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Abstract

Large language models (LLMs) are now avail-001
able from cloud API providers in various sizes002
and configurations. While this diversity offers003
a broad spectrum of choices, effectively lever-004
aging the options to optimize computational005
cost and performance remains challenging. In006
this work, we present AutoMix, an approach007
that strategically routes queries to larger LMs,008
based on the approximate correctness of out-009
puts from a smaller LM. Central to AutoMix is010
a few-shot self-verification mechanism, which011
estimates the reliability of its own outputs with-012
out requiring training. Given that verifications013
can be noisy, we employ a meta-verifier in014
AutoMix to refine the accuracy of these as-015
sessments. Our experiments using LLAMA2-016
13/GPT-4, on five context-grounded reasoning017
datasets demonstrate that AutoMix surpasses018
established baselines, improving the incremen-019
tal benefit per cost by up to 86%.1020

1 Introduction021

Human problem-solving inherently follows a multi-022

step process: generate a solution, verify its validity,023

and refine it further based on verification outcomes.024

The emulation of this self-refinement and reflec-025

tive behavior has gained attention in the recent re-026

search (Pan et al., 2023a; Madaan et al., 2023; Reid027

and Neubig, 2022; Schick et al., 2022; Welleck028

et al., 2022; Shinn et al., 2023). Current self-refine029

paradigms use a single model across all problem-030

solving stages, demonstrating effectiveness in spe-031

cific scenarios (Madaan et al., 2023; Shinn et al.,032

2023). Yet, the intrinsic complexity and variability033

of tasks, from simplistic (e.g., binary classification034

on separable data) to complex (e.g., code genera-035

tion) and potentially unsolvable (e.g., certain forms036

of multi-step reasoning), motivate an alternative037

approach of model switching. Model switching038

sequentially queries models of disparate sizes and039

1We will release the code and data upon acceptance.

capabilities, at each step determining whether to ac- 040

cept the current output or route to a more capable, 041

but computationally intensive, model (Liu et al., 042

2020; Zhou et al., 2020; Madaan and Yang, 2022; 043

Geng et al., 2021; Schuster et al., 2022). 044

Contemporary model-switching strategies of- 045

ten rely on separate routing models trained for a 046

fixed set of tasks or require access to logits (Chen 047

et al., 2023; Welleck et al., 2022; Reid and Neu- 048

big, 2022). However, modern LLMs are often ac- 049

cessible solely through black-box APIs, limiting 050

direct model optimization. This constraint, along 051

with the expectation that LLMs handle a broad 052

range of tasks, creates a challenge that existing 053

routing approaches fail to address. In response, we 054

introduce AutoMix, a method that allows users 055

to mix models of various sizes and capabilities 056

and only assumes access to black-box LLM APIs. 057

AutoMix consists of three steps designed within 058

the constraints of black-box access: solution gen- 059

eration (using the smaller model to generate an 060

initial answer), self-verification (using the same 061

smaller model to assess output), and selective rout- 062

ing (employing larger models only when suggested 063

by self-verification). 064

We formulate self-verification as an entailment 065

problem, evaluating the consistency of generated 066

answers with the provided context (Poliak, 2020; 067

Dagan et al., 2022). For example, an answer dis- 068

cussing "desert animals" in a context focused on 069

"aquatic life" would be flagged as inconsistent. 070

However, recognizing that self-verification can 071

sometimes be inconsistent or noisy (Tyen et al., 072

2023; Huang et al., 2023), we introduce a meta- 073

verifier to evaluate the reliability of the initial ver- 074

ification. The meta-verifier acts as a secondary 075

check, providing an additional layer of confidence 076

assessment to ensure that the decision to route a 077

task to a larger or smaller model is justifiable. Addi- 078

tionally, in contrast to existing model-switching ap- 079

proaches, which generally classify tasks as Simple 080
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Figure 1: AutoMix: Given a context (like an article) and a question q, an initial answer (1890 AD) is generated
with the smaller language model (SLM). The answer is self-verified by the SLM, yielding a noisy verification score.
The Meta-Verifier subsequently assesses the verifier’s results. Based on the meta-verifier’s decision, either the initial
answer (1890 AD) is returned, or the question is rerouted to a larger language model (LLM) to enhance accuracy.

or Complex for model routing (Chen et al., 2023),081

AutoMix includes an "unsolvable" task classifica-082

tion. This conserves resources by avoiding routing083

overly complex queries to larger models.084

In summary, our contributions are: (1) We in-085

troduce AutoMix, a strategy that mixes language086

models (LLAMA2-13B and GPT-4) without access087

to internal model details. (2) We explore context-088

grounded entailment as a self-verification method089

and propose a POMDP-based meta-verifier to en-090

hance decision reliability. (3) We introduce the091

Incremental Benefit Per Unit Cost (IBC) metric092

to quantify the efficacy of combined model us-093

age. (4) Across five datasets, we demonstrate that094

AutoMix provides up to 86% efficiency improve-095

ment, outperforming strong baselines.096

2 AutoMix097

Task and setup We tackle the problem of098

context-grounded question answering, where given099

a context C (e.g., stories, newswire, or research arti-100

cle) and a question q, the model is tasked with gen-101

erating an accurate and coherent answer, consistent102

with the provided context. Our choice of tasks is103

motivated by two key concerns: (1) longer queries104

are more computationally demanding, underscor-105

ing the need for an approach like AutoMix to navi-106

gate the cost-accuracy trade-off, and (2) the context107

allows for cross-checking preliminary answers with108

available information using self-verification (de-109

scribed shortly). While self-verification in rea-110

soning tasks is challenging for LLMs (Pan et al.,111

2023a; Huang et al., 2023), we find that context112

significantly aids this process.113

We deploy two distinct models: a smaller, cost-114

Context: {context}

Question: {question}

AI Generated Answer: {generated_answer}

Instruction: Your task is to evaluate
if the AI Generated Answer is
correct, based on the provided
context and question. Provide the
judgement and reasoning for each
case. Choose between Correct or
Incorrect.

↪→
↪→
↪→
↪→
↪→
↪→

Evaluation:"

Listing 1: Verification Prompt. The verification
process is framed as a natural language entailment
task, where the model determines the validity of the
model-generated answer with respect to the context and
question. We use a generic few-shot prompt for all
tasks (prompt in appendix F.1).

efficient model, denoted as SLM (smaller language 115

model), and a larger, more accurate yet costly 116

model, LLM (large language model. Our objec- 117

tive is to optimize performance while staying eco- 118

nomical. An initial answer, As, is generated using 119

the smaller SLM. Further, in Appendix B.2 we 120

extend AutoMix to 3 models by incorporating 121

the medium language model, showing significant 122

gains. 123

Few-shot Verification To assess the trustwor- 124

thiness of As, we employ a few-shot verifier, V , 125

which ascertains the validity of SLM’s outputs and 126

decides if a query should be redirected to LLM. 127

Different from existing works that perform veri- 128

fication by creating a new question (Weng et al., 129

2022; Jiang et al., 2023), we frame verification 130
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as an entailment task (Dagan et al., 2005; Poliak,131

