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ABSTRACT

Molecular dynamics (MD) simulations underpin modern computational drug dis-
covery, materials science, and biochemistry. Recent machine learning models
provide high-fidelity MD predictions without the need to repeatedly solve quantum
mechanical forces, enabling significant speedups over conventional pipelines. Yet
many such methods typically enforce strict equivariance and rely on sequential
rollouts, thus limiting their flexibility and simulation efficiency. They are also com-
monly single-task, trained on individual molecules and fixed timeframes, which
restricts generalization to unseen compounds and extended timesteps. To address
these issues, we propose Atomistic Transformer Operator for Molecules (ATOM),
a pretrained transformer neural operator for multitask molecular dynamics. ATOM
adopts a quasi-equivariant design that requires no explicit molecular graph and
employs a temporal attention mechanism, enabling accurate parallel decoding
of multiple future states. To support operator pretraining across chemicals and
timescales, we curate TG80, a large, diverse, and numerically stable MD dataset
with over 2.5 million femtoseconds of trajectories across 80 compounds. ATOM
achieves state-of-the-art performance on established single-task benchmarks, such
as MD17, RMD17 and MD22. After multitask pretraining on TG80, ATOM shows
exceptional zero-shot generalization to unseen molecules across varying time hori-
zons. We believe ATOM represents a significant step toward accurate, efficient,
and transferable molecular dynamics models.

1 INTRODUCTION

Molecular dynamics (MD) serves as a computational microscope of atomic motion and is now
integral to drug discovery and materials science pipelines (Dror et al., 2012; De Vivo et al., 2016).
In ab initio molecular dynamics, quantum-mechanical density functional theory (DFT) is used to
compute atomic forces, and the resulting equations of motion are integrated to generate high-fidelity
trajectories. However, DFT’s computational complexity scales at least cubically with the number of
atoms, and relies on double-precision arithmetic that limits GPU acceleration (Kresse & Furthmiiller,
1996; Stein et al., 2020; Li et al., 2024).

Neural approaches have recently emerged as a promising solution to the scalability bottleneck.
Equivariant architectures, in particular, encode physical symmetries to model interatomic dynamics,
achieving ab initio-level accuracy at significantly reduced computational cost (Batzner et al., 2022;
Musaelian et al., 2022; Batatia et al., 2022; 2023; Xu et al., 2024). While equivariance is often
deemed essential for improving generalization, strict symmetry preservation involves substantial
tradeoffs (Xu et al., 2024; Schreiner et al., 2023). Architectures that enforce exact equivariance
at every layer often increase computational overhead, restrict model expressivity, and complicate
optimization (Fuchs et al., 2020; Brehmer et al., 2023; Elhag et al., 2025). It is unclear whether
symmetry constraints can be relaxed without sacrificing accuracy for molecular dynamics.

Furthermore, most existing methods for molecular dynamics are autoregressive, predicting the next
state based on the current one (Kohler et al., 2019; Fuchs et al., 2020; Thiemann et al., 2025).
Autoregressive approaches often struggle to capture long-horizon temporal dependencies and accu-
mulate error as the prediction horizon grows (Bengio et al., 2015; Bergsma et al., 2023; Taieb &
Atiya, 2016). Inference speeds are also constrained by the need for sequential integration, failing to
exploit modern, highly parallel compute architectures. One exception is Equivariant Graph Neural
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Operator (EGNO) (Xu et al., 2024), which models the entire trajectory with neural operator learning.
Nevertheless, EGNO enforces strict equivariance and is single-task in nature, i.e., it is trained and
evaluated on trajectories of each molecule separately with a fixed time horizon, which limits zero-shot
generalization to unseen molecules or timeframes.

Our Main Contributions. In this work, we address the above issues regarding equivariance,
autoregression, and zero-shot generalization within a unified framework, which we call Atomistic
Transformer Operator for Molecules (ATOM). To this end, we propose a pre-trained neural operator
with a transformer backbone for molecular dynamics and introduce a new MD dataset, TG80, which
is both chemically diverse and numerically stable for multitask pretraining and benchmarking.

* Design innovations. ATOM is quasi-equivariant by employing an equivariant lifting layer that
produces symmetry-aware features, while allowing subsequent transformer blocks to be uncon-
strained for flexibility and expressiveness. Unlike autoregressive models, ATOM allows parallel
decoding of molecule states across multiple timesteps, directly learning the trajectory operator. By
encoding time lags via a novel temporal rotary position embedding, ATOM enhances temporal
interpolation and extrapolation, enabling robust predictions across multiple time horizons. Finally,
ATOM requires no predefined molecular graph and operates directly on point clouds, naturally
accommodating long-range spatial interactions without the need for hand-crafted connectivity.

e Performance highlights. ATOM sets new state-of-the-art on single-task MD benchmarks. For larger,
sparsely connected molecules in MD22, ATOM significantly outperforms existing graph-based
baselines by capturing the long-range atomic interactions. In the multitask regime, we pretrain
ATOM on TG8O trajectories from multiple molecules and varying timeframes, demonstrating
significant zero-shot transfer to both unseen molecules and timesteps, improving existing baselines
by 39.75% on average. This achieves performance on par with existing specialized baselines
tailored for such molecules and timeframes. To the best of our knowledge, this is the first method
that demonstrates such generalization capability in molecular dynamics.

We believe our work represents a shift in molecular dynamics modeling, where we demonstrate the
potential of quasi-equivariance designs and zero-shot generalization to out-of-domain systems, which
is enabled by the comprehensive TG80 MD dataset.

2 RELATED WORK

Equivariant Neural Networks. Equivariance (to transformations such as rotation, reflection, and
translation) has emerged as an essential physics-informed prior for deep learning models on molecular
data (Bronstein et al., 2021; Duval et al., 2023). Early works employed convolutional approaches
to achieve translation equivariance in E(3) (Weiler et al., 2018; Wu et al., 2020) or tensor product
attention and spherical harmonics to enforce roto-translational equivariance in SE(3) (Fuchs et al.,
2020; Thomas et al., 2018). In contrast, message passing neural network (MPNN) frameworks, such
as Equivariant Graph Neural Network (EGNN) and others (Garcia Satorras et al., 2021; Gasteiger
etal., 2021; Huang et al., 2022), achieve equivariance by operating on strictly equivariant features,
such as inter-node distances and directions. While effective, MPNNSs typically assume a fixed
molecular graph. This is problematic when the underlying structure contains non-local interactions
and dynamic bonding effects (e.g., resonances, transient interactions), which render predefined
graphs inaccurate over time (Knutson et al., 2022; Luo et al., 2021). To address this issue, we model
molecules as point clouds, with our attention represented as a fully connected graph that allows
unrestricted information propagation across the molecule.

Time-coarsened Molecular Dynamics Time coarsening is a coarse-graining method which preserves
molecular structure, but compresses many short integration steps into a few large-stride updates to
reduce the cost of long-time simulation (Kmiecik et al., 2016). Stochastic coarse-graining approaches
often learn transition kernels on configuration space, bypassing explicit integration of the equations
of motion. Klein et al. (2023) learns such a kernel with a normalizing flow and uses it as an MCMC
proposal targeting the Boltzmann distribution, Hsu et al. (2024) uses a conditional diffusion model
to learn a transition probability matrix, and Yu et al. (2025) uses flow-matching to learn a vector
field transporting current states to future states. Closer to our framework, deterministic methods
such as MDNet (Zheng et al., 2021) and TrajCast (Thiemann et al., 2025) learn a GNN and EGNN,
respectively, which autoregressively predict fixed strides 10-100 times larger than those of MD
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integrators. Bigi et al. (2025) incorporates Hamiltonian structure and explicit energy-conservation.
Most of the methods require direct force learning and are sequential in nature, while ATOM may be
interpreted as a force-free deterministic coarse-graining approach, wherein temporal pushforward is
approximated by a learned propagation operator which is decoded in parallel.

Neural Operators. Neural operators are deep learning methods for learning operators between
function spaces (Kovachki et al., 2021). A wide variety of architectures have been proposed for such
operator learning. Notably, Fourier Neural Operator (FNO) (Li et al., 2021) learns an operator in
the Fourier domain, while its derivatives G-FNO (Helwig et al., 2023) and PINO (Li et al., 2023b),
respectively, add group equivariance and physics-informed properties. Xu et al. (2024) bridges this
framework with molecular dynamics by recasting the task as learning a propagation operator that
evolves historical atomic positions into their future configurations. Specifically, EGNO (Xu et al.,
2024) is proposed by integrating EGNN and FNO layers to learn dynamic trajectories, capturing
both spatial and temporal correlations. Recently, transformer neural operators (Bryutkin et al.,
2024; Hao et al., 2023; Li et al., 2023a) have surpassed the performance of FNO in most partial
differential equation (PDE) tasks. Notably, OFormer (Li et al., 2023a) uses a linear Galerkin-type
attention mechanism, which omits the softmax and instead interprets the latent column vectors as
basis functions. General Neural Operator Transformer (GNOT) (Hao et al., 2023) employs a novel
subquadratic cross-attention methodology to integrate multiple feature types (e.g., shape and point
relationships) into their transformer blocks. With ATOM, we unify the MD problem formulation and
temporal discretization approach introduced by EGNO with the increased representational power of
transformers in operator settings.

