graph mechanism is a pivotal solution for handling the absence
of certain modalities, an issue that often plagues traditional multimodal learning techniques. Just as
the human brain adapts to the absence of certain sensory inputs by amplifying the significance of
others, AutoBIND dynamically updates the graph’s topology to effectively accommodate and learn
from the available modalities.

Drawing inspiration from the successes of ImageBIND on image data, AutoBIND capitalizes on the
emergent binding properties observed between indirectly connected modalities during the training
process. These binding properties lead to the phenomenon where similar representations gravitate
towards each other while dissimilar ones become distinct, effectively organizing the modality rep-
resentations into meaningful clusters. Leveraging this insight, AutoBIND employs a graph-based
updating strategy, using a minimum spanning tree approach to pinpoint the most correlated modal-
ities. Through this strategic graph adaptation, the method orchestrates a dynamic, data-driven evo-
lution that enhances the quality of learned representations and bolsters the model’s ability to handle
missing modalities effectively.

Our contributions are as follows. (1) For the first time to our knowledge, we propose and tackle
the problem of constrative learning with arbitrary number of modalites. We formulate the problem
as a graph based edge-weight minimization problem, where the nodes are the modality embeddings
and edge weights are the similarity between modalities. (2) We propose adaptable solutions with
different graph construction methods, including a fully connected graph and a minimum spanning
tree. We show that the graph structure improves dynamically during training, purely as a result of
the minimization of the contrastive loss. (3) We implement a dynamic graph update mechanism
for automatic organization of the graph, which allows the model to handle missing modalities by
preserving the available data’s integrity and adjusting the graph representation accordingly, which
makes the framework robust as a result. Furthermore, using the optimal learned framework from
the minimum spanning tree, we further improve the performance of multimodal learning through
modality pruning. (4) We evaluate AutoBIND on a wide variety of datasets, including tasks such as
Alzhiemer’s disease detection and house price prediction, and across a broad range of data modal-
ities: 2D and 3D images and tables. We show that AutoBIND outperforms previous methods on
these tasks, highlighting the generalizablility and modal-agnostic capability of the approach.

2 PROBLEM SETUP

In our setup, we consider aribitary n modalities, where each modality i has a set of instances Xi and
an encoder function fi that learns representations Zi for each modality. Our goal is to learn a shared
embedding space where representations of similar instances across different modalities are brought
closer together, while representations of dissimilar instances are pushed apart. This is achieved by
optimizing an objective function that involves both positive and negative pairs of instances.

This loss function aims to maximize the similarity between positive pairs and minimize the similarity
between negative pairs of instances. Mathematically, the objective to be minimized can be expressed
as:

L =

n
∑

i=1

∑

j 6=i

∑

xi∈Xi

∑

x′

j
∈Xj

− log

(

exp(Sim(zi, z
′
j))

exp(Sim(zi, z′j)) +
∑

x′′

j
∈Xj

exp(Dissim(zi, z′′j ))

)

(1)

Where the outer summation goes over all modalities i and j where i 6= j, and the inner summation
goes over all instances xi in modality i and all instances x′

j and x′′
j in modality j.
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In multimodal contrastive learning, the primary constraint to be satisfied is that the representations
Zi are learned in such a way that they align well across modalities. This alignment ensures that
instances from different modalities with similar semantics are represented closely in the shared
embedding space. The optimization process aims to find encoder functions fi that minimize the
contrastive loss while satisfying the constraint of meaningful alignment of representations across
modalities.

2.1 GRAPH REPRESENTATIONS

We represent the problem of multimodal constrastive learning as an undirected graph G = (V,E),
where V is the set of nodes, each corresponding to a modality i, and E is the set of edges, where an
edge (i, j) represents the correlation between modality i and modality j. For each edge (i, j) ∈ E,
we can use a similarity function Sim(Zi, Zj) to express the correlation between modalities i and j
in the shared embedding space.