2020; Dagan et al., 2022), aiming to determine132

if the answer generated by SLM aligns with the133

provided context. Specifically, the verifier gauges134

v = p(correct = 1 | As, C, q), with correct = 1 in-135

dicating that As is correct. The verification prompt136

is outlined in Figure 1. We use the same verification137

prompt for all tasks. Figure 2 shows an example.138

2.1 Meta-verifier139

Given the potential inconsistency or noise in veri-140

fier outcomes, a secondary evaluation mechanism,141

which we term the meta-verifier, is crucial to vet142

the verifier’s conclusions. In particular, the verifier143

is tasked with determining whether the SLM’s an-144

swer is entailed by the context, and this decision is145

made without considering the inherent difficulty of146

the problem. Notably, routing Unsolvable queries147

to the LLM is resource-inefficient and does not en-148

hance performance. While ascertaining the ground149

truth of query difficulty is non-trivial, verification150

probability and trends from historical data inferred151

using the validation set, can provide insightful guid-152

ance. Formally, we define the meta-verifier’s out-153

puts as m(v,As, C, q) → {0, 1}, where m = 1154

implies the verifier’s output can be trusted.155

Addressing the notable challenges of self-156

correction in large language models (Madaan et al.,157

2023; Huang et al., 2023), our method employs158

a non-LLM setup for meta-verification to avoid159

escalating issues like hallucination and reasoning160

errors (Dziri et al., 2023). The meta-verifier can161

adopt various learning strategies, including super-162

vised learning, reinforcement learning, and sym-163

bolic reasoning, explored further in upcoming sec-164

tions. Subsequent sections provide a deeper explo-165

ration into two particular implementations of this166

strategy.167

Thresholding In this simplistic meta-verifier ap-168

proach, the decision is made based on the proba-169

bility of the verifier being correct with a threshold170

t, defined as mt(v) = 0 for v < t and mt(v) = 1171

for v ≥ t. Intuitively, a high probability of verifier172

indicates that verifier is confident in it’s decision173

and can be trusted. For black-box language mod-174

els, the probability of correctness can be derived175

by sampling k > 1 samples at a higher sampling176

temperature.177

Using a POMDP In the context of a meta-178

verifier, we observe that the queries could be cat-179

egorized into three different categories: Simple,180

Context

Which country grows the most tea? The answer is
India. It grows three times as much as China. Which
country drinks the most tea? It’s neither China nor
Japan. It’s Great Britain. [...] In general, there are
two kinds of tea. Black tea and green tea. [...] One
customer put the bag into a pot. Then he just poured
hot water over it. And the tea bag was born. Shen
Nong was the first to drink tea. (Shen was a Chi-
nese emperor.) This was about 2737 B.C. Shen had
bad digestion. So he drank several cups of hot water
daily[...] Tea became the drink of China.

Question

When did Shen Nong drink tea?

Generated Answer (by LLAMA2-13B)

He took it in 1990.

Verifier Output (by LLAMA2-13B)

The context does not mention that he took tea in 1990.
The AI-generated answer is Incorrect.

Figure 2: Context-Grounded Self-Verification using
LLAMA2-13B in Action. The example showcases the
verifier, utilizing the same model as the answer genera-
tor, identifying and rejecting an inaccurate answer—He
took it in 1990—by effectively leveraging the context.

Complex, and Unsolvable. The simple queries are 181

addressable by SLM itself; the complex queries 182

are addressable by LLM but not by SLM, and Un- 183

solvable queries are so complex that they cannot 184

be solved by LLM or SLM. Since the ground truth 185

state, i.e., the query category is unknown and un- 186

observed, we formulate this decision problem as 187

a Partially Observable Markov Decision Process 188

(POMDP) (Monahan, 1982). POMDP presents 189

a robust framework, offering a structured way to 190

manage and navigate through the decision spaces 191

where the system’s state is not fully observable. A 192

POMDP is defined by a tuple (S,A, T,R,Ω, O), 193

where S is a set of states, A is a set of actions, T 194

represents the state transition probabilities, R is the 195

reward function, Ω is a set of observations, and O 196

is the observation function. 197

In our scenario, the states S correspond to the 198

three question categories: Simple, Complex, and 199

Unsolvable. Actions are denoted as either report- 200

ing the SLM answer or routing to the LLM. Ob- 201

servations, in the form of verifier output v, enable 202

the POMDP to ascertain its belief state, which is 203
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procedure ANSWERQUERY(C, q)
▷ C: Context, q: Question, SLM/LLM: Small/large

language model
As ← SOLVE(SLM, C, q)
v ← SELF-VERIFY(As, C, q)
if META-VERIFY(v,As, C, q) then

return As

else
Al ← SOLVE(LLM, C, q)
return Al

end if
end procedure 0 20 40 60

50

55

60

65

70

Cost

Pe
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m
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SLM
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Figure 3: Left: AutoMix algorithm. Right: Performance vs. Cost curve. The slope between SLM and LLM
provides a way to the Incremental Benefit per Cost (IBC) for methods that mix models. Methods with a steeper
slope than this reference when plotted against SLM have a positive IBC (green region), whereas those below the
reference have a negative IBC (red region), falling into the red region.

a probability distribution over S. For instance, a204

high verifier confidence in the correctness of As205

would increase the belief in the Simple state. The206

solution to the POMDP subsequently yields a pol-207

icy that maps belief states to actions, effectively208

deciding whether to invoke the LLM based on a209

balance of expected future rewards and computa-210

tional costs. See Appendix B.1 for more details. Al-211

though the POMDP framework inherently handles212

sequences of decisions, we confine our approach213

to a single-decision scenario (horizon or episode214

length 1) for simplicity, with the potential for ex-215

tension to streaming settings for optimizing across216

multiple queries or a fixed time duration.217

3 Cost-Performance Efficiency Analysis218

In our approach to leveraging model performance,219

it is essential to consider not only the raw accuracy220

of predictions but also the associated computational221

or monetary costs. To that end, we introduce a222

metric to understand the efficiency of the models223

in terms of cost. We use CM and PM to denote the224

cost and performance of a method M . We also use225

CSLM and CLLM, and PSLM and PLLM, to denote226

the cost and performance of using the SLM and227

LLM, respectively.228

Incremental Benefit Per Cost (IBC) We intro-229

duce methods, denoted by M , to optimally inte-230

grate SLM and LLM. For each method M , we231

associate a cost CM and performance PM . To232

quantify the utility of M over SLM, we define233

the metric Incremental Benefit Per Cost (IBC) as234

IBCM (Equation (3)). 235

IBCM =
PM − PSLM

CM − CSLM
, (1) 236

IBCBASE =
PLLM − PSLM

CLLM − CSLM
, (2) 237

∆IBC(M) =
IBCM − IBCBASE

IBCBASE
× 100 (3) 238

The IBC metric captures the efficiency of perfor- 239

mance enhancement relative to the additional cost. 240

For comparative evaluation, we set a baseline IBC, 241

IBCBASE, representing the benefit of always using 242

LLM over SLM. Finally, we compare methods 243

using ∆IBC, which compares the IBC of a specific 244

method with IBCBASE. A positive IBC lift suggests 245

that M achieves performance increments more 246

cost-effectively than a standalone LLM, whereas 247

a negative lift indicates reduced efficiency (Fig- 248

ure 3) Please see Appendix B.2 for a discussion on 249

extending IBC to multiple models. 250

Geometric Interpretation On a Performance vs. 251

Cost plot, consider the line segment joining the 252

data points of the small language model (SLM) 253

and the large language model (LLM). This seg- 254

ment’s slope represents a basic rate of performance 255

increase for each additional unit of cost. The In- 256

cremental Benefit per Cost (IBC) for any method 257

M is the slope of the line from the SLM point 258

to the point representing M (Figure 3). A method 259

M that lies above the SLM-LLM segment pro- 260

vides a steeper slope, indicating a favorable IBC 261

(and a positive ∆IBC). Conversely, if M lies below 262

the segment, it suggests an unfavorable or nega- 263

tive IBC. Our primary objective is to identify or 264
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Figure 4: Main Results: performance (y-axis) vs. cost (x-axis) for different methods on the small and large
LLAMA2-13/GPT-4. POMDP based meta-verifier is consistenly above the linear interpolation of SLM-LLM,
signifying a higher incremental benefit per unit cost (IBC).