MD Benchmarks. Research on graph machine learning for molecular dynamics suffers from
poor benchmarking (Bechler-Speicher et al., 2025). For example, despite the fact that MD17
Benzene exhibits non-physical noise approximately 1000 times higher compared to other compounds
(Christensen & von Lilienfeld, 2020), it is still regularly employed to benchmark new models (Bihani
et al., 2023; Huang et al., 2022; Liao & Smidt, 2023; Xu et al., 2024). The practical relevance of
single-task learning on these datasets is also dubious, as predicting trajectories for molecules with
existing numerical solutions offers minimal benefit. We believe the strengths of neural approaches
emerge in transfer learning, where models generalize to unseen compounds, thereby circumventing the
computational costs associated with explicit numerical simulations. This motivates our development
of TG8O to facilitate multitask dynamics learning across molecular systems.

3  ATOMISTIC TRANSFORMER OPERATOR FOR MOLECULES (ATOM)

In this section, we first introduce the problem formulation (Section 3.1) and then propose the
framework of ATOM by introducing the key model and training designs (Section 3.2). We then
discuss the multitask pretraining for ATOM and introduce TG80 MD dataset (Section 3.3).

3.1 PROBLEM FORMULATION

We follow (Xu et al., 2024) to cast molecular dynamics prediction as operator learning. We model a

molecule of N atoms as a point cloud in R3, which we denote as G(*) for a given system state time ¢.

In particular, we write G(*) = (xgt), Vgt))i]\il that represent molecules in terms of the atom positions

x and velocities v. Our objective is to predict a future trajectory G4 where At € [0, AT].

Similar to (Xu et al., 2024), we focus on predicting the position states only. Let2/: [0, AT] — RV >3
be the trajectory function mapping At to U(At) € RV*3 representing molecule positions At in
the future. We assume a solution operator F'': G(Y) — 1 exists which provides the underlying
future trajectory given system states at t. Thus, the goal of molecular dynamics prediction be-
comes training a neural operator Fj(G*)) to approximate the target trajectory function F'T(G(*):
ming Ege L(Fy(GD)(t), FT(GW)(t)), for some loss function £: U x U — R. Here, expectation
is with respect to the different initial states. By discretizing over the temporal domain and considering
L5 loss, we optimize the neural operator with a discretized temporal sampling of the states:
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Figure 1: ATOM Pipeline. We pretrain ATOM on the TG80 dataset across multiple molecules with
stochastic time lags. At inference, ATOM takes a query molecule and timestamps and directly outputs
corresponding molecular states.

where {Aty, ..., At,} are discrete timesteps. We replace the true future state F'{(G(*))(At,) with the
known future ground truth node positions x(**4%) for At,, € [0, AT].

Quasi-equivariance. We formally define quasi-equivariance, motivated by (Elhag et al., 2025).

Definition 3.1 (s-quasi-equivariance). We call a function f : X — Y, e-quasi-equivariant with

respect to group G if it satisfies Evcx || [ [(0(9)(x))du(g) — [ p(9)(f(x))du(g)|| < e where p
denotes the normalized Haar measure.

In practice, we approximate the group integration with Monte Carlo samples from G.

Single- and multitask. Unlike prior works (Schreiner et al., 2023; Xu et al., 2024), we consider
both single-task and multitask settings. Single-task refers to the case where a separate model is
independently trained and evaluated on each molecule and fixed timeframes. This corresponds to the
conventional practice in molecular dynamics benchmarks. Multitask instead pretrains one unified
model on several molecules across varying time lags and evaluates out-of-domain trajectories on
unseen molecules, thereby directly testing zero-shot cross-molecule generalization. Under a multitask
setting, the objective (1) computes the expectation over trajectories of multiple molecules.

3.2 ATOM MODEL AND TRAINING DESIGN

Here we outline the pipeline of ATOM. At its core is an equivariant lifting layer (Section 3.2.1),
which maps atomic positions, velocities and their phase features into a richer embedding space while
preserving symmetry under the Euclidean group E/(3). The lifted embeddings are then processed
by the ATOM attention block, which applies heterogeneous attention over positions, velocities, and
phase features with chemical augmentation (Section 3.2.2). To capture temporal dynamics, we
incorporate a temporal rotary position embedding (T-RoPE) (Section 3.2.2) that depends only on time
lags and is shared across atoms, ensuring translation invariance in time and permutation invariance
within each molecule. The parameterized ATOM can be written by

Fy=Poo(Kp)o---00(K1)0Q

where Q, P denotes the equivariant lifting and projection operators respectively. K;,l = 1,...,L
are the data-dependent kernels induced by cross attention (See Appendix G.1), and ¢ denotes some
nonlinear activation function.

Finally, to counter numerical noise in training trajectories, we inject randomly sampled position
and velocity perturbations during training (Section 3.2.3), which improves robustness and acts as a
regularizer against overfitting. The overall pipeline of ATOM is in Figure 1.
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3.2.1 E(3) EQUIVARIANT LIFTING

To model atomic states in a symmetry-respecting way, each atom is encoded with its 3D
position and velocity, augmented with their norms: x = (z,y,2,v/22+y>2+22), v =
(Ve; Uy, V2, /U2 + 02 4 v2). To construct higher-dimensional features that remain consistent with

E(3) symmetry, we apply equivariant lifting that maps the inputs through learnable functions that
preserve group actions. Specifically, we use E(3)-equivariant linear layers (Geiger & Smidt, 2022)
that lifts the position and velocity vectors to a feature space. The resulting features satisfy the equiv-
ariance constraints by construction. We further construct phase space of each atom by augmenting
the position and velocity vectors with atomic number, which is subsequently processed by a learnable
equivariant layer to obtain a lifted representation. The final lifted embedding for a molecule is given
by (X, V,Z) € R3*NPxdv corresponding to position, velocity and phase features. The second
dimension aggregates nodes and time for attention and d,, is the embedding space dimension.

We highlight that after the equivariant lifting layer, we do not enforce equivariance in the subsequent
Transformer blocks. This relaxation leads to improved performance compared to fully equivariant
designs and, show robustness to random rotations of the trajectories compared to non-equivariant
baselines (see Section 4.4).

3.2.2 ATOM HETEROGENEOUS TEMPORAL ATTENTION

We employ a heterogeneous temporal attention mechanism to enable mixing between multiple features
(X,V,Z) € R3*NPxdv across spatial and temporal dimensions. We use the phase space embedding
Z as the query and attend to the key-value pairs formed from all features X, V,Z € RNPxdv n
Figure 5, we show that this improves performance by 6.36% over standard self-attention for single-
task prediction. In addition, to encode temporal information, we introduce Temporal RoPE (T-RoPE),
an adaptation of RoPE (Su et al., 2023) to irregular time lags by driving the phases with timestamps
built from per-step increments { At}.

Let the hidden dimension per head be dj (even). We define frequencies wy = b=2k/dn for | =
0,...,dn/2—1. Given per-step time increments {At, }”_ |, we build timestamps ¢, = t+_7_, At,,
and assign a single rotation to all N atoms at timestep p: R, = diag (R(9p70), . R(Hp’dh/g,l)) €
Rnxdnwhere 0, = “£ (t, — to) and R(f) € R**? is the rotation matrix with angle 6 and
7 > 0 is a timescale hyperparameter. Suppose the query molecule state at time p is given as
Q, € RV*dn and key molecule state at time p’ is K,; € RV*4n We apply R, R,y to Q,, K,
respectively so that the rotary dot product Q,R,,(K,/R,/)" depends only on the time interval
t,r — tp. This makes attention translation invariant in time, which allows for interpolation and
extrapolation across irregular increments {At¢,}. In addition, sharing the same R,, across all N
atoms in a molecule ensures permutation-invariance within a timestep. For aggregated query and
key matrices Q, K € RVP*dr we denote the application of temporal Rotary Position Embedding
(ROPE) across P timesteps and N atoms as T-RoPE(Q), T-RoPE(K) € RV xdn,

Specifically, a single-head attention layer of ATOM computes

]
S 2p soltmax (LROPEQ(E) TRAPE(K(F)

N V),

Fe{X,V,Z}

where Q(-), K(-), V(-) represent the query, key and value projections. We introduce learnable
weights yr to modulate the relative importance of each feature. In Appendix G.1, we show that
heterogeneous attention is equivalent to a kernel integral operator and discuss its properties.