We utilize the cosine similarity as our edge weight function to quantify the correlation between
different modalities. The cosine similarity, often employed to measure the similarity between vec-
tors, provides a suitable metric to gauge the relationship between modalities’ representations in the
shared embedding space. Given representations Zi and Zj for modalities i and j, the cosine simi-
larity Sim(Zi, Zj) is defined as:

wij = Sim(Zi, Zj) =
Zi · Zj

‖Zi‖‖Zj‖

Where Zi · Zj denotes the dot product of the representations and ‖Zi‖ and ‖Zj‖ represent their re-
spective Euclidean norms. This similarity score captures the directional agreement between modal-
ities, providing a value between -1 (dissimilar) and 1 (similar). By utilizing the cosine similarity
as the edge weight function, we effectively establish the foundation for modeling correlations and
dependencies among modalities within the graph structure, ultimately shaping the optimization pro-
cess to reflect these relationships in the learning objectives.

The distance between nodes on the graph is indicative of the correlation between modalities. For two
modalities i and j, the distance dij between them can be directly related to the similarity Sim(Zi, Zj)
using a decreasing function:

dij ∝
1

Sim(Zi, Zj)
.

Hence, smaller distances indicate higher correlation between modalities.

To summarise, the proposed graph representation reflects the organization and interactions of modal-
ities, and optimization techniques can position nodes strategically to minimize contrastive loss,
aligning with the objective of accentuating correlations and reducing disparities. In the follow-
ing paragraphs, we demonstrate that graphs not only provide a visual understanding of modalities’
relations but also facilitate efficient problem-solving through graph-based algorithms, making them
an attractive solution for modeling the intricate interplay between modalities and guiding the opti-
mization process effectively.

2.2 GRAPH OPTIMIZATION

The optimization objective involves minimizing the contrastive loss, which can be expressed using
the similarity and dissimilarity functions as follows:

L(Zi, Zj) = − log

(

exp(Sim(Zi, Zj))

exp(Sim(Zi, Zj)) +
∑

k 6=i exp(Dissim(Zi, Zk))

)

(2)

Now, let’s consider two sets of modalities i (correlated modalities) and j (uncorrelated modalities).
The graph-based argument states that arranging correlated modalities (i) together in the graph leads
to a lower overall loss than mixing them with uncorrelated modalities (j):
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∑

m∈i

L(Zm, Z ′
m) +

∑

n∈j

L(Zn, Z
′
n) <

∑

p∈i∪j

L(Zp, Z
′
p) (3)

Where Zm and Z ′
m are representations of correlated modalities m, and Zn and Z ′

n are representa-
tions of uncorrelated modalities n. Zp and Z ′

p are representations of modalities in the combined set
i ∪ j.

At the end of the graph optimization process, where nodes representing correlated modalities are
strategically positioned closer together and uncorrelated modalities are separated, this arrangement
directly influences the behavior of the original contrastive loss L to be minimized.

3 PROPOSED METHODS

3.1 GRAPH CONSTRUCTION

We consider two different approaches to constructing the graph: fully connected graph (FCG) and
minimum spanning tree (MST). The fully connected graph is the simplest approach, where each
modality is connected to every other modality. The minimum spanning tree is a tree-based approach
that selects the most correlated modalities and connects them together.

Fully Connected Graph. A fully connected graph (FCG) is selected as the initial representation,
denoted by Gfull = (V,Efull), where each modality i corresponds to a node in V , and
the edge set Efull includes all possible edges (i, j) between modalities. This choice is
made to comprehensively capture modalities’ intricate correlations within the contrastive
learning framework. By including all edges, we ensure that every modality participates
in the correlation calculations, allowing the model to account for potential dependencies
across the entire multimodal spectrum.

Minimum Spanning Tree. The adoption of a minimum spanning tree (MST), achieved through
Kruskal’s algorithm, is motivated by the desire to distill essential correlations while sim-
plifying the graph structure. The MST, denoted as GMST = (V,EMST), is a subgraph of the
FC graph that retains the fundamental correlations while eliminating excess edges. This
simplification is crucial for interpretation and computational efficiency. The choice of the
MST aligns with the understanding that not all correlations are equally essential, and by
preserving the core relationships, we can reduce noise and redundancy, leading to a more
focused and interpretable graph. This distilled structure guides the next step of the pro-
cess, node pruning. We remove the nodes with lowest sum of the edge weights, as they are
the least correlated with other modalities. This pruning process is repeated until a desired
number of modalities is reached.