develop methods that yield a consistently positive265

IBC, maximizing performance enhancements for266

each additional unit of cost.267

Cost Calculation To evaluate the efficiency of a268

method M that leverages both the Small Language269

Model (SLM) and the Large Language Model270

(LLM), we define a cost metric, CM . This met-271

ric incorporates the costs of both initial answer272

generation and verification by the SLM, as well as273

potential routing to the LLM. Specifically, the total274

cost CM is computed as CM = 2×CSLM+wLLM×275

CLLM. Here, CSLM and CLLM represent the costs of276

a single query to the SLM and LLM, respectively.277

The factor wLLM ∈ [0, 1] denotes the proportion of278

times the LLM is used, with wLLM = 1 indicating279

exclusive use and wLLM = 0 denoting no usage.280

It’s important to note that while our framework281

uses the SLM for verification, alternative verifiers282

could be incorporated, which would adjust the cost283

formula accordingly.284

While various complexities determine the pric-285

ing of these APIs (Dehghani et al., 2021), given286

our emphasis on black-box utilization of large lan-287

guage models, we choose to represent cost simply:288

the monetary expense charged to the end user by289

the language model APIs. 290

4 Experiments 291

Setup We use LLAMA2-13B (Touvron et al., 292

2023) as our smaller language model (SLM) and 293

GPT-4 (OpenAI, 2023) as the larger language 294

model (LLM), assigning a relative cost of 1 unit 295

for the SLM and 100 units for the LLM. This re- 296

flects the actual price disparity between these mod- 297

els 2. Furthermore, in practical setups, SLM might 298

be deployed with on-premise hardware, and LLM 299

might be only available through relatively expen- 300

sive APIs, further skewing the cost ratio. The cost 301

ratio between models can shift significantly based 302

on specific deployment scenarios. For instance, for 303

a user with access to a single A6000 GPU, running 304

LLAMA2-13B might incur virtually no cost, while 305

utilizing GPT-4 could prove prohibitively expen- 306

sive. Please see Appendix D for more details on 307

the experimental setup. 308

Datasets We experiment with a diverse set of 309

datasets: i) QASPER (Dasigi et al., 2021): Ques- 310

tion answering over research papers; ii) QUAL- 311

2https://openai.com/pricing, https:
//together.ai/
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ITY (Pang et al., 2022): Multiple-choice ques-312

tions (MCQ) on long articles and stories; iii)313

COQA (Reddy et al., 2019): Conversational com-314

prehension requiring coreference and pragmatic315

reasoning; iv) MUTUAL (Cui et al., 2020): Multi-316

turn dialogue reasoning (next response prediction);317

v) DIPLOMAT (Li et al., 2023): Pragmatic iden-318

tification and reasoning questions on multi-turn319

dialogues. We use the F1 score for QASPER and320

COQA, and accuracy for the remaining datasets.321

To manage input complexity, we retain a con-322

text subset (max 3500 tokens) retrieved using323

the question as a key. Retrieval is performed324

with all-MiniLM-L6-v2 sentence embedding325

model (Reimers and Gurevych, 2019). We also326

experiment with additional datasets, CNLI and327

NARRATIVE-QA from Scrolls, and observe simi-328

lar trends. Details are in the Appendix E.329

We utilize the validation sets from Shaham et al.330

(2022) for QASPER, and QUALITY, and use the331

prompts from Shaham et al. (2023). For COQA,332

MUTUAL, and DIPLOMAT, we employ its validation333

split and adapt the QUALITY prompt. Regardless334

of the dataset, we provide identical input prompts335

to both SLM and LLM to ensure consistent in-336

put processing costs. The output length is fixed337

in multi-choice datasets like QUALITY, and the338

brevity of responses in other datasets allows us to339

assume uniform output processing costs. We use340

greedy decoding (temperature 0) and draw a single341

sample for both the SLM and LLM.342

Baselines We compare against FrugalGPT343

(F) (Chen et al., 2023) as our baseline. Frugal-344

GPT uses a finetuned DistillBert model (Sanh et al.,345

2019) as a verifier. If the verifier’s confidence prob-346

ability for a given question, context, and SLM an-347

swer falls below a set threshold, the query is routed348

to the LLM. Due to its significantly lower opera-349

tional cost, we assign a cost of 0 to the verifier.350

Proposed approaches We experiment with three351

different types of meta-verifiers: i.) AutoMix +352

Self-Consistency: Uses the majority decision from353

verifier from 8 drawn samples and performs the de-354

cision without any meta-verification. ii) AutoMix355

+ Thresholding: Routes queries to the LLM if356

the verifier confidence is below a dataset-specific357

threshold (optimized on the validation set). We358

use a threshold for each dataset that yields the359

highest ∆IBC on the validation set. iii) AutoMix360

+ POMDP: This method optimizes routing deci-361

sions using a POMDP solver (Smith and Simmons,362

2006) as a meta-verifier. The POMDP is learned 363

on the validation set, and takes decisions based on 364

the verifier outputs (detailed in Appendix B.1). 365

4.1 Main Results 366

Figure 4 shows performance vs. cost curves for var- 367

ious datasets and model-mixing methods. On 4 of 368

the 5 datasets, AutoMix-POMDP and AutoMix- 369

Threshold outperform FrugalGPT, staying above 370

the SLM-LLM curve and yielding better per- 371

formance per unit cost. Gains achieved by 372

AutoMix over FrugalGPT are impressive be- 373

cause FrugalGPT has access to domain-specific 374

trained routers and incurs no verification cost. 375

Further, AutoMix-POMDP shows consis- 376

tent positive ∆IBC across all evaluated costs. 377

These results show that AutoMix, utilizing self- 378

verification and meta-verification, can effectively 379

mix LLAMA2-13B and GPT-4 on a wide range of 380

tasks without access to model weights or domain- 381

specific routing data. 382

AutoMix + P AutoMix + T FrugalGPT

DIPLOMAT 58.5 50.1 -7.0
MUTUAL 12.4 11.8 -8.7
COQA 83.1 86.5 2.6
QASPER 8.5 -0.2 9.4
QUALITY 10.3 9.4 -4.7

Table 1: ∆IBC values: AutoMix + T and AutoMix +
P are variations of our proposed method with threshold-
ing (T) and POMDP (P) based meta-verifiers, respec-
tively. AutoMix + POMDP demonstrates a robust and
consistent ∆IBC across all datasets, implying a judicious
utilization of computational resources. Despite having
access to domain specific training and a 0-cost verifier,
FrugalGPT underperforms AutoMix on 4/5 datasets.