3.2.3 TRAINING WITH LABEL NOISE REGULARIZATION

Many DFT datasets are inherently noisy (Christensen & von Lilienfeld, 2020), and MD models
can overfit to this noise. Motivated by the regularization effect of label noise (Damian et al., 2021;
HaoChen et al., 2020), we augment the observed node positions x and velocities v by random

Gaussian noise &, &, ~ N(0,0%I) during training. Let gg) = (xl(»t) + &5 v 4 &,.:) be the
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noised initial state at time ¢t. We minimize the following regularized loss

2
’2 '
A similar strategy has also appeared in graph neural network (GNN)-based MD models and neural

operator pretraining (Dauparas et al., 2022; Zhou et al., 2024a; Hao et al., 2024). We only apply noise
augmentation during training and evaluate on the unperturbed ground-truth trajectories.

Fy (607) (aty) = (x4 4 g2)

1 P
min — Z,: Egw ¢.er
=

Comparison to EGNO. We highlight that ATOM adopts fundamentally different design choices
compared to EGNO. First, EGNO is a graph EGNN operating on fixed bond connectivity, whereas
ATOM uses an E(3)-equivariant lifting layer followed by globally connected point-cloud attention,
which better handles long-range and sparsely bonded interactions. Second, EGNO is strictly equivari-
ant end-to-end, while ATOM is quasi-equivariant, enforcing equivariance only in the lifting stage
and relaxing it in deeper transformer layers, which our ablations show improves accuracy. Third,
EGNO models time via Fourier temporal convolution, whereas ATOM uses Temporal RoPE, allowing
translation-invariant handling of irregular time gaps and stronger temporal extrapolation. T-RoPE
also uniquely allows modifying the time-horizon AT at inference by modulating the rotary phases
(Section 3.2.2). Consequently, a pretrained ATOM can be evaluated at arbitrary AT values without
retraining.

3.3 MULTITASK ATOM PRETRAINING AND TG80 DATASET

This section adapts ATOM for the multitask setting, where the aim is to predict future trajectories for
unseen molecules. In order to more effectively distinguish molecules, we construct a radius graph
of 1.6 A based on atomic positions, and apply random walk positional encoding (Ma et al., 2023;
Lobato et al., 2021) to augment the phase vector z. We describe the process in detail in Appendix D.2
and highlight that such a graph depends only on atomic positions, not chemical bonds.

During multitask training, each mini-batch contains trajectories from multiple molecules. In addition,
we perform random sampling for the time lags At from a log-uniform distribution between At,,;, and
AT, namely At ~ LogUnif (At yin, AT). This aims to enhance the robustness of interpolation and
extrapolation in the temporal domain, a consideration that has been similarly explored in (Schreiner

et al., 2023). Let M denote the set of training molecules and let QT(,? represent the state of molecule
m € M at timestamp ¢. We can write the pretraining multitask objective as
1 2
o (t) _ J(t+AD)
M > Eg(»), AtmLogUnif(Atun, AT) HF0 (gm ’At) (A1) =y, H2»
meM

where we take expectation with respect to initial states of multiple molecules in the training set, as
well as the time lags. Here, we emphasize ATOM also takes a time lag, At, as input.

TG80 Dataset. To facilitate pretraining of our neural operator, we introduce TG80, a superset of the
MD17 dataset. The initial seed set comprises 40 molecules: 8 MD17 compounds and 32 additional
drug-like molecules selected through expert review. We then augment the seed molecules with
structurally similar molecules from the PubChem dataset of 173 million compounds (Bolton et al.,
2011). Accepted candidates had an ECFP-4 Tanimoto similarity between 0.875 and 0.925 to at least
one seed molecule, and no more than 0.80 similarity to previously accepted molecules, alongside
other criteria detailed in Appendix C.4 (Landrum et al., 2025; Rogers & Hahn, 2010; Rogers &
Tanimoto, 1960). These thresholds follow common practice in the literature, balancing diversity
while avoiding collapse into overly narrow chemical subspaces (Matter, 1997; Menke et al., 2021;
Eastman et al., 2023; Harper et al., 2004; Zhang et al., 2023).

We generate all trajectories using ORCA V6.01 (Neese, 2022) with the PBE functional (Perdew et al.,
1996), def2-SVP basis set (Weigend & Ahlrichs, 2005), A4 dispersion corrections (Caldeweyher
et al., 2019; 2020; Wittmann et al., 2024) at one femtosecond resolution, 300K temperature, in
vacuum. This resembles an enhanced RMD17, with more modern dispersion corrections to improve
stability and allow for a larger step size (Christensen & von Lilienfeld, 2020). As a result, TG80
exhibits more diverse dynamics and improved numerical stability, with no compound exceeding 50 A
center-of-mass drift in Figure 8'.

!Simulations ran on 32 AMD EPYC 7543 cores with 256 GB RAM per molecule, totalling 806,400 CPU-
hours (quoted market cost USD 150 000).
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4 EXPERIMENT RESULTS

Metrics. We use State-to-trajectory (S2T) and state-to-state (S2S) error to evaluate ATOM (Xu
et al., 2024). Specifically, S2T = % 25:1 %, — xp||3, measures the average discrepancy between

the predicted x and ground-truth positions x across entire trajectories, while S2S = ||Xp — xp||3,
quantifies the error at the final predicted timestep.

Baselines. For comparison, we include a range of classic to state-of-the-art baselines, including
Radial Field (RF) (Kohler et al., 2019), Tensor Field Networks (TFN) (Thomas et al., 2018), SE(3)
Transformer (SE(3)-Tr.) (Fuchs et al., 2020), E(n) equivariant graph neural networks (EGNN)
(Garcia Satorras et al., 2021), and EGNO (Xu et al., 2024). Our EGNN baselines are EGNN-Rollout
(EGNN-R), which predicts timesteps autoregressively, and EGNN-Sequential (EGNN-S), which uses
the output of each GNN as the prediction of a given frame. We set all baseline hyperparameters
following previous works (Xu et al., 2024; 2022; Shi et al., 2021) and tune ATOM and EGNO
hyperparameters as in Table 20 and Table 21.

Training setups. For training of ATOM and EGNO, we consider two temporal discretization
strategies in selecting the timestamps ¢, = ¢ + > -_; At,: (1) Uniform discretization selects
t, = t + p/PAT and (2) Tuil discretization selects t, = t + A + p/P(AT — A) for a lag
A € [0,AT]. In the main paper, we present experiment results with uniform discretization and
include the results with tail discretization in Appendix E. We perform early stopping on the lowest S2S

validation loss checkpoint and report results as mean £2¢ over three training runs. All experiments
are run on an NVIDIA® RTX 5080 with wall-clock time and FLOP utilization detailed in Table 16.

4.1 SINGLE-TASK LEARNING

We benchmark on the MD17, RMD17, and MD22 DFT MD trajectory datasets (Chmiela et al.,
2017; Christensen & von Lilienfeld, 2020; Chmiela et al., 2023). We partition the trajectories into
train/validation/test splits of sizes 500/2000/2000, set AT = 3000 fs and P = 8, and train for 2500
epochs following (Xu et al., 2024). For the performance on MD17 ( Table 1), we directly quote the
results from (Xu et al., 2024) except for EGNO. We design ATOM to have six transformer blocks
with a hidden size of 256.

MD17 and RMD17. As shown in Table 1, ATOM compares favorably with state-of-the-art (SOTA)
baselines on MD17 dataset, yielding average reductions of 14.96% (S2S mean squared error (MSE))
and 8.3% (S2T MSE) on average”. In Table 9 (Appendix E.1), we benchmark ATOM on RMD17,
and observe similarly competitive performance against EGNO.

MD22. To evaluate performance on larger molecules, we consider Ac-
Ala3-NHMe (20 heavy atoms), docosahexaenoic acid (DHA with 24
heavy atoms), and stachyose (45 heavy atoms) from the MD22 dataset
(Chmiela et al., 2023). ATOM remains competitive on these systems;
whereas EGNO fails to converge (Table 2). We attribute this discrepancy
to differing inductive biases: GNNs such as EGNO restrict message
passing to a predefined bond or radius graph and can therefore under- Fi .
. . . igure 2: Docosahex-
represent long-range, non-bonded steric and electrostatic interactions that aenoic acid (DHA)
dominate the behavior of large, sparsely connected molecules (Alon &
Yahav, 2021; Kosmala et al., 2023). This explains the poor performance of EGNO on MD22, which
contains prototypically sparse molecules such as DHA, shown in Figure 2 (Nv et al., 2003). We
further disentangle the role of connectivity from the use of attention by training a variant, ATOM-
Graph attention network v2 (GATV2), in which our heterogeneous temporal attention is replaced by
GATV2 layers (Brody et al., 2022) operating on the same bond/radius graph as EGNO. ATOM-GATv2
still substantially underperforms the full ATOM model, indicating that the performance gains stem
from the fully connected point-cloud interaction pattern rather than from attention alone.

