
Learning to Take a Break: Sustainable
Optimization of Long-Term User Engagement

Eden Saig
Computer Science Department

Technion – Israel Institute of Technology
Haifa, Israel

edens@cs.technion.ac.il

Nir Rosenfeld
Computer Science Department

Technion – Israel Institute of Technology
Haifa, Israel

nirr@cs.technion.ac.il

Abstract

Optimizing user engagement is a key goal for modern recommendation systems,
but blindly pushing users towards increased consumption risks burn-out, churn, or
even addictive habits. To promote digital well-being, most platforms now offer a
service that periodically prompts users to take a break. These, however, must be
set up manually, and so may be suboptimal for both users and the system. In this
paper, we propose a framework for optimizing long-term engagement by learning
individualized breaking policies. Using Lotka-Volterra dynamics, we model users
as acting based on two balancing latent states: drive, and interest—which must
be conserved. We then give an efficient learning algorithm, provide theoretical
guarantees, and empirically evaluate its performance on semi-synthetic data.

1 Introduction

As consumers of content, we have come to rely extensively on algorithmic recommendations. This
has made the task of recommending—in a relevant, timely, and personalized manner—key to the
success of modern media platforms. Most commercial systems are built with the primary aim of
optimizing user engagement, a process in which machine learning plays a central role. But alongside
their many successes, recommendation systems have also been scrutinized for heedlessly driving
users towards excessive and often undesired levels of consumption. This has raised awareness as to
the need for redesigning recommendation systems in ways that actively promote digital well-being.

How can media platforms balance business goals with user well-being? One prominent approach,
which is now offered by most major platforms, is to periodically prompt users to take breaks
(Constine, 2018; Perez, 2018). The idea behind breaks is that occasional disruptions curb the inertial
urge for perpetual consumption, and can therefore aid in reducing ‘mindless scrolling’ (Rauch,
2018), or even addiction (Montag et al., 2018; Ding et al., 2016). As a general means for promoting
well-being, breaking is psychologically well-grounded (e.g., Danziger et al., 2011; Sievertsen
et al., 2016). But for platforms, breaks serve a utilitarian purpose: their goal is to foster long-term
engagement by compensating for the myopic nature of conventional recommendation algorithms,
which are typically trained to optimize immediate engagement. Since breaking schedules are applied
heuristically on top of existing recommendation policies—and typically need to be set up manually by
users—current solutions unlikely utilize their full potential (Monge Roffarello and De Russis, 2019).

In this paper, we propose a disciplined learning framework for responsible and sustainable optimiza-
tion of long-term user engagement by controlling breaks. Our point of departure is that sustained
engagement necessitates sustained user well-being, and here we advocate for breaks as a means
to establish both. Focusing on feed-based recommendation, our framework optimizes long-term
engagement by learning an optimal breaking policy that prescribes individualized breaking schedules.

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.

The challenge in learning to break is that the effects of recommendations on users can slowly
accumulate over time, deeming as ineffectual policies that rely on clear signs of over-exposure. To be
preemptive, we argue that breaks must be scheduled in a way that anticipates the future trajectory of
user behavior, and early on. To achieve this, we introduce a novel class of behavioral models based
on Lokta-Volterra (LV) dynamical systems (Lotka, 1910). These depict users as acting based on two
balancing forces: drive to consume and intrinsic interest, with corresponding latent states. Intuitively,
high interest increases drive to consume, but prolonged consumption decreases interest; together,
these describe how user behavior varies over time and in response to recommendations. Our model
captures the notion that interest can exhaust long before over-consumption is observed. This arms
our approach with the prescience needed to prevent burn-out by ensuring that interest is sustainably
preserved; thus, whereas current solutions target the symptom—ours aims for the cause.