Table 1 compares the average ∆IBC across 383

across five cost regions of equal size for each 384

method and dataset. AutoMix-POMDP outper- 385

forms FrugalGPT on 4/5 datasets. On COQA 386

and DIPLOMAT, it achieves substantial ∆IBC gains 387

of 86% and 58%, respectively. Even where 388

these gains are less pronounced, as in QASPER, 389

AutoMix-POMDP remains highly competitive 390

with FrugalGPT. 391

Figure 5 shows the accuracy of using POMDP- 392

based meta-verifier over Verifier-SC. We see sig- 393

nificant improvements across all datasets, with ab- 394

solute gains of up to 17%, demonstrating our pro- 395

posed meta-verifier’s importance in few-shot ver- 396

ification setups. Notably, even modest savings in 397

computational cost can translate to significant fi- 398
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nancial implications at the scale of LLM opera-399

tions, underscoring the economic relevance of our400

approach.401
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Figure 5: Right: The precision of the meta-verifier for
both POMDP and Verifier-Self-Consistency (Verifier-
SC) approaches across various datasets. Across all sce-
narios, the POMDP method consistently wins or ties
with up to 43% relative performance gains.

5 Analysis402

5.1 Key findings and takeaway403

Effect on Cost Ration on AutoMix Our main404

experiments assumed a cost ratio of 1:100 between405

locally hosted LLAMA2-13B and GPT-4. Next, we406

analyze how changes in the cost ratio influence407

the Incremental Benefit-Cost (IBC) values across408

different settings. The results in Figure 6 show that409

for a cost ratio as low as 1:10, AutoMix starts410

delivering better performance per unit cost.411

AutoMix is Effective in Low-Resource Scenar-412

ios Figure 9 (Appendix) demonstrates the perfor-413

mance dynamics of AutoMix and FrugalGPT414

with varying validation sizes. Notably, our method415

significantly outperforms FrugalGPT with lim-416

ited data, despite the latter’s domain-specific train-417

ing and zero verifier cost. However, as training data418

increases, FrugalGPT narrows the performance419

gap by leveraging domain-specific training, albeit420

still trailing by 20%. This pattern indicates that421

AutoMix provides a particularly advantageous so-422

lution in real-world scenarios where data may be423

scarce.424

Effectiveness of Few-shot Self-Verification425

In Appendix A.1, we evaluate few-shot self-426

verification quantitatively and qualitatively. We427
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Figure 6: Normalized ∆IBC for different cost regions. In-
creasing cost-ratio, results in better performance, high-
lighting an important criteria users need to consider
while using this method.

observe that the self-verification can effectively use 428

context to identify errors in answers generated by 429

SLM in many cases. 430

Improving Self-Verification with Task-Specific 431

Prompt Engineering We explore the impact 432

of task-specific prompt engineering on self- 433

verification performance in Appendix A.2. While 434

prompt engineering improves verifier accuracy, our 435

meta-verifier remains robust in various settings and 436

can beneficially leverage even a weak verifier. 437

5.2 Results of Automix w/ 3 Models 438

In this section, we evaluate the performance of 439

AutoMix when applied to a three-model scenario, 440

a setting we call AutoMix3. Specifically, we em- 441

ploy LLAMA2-13B as the SLM, LLAMA2-70B as 442

the MLM, and GPT-4 as the LLM. The results of 443

this evaluation are presented in Figure 7. 444

AutoMix3 consistently outperforms the base- 445

lines across the cost regions. We also compare 446

AutoMix3 against a baseline, Union AutoMix, 447

which selects between the two-model variants 448

AutoMixSLM−MLM and AutoMixMLM−LLM , 449

depending on the cost requirements specified by the 450

end-user. For instance, if the desired average cost is 451

less than that of the MLM, AutoMixSLM−MLM 452

is employed, whereas AutoMixMLM−LLM is uti- 453

lized for cost regions exceeding that of the MLM. 454

Further, we consider a baseline, Chained 455

AutoMix, by chaining AutoMixSLM−MLM 456

with AutoMixMLM−LLM . The query first goes 457

to the SLM, and an AutoMixSLM−MLM de- 458

cides between reporting the SLM answer or rout- 459
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Figure 7: AutoMix with 3 models: LLAMA2-13B,
GPT-4 and GPT-4. AutoMix method shows consistent
IBC lifts for both SLM-MLM and MLM-LLM regions.
Further, compared to chaining two AutoMix models
or using the union of two AutoMixes, AutoMix3 pro-
vide significant improvements.