We exclude benzene from the table due to the previously discussed high numerical noise.
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Table 1: Single-task MSE (x10~2) on MD17. Upper part: S2S MSE. Lower part: S2T MSE.

Aspirin Ethanol =~ Malonaldehyde Naphthalene  Salicylic Toluene Uracil

RF 10.94+0.02  4.64+0.02 13.93+0.06 0.50=+0.02 1.23+0.04  10.93+0.08 0.64+0.02
TFN 12.37+0.36  4.81+0.08 13.62+0.16 0.49+0.02 1.03+0.04  10.89+0.02  0.84+0.04
SE(3)-Tr. 11.12+0.12  4.74+0.02 13.894+0.04 0.5240.02 1.13+0.04 10.88+0.12  0.79+0.04
EGNN 14.4140.30  4.64+0.04 13.6440.02 0.4740.04 1.02+0.04 11.78+0.14  0.64+0.02
EGNN-R  9.96+0.14 4.61+0.01 13.04+0.03 0.44+0.05 0.96+0.00  10.19+0.15 1.11+0.04
EGNN-S  10.25+0.090 4.61+0.01 13.06+0.01 0.53+0.01 1.06+0.05  10.83+0.09  0.62+0.01

EGNO 9.64+0.15 4.57+0.01 12.92+0.00 0.39+0.00 0.89+0.01  11.00+0.00 0.58+0.02
MACE 6.95 +0.00 2.06 £0.00 17.99 +o0.26 0.72 +o0.00 1.05 +0.00 6.44 +0.00 0.75 %0.00

ATOM 6.82+0.06 3.52+0.04 14.72+0.01 0.50=+0.00 0.88+0.01 4.66+0.21  0.63+0.00
EGNN-R  7.35+0.19 3.21+0.00 10.75+0.04 0.34+0.06 1.09+0.12 4.53+0.08 0.89+0.02
EGNN-S  9.01+0.34 3.2140.00 11.204+0.03 0.4240.01 1.41+0.00 4.86+0.04 0.65+0.01
EGNO 9.64+0.15 4.57+0.01 12.92+0.00 0.39+0.00 0.90+0.01  10.99+0.00 0.58+0.02
MACE 5.06 +0.00 2.84 +0.00 16.09 +o0.03 0.57 £0.00  0.55 +0.00 3.26 £0.00 1.08 £0.00
ATOM 5.62+0.05 2.62+0.04 12.49+0.01 0.43+0.00 0.86+0.01  2.27+0.10 0.61+0.00

Table 2: Single-task MSE (x1072) on Table 3: Multitask S2T MSE (x10~2) on TG80 across

MD22. Upper: S2S. Lower: S2T five UMAP cluster assignments.
Ac-Ala3-NHME DHA Stachyose Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

EGNO 357.89+3.04 178.39+4.01  42.11+0.10 EGNO 44.23+0.68 95.52+0.73 141.16+0.21  150.92+0.11  107.47=0.36
ATOM-GATV2 223.57+£0.66 16.72+044  41.40+0.37 D ATOM 9.71x0.75 18.26+1.58 16.82+1.46  16.93+365  17.20+0.46
ATOM 9.65+0.75 10.60+1.11  21.25+4.20 Gap 78.04% 80.89% 88.09% 88.78% 83.99%
Gap +97.30% +94.06% +49.54% MACE 134.26 224.12 325.97 316.26 229.64

- . y i EGNO 45.95+0.80 115.43+13.23 151.74x057  163.90+0.69  113.68+2.50
EGNO 232.40z675  116.45+3.31  30.8420.03 oop EONN-S  d5ddsosr 7386.15ze0s150 152725085 46422450045 11430070
ATOM-GATv2 113.26=0.04 14.39+0.32  29.70+0.15 EGNN-R  44.88+0.68 109.62+1.92 148.05+0.70  161.54+0.68  110.10+0.96
ATOM 7.55+0.42 9.66+116  18.1343.7 ATOM  35.05:097 106.99:10161 60.95:1s6  66.68+0.06  47.49:150
Gap +96.75% +9L70%  +41.22% Gap 21.93% 2.40% 58.83% 58.71% 56.88%

4.2 MULTITASK LEARNING ON TG80

We pretrain ATOM on TG80, scaling to six attention blocks with a hidden size of 256. We se-
lect stochastic horizons AT ~ LogUnif(8 fs, 24 000 fs) and use a five-fold, cluster-based cross-
validation. Specifically, we compute ECFP-4 fingerprints (Rogers & Hahn, 2010), embed them
using UMAP (Mclnnes et al., 2018), and apply agglomerative clustering (Ward, 1963) to partition
compounds into ten disjoint clusters. The folds are then formed by holding out clusters, ensuring that
the train/validation/test sets occupy distinct regions of chemical space. This cluster-wise protocol
minimizes leakage and more closely reflects the prospective scientific setting in which models must
generalize to unseen molecules. Cluster-based approaches present more challenging generaliza-
tion problems than random splits or common chemical-scaffold-based splits (Guo et al., 2024). In
Appendix E.2, we also consider pretraining on a standard random split of molecules.

Table 3 benchmarks ATOM by assessing both in-distribution (ID) and out-of-domain (OOD) S2T
performance. For the in-distribution setting, we train, validate, and test on molecules from the same
cluster. We observe that ATOM outperforms existing baselines by an average of 83.96% in terms
of S2T MSE. We then assess out-of-domain (OOD) generalization performance by predicting the
dynamics of unseen compounds drawn from disjoint clusters. Under OOD settings, ATOM nearly
halves the S2T MSE of EGNO, with an average improvement of 39.74% across five cluster splits.
Notably, OOD ATOM beats ID EGNO performance in four of five folds. This striking zero-shot
generalization, realized without any exposure to the test molecules, confirms that ATOM uniquely
learns robust, transferable knowledge of molecular dynamics. In Appendix E.2, we show similar
outperformance in S2S prediction. In Appendix F.2, we show that the significantly improved multitask
performance comes with a modest overhead in training time and in inference latency.

4.3 TEMPORAL GAP AND TIMESTEP INVARIANCE PROPERTIES

AT Invariance. We evaluate the performance of pretrained ATOM (at fixed AT = 3000) with
varying AT at inference. We compare ATOM, EGNO, and EGNN on S2T MSE by fixing P = 8 and
sweeping AT logarithmically from 10 to 10000 fs on an in-distribution (Cluster 1) multitask model.
In Figure 3, we show that ATOM maintains its extrapolation advantage across the range compared to
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EGNO, particularly at larger AT'. Ablating T-RoPE (NoPE) removes this advantage by exhibiting
an EGNO-like error trend with substantially higher MSE. This underscores T-RoPE’s role in stable
time-gap extrapolation.

P Invariance. Following the discretization invariance in neural operators, we expect ATOM and
EGNO models to show consistent MSE as P varies under uniform discretization (Kovachki et al.,
2021). Figure 4 confirms such a conjecture by showing that multitask ATOM pretrained at P = 8
maintain constant S2T MSE as P ranges from 4 to 24 at inference.
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Figure 3: Pretrained (AT = 3000, ID) multi- Figure 4: Pretrained (P = 8) ATOM and
task S2T MSE across varying AT values. EGNO are discretization invariant, showing
stable S2T MSE.

4.4  ABLATION STUDIES

We perform extensive ablations to assess each design choice in ATOM. For single-task performance
(Fig. 5) and multitask performance (Fig. 6), we independently toggle components and measure
their contributions. Our analysis focuses on equivariant lifting, T-RoPE, label-noise regularization,
heterogeneous attention, and random-walk positional encoding (under multitask pretraining).