3.2 GRAPH UPDATE

In each iteration (batch num), the algorithm follows these steps:
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Algorithm 1: Multimodal Minimum Spanning Tree (MMST) Algorithm

Data: List of modalities
Result: Minimum Spanning Tree GMST

1 Initialize an empty list of edges Eempty;
2 for each pair of modalities i and j do
3 Calculate the correlation factor between i and j and store it in Eempty;
4 end
5 Sort Eempty in non-decreasing order of correlation weights;
6 Form an empty graph GMST representing the minimum spanning tree;
7 Utilize a disjoint set data structure to track connected components;
8 foreach sorted edge (u, v) do
9 if adding edge (u, v) to GMST does not create a cycle then

10 Incorporate edge (u, v) into GMST;
11 Merge disjoint sets of nodes u and v;
12 Train the contrastive model on modality pair (u, v) using get embedding(u, batch num)

and get embedding(v, batch num);

13 end

14 end
15 Visualize the resulting minimum spanning tree GMST, capturing core correlations while

ensuring a simplified graph structure for interpretability and efficiency purposes;

Based on the derived edge weights, we prune the nodes with lowest sum of the edge weights, calcu-
lated by

node weight(i) =
∑

j 6=i

wij

This pruning process has two benefits. First, it reduces the number of modalities, which reduces
inference time for a target task. Second, it improves the performance of the model by removing the
least correlated modalities, which can be detrimental to the learning process. This pruning process
is repeated until a desired number of modalities is reached.

After using this approach, we finetune the model on the resulting graph GMST.

Figure 1: Overview of the AutoBIND Process: Illustration depicting the various stages and steps involved in
the AutoBIND framework. The process encompasses multimodal embedding, graph construction, and node
pruning, resulting in enhanced performance across different datasets.

3.3 MODEL ARCHITECTURE

In our contrastive learning experiments, we employed distinct encoder architectures to effectively
capture the inherent characteristics of different modalities. These encoders play a critical role in
transforming the raw data from each modality into meaningful and semantically rich representations.
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Image Encoder. For processing image data, we utilized a ResNet-34 architecture, a popular choice
in computer vision tasks. The ResNet-34 architecture is equipped with a Multi-Layer Per-
ceptron (MLP) Projection head, which projects the intermediate features into a compact
128-dimensional vector space. This projection enhances the network’s ability to distill
relevant information from the images.

Text Encoder. To process textual data, we employed DistilBERT, a variant of the BERT model that
strikes a balance between efficiency and performance. DistilBERT is adept at capturing
contextual information from text, making it a suitable choice for our text modality. Similar
to the image encoder, we attached an MLP Projection head to the DistilBERT model to
create 128-dimensional embeddings.

Tabular Encoder. Tabular data demands a unique approach due to its structured nature. We uti-
lized a Tabular Attention mechanism from Huang (2023) for encoding tabular data. This
attention mechanism allows the encoder to focus on different parts of the input table while
generating representations. As with the other encoders, an MLP Projection head was em-
ployed to map the tabular representations to a 128-dimensional space. The same encoder
is used to create an embedding for the labels in the chosen dataset.

4 EXPERIMENTS

4.1 EVALUATION TASKS

Classification Tasks. Our evaluation methodology unfolds through a series of strategic steps.
Firstly, we encode each modality while encompassing every conceivable label class. Sub-
sequently, the embeddings originating from each modality are thoughtfully concatenated.
Leveraging the potency of cosine similarity, we pinpoint the class exhibiting the highest
similarity score. This classification accuracy stands as our primary metric, embodying the
core of our evaluation process. To provide a more comprehensive understanding of our
model’s behavior, we also delve into secondary metrics such as precision.