ing to the MLM. In the latter’s case, a second460

AutoMixMLM−LLM repeats the procedure using461

the MLM and LLM models. Chained AutoMix462

underperforms across the board, as it cannot di-463

rectly route queries from the SLM to the LLM. Ad-464

ditionally, whenever ‘Chained AutoMix’ prompts465

the MLM, it invariably uses the costly verifier, even466

in cases where it might not be necessary. We refer467

readers to Appendix B.2, C, D.1 for more details.468

6 Related Work469

Self-Verification AutoMix aligns in spirit with470

works that aim to perform self-verification for rea-471

soning problems, such as Weng et al. (2023); Jiang472

et al. (2023) (see Pan et al. (2023a) for a survey of473

recent self-verification and correction approaches).474

However, AutoMix uniquely harnesses context475

for verification instead of relying on LLM’s knowl-476

edge (Dhuliawala et al., 2023), which can be chal-477

lenging for reasoning problems (Madaan et al.,478

2023; Huang et al., 2023), and introduces a meta-479

verifier mechanism to offset the verifier’s poten-480

tial noise. Further, unlike Madaan et al. (2022),481

who utilize a corpus of past mistakes to gauge the482

likelihood of a model error for a new question,483

AutoMix uniquely utilizes context for verification.484

Finally, different from works that rely on external485

knowledge bases for verifying the outputs of lan-486

guage models (Peng et al., 2023; Gao et al., 2023;487

Pan et al., 2023b), AutoMix uses the context sup-488

plied with the question to verify the answer.489

Our meta-verification approach can also be seen490

in the context of conformal prediction (Angelopou-491

los et al., 2023; Vovk et al., 2005) for a more ro- 492

bust self-verification. Ren et al. (2023) tie meta- 493

verification more closely with conformal predic- 494

tions for robot navigation, showing that layering 495

predictions from a language model with a sec- 496

ondary mechanism help in identifying situations 497

that do not have adequate information for action. 498

Mixing Models Distinct from related work op- 499

timizing LLM inference cost by model switching 500

and external verifiers (Chen et al., 2023; Zhu et al., 501

2023; vSakota et al., 2023), AutoMix obviates the 502

need for verifier training through few-shot SLM 503

model prompting and does not require upfront ac- 504

cess to all input queries. When needed, the meta- 505

verifier learned with only as few as 200 samples 506

outperforms training specialized models. Our work 507

is thus aligned with recent work that aims at com- 508

posing different models and external tools for infer- 509

ence time improvement of language models (Khat- 510

tab et al., 2023; Press et al., 2022; Yao et al., 2022; 511

Zhou et al., 2022). 512

Adaptive Computation In contrast to adaptive 513

computation and model routing methods that pre- 514

empt computation via intermediate representa- 515

tions (Liu et al., 2020; Zhou et al., 2020; Schuster 516

et al., 2021; Geng et al., 2021; Schuster et al., 2022; 517

Madaan and Yang, 2022), AutoMix necessitates 518

no architectural modifications and assumes only 519

black-box access to APIs. Further, unlike Adap- 520

tiveConsistency (Aggarwal et al., 2023), which 521

optimizes inference within a single LLM model, 522

AutoMix flexibly optimizes between two models 523

and transcends its utility in Self-Consistency. 524

7 Conclusion 525

AutoMix integrates black-box large language 526

model (LLM) APIs into a multi-step problem- 527

solving framework, optimizing the computational 528

cost and performance trade-offs. AutoMix opens 529

avenues for several interesting research directions. 530

First, while self-verification and correction are chal- 531

lenging for LLMs in general, we find promising 532

results using context-grounded few-shot verifica- 533

tion, indicating that similar approaches may yield 534

gain in other scenarios. Secondly, our work inter- 535

weaves Good Old-Fashioned Artificial Intelligence 536

(GOFAI) approaches with LLMs, demonstrating 537

that the incorporation of a POMDP can boost the 538

accuracy of a noisy few-shot verifier. 539
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Limitations540

While our empirical evidence demonstrates effec-541

tiveness, the broader applicability of AutoMix542

may vary depending on the specific models and543

datasets used. Further, AutoMix assumes a544

context-grounded reasoning setup for effective545

self-verification, which excludes tasks like factual546

question-answering and commonsense reasoning.547

Finally, as open-source models get powerful and548

inference costs decrease, serving a strong model549

for all queries might be feasible. However, there550

are still likely going to be latency and availability551

trade-offs that might be handled using AutoMix.552
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Attribute Content

Context Which country grows the most tea? ... Shen sipped it. He liked it. He drank it all.
Shen was proud of his new drink. Truncated for brevity

Question When did he take it?

Generated An-
swer

He took it in 1990.

Gold Answer about 2737 B.C

Verifier Output The context does not mention that he took tea in 1990. Verification Decision: The
AI generated answer is Incorrect.

Table 2: An example where the generated answer is verifiably incorrect, citing an unsupported date (1990), and the
verifier successfully catches this discrepancy.

A Verifier Qualitative Analysis818

A.1 How effective is few-shot self-verification?819

One notable contribution of this work is the con-820

cept of few-shot self-verification of outputs. Self-821

Verification, especially for reasoning problems,822

poses its own set of challenges; however, our setup823

has a unique advantage: the capacity to utilize con-824

text to validate answers. For instance, the model825

can identify factual inaccuracies in the answer or826

discern apparent contradictions that might not have827

been evident during the initial response. But does828

this advantage translate to effective self-verification829

in practice? As depicted in Figure 8, aside from the830

CNLI dataset, few-shot self-verification succeeds831

in accurately identifying correct examples by as-832

signing them higher probabilities across all other833

datasets.834

Qualitative Analysis Representative Examples835

from our qualitative analysis are shown in Tables 2,836

3, and 4.837

FrugalGPT vs. AutoMix at different levels of838

data availability Figure 9 demonstrates the per-839

formance dynamics of AutoMix and FrugalGPT840

with varying validation data sizes. Notably, our841

method significantly outperforms FrugalGPT with842

limited data, despite the latter’s domain-specific843

training and zero verifier cost. However, as train-844

ing data increases, FrugalGPT narrows the perfor-845

mance gap by leveraging its domain-specific train-846

ing. This pattern indicates that AutoMix provides847

a particularly advantageous solution in real-world848

scenarios where data may be scarce.849

A.2 Domain-specific vs. Domain independent 850

verifier 851

We used a single verifier with the LLAMA2-13B 852

model to help steer the model. To avoid excessive 853

prompt engineering, we used a generic prompt for 854

all datasets. However, task-specific prompts gen- 855

erally help (Le Scao and Rush, 2021; Liu et al., 856

2021b; Mishra et al., 2021; Liu et al., 2021a). To 857

investigate this, we create task-specific prompts for 858

CNLI by giving examples from the legal domain 859

in the prompt. We use LLAMA2-70B instead of 860

GPT-4 for this experiment, due to cost constraints. 861

Figure 10 underscores the efficacy of employ- 862

ing task-specific verification prompts, ensuring a 863

heightened probability allocation for accurate ex- 864

amples during the verification process. Interest- 865

ingly, the enhanced verifier accuracy does not al- 866

ways directly translate to proportionate improve- 867

ments in our proposed method, AutoMix, as evi- 868

denced in Table 5. This phenomenon higlights the 869

role of meta-verifiers, adeptly negotiating through 870

the outputs of potentially unreliable verifiers. 871

B Methodology 872

B.1 POMDP 873

The Partially Observable Markov Decision Process 874

(POMDP) presents a robust framework for han- 875

dling decision-making problems under uncertainty, 876

offering a structured way to manage and navigate 877

through the decision spaces where the system’s 878

state is not fully observable (Monahan, 1982). A 879

POMDP is defined by a tuple (S,A, T,R,Ω, O), 880

where S is a set of states, A is a set of actions, T 881

represents the state transition probabilities, R is the 882

reward function, Ω is a set of observations, and O 883

12



Attribute Content

Context Fort Lauderdale, Florida (CNN) – Just taking a sip of water or walking to the
bathroom is excruciatingly painful for 15-year-old Michael Brewer, ... He suffered
second- and third-degree burns over about two-thirds of his body, according to the
hospital’s associate director, Dr. Carl Schulman. Truncated for brevity

Question How long before he recovers from his injury?

Generated An-
swer

he will never recover from his injury.

Gold Answer He has a lifelong recovery.

Verifier Output The context clearly states that the teen is recovering from his injuries. Verification
Decision: The AI generated answer is Incorrect.

Table 3: The example demonstrates a challenging case for the verifier. The generated answer is a rephrasing of
what’s mentioned in the context, however the verifier fails to catch it.

Attribute Content

Context Pruning keeps the plant only three or four feet tall. This is an easy height for tea
picking. Green tea is steamed right after the leaves are picked. Green tea _ its
healthy qualities. For example, it may prevent heart disease. How did we get tea
bag? The answer: by accident. Truncated

Question What did they do to green tea after picking it?

SLM Answer steamed.

Gold Answer prune it

Verifier Output The context mentions that green tea is steamed after being picked. Verification
Decision: The AI generated answer is Correct.

Table 4: An instance where the verifier deems the answer correct, and the gold label was incorrect. The verifier is
able to correctly infer that the context mentions tea being steamed after picking.