Our proposed learning algorithm consists of two steps: First, we embed user interaction sequences
in ‘LV-space’—the set of all possible trajectories that our behavioral model class can express.
Then, we optimize individualized breaking policies by solving an optimal control problem over
this latent space, in which the control variable is a breaking schedule applied on top of the existing
recommendation scheme. Here the challenge is that different breaking policies can lead to different
counterfactual trajectories, of which observational data is only partially informative. Since our goal
considers long-term outcomes, our solution is to optimize directly for counterfactual steady-states.
From a behavioral perspective, we view this as aiming to steer towards sustainable habits; from a
computational perspective, under our choice of policy class, this enables tractable learning.

As we show, the optimization landscape of LV equilibria admits a compact representation, whose
main benefit is that it can be fully described by predictions of individualized user engagement rates.
Practically, this is advantageous, as it circumvents the need to take arbitrary and costly exploration
steps, and enables learning using readily available predictive tools (e.g., Gupta et al., 2006). We
make use of a small set of learned predictive models, each trained on a small and minimally-invasive
experimental dataset, which allow us to tune our policy to suit different conditions. The final learned
policy has an intuitive interpretation: it takes as input a small set of predictions for a user, and via
careful interpolation, applies a decision rule that anticipates the effects of breaking on future outcomes
(c.f. conventional approaches, which take in predictions and apply the myopic argmax rule).

Our main theoretical result is a bound on the expected long-term engagement of our learned breaking
policy, relative to the optimal policy in the class. We show that the gap decomposes into three distinct
additive terms: (i) predictive error, (ii) modeling error (i.e., embedding distortion), and (iii) variance
around the (theoretical) steady state. These provide an intuitive interpretation of the bound, as well as
means to understand the effects of different modeling choices. Our proof technique relies on carefully
weaving LV equilibrium analysis within conventional concentration bounds for learning.

Finally, we provide an empirical evaluation of our approach on semi-synthetic data. Using the
MoiveLens 1M dataset, we generate discrete time-series data in a way that captures the essence of
our behavioral model, but is different from the actual continuous-time dynamics we optimize over.
Results show that despite this gap, our approach improves significantly over myopic baselines, and
often closely matches an optimal oracle. We also study the role of experimental treatments, and
analyze how different users benefit differently from breaks. Taken together, these demonstrate the
potential utility of our approach. Code is available at: https://github.com/edensaig/take-a-break.

Broader perspective. At a high level, our work argues for viewing recommendation as a task of
sustainable resource management. As other cognitive tasks, engaging with digital content requires
the availability of certain cognitive resources—attentional, executive, or emotional. These resources
are inherently limited, and prolonged engagement depletes them (Kahneman, 1973; Muraven and
Baumeister, 2000); this, in turn, can reduce the capacity of key cognitive processes (e.g., perception,
attention, memory, self-control, and decision-making), and in the extreme—cause ego depletion
(Baumeister et al., 1998) or cognitive fatigue (Mullette-Gillman et al., 2015). As a means to allow
resources to replenish, ‘mental breaks’ have been shown to be highly effective (Bergum and Lehr,
1962; Hennfng et al., 1989; Gilboa et al., 2008; Ross et al., 2014; Helton and Russell, 2017).

Nevertheless, traditional approaches to recommendation remain agnostic to the idea that recommend-
ing takes a cognitive toll: they simply recommend at each point in time the item predicted to be most
engaging (Robertson, 1977). As an alternative, our approach explicitly models recommendation as
a process which draws on these resources, and therefore—must also conserve them. The subclass

2

https://github.com/edensaig/take-a-break

of ‘Predator-Prey’ LV dynamics which we draw on are used extensively in ecology for modeling
the dynamics of interacting populations, and demonstrate how over-predation can ultimately lead to
self-extinction by eliminating the prey population—but also show how enabling resources to naturally
replenish ensures sustainable relations. As such, here we advocate for studying recommendation
systems as human-centric ecosystems, and take one step towards their sustainable design.