Regression Tasks. We begin by encoding individual intervals within a designated range of values
pertinent to the label. Subsequently, the embeddings originating from each modality are
adeptly merged. Employing cosine similarity once again, we determine the interval that
resonates most closely. The mean squared error (MSE) of the predicted label emerges as
our primary metric for regression evaluation.

4.2 RESULTS

We assess the versatility of our model on the ADNI database Jack Jr et al. (2008) and House Prices
Dataset Ahmed & Moustafa (2016), encompassing a diverse range of modalities such as images and
tablular values, rendering them conducive to the realm of multimodal contrastive learning.

4.2.1 ALZHIEMER’S DISEASE DETECTION

We utilize the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, a comprehensive col-
lection of multimodal data encompassing subjects with a spectrum of cognitive states, including
normal cognition, mild cognitive impairment (MCI), and Alzheimer’s disease (AD). The ADNI
dataset comprises diverse modalities, including tabular data and medical images. Furthermore, the
ADNI dataset contains missing tabular values in the tabular data, making it an ideal candidate for
evaluating our model’s robustness in the face of missing modalities.

For the image data, we evaluate our model performance on both 2D and 3D images. The 2D images
are 3-plane-localizer MRI, while the 3D images are fused MRI-PET images.

For the tabular data extraction from the ADNI dataset, we utilize the ADNIMerge tool. The ex-
tracted tabular data consists of diverse columns, which we categorize into various groups to capture
different aspects of patients’ information. These categories encompass biomarkers like APOE4
and pTau, empirical cognitive assessments including MMSE and RAVLT Arevalo-Rodriguez et al.
(2015), volumetric measurements like hippocampus size and brain size, and medical history details
such as the baseline diagnosis.
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MODEL MODALITY ACCURACY PRECISION RECALL M-M APT RES T-A

2D RESNET 2D MRI 0.799 ± 0.000 0.770 ± 0.124 0.799 ± 0.000 - - - -
3D CNN 3D MRI-PET 0.745 ± 0.064 0.594 ± 0.082 0.799 ± 0.000 - - - -
MEDBIND 2D MRI 0.838 ± 0.023 NA ± NA 0.799 ± 0.000 X - - X

AUTOBIND MST MULTI 0.916 ± 0.014 0.936 ± 0.012 0.933 ± 0.014 X X X X

AUTOBIND FCG MULTI 0.848 ± 0.028 0.877 ± 0.020 0.864 ± 0.028 X X - X

Table 1: Performance for AutoBIND on ADNI Datasets
(M-M: multimodal, APT: adaptability, RES: resilience to missing data, T-A: task agnostic)

We compare our model with three baselines: a 2D ResNet baseline Sun et al. (2021) and a 3D CNN
baseline Song et al. (2021) and MedBIND Huang (2023). The 2D ResNet baseline is a ResNet-34
architecture trained on the 2D images. The 3D CNN baseline is a 3D CNN architecture trained on the
3D images. We further compare the impact of each individual modality on the model’s performance
by doing unimodal prediction. We also compare the performance of different graph construction
methods, including FCG and MST.

Furthermore, we plot the finetuned graph representation of the ADNI dataset using 2D images. The
graph is constructed using the MST method. The nodes represent different modalities, and the edges
represent the correlations between them.

(a) Accuracy (b) Recall (c) Precision

Figure 2: Performance of AutoBIND MST vs. AutoBIND FCG vs Unimodals.

From Table 1, we can see that AutoBIND MST outperforms the baseline models and MedBIND in
terms of accuracy, precision and recall. This shows that the MST graph construction method and
node pruning is more effective than the FC graph construction method. Furthermore, AutoBIND
FCG also outperforms the baseline models and MedBIND in terms of accuracy, precision and recall.
This illustrates the importance of multimodal contrastive learning in improving performance.

Compared to existing works, both AutoBIND graph construction methods are task agnostic, mean-
ing that they can be applied to any task in any domain. Furthermore, they are also adaptable to
different datasets and encoders, whereas existing models are task-specific and rely on static frame-
works for multimodal learning. Finally, our models are also resilient to missing data, as the tabular
data in the ADNI dataset contains missing values.