Equivariant lifting. We assess the quasi- T,ple 4: S2T MSE (x10~2) of a fixed input

equivariant design against a non-equivariant oo rotated and unrotated by an SO(3) matrix.
ATOM. As shown in Figure 5, replacing the equiv-

ariant lifting introduced in Section 3.2.1 with stan-
dard linear layers (no equivariant lifting) markedly

ATOM No equivariant Lift

degrades the performance of ATOM, increasing  Unrotated ~ 6.76+0.69 33.44+23.42
S2T MSE by 22.48. Consistently, Table 4 shows ~ Rotated  73.04+27.01 660.97+945.86
that non-equivariant lifting is vulnerable under — Gap 66.28426.32 627.534926.53

SO(3) rotations of the trajectories, whereas the
quasi-equivariant ATOM remains comparatively
robust. Notably, the fully-equivariant variant of ATOM, described in appendix Appendix D.1, also
underperforms ATOM in both single-task (Figure 5) and multitask (Figure 6) settings, with the
gap exaggerated in the multitask setting. This aligns with recent findings on relaxed equivariance,
suggesting that strict equivariance can limit model capacity and complicate the optimization process
(Elhag et al., 2025). We present estimates of the quasi-equivariance € in Appendix E.3.

Heterogeneous attention. We find that substituting heterogeneous temporal attention with standard
self-attention on the phase space features increases S2S MSE by 0.47, suggesting that cross-attention
enables access to non-trivial feature interactions.

Temporal Rotary Position Embedding (T-RoPE). In the single-task regime with fixed AT (Fig-
ure 5), T-RoPE contributes little to the performance of ATOM, as it effectively reduces to a constant
rotational shift. By contrast, with stochastic AT, disabling T-RoPE (NoPE) increases MSE by 1.07,
consistent with ATOM leveraging the 7 parameter to encode variable time gaps (Figure 6). An
EGNO-style sinusoidal positional encoding produces a similar performance degradation.

Label noise regularization. We also test the utility of label noise regularization as in Section 3.2.3.
From Figure 5, we observe that removing augmented noise from the position and velocity features in-
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Figure 5: ATOM ablation on MD17 Aspirin. Figure 6: ATOM ablation on TG80 Cluster 1.

creased S2T MSE by 1.21. For the multitask ablation on TG80, we suppress label noise regularization,
as the dataset is designed to be numerically stable with small noise.

RWPE. We assess random-walk positional encoding (RWPE) in the multitask pretraining. Figure 6
indicates that RWPE facilitates molecule identification, yielding improved multitask performance.

5 CONCLUSIONS

In this work, we demonstrate that carefully designed transformer neural operators enable zero-shot
generalization to unseen chemical dynamics. Our experiments on MD17 demonstrate continued good
single-task performance, and we present the first molecular neural operator that can successfully
learn large molecule dynamics using MD22. Our multitask experiments show that our method learns
transferable dynamics knowledge, even without explicit graph representations. In combination with
our TG80 dataset, we provide a large-scale open-source benchmark and baselines to evaluate future
models and spur further operator research with concrete scientific applicability.

Limitations We remark that TG80 does not contain trajectories for large molecules with more
than 15 heavy atoms, despite their obvious chemical and pharmacological relevance. In follow-up
work, we intend to enrich TG80 with such molecules, calculated with a higher-resolution DFT basis
set, wB97X-3c (Miiller et al., 2023). Regarding ATOM, it lacks an explicit energy-based inductive
bias, which may permit long-horizon drift. A natural extension is therefore a framewise energy head
Ey(x¢,) with force supervision F; = _Vti Ey(x¢,). This energy term also defines the drift in
the Langevin dynamics, where an additional stochastic term accounts for thermal perturbations of
atomic positions. Incorporating such physics-informed stochastic dynamics into our operator learning
framework is a natural next step, and we view this as a promising direction for future MD research.

REPRODUCIBILITY STATEMENT

We provide experiment details, such as choice of hyperparameters and other training configurations
in Appendix F. In addition, we will release the TG80 dataset upon acceptance under MIT license for
reproducibility.
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B BACKGROUND
This section provides an introduction to the preliminaries of group theory.

B.1 GRouPS

A group (G, o) consists of a non-empty set G and a binary operation o : G X G — G satisfying the
following axioms:

1. Closure: For all a,b € G, the result of the operation a o bis alsoin G: ao b € G.

2. Identity Element: There exists an element e € G such that, foralla € G, ace =eoa = a.
3. Associativity: For all a,b,c € G, (aob)oc=ao (boc).

4. Inverses: For each a € G, there exists an element a1 € G suchthataoa™! = a " loa =e.

In general, not all groups are abelian. That is, the binary operation o does not necessarily commute:
goh=hog,Vg,h €Gq.

B.2 GROUP REPRESENTATIONS

A group representation is a homomorphism p : G — GL(V') that assigns an n X n matrix to each
group element g € G, realizing it as a linear transformation. Representations must preserve the
binary operation for all members of the group G such that:

plgoh)=p(g)p(h), VYg,heG.

A representation p(g) is reducible if it can be represented as the direct sum of other representations:

p(g) = p1(9) ® p2(9), Vg eG.

For example, a reducible 4 x 4 representation of SU(2) can be decomposed into two 2 x 2 sub-
representations:

p1(9) 0 v
= , € SU(2),
p(g) [ 0 P2 (g)] g (2)
where p;1(g) and p2(g) are the following irreducible representations of SU(2):
e? 0 e’ 0
=[5 L] =] L]

By contrast, irreducible representations or irreps cannot be represented as such a direct sum. Formally,
they have no non-trivial invariant subspaces W C V such that p(g)W C W,Vg € G.

Representing inputs as irreps ensures equivariance by constraining each feature to transform pre-
dictably under group actions. Given V' = @, V; with irreps V;, the transformation of an input z € V/

under g € G is:
p(g)r = P pi(g)z:.

Each component x; transforms independently according to p;, preserving symmetry. Scalars remain
invariant, while vectors rotate according to standard representations. This decomposition prevents
the mixing of differently transforming features, ensuring that all subsequent operations, linear or
non-linear, respect the group’s symmetry, thereby maintaining equivariance throughout the network.
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Intuitively, the tensor products capture interactions between features in a manner akin to multiplication,
producing a higher-dimensional representation. Crucially, this new representation is reducible, so we
may decompose it into irreps:

V®Vg@vk.
k

It is this decomposition that allows the network to project onto individual irreps, achieving non-trivial
feature mixing whilst preserving symmetry constraints.

C DATASETS

We present a visualization of a sample trajectory of uracil from three datasets in Figure 7.

MD17 Uracil RMD17 Uracil TG80 Uracil

@ C@z6) ® N@ZT) @ 0@z

Figure 7: 3000 timesteps of uracil trajectory from MD17, RMD17, and TG80.

C.1 LICENCES

Table 5: Dataset sources and licenses. We release TG80 under the MIT license.

Dataset Source License

MD17 https://www.sgdml.org/ CC BY 4.0

RMD17 https://archive.materialscloud.org/record/2020.82 CC Zero V1.0 Universal
MD22 https://www.sgdml.org/ CC BY 4.0

TG80 To be released at URL MIT

C.2 MODEL INPUTS AND THE DATALOADER

Our compound representations follow (Shi et al., 2021; Xu et al., 2024). We model hydrogen atoms
implicitly and concatenate the position and velocity norms for each node ¢ with their respective
vectors. Unlike their implementations, we avoid explicit graph construction and do not include edge
labels describing atomic bond geometries.

We duplicate all frames G(*) — {G®) ¥ during dataset initialization, producing a five-fold improve-
ment in throughput compared to previous dataloaders in Table 6.

Table 6: Mean time (seconds) to produce 10000 batches over 100 benchmark runs. Batch size = 100,
500 samples, At = 3000, 500 warmup batches.

Aspirin Ethanol Naphthalene Toluene

EGNO 0.060+0.024 0.024+0.016 0.056+0.024  0.039+0.024
ATOM  0.005+0.002 0.007+0.002 0.008+0.004  0.006-0.002
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C.3 NUMERICAL STABILITY

We evaluate the numerical stability of MD17, RMD17, and TG80. MD17 benzene exhibits substantial
center-of-mass drift in Figure 8a, which is also partially visible in the consistent motion trails shown
in Figure 11a. RMD17 exhibits improved stability, with no center-of-mass drift exceeding 1 x 10%.
TG80 shows the lowest drift of all datasets, and expectedly includes more molecules with high
per-step drift (due to more complex sterically hindered geometries).

x10*

Per-Step Internal Motion (A)

10°
Center of Mass Drift (A) Center of Mass Drift (A)

(a) MD17 molecules are largely consistent, except for (b) RMD17 molecules are more numerically stable,
benzene, which exhibits substantial drift. supporting their use in future benchmarks.
—4

10 x10

@
High Internal Motion High Drift & Internal Motion

(]
| Heptanol
0.8 [ ) ®

0.6 1
Biphenyl
%ﬂﬁacene
(] . ®
Qe
®e

0.4 4

Per-Step Internal Motion (A)

021
10" 10° 10" 10° 10° 10*

Center of Mass Drift (A)

(c) TGO dataset exhibits the lowest centre-of-mass drift among the evaluated MD datasets.
Figure 8: Comparison of numerical stability across MD17, RMD17, and TG80 datasets. Dashed

lines denote the mean centre-of-mass drift and per-step motion; datapoints exceeding two standard
deviations are annotated.
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C.4 TG80 GENERATION ALGORITHM

We first recall the definition of Tanimoto T similarity between two bit vectors X, Y as

XNy
xuyy

T(X,Y)

which is identical to the definition of the Jaccard similarity in this case (Rogers & Tanimoto, 1960).