13
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Figure 8: Verifier Probability and Correctness: Percentage of correct responses across distinct verifier probability
bins, representing P (C = 1 |ASLM, C, q), where ASLM is the answer from the Small Language Model, C is the
context, and q is the query. Each bin represents a range of verifier probabilities and the corresponding accuracy of
the responses within that probability range across various datasets. Notably, for all datasets, excluding CNLI and
QASPER, a higher verification score generally corresponds to a larger proportion of correct examples, indicating
that the verifier is, to an extent, capable of discerning the reliability of responses generated by itself. We use a
meta-verifier to get around these noisy predictions.

CNLI CNLI-CV

Method Cost Perf. IBC_Lift Cost Perf. IBC_Lift

SLM 1 40.1 - 1 40.1 -
FrugalGPT 37.4 59.2 66.1 37.4 59.2 66.1
Self-Consistency 47.5 52.3 -17.0 40.5 50.6 -15.5
AutoMix-Threshold 51.9 55.6 -3.5 28.1 46.9 -49.1
AutoMix-POMDP 6.7 43.5 88.7 15.8 45.2 12.4
LLM 50 55.5 - 50 55.5 -

Table 5: Despite the boost in verifier accuracy with task-
specific prompts (Figure 10), AutoMixmay not always
benefit, highlighting the utility of even weak verifiers
when supported by meta-verifiers.

is the observation function.884

In the context of meta-verifier, the unobservable885

states (S) represent the potential correctness of886

the verifier’s predictions, categorized as Simple,887

Complex, and Unsolvable. Note that incase of non-888

binary evaluation (e.g., F1-Score), Unsolvable in-889

dicates both the SLM and LLM have similar low890

performance on the input problem. Actions (A) are891

binary: trust the verifier or invoke the LLM. The892

reward function (R) quantifies the cost or gain of893

making a particular action in a given state, steering894

the decision policy towards cost-effective actions.895

Observations (Ω) in our model are the verifier’s896

probability outputs, discretized into bins. Specif-897

ically, we generate k=8 samples from the verifier, 898

discretizing our observation space in intervals of 899

size 0.125 ranging from 0 to 1. 900

The observation function (O) depicts the likeli- 901

hood of observing an observation given an action 902

was taken and the system transitioned to a particu- 903

lar state. Using an appropriate observation function 904

is crucial for POMDP to work. Specifically, we de- 905

fine observations probabilities in three ways: 906

• 1. Functional Form: For each of the states 907

s, the observation function O is defined as 908

O(s, v) = 1
K ·vγs , where v is the verifier prob- 909

ability and γs ∈ [0,∞] is a hyperparameter 910

for every state and K is normalizing factor. In- 911

tutively, a value of γ close to 1 indicates ideal 912

calibration, with verifier probability v indi- 913

cating true probability of being in a particular 914

state. The values of γs’s for the three states are 915

determined based on the respective POMDP’s 916

performance on validation set based on the 917

IBC-Lift. 918

• 2. Discrete Form: An alternate option is to 919

directly learn observation function O from the 920

statistics of validation set. Since in valida- 921

14
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Figure 9: Comparison of AutoMix with FrugalGPT over varying Training Dataset Size. Despite zero-cost verifier
and domain-specific training, FrugalGPT underperforms AutoMix. AutoMix is especially useful for limited
data settings, with higher gains visible when dataset size is less than 1000.

tion set, we have access to the true state along922

with verifier probabilites of individual data in-923

stances, we can model observation function as924

O(s, v) =
ΣN

i=01{si=s and vi=v}
ΣN

i=01{si=s} . The method925

has the advantage of being hyperparameter926

free and provides more accurate representa-927

tion by computing the true observation proba-928

bilities on validation set. However, it performs929

worse than functional form, when either cer-930

tain values of v or s are not well represented in931

validation set or in cases of high distribution932

shift between validation and test set.933

• 3. Continous Form: The continous934

form of POMDP follows the same formu-935

lation as in Discrete Form, except the fact936

the state space is represented by a tuple937

of SLM & LLM performance. Specifi-938

cally, state space is represented by S =939

{(PSLM , PLLM )|PSLM , PLLM ∈ [0, 1]},940

where P represents the performance of corre-941

sponding model on particular question. Since942

the performance (eg: F1 score) can be con-943

tinous values, while we have discrete data944

(performance on individual scores), we apply945

gaussian smoothing (with standard deviation946

1) followed by linear interpolation, to get ob- 947

servation probabilities for this continous state 948

space. 949

Since both these methods have their strengths, and 950

are independent of each other, we choose the best 951

performing method on validation set. 952

This POMDP mechanism allows for optimal 953

decision-making under uncertainty, balancing the 954

cost and reliability of invoking the LLM. Through 955

employing standard POMDP solving algorithms 956

such as Focused Real-Time Dynamic Program- 957

ming3 (Smith and Simmons, 2006), we derive a 958

policy that maps belief states (probability distri- 959

butions over S) to actions. During inference, the 960

learned policy effectively decides whether to trust 961

the verifier’s output or to invoke the LLM based 962

on a combination of expected future rewards and 963

computational costs. 964

Another advantage of the POMDP-based meta- 965

verifier is its interpretability and customizability 966

via reward assignment. For instance, in a "Needy" 967

state, assigning a reward of +50 for invoking the 968

LLM indicates a preference for accurate solutions 969

3We use zmdp package https://github.com/
trey0/zmdp for solving POMDP
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Figure 10: Enhancement of verifier accuracy using task-specific verification prompts, which allocate higher
verification probabilities to more correct examples.