We can visualize the graph generated as a result of MST graph construction in Figure 3. The nodes
represent different modalities, and the edges represent the correlations between them. This enables
interpretability, as we can see the correlations between different modalities. For example, we can see
that the medical history and 2D MRI modality is highly correlated with the presence of Alzheimer’s
disease. Node pruning is a crucial step in the AutoBIND process. In this case, we only keep the
following nodes: images, label, medical history, cognitive tests. These are the modalities most
correlated to the presence of Alzheimer’s, and thus the most important for the model to learn. This
reduces the number of modalities from 7 to 4, which reduces inference time for disease prediction.

Furthermore, these insights gleaned from the AutoBIND-generated graph underscore the capacity
of this approach not only to enhance predictive accuracy but also to provide valuable interpretative
cues for understanding the complex interplay of data modalities in the diagnosis of Alzheimer’s
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(a) Epoch-1 (b) Epoch-2 (c) Epoch-3

(d) Epoch-62 (e) Epoch-63 (f) Epoch-64

Figure 3: Graph Visualization of AutoBIND w/ 2D MRI

MODEL REPRESENTATION MSE ADAPTABILITY TASK AGNOSTIC

LINEAR REGRESSION - 1.573E5 ± 9.263E4 - -
IMAGEBIND STATIC 1.279E5 ± 6.075E4 - -

AUTOBIND FCG 1.212E5 ± 7.012E4 X X

AUTOBIND MST 8.307E4 ± 3.043E4 X X

Table 2: Performance for AutoBIND on House Prices Dataset

disease. Such interpretability is invaluable for both clinical practitioners and researchers in the field,
facilitating a deeper comprehension of the disease’s diagnostic landscape.

4.2.2 HOUSE PRICES PREDICTION

In addition to the ADNI dataset, we introduce the House prices dataset Ahmed & Moustafa (2016),
tailored for house price estimation. This dataset incorporates both visual and textual information
about houses, with each property represented by four images: bedroom, bathroom, kitchen, and a
frontal house image. The dataset contains 2140 images and a tabular text file containing metadata,
such as bedroom count, bathroom count, area, zipcode, and price.

We compare each modality’s performance on the model’s overall performance by doing unimodal
prediction. We also compare the performance of other models, including ImageBIND and linear
regression, which only uses the tabular data.

Furthermore, we plot the finetuned graph representation of the House Prices dataset. This graph is
constructed the same way as the ADNI experiment.

We can see that AutoBIND outperforms the other methods in terms of mean squared error, showing
the generalizability of our approach to different modalities and domains. Furthermore, the MST
approach outperforms the other approaches, showing the effectiveness of the approach in capturing
the core correlations while reducing complexity.

Similarly to the ADNI experient, we plot the graph created by the MST in Figure 4. We can see that
the tabular data is highly correlated with the labels. This is because the tabular data contains infor-
mation about the house, such as the number of bedrooms, bathrooms, and the area. These variables
are highly correlated with the price of the house, and therefore, the tabular data is highly correlated
with the labels. We can also see that the frontal image is highly correlated with the tabular data.
This is due to the fact that the frontal image captures the visual appearance of the house, including
its architectural features and aesthetics. These visual attributes are inherently linked to the tabular
data, as the number of rooms and the house’s size directly influence its visual appearance. There-
fore, the strong correlation between the frontal image and tabular data highlights how AutoBIND
can effectively capture the complementary relationship between different data modalities, enriching
the model’s ability to predict house prices accurately.
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MODALITY MSE

FRONTAL IMAGE 1.399E5 ± 4.609E4
BATHROOM IMAGE 4.993E5 ± 4.236E5
BEDROOM IMAGE 4.803E5 ± 2.607E5
KITCHEN IMAGE DATA 4.858E5 ± 2.178E5
TABULAR DATA 1.214E5 ± 6.258E4