To generate TG80, we randomly shuffled the PubChem dataset, then iterated
through all compounds until 40 were found that matched the following criteria:

1. Simplified Molecular-input Line-entry System Randomly sample
(SMILES) encode a valid molecular structure from seed

2. No more heavy atoms than the corresponding
seed molecule

3. Only contain {C, H, O, N} atoms

4. No more than five oxygen atoms

5. No more than three nitrogen atoms

6. No disconnected molecular fragments (e.g., salts) L o mmpmdpi(?hem
7

. Tanimoto similarity to at least one seed molecule against seed
greater than 0.875, less than 0.925

8. Tanimoto similarity to a previously selected
molecule is no more than 0.2

Figure 9: Construction of TG80 from an
initial seed using the PubChem database.

This controlled selection procedure generates structurally analogous subsets around each seed
molecule whilst preventing convergence to highly similar molecules across different seed groups.

Only 2,488 of the 173 million in the PubChem library satisfied the filtration criteria above. This low
yield largely reflects the cumulative effect of criterion 8: as more molecules are added, it becomes
harder to find candidates sufficiently dissimilar to all prior selections. Given that the average Tanimoto
similarity to our seed set was just 0.1492, the 0.875 threshold was highly selective. Dataset generation
code is available at ANONYMIZED.

C.5 MOLECULAR DYNAMICS SIMULATIONS

We present a complete overview of the DFT parameters used to generate MD17 (Chmiela et al.,
2017), RMD17 (Christensen & von Lilienfeld, 2020), MD22 (Chmiela et al., 2023), and TGS80.

Table 7: An overview of the methodologies used to generate the MD datasets featured.

DFT Functional Dispersion Corrections  Basis set  Timestep Temperature

MD17 PBE TS NAO 05fs 500K
RMD17 PBE None def2-SVP 0.5 fs 500K
MD22 PBE MBD NAO 1.0 fs 500K
TG80 PBE A4 def2-SVP 1.0 fs 300K

D ARCHITECTURAL DETAILS

D.1 FULLY EQUIVARIANT ATOM

To achieve the full equivariance discussed in Figure 5, we employ a canonicalization network
approach, which removes Euclidean gauge before learning and then reinstates it afterwards (Kaba
et al., 2023). This preserves equivariance of the whole network, even with the use of non-equivariant
architectures in the trunk.
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We first make data translation equivalent by centering

1N
Mzﬁzlmi, Ty =i — b 2
We then remove rotations by aligning to the second moment
N 3
S = % Z.’fllfj = Z)\kekeg ()\1 > Xy > )\3), 3)
i=1 k=1

and choose e; as the principal axis and orthonormalise

es — (eq €1)er

€y <
ez — (e] e1)esll’

€3 = €1 X eéa. (4)

We can then form @) = [e, ez, e3] € SO(3) and canonicalise
T = (v —p) Q, 0 = v; Q. &)

We fix the eigenvector sign ambiguity using the chirality pseudoscalar ¢y = va:l x; X v; at the
reference time (flip e; to satisfy e] co > 0, then adjust es, e3 jointly to keep right-handedness).
Let F' be an arbitrary trunk acting in the canonical frame; with per-atom canonical outputs y; =
F({z;,0; };V:l)i, we decanonicalise by

Yi =9 Q" + p. ©6)

This results in exact SE(3)-equivariance (Kaba et al., 2023) and permits non-equivariant trunks.

D.2 RANDOM-WALK POSITIONAL ENCODINGS

In the multitask case, we add row-normalized random walk positional encoding (RWPE) to equip
ATOM and EGNO with multiscale connectivity features, enhancing their ability to distinguish non-
isomorphic graphs (Dwivedi et al., 2022; Ma et al., 2023). We first form a e-neighborhood graph
from our pointclouds as:

G:(‘/:E)v V:{i}7 E:{(Zv.]) : H(x,y,z)i—(x,y,z)jﬂg <€}' @)

We set ¢ = 1.6, as covalent bonds typically range from 1.14 A to 2.0 A in length (Lobato et al., 2021)
and highlight that this construction does not necessitate prior knowledge of the graph structure.

Let A € R™*™ denote the adjacency matrix of this graph, and let D = diag(A1) represent its degree
matrix. We construct the random walk transition matrix as M = D~ A then compute matrix powers
of M up to a maximum walk-length K, defining the self-return probabilities for each node as

piF = (M) k=1,..., K. ®)

i’

These probabilities are collected into vectors p; € RX and concatenated with the phase space to
cven

formz = (v || Z || p) € Wi,. Here, the input feature space is redefined as Wi, = Viy @ pf)
(pi™ @ RE), and the subsequent equivariant maps are modified in kind.

D.3 VALUE-RESIDUAL LEARNING

We employ value-residual learning wherein each transformer block receives the output of the first
block via a residual connection to stabilize training and information flow through the network (Zhou
et al., 2024b). Inspired by (Jordan, 2024), we add a learned coefficient to weight this residual. Here,
v denotes the current block’s value output, and v; represents the initial block’s value. A learnable
parameter « is passed through a sigmoid to obtain the weighting coefficient:

A =o(a). )
The combined output is then given by:
v=Av+(1—X)v. (10)
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In practice, we lock the first block’s A value to 0.5. We report the learned A values in Figure 10.

— A 0510 — il

B ~
0.510 2 12
3 0.505 3
0 — 4

0.505 4
As 0.500 e

0.500

0.495

Lambda Values
Lambda Values

< 0.495
0.490
0.490
0.485
0.485

0.480
200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

f—1

(a) Aspirin (b) Uracil

Figure 10: Learned value residuals for MD17 training over 1000 epochs.

D.4 DELTA-PREDICTION

When delta-prediction is enabled, as in Figure 5, we incorporate the initial positions x as a residual
term, reformulating the model as an operator that learns a displacement field rather than predicting
absolute positions. We express this as:

xf = Project(Xou) + X. (11)

Although this approach is implemented in both EGNN and EGNO, we found it was disabled by
default in the codebase of the latter (Garcia Satorras et al., 2021; Xu et al., 2024). Based on empirical
results from our ablations, Figure 5, we argue there is sufficient evidence to discourage the use of
delta-prediction in neural operator-based molecular dynamics simulations.

E FURTHER EXPERIMENTS

We conduct further experiments on single-task and multitask learning. We consider performance
under tail discretization and report results on the RMD17 dataset. For multitask learning, we report
performance under random cluster assignment and S2S metrics for the experiments in Section 4.2.

E.1 FURTHER SINGLE-TASK LEARNING EXPERIMENTS

MD17 with tail discretization We find the performance of both EGNO and ATOM on MD17 with tail
discretization remains similar to the performance under uniform discretization discussed in table 1.

Table 8: EGNO and ATOM with final frame sampling. Upper part: S2S MSE. Lower part: S2T MSE.

Aspirin Benzene Ethanol =~ Malonaldehyde Naphthalene  Salicylic Toluene Uracil

EGNO  9.66+0.12  39.0942.35  4.57+0.01 12.92+0.00 0.39+0.00 0.88+0.01  10.994+0.00 0.60+0.00
ATOM  6.38+0.17 39.03+3.32 3.62+0.08 15.26+0.65 0.39+0.00 0.83+0.01  5.264+0.79  0.55+0.00

Gap +33.97% +0.15% +20.85% —18.06% +1.62% +4.75% +52.13% +9.28%
EGNO  9.66+0.11  39.15+2.28  4.57+0.01 12.92+0.01 0.39+0.00 0.88+0.01  10.99+0.00 0.60+0.00
ATOM  6.38+0.17 39.03+3.35 3.63+0.08 15.21+0.60 0.38+0.00 0.83+0.01  5.27+0.79  0.55+0.00
Gap +33.91% +0.30% +20.66% —-17.711% +1.82% +5.02% +52.08% +9.44%
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Revised MD17 Dataset We reach performance parity with EGNO on RMD17, shown in Table 9.

Table 9: EGNO and ATOM with final frame sampling. Upper part: S2S MSE. Lower part: S2T MSE.