over computational cost. Conversely, in a "Good"970

state, designating a reward of -10 for trusting the971

SLM encourages computational savings. This en-972

ables users to strategically balance solution quality973

against computational expenses, aligning with spe-974

cific application needs.975

B.2 Integrating Three Models with AutoMix976

While the fundamental approach remains consis-977

tent, the three-model scenario diverges from its978

two-model counterpart in two key aspects: 1) the979

definition of observation probabilities, and 2) the980

evaluation methodology.981

We employ a formulation akin to the continu-982

ous form of POMDP, as described in the previous983

section. However, in contrast to the two-model984

scenario, the observations can now fall into two985

categories: a) SLM verifier outputs on SLM an-986

swer, and b) SLM verifier outputs on SLM answer987

combined with MLM verifier outputs on MLM an-988

swer. The second category allows us to model more989

nuanced cues regarding the impact of verifiers on990

the final performance improvement. For instance,991

Figure 12 illustrates that when both verification992

probabilities are available, high δMLM−LLMF1993

regions can be detected, which is not feasible with994

a single verifier. This implies that the POMDP can995

make more informed decisions, an advantage that996

is empirically demonstrated in Results 5.2.997

In terms of evaluation, we consider two sepa-998

rate cases: 1) when the SLM-MLM-LLM curve999

is convex, and 2) when the curve is concave. In1000

the convex case (as observed in the COQA dataset),1001

it is advantageous to choose between the MLM 1002

and SLM in low-cost regions, while it is bene- 1003

ficial to choose between the MLM and LLM in 1004

high-cost regions. The suitable IBC curve is se- 1005

lected for evaluation accordingly. However, in the 1006

second case, when the IBC curves are concave, it 1007

would be more favorable to choose between the 1008

SLM and LLM, and completely ignore the MLM, 1009

as in terms of incremental performance per cost, 1010

it consistently presents a disadvantage. Thus, the 1011

IBCSLM−LLM is chosen for evaluation throughout. 1012

Although the evaluation presents two distinct cases, 1013

our AutoMix3 framework is sufficiently general 1014

to identify instances where direct routing to LLM 1015

is needed even in the convex case, and also pin- 1016

point cases where routing to MLM is beneficial 1017

in the concave scenario. This flexibility results in 1018

significantly superior performance. 1019

C Expanding AutoMix to Three-Models 1020

The preceding discussion focused on a two-model 1021

scenario involving the SLM and LLM. This sec- 1022

tion extends this framework to incorporate a third 1023

model, the MLM. 1024

Our decision flow commences with the SLM 1025

generating an answer, which is then self-verified by 1026

the SLM. The verifier probability serves as an ob- 1027

servation, guiding one of the following actions: 1) 1028

Reporting the SLM answer, 2) Running inference 1029

on the MLM or LLM and reporting the answer, 1030

or 3) Running inference on the MLM and verify- 1031

ing the answer. If action 3 is chosen, AutoMix 1032

has access to verification probabilities from both 1033
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# Meta-verifier POMDP File for narrative_qa

discount: 0.99
values: reward

# We have 6 states: 3 corresponding to the initial state before verifier is
called, and 3 corresponding to the state after verifier is called

states: START_S START_C START_U SIMPLE COMPLEX UNSOLVABLE

# Effectively, we have 3 actions: 1.) The initial State where we run verifier
2.) Report SLM's Answer 3.) Invoke LLM and Report its Answer

actions: Init Trust_SLM Invoke_LLM

# Observations lies in one of verifier probability bins. Eg: bin_correct_high
represents Verifier outputs SLM answer as correct with high confidence

observations: bin_incorrect_low bin_incorrect_high bin_correct_low
bin_correct_high

# Transition Model for Init action

T: Init
# Format: start_state : end_state : Transition_Probability

# Transition Model for Trust_SLM action
T: Trust_SLM
identity

# Transition Model for Invoke_LLM action
T: Invoke_LLM
identity

# Observation Model after "Init" action for narrative_qa
# Format: O : action : state : observation : probability

# Eaxmple: In SIMPLE cases, it is likely, SLM is correct and Verifier is
Confident, while in UNSOLVABLE, SLM is incorrect (Lower Obs. Probability)

O : * : SIMPLE : bin_correct_high 0.8
O : * : COMPLEX : bin_correct_high 0.4
O : * : UNSOLVABLE : bin_correct_high 0.1

# Reward Model:
# Format: R: action : init_state : end_state : observation : probability

# Example: For COMPLEX state, Trusting SLM results in negative score, while
invoking LLM results in a high +50 score.

R: Trust_SLM : COMPLEX : * : * -10
R: Invoke_LLM : COMPLEX : * : * +50

Figure 11: A sample POMDP specification file. POMDP requires defining states, actions, observations and relevant
Transition, Observation Probabilities and Reward Values.

the SLM and MLM, which are used to decide1034

whether to report the MLM’s answer or switch to1035

the LLM. Access to both the verifier probabilities1036

provides AutoMix’s meta-verifier with a richer1037

observation signal. For instance, a neutral SLM1038

verification signal combined with a neutral MLM1039

verification signal will likely route the queries to1040

the MLM. In comparison, an uncertain SLM verifi-1041

cation signal and a neutral MLM verification signal1042

will more likely be routed to LLM. In Section 5.2,1043

we compare different variants of AutoMix, high-1044

lighting the individual importance of each state in1045

AutoMix’s formulation. Further details are pro- 1046

vided in Appendix B.2. 1047

Meta-Verifier in the Three-Model Case We 1048

employ a similar POMDP formulation as in the 1049

two-model scenario but with a broader range 1050

of actions due to the inclusion of the third 1051

model. The states are now represented as a 1052

tuple of performance metrics for each of the three 1053

models. Formally, the state space is denoted as S = 1054

{(PSLM , PMLM , PLLM )|PSLM , PMLM , PLLM ∈ 1055

[0, 1]}, where P denotes the performance of the 1056

respective model. For instance, if only the LLM 1057
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Figure 12: In the figure we compare delta improvement in F1 score from GPT-4 to GPT-4 on COQA dataset, for
different verifier probabilities. The graphs are smoothened using gaussian smoothing with standard deviation=1. On
left, we vary only the MLM verifier, and on right we vary both SLM and MLM verifiers. The latter case provides
much richer, thus showing importance of incorporating both of them in our AutoMix3 formulation.

can correctly solve the problem, the state will1058

be represented as (0,0,1). AutoMix maintains1059

a belief over all possible states and updates this1060

belief based on the verifier probabilities, which1061

serve as observations. The model can observe1062

either the SLM verifier probability or the SLM1063

and MLM verifier probabilities. The observation1064

probabilities are learned from the validation set as1065

in the previous section.1066

D Additional Details on the Experimental1067

Setup1068

For evaluation, we utilize the validation sets from1069

Shaham et al. (2022) for QASPER, and QUALITY,1070

and use the prompts from Shaham et al. (2023).1071

For COQA, MUTUAL, and DIPLOMAT, we employ1072

its validation split and adapt the QUALITY prompt.1073

For consistency, 1000 instances are sampled from1074

the validation set of each dataset. Regardless of the1075

dataset, identical input prompts are dispatched to1076

both SLM and potentially LLM, ensuring consis-1077

tent input processing costs. The output length is1078

fixed in multichoice datasets like CNLI and QUAL-1079

ITY, and the brevity of responses in other datasets1080

allows us to assume uniform output processing1081

costs. We use greedy decoding (temperature 0)1082

and draw a single sample for both the SLM and1083

LLM. For verification, we generate eight samples1084

per question (temperature = 1), which has negligi-1085

ble cost owing to the large context. In Figure 6, we1086

normalize ∆IBC by a scaling factor such that for all1087

datasets, the maximum is set to 1.1088

For running our experiments, we use LLAMA2-1089

13B and GPT-4 models from huggingface4. We 1090

use vllm (Kwon et al., 2023) for hosting models 1091

for inference. 1092

Cost Ratio: We have considered a cost ratio of 1093

1:100 between GPT-4 and GPT-4, reflecting the 1094

API price disparity between the models, which 1095

stands at $0.225 for LLAMA2-13B vs $30 for GPT- 1096

4 per 1M tokens at the time of writing. Addition- 1097

ally, for self-verification purposes, we generate 8 1098

samples. It is important to note, however, that the 1099

cost of generating 8 samples is negligible compared 1100

to the cost of a single sample, primarily because 1101

the major cost driver is the length of the context 1102

(e.g., generation is 60 times and 50 times smaller 1103

for QASPER and QUALITY, respectively than base 1104

context). Therefore, invoking the verifier 8 times is 1105

considered equivalent in cost to calling it once. Fur- 1106

thermore, in Section 6, we explore different cost 1107

ratios and observe that, even with a ratio as low as 1108

1:25, AutoMix begins to yield non-trivial gains 1109

across most datasets. 1110

D.1 Results of Automix w/ 3 Models 1111

In this section, we evaluate the performance of 1112

AutoMix when applied to a three-model scenario, 1113

as described in Section C. Specifically, we employ 1114

LLAMA2-13B as the SLM, GPT-4 as the MLM, 1115

and GPT-4 as the LLM. Due to cost constraints, 1116

our evaluation is conducted on a subset of 1000 1117

4Models available at: https://huggingface.
co/meta-llama/Llama-2-13b-hf and https://
huggingface.co/meta-llama/Llama-2-70b-hf
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examples from the COQA dataset. The results of1118