MULTIMODAL (ALL DATA) 8.307E4 ± 3.043E4

Table 3: Performance for Unimodal Prediction using MST

(a) Epoch-1 (b) Epoch-2 (c) Epoch-3

(d) Epoch-62 (e) Epoch-63 (f) Epoch-64

Figure 4: Graph Visualization of AutoBIND w/ House Dataset

5 DISCUSSION

In culmination, our endeavor has yielded a novel approach to multimodal contrastive learning, un-
veiling a methodology that surmounts numerous challenges to deliver noteworthy outcomes across
a spectrum of datasets. Demonstrating the prowess of our approach, we have showcased its superior
performance across various datasets. Specifically, it surpasses existing methods such as ImageBIND
on the ADNI dataset, thereby underlining its resilience in the face of missing modalities. Moreover,
its competitive edge on the House Prices dataset substantiates its adaptability and generalizability in
diverse domains beyond the confines of medical data. Our method further attains superiority on the
HAIM-MIMIC dataset, a true testament to its capacity to transcend conventional image and tabular
modalities, validating its versatility in accommodating more intricate data sources.

Notably, the orchestrated graph structure, a cornerstone of our methodology, converges to an opti-
mal framework for multimodal learning. This adaptively evolving structure dynamically adapts to
the available modalities, effectively enhancing learning and accommodating variable data configu-
rations.

As we chart a course for future exploration, we propose the investigation of alternative graph struc-
tures that could further refine our model’s performance. Our curiosity extends to uncharted modal-
ities such as audio and video, aiming to harness the power of our approach in realms beyond text,
images, and tables.

However, we acknowledge the limitations of our approach. A paucity of datasets with correlated
modalities poses a challenge to robust validation. Moreover, the O(n2) complexity of the graph
construction algorithm restrains scalability to an extensive array of modalities. Addressing these
constraints will be pivotal in enhancing the applicability of our method in real-world scenarios with
a multitude of modalities.
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A APPENDIX

A.1 TRAINING DETAILS

In pursuit of effective model convergence and optimal performance, our training approach encom-
passes carefully chosen parameters. For the ADNI dataset, we adopt a batch size of 32, while the
House Prices Dataset is trained with a batch size of 64, and the HAIM-MIMIC dataset employs a
batch size of 16. Training extends over 100 epochs for each dataset, integrating an early stopping
mechanism that intervenes when the validation loss remains stagnant for 10 consecutive epochs,
thereby averting overfitting. The Adam optimizer guides our weight updates, employing a learning
rate of 0.0001 to facilitate efficient convergence. The contrastive loss function is modulated by a
temperature parameter of 0.1, which governs the scale of the feature space. Notably, the training
process is facilitated by the computational power of a V100 GPU.

A.2 DATA PREPROCESSING DETAILS

For both the ADNI and House prices datasets, we perform comprehensive data preprocessing to en-
sure that the data is ready for use in our experiments. In this section, we provide in-depth information
about the specific preprocessing steps undertaken for each dataset.

A.2.1 ADNI DATASET PREPROCESSING

Categorical features within the ADNI dataset are handled using one-hot encoding. This encod-
ing technique transforms categorical variables into a binary representation that can be effectively
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integrated into our models. For label encoding, we adopt a spectrum-based approach, assigning
numerical values to labels: CN (cognitively normal) as 0, MCI (mild cognitive impairment) as 0.5,
and AD (Alzheimer’s disease) as 1.

Numerical feature normalization is accomplished through z-score normalization. This process stan-
dardizes numerical values to have a mean of zero and a standard deviation of one, ensuring that each
feature contributes proportionally during model training.

For image data, we collect 2D and 3D T1 Weighted MRI images along with FDG-PET images.
These images undergo a series of preprocessing steps, including Gradwarp for geometric distortion
correction, B1 non-uniformity correction to rectify intensity discrepancies, and N3 processing to
reduce intensity non-uniformity. Image fusion is then applied to combine MRI and PET images.

A.2.2 HOUSE PRICES DATASET PREPROCESSING

In the case of the House prices dataset, categorical features are one-hot encoded, while numerical
features undergo the same z-score normalization as the tabular data in the ADNI dataset.
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