1.1 Related work

User dynamics: latent states and feedback. A recent body of work aims to capture time-varying
behavior by modeling users as acting based on dynamic latent states. Broadly, works in this field
model the effects of recommendations as either shifting user preferences via positive-only feedback
(Jiang et al., 2019; Kalimeris et al., 2021; Sanna Passino et al., 2021; Dean and Morgenstern, 2022),
or reducing willingness to consume via negative-only feedback, e.g. via boredom, satiation, or
fatigue (Wang and Lin, 2003; Warlop et al., 2018; Kleinberg and Immorlica, 2018; Cao et al., 2020;
Leqi et al., 2021). While these restrict behavior to expressing a unidirectional effect, our approach
integrates both types of feedback and models internal states as competing but balancing forces, which
we argue is more realistic. This draws connections to recent attempts of injecting psychological
modeling into recommendation system design (Kleinberg et al., 2022; Dubey et al., 2022; Curmei
et al., 2022). Works in this field often combine theoretical analysis with simulation studies (Schmit
and Riquelme, 2018; Chaney et al., 2018; Mansoury et al., 2020; Krauth et al., 2020), and here we
follow suit.

Lotka-Volterra dynamics: modeling, learning, and control. The study of ecosystem dynamics
and their conservation has a long and rich history, in which LV analysis plays an integral role (see e.g.
Hofbauer et al. (1998); Takeuchi (1996)). LV systems our used primarily for modeling biological
ecosystems, but are also used in economics (Weibull, 1997; Samuelson, 1998), finance (Farmer, 2002;
Scholl et al., 2021), and behavioral modeling (e.g., drug addiction and relapse (Duncan et al., 2019)).
In terms of learning, Gorbach et al. (2017) and Ryder et al. (2018) propose variational techniques for
dynamical systems, but do not consider control. Our work aims to directly learn optimal policies, for
which we draw on recent advances in turnpike optimal control (Trélat and Zuazua, 2015).

2 Learning setting

We consider a sequential recommendation setting in which users interact with a stream of recom-
mended items over time. New users u are sampled independently from some unknown distribution
D, and time for each user is measured relative to their time of joining. Interactions occur at discrete
time-points in continuous time, t ∈ R+, and upon user request: when a user u queries the system for
additional content at time t, the system responds by presenting a recommended item x(t) ∈ X . We
assume recommendations are governed by an existing and fixed recommendation policy ψ, which
determines x(t) given a request from u at time t. We allow ψ to be stochastic, and make no additional
assumptions on its structure or mechanics. User interactions are therefore described by a sequence of
pairs {(ti, xi)}i, where xi = x(ti) ∼ ψ(u; ti) ∈ X is the item recommended to u at time ti.

Our key modeling assumption is that subsequent request times, ti+1 = ti +∆ti for ∆ti > 0, are
determined jointly by the user’s ‘state’ at time ti and the recommended item xi (note this means ∆ti
can depend on ti). We consider user states as latent and in the abstract, but broadly expect ‘good’
recommendations to entail frequent requests by inducing small values of ∆ti. Together, user u’s
choice behavior, coupled with the policy ψ, induce a temporal point process (TPP) which governs the
generation of interaction sequences of duration t as {(ti, xi) | ti ∈ [0, t]} ∼ TPPψ(u; t).

For each user, the system collects data until some (relative) fixed time T0, and seeks to optimize
engagement in the subsequent interval [T0, T0 + T], where T is a predetermined time horizon. We
denote the corresponding input sequences by S0

u = {(ti, xi) | ti ∈ [0, T0)}, and target sequences
by Su = {(ti, xi) | ti ∈ [T0, T]}. Defining by 1

T |Su| the engagement rate of u for the chosen time
horizon T , our goal in learning will be to maximize expected long-term user engagement rate, namely
Eu∼D E

[
1
T |Su|

]
for (S0

u, Su) ∼ TPPψ(u;T0 + T), in expectation over new users.

Breaking policies. The unique aspect of our learning problem is that our only means for increasing
engagement is by suggesting breaks. Our task will be to learn a breaking policy π ∈ Π which

3

can override ψ: when user u queries the system at time ti, the policy π(u; ti) ∈ {0, 1} determines