Azobenzene Ethanol Malonaldehyde Naphthalene Paracetamol  Salicylic Toluene Uracil
EGNO 8.96-+0.03 23.26+0.01 40.11+0.05 1.42+0.00 28.08+0.01  1.06+0.01  28.28+0.01  0.88+0.00
ATOM 8.88+0.05 23.49+0.14 40.29+0.13 1.36-+0.00 30.12+0.87  1.03+0.00 28.56+0.04 0.86+0.00
Gap +0.90% —0.99% —0.45% +3.93% —7.26% +3.10% —0.99% +1.90%
EGNO 8.5140.03 23.61+0.03 40.32+0.08 1.42+0.00 28.014+0.02 1.07+0.01  28.23+0.00 0.87+0.00
ATOM 8.38+0.05 23.90+0.15 40.67+0.17 1.36-+0.00 30.03+0.78  1.04+0.00 28.58+0.05 0.85+0.00
Gap +1.47% —-1.27% —0.88% +4.39% —7.21% +2.78% —1.23% +2.00%

E.2 FURTHER MULTITASK LEARNING EXPERIMENTS

Random-split cross-validation on TG80. For completeness, we report multitask results under
compound-level random cross-validation, where compounds are randomly assigned to the train,
validation, and test sets. Relative to the more challenging out-of-domain (UMAP-based) split in
Table 3, EGNO is comparatively stronger; nevertheless, ATOM maintains a consistent lead across
folds, with mean improvements of 24.43% on S2S and 23.93% on S2T.

Table 10: S2S MSE (x10~2) on TG80 across five UMAP cluster assignments.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
EGNO 71.83+0.00 76.92+0.00 68.99+0.00 101.27+0.00 83.20+0.00

00D ATOM 53.93+0.00 62.40+0.00 49.37+0.00 70.75+0.00 66.75+0.00
Gap 4-24.92% +18.88% +-28.45% 4+30.14% +19.77%
Table 11: S2T MSE (x10~2) on TG80 across five UMAP cluster assignments.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
00D EGNO 63.23+0.00 64.49+0.00 59.18+0.00 85.87+0.00 69.46+0.00

ATOM 46.09+t0.00 54.47+0.00 42.90+0.00 55.64+0.00 59.55+0.00
Gap +27.10% +15.54% +27.51% +35.21% +14.28%

Multitask S2S results on TG80 under UMAP cluster cross-validation. The S2S side of the
multitask learning results follow closely from their S2T counterparts presented in Section 4.2.

Table 12: S2S MSE (x1072) on TG80 across five UMAP cluster assignments.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
EGNO 51.98+0.81 95.86+0.53 142.51+0.58 155.25+0.67 109.25+0.24
ID ATOM 15.49+1.04 26.55+2.13 28.74+2.40 29.81+2.72 26.33+1.98
Gap (%) 70.20% 72.30% 79.83% 80.80% 75.90%

EGNO 52.90+0.72 114.14+13.21 149.99+0.34 163.47+1.00 112.36+1.90
EGNN-S  52.39+0.40 16512.07+12314.09 149.41+0.94 663.54+865.23 111.08+0.62
EGNN-R  52.08+0.79 108.89+1.60 148.67+0.73 163.27+0.16 109.94+0.31
ATOM 41.97+1.24 127.95+122.67 74.53+4.82 80.95+1.21 58.26+1.68

Gap (%) 19.41% —17.50% 49.87% 50.42% 47.01%

OOD
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Multitask S2S Versus Single Task We evaluate a multitask ATOM model trained on all available
trajectories, pooling both ID and OOD clusters, against a single-task ATOM trained separately on
each compound. The multitasking model achieves losses comparable to or lower than those of the
single-task baselines, despite being trained with the same compute resources.

Table 13: MSE (x 10~2) on full-dataset TG80 ATOM and single-task ATOM. S2S upper, S2T lower.

Formic Acid

Single-task ATOM 26.40
All-data ATOM 22.39
Gap (%) 15.19%
Single-task ATOM 18.10
All-data ATOM 18.72
Gap (%) —3.43%

E.3 MONTE CARLO ESTIMATION OF QUASI-EQUIVARIANCE

For both the pretrained ATOM and the non-equivariant lifting variant, we estimate the quantity in
Section 3.1 by Monte Carlo, drawing N random timesteps x,, and, for each, R random rotations
9n,r € G. We approximate

N

1
E%NZ

n=1

R
= (690,00 n) — p(g0.0) (£ (20)))

2

We report our estimates of € for various ATOM models trained on MD17 single task learning in
Table 19. In all cases, ATOM shows a substantially lower equivariance defect, supporting our
claim that our quasi-equivariant design achieves a kind of middle-ground in the trade-off between
expressiveness and strict equivariance.

Table 14: Estimates of Quasi-equivariance € via Monte Carlo over 20 rotations and 10 timesteps with
2SD intervals.

Aspirin Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil
Non-equivariant ATOM  120.23+153.71  102.50+45.14 26.94+16.04 37.97+12.65  37.81+20.08 57822.95+42872.97  32.29+35.80
ATOM 28.34+25.10 11.09+9.64 9.99+9.82 17.09+13.03 25.46+21.47  2744.07+3108.52  28.72+19.20

E.4 EXPLICIT HYDROGEN REPRESENTATION

We hypothesized that our model’s underperformance relative to EGNO in predicting malonaldehyde
was due to the omission of explicit hydrogens, which limits its ability to capture electron delocalization
effects involving hydroxyl hydrogens. We tested two explicit hydrogen methods:

1. Including all hydrogens with gradients computed for all atoms during training
2. Including all hydrogens but computing gradients only for heavy atoms

Contrary to conventional MD practice, neither method improved heavy-atom test loss.

Table 15: ATOM MD17 S2T MSE with implicit hydrogens (ATOM baseline) and two explicit
hydrogen approaches.

Aspirin ~ Malonaldehyde
Explicit hydrogens 1~ 7.48+0.11 15.15+0.22
Explicit hydrogens 2 6.96+0.20 13.52+0.10
Implicit hydrogens 6.52+0.08 13.51+0.10
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F EXPERIMENTAL DETAILS

F.1 SOFTWARE AND HARDWARE DETAILS

All experiments were conducted using Python 3.12, NumPy 2.2.1 (Harris et al., 2020), PyTorch
2.5.1 (Paszke et al., 2019), e3nn 0.5.6 (Geiger & Smidt, 2022) and PyTorch Optimizer 3.5.0 (Kim,
2021). We use RDKit 2024.9.6 (Landrum et al., 2025) and PubChemPy 1.0.4 to construct TG80. All
single-task training was performed on an NVIDIA RTX 5080 (16 GB) with CUDA 12.4, running on
Ubuntu 24.04. We use Ase 3.26.0 (Larsen et al., 2017) and MACE-Torch 0.3.14 (Kovacs et al., 2025)
in the experiments of Appendix F.3.

F.2 TRAINING TIMES AND COMPUTE REQUIREMENTS

Single-task training time We roughly wall-clock normalised our ATOM and EGNO parameter
counts, resulting in respective learnable parameter counts of 754 468 and 335 770.

Table 16: Compute cost of single-task training on all MD17 molecules over 1000 epochs. Both
ATOM (335770 params) and EGNO (754 468 params) are under torch.compile on a Titan V.

Model  Metric Azobenzene  Ethanol Malonaldehyde Naphthalene Paracetamol  Salicylic Toluene Uracil
Time (mins) 4.09 +0.15  3.62 +0.42 3.65 to0.01 5.01 £o.02 9.02 £1.22  5.16 +0.03 3.93 +0.02 4.35 £0.04
EGNO  Total FLOPS (x10'2) 3681.24 3257.70 3282.09 4513.37 8114.44 4641.50 3539.92 3915.98
Epochs/min 244.48 276.27 274.22 199.41 110.91 193.90 254.24 229.83
Time (mins) 5.81 +0.02  5.79 %0.06 5.79 £0.00 5.86 £0.01 5.89 +0.02  5.85+0.01 5.81 f0.01 5.83 F0.02
ATOM  Total FLOPS (x10'2) 5226.49 5212.53 5213.50 5271.19 5297.84 5263.76 5224.91 5247.33
Epochs/min 172.20 172.66 172.63 170.74 169.88 170.98 172.25 171.52
Total FLOPS Reduction (%) —41.98% —60.01% —58.85% —16.79% +34.711% —13.41%  —47.60% —34.00%

Multitask training time In multitask training on TG80, our upsized ATOM model contained
3557 840 parameters, compared to 335 770 for EGNO. Despite this, ATOM only trained between 5%
and 30% slower than EGNO. This is perhaps unsurprising given the much higher FLOPS-utilization
of the transformer architecture upon which ATOM is based.

Table 17: Compute cost of single task training on five TG80 molecules over 1000 epochs. Both
ATOM (335 770 params) and EGNO (754 468 params) are under torch.compile on a Titan V.