this evaluation are presented in Figure 13.1119

Our findings reveal that AutoMix3 consistently1120

outperforms the IBC curve for both the SLM-MLM1121

and MLM-LLM cost regions. We also compare1122

AutoMix3 against a baseline, Union AutoMix,1123

which chooses between the two-model variants1124

AutoMixSLM−MLM and AutoMixMLM−LLM ,1125

depending on the cost requirements specified by the1126

end-user. For instance, if the desired average cost is1127

less than that of the MLM, AutoMixSLM−MLM1128

is employed, whereas AutoMixMLM−LLM is1129

utilized for cost regions exceeding that of the1130

MLM. AutoMix3 outperforms the baseline con-1131

sistently on all cost regions. This better perfor-1132

mance can be attributed to the fact that AutoMix31133

has access to verifier probabilities from both1134

LLAMA2-13B and GPT-4, which provides a1135

richer signal to POMDP, resulting in taking1136

more informed actions. Further, we consider a1137

baseline by chaining AutoMixSLM−MLM with1138

AutoMixMLM−LLM . The query first goes to1139

the SLM, and an AutoMixSLM−MLM decides1140

between reporting the SLM answer or routing1141

to the MLM. In the latter’s case, a second1142

AutoMixMLM−LLM repeats the procedure using1143

the MLM and LLM models. We call this method1144

‘Chained AutoMix,’ and it underperforms across1145

the board. This is primarily because it cannot di-1146

rectly route queries from the SLM to the LLM. Ad-1147

ditionally, whenever ‘Chained AutoMix’ prompts1148

the MLM, it invariably uses the costly verifier, even1149

in cases where it might not be necessary. This in-1150

efficient use of resources contributes to its subpar1151

performance.1152

E Additional Datasets1153

In this section, we evaluate AutoMix on two addi-1154

tional datasets: CNLI (Koreeda and Manning, 2021)1155

and NARRATIVE-QA (Kočiskỳ et al., 2018). CNLI1156

involves performing natural language inference1157

on non-disclosure documents as context, while1158

NARRATIVE-QA focuses on question answering1159

over full-length books and movie scripts.1160

The results on these datasets are presented in1161

Figure 14. On NARRATIVE-QA, AutoMix sig-1162

nificantly outperforms all other methods, includ-1163

ing GPT-4, for higher cost values. However,1164

it is noteworthy that the delta between the F1-1165

Score of LLAMA2-13B and GPT-4 is only 2%,1166

despite their considerable differences in capabil-1167
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Figure 13: AutoMix with 3 models: LLAMA2-13B,
GPT-4 and GPT-4. AutoMix method shows consistent
IBC lifts for both SLM-MLM and MLM-LLM regions.
Further, compared to chaining two AutoMix models
or using the union of two AutoMixes, AutoMix3 pro-
vide significant improvements.

ities. This discrepancy is attributed to the very 1168

long contexts in NARRATIVE-QA, and our qual- 1169

itative analysis indicates that our employed re- 1170

triever, all-MiniLM-L6-v2, cannot always re- 1171

trieve relevant context. As a result, GPT-4 often 1172

fails to answer questions. 1173

In the case of CNLI, AutoMix-POMDP main- 1174

tains a non-negative ∆IBC throughout. However, 1175

FrugalGPT demonstrates superior performance. 1176

This better performance is because, despite the 1177

large number of contexts in CNLI, there are only 1178

17 standard questions. These questions are seman- 1179

tically similar and often have a signature corre- 1180

sponding to the answer. For example, 12 out of 17 1181

questions have less than 5% instances of Contra- 1182

diction as the ground truth. Consequently, a ver- 1183

ifier fine-tuned on such a dataset can easily learn 1184

to exploit these patterns. Our experiments show 1185

that a verifier trained solely on questions can per- 1186

form comparably to FrugalGPT (23.4% average 1187

∆IBC compared to 27.2% of FrugalGPT). Since 1188

AutoMix is broadly applicable and is not depen- 1189

dent on the input question, FrugalGPT performs 1190

better on CNLI in particular. 1191

F Few-Shot Prompts 1192

F.1 Verifier Prompts 1193
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Story:
{relevant parts of the story}

{instruction}

Question: {question}

Answer:

Listing 2: Task Prompt. We experiment with long-
context reasoning tasks, which require answering ques-
tions from stories, legal contracts, research papers, and
novels.

Context: {context}

Question: {question}

AI Generated Answer: {generated_answer}

Instruction: Your task is to evaluate
if the AI Generated Answer is
correct, based on the provided
context and question. Provide the
judgement and reasoning for each
case. Choose between Correct or
Incorrect.

↪→
↪→
↪→
↪→
↪→
↪→

Evaluation:"'

Listing 3: Verification Prompt. The verification pro-
cess is framed as a natural language entailment task,
where the model determines the validity of the model-
generated answer with respect to the context and ques-
tion.
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Context: The manuscript, discovered in
1980 in a dusty attic, turned out
to be a lost work of Shakespeare.\n

↪→
↪→
Question: Whose lost work was

discovered in a dusty attic in
1980?\n

↪→
↪→
AI Generated Answer: Shakespeare\n
Instruction: Your task is to evaluate

if the AI Generated Answer is
correct, based on the provided
context and question. Provide the
judgement and reasoning for each
case. Choose between Correct or
Incorrect.\n

↪→
↪→
↪→
↪→
↪→
↪→
Evaluation: The context specifically

mentions that a lost work of
Shakespeare was discovered in 1980
in a dusty attic.

↪→
↪→
↪→

Verification Decision: The AI generated
answer is Correct.↪→

---

Context: The celestial event, known as
the Pink Moon, is unique to the
month of April and has cultural
significance in many indigenous
tribes.\n

↪→
↪→
↪→
↪→
Question: In which month does the

celestial event, the Pink Moon,
occur?\n

↪→
↪→
AI Generated Answer: July\n
Instruction: Your task is to evaluate

if the AI Generated Answer is
correct, based on the provided
context and question. Provide the
judgement and reasoning for each
case. Choose between Correct or
Incorrect.\n

↪→
↪→
↪→
↪→
↪→
↪→
Evaluation: The context clearly states

that the Pink Moon is unique to the
month of April.

↪→
↪→

Verification Decision: The AI generated
answer is Incorrect.↪→

---

{truncated examples}

Context: {context}\n
Question: {question}\n
AI Generated Answer: {generated_answer}

Instruction: Your task is to evaluate
if the AI Generated Answer is
correct, based on the provided
context and question. Provide the
judgement and reasoning for each
case. Choose between Correct or
Incorrect.

↪→
↪→
↪→
↪→
↪→
↪→

Evaluation:

Listing 4: Few-Shot Verifier Prompts: 3-shot verifier
prompt for evaluating the correctness of SLM’s answer.
The same prompt is used for all datasets.
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