Model Fold1 Fold2 Fold3 Fold4 Fold5
Time (mins) 9.61+1.21 8.56+0.06 9.04+0.11 9.31+0.20 8.98+0.01
EGNO Total FLOPS (x10'2?) 8645.66 7703.33 8136.98 8378.06 8084.98
Epochs/min 104.10 116.83 110.61 107.42 111.32
Time (mins) 10.16+0.49 10.55+0.02 11.62+0.41 12.38+0.12 10.39+0.41
ATOM  Total FLOPS (x10'2)  9140.57 9497.79 10455.34 11141.73 9355.37
Epochs/min 98.46 94.76 86.08 80.78 96.20
Total FLOPS Reduction (%) —5.72% —-23.29%  —28.49% —-32.99% —15.71%

F.3 INFERENCE TIMES

We compare inference times on MD17 and MD22 across ATOM, the pretrained machine learning
interaction potential MACE-OFF24 (Medium) (Kovécs et al., 2025), and the classical Lennard-Jones
potential (Larsen et al., 2017; Schwerdtfeger & Wales, 2024) and the molecular forcefield. We report
inference times in seconds with 2SD intervals. We exclude AMBER results on Uracil as we were
unable to run simulations for this molecule (Case et al., 2023).
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Table 18: Seconds to produce timestep AT = 3000 of each MD17 trajectory at £1oat 32 precision.

Aspirin Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

MACE-OFF 42.605 £3.945 39.656 +0.568 39.782 £0.141 39.916 +0.155 39.620 %0.030 40.271 £2.851 40.166 +0.902

AT = 3000 AMBER 37.746 +o0.536 38.512 £1.243 36.806 £0.194 38.512 £1.243 37.621 £1.412 38.061 +o0.848 -
- Lennard-Jones 2.499 +o0.266 1.604 F-0.208 1.529 40.039 2.174 £0.094 1.981 £o.011 1.906 o0.006 1.804 40.196
ATOM 0.849 +0.926 0.259 +0.097 0.714 +o0.241 0.467 +0.149 0.450 =£0.090 0.341 +o0.075 0.373 £0.076

MACE-OFF 143.413 £3.313  142.569 £5.584  136.380 £3.964 140.288 £9.136  140.103 £3.308  140.372 +4.754  141.598 £1.020

AT =10000 AMBER 133.900 £3.815 128.385 +3.812  121.095 f0.96s 121.607 1195 120.319 +1.591  120.800 F0.398 =
Lennard-Jones 7.797 £0.369 5.533 £0.425 5.167 %o0.221 7.453 %0.376 6.721 £0.418 6.477 £0.204 5.921 +0.522

ATOM 2.554 +0.945 1.002 4-0.184 1.634 4-0.200 1.098 4-0.209 1.116 +o0.083 0.964 +o0.185 0.990 +o0.171

Table 19: Seconds to produce timestep AT = 3000 of each MD22 trajectory at £1oat 32 precision.

Ac-Ala3-NHME DHA Stachyose
MACE-OFF 44.737 £4.615 42.042 £o0.720 47.913 £0.546
Lennard-Jones 4.700 +0.212 3.790 t0.246 6.613 t0.147
ATOM 1.302 +0.766 0.914 +o0.055 3.075 +0.080
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F.4 ATOM HYPERPARAMETERS

We employ the same dataset splitting and discretization parameters reported in Xu et al. (2024) for
the MD17. We set the batch size to 192, use the AdamW-AMSGrad optimizer (Loshchilov & Hutter,
2017) with an € of 1 x 10710 to avoid instability associated with the small gradients produced by
zero-initialised weight matrices in early training (Jordan et al., 2025). During multitask training, we
reduce the number of epochs to 250 and employ the Muon optimizer (Jordan et al., 2024; Kim, 2021).
We present a complete overview of our hyperparameters in Table 20.

Table 20: Hyperparameters for ATOM. MD17 hyperparameters are shared across all molecules unless
otherwise noted.

Module MD17, RMD17, TG80 TG80 Multitask
Training
Batch size 192 192
Epochs 1000 250
Max grad norm 1.0 1.0
Label noise o 0.1 0.1
At 3000 10 000
Timesteps P 8 8
Train/Val/Test (500, 3000, 3000) (6500, 13000, 13 000)
RWPE length 8 8
Optimiser
Optimiser type AdamW-AMSGrad Muon
Learning rate 1x1073 1x1073
B, B2 0.9,0.999 (0.9,0.999)
Weight decay 1x107° 1x107°
€ 1x 10710 1x107°
Model
Embedding dim 128 256
No. layers ) 6
No. attention heads 8 8
No. output heads 1 8
Attention dropout 0.2 0.2
ROPE frequency 1000 1000
MLP layers 2 2
MLP activation SwiGLU SwiGLU
MLP dropout 0.0 0.0
Norm type RMS norm RMS norm
Learnable value residuals True True
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F.5 EGNO HYPERPARAMETERS AND EXPERIMENTAL DETAILS

We generated the EGNO results reported in Table 1 with the same discretization parameters and
hyperparameters as used in their experiments. We reduce the number of epochs from 10 000 to
2 500, use a batch size of 192 with the AdamW-AMSGrad optimizer (Loshchilov & Hutter, 2017),
and select the best validation loss epoch for testing. In the multitask case, we further reduce the
number of epochs to 250 and employ the Muon optimizer (Jordan et al., 2024; Kim, 2021). Complete
hyperparameters are displayed in Table 21.

Table 21: Hyperparameter values for EGNO across each benchmark dataset.

Module MD17, RMD17, TG80 TG80 Multitask
Training
Batch size 192 192
Epochs 2500 250
Max grad norm Uncapped Uncapped
Label noise o 0.1 0.1
At 3000 10 000
Timesteps P 8 8
Train/Val/Test (500, 3000, 3000) (6500, 13000, 13 000)
RWPE length 8 8
Optimiser
Optimiser type AdamW-AMSGrad Muon
Learning rate 1x 1073 1x 1073
51, P2 (0.9,0.999) (0.9,0.999)
Weight decay 1x107° 1x107°
€ 1x 10710 1x10°°
Scheduler
Scheduler type StepLR StepLR
Step size 2500 2500
v 0.5 0.5
Model
Embedding dim 64 64
No. EGNO layers 5 5
Temporal convolution activation LeakyRELU LeakyRELU
MLP layers 2 2
MLP activation SiLU SiLU
MLP dropout 0 0
Time embedding dim 32 32
Fourier modes 2 2
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G PROPOSITIONS AND PROOFS

G.1 KERNEL INTEGRAL FORM OF CROSS-ATTENTION

Proposition G.1. The cross-attention is equivalent to a kernel integral operator, i.e.,
softmax(T-RoPE(Q) T-RoPE(K;) " /v/dp) Vi = [ ki(z,x)v;(z)dpun (x), where r; denotes the
kernel induced by softmax function, v;(x) denotes the values as a function of X, and 1y denotes the
empirical measure supported on {Xj}évzl.

Proof of Proposition G.1. Following (Gao et al., 2024) we may view our attention as a kernel integral
transform by considering x; as being sampled from the continuum domain € C R3 for which we
define the empirical measure with support on {x;}}*., C Q:

1 & 1 &
i) = 5 b [ b = 5 Dot 12

where ¢ is the Dirac delta function “selecting” the values at x;. Given T-RoPE-rotated query and key

anaps Go(2z) = Rp(z)q6(25), ki(x;) = Rp(x,)ka,i(x;) we form the data-dependent kernel for feature
B exp((4(2), ki(x;)) / V)

ke,i(z,x;) = - .

[ exv((ata). R / V) dun ()

Thus, for any F' € F we may represent our cross-attention as the kernel integral operator:

(IngZ-vj)(z) = / Ko (z,x) vi(x) dun (x), /Qﬁgﬂ-(&x) duy(x) =1, (14)

Q

(13)

which is row-stochastic under the measure in Equation (12). O

We remark that the kernel fails to satisfy global Lipschitz continuity (Delattre et al., 2023), unlike
FNO (Li et al., 2021), and certain generalization theorems fail as a result (Le & Dik, 2024).
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H TRAJECTORY SAMPLES

Toluene Uracil Toluene Uracil

@ C@z6 ® NZ7) @ 0% @ C@z6 @ NZ7) @ 0(z%)

(a) MD17 trajectories (b) RMD17 trajectories

Figure 11: 3000 steps MD trajectories from the MD17 and RMD17 datasets.
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Ropane2 Ropane3 Uracil

Uracill @ C(z=6) ® N(Z=7) @ 0(z=8)

Figure 12: 3000-step MD trajectories from TG80. Molecules generated by our dataset expansion
algorithm are named according to their seed molecule and the order of their selection.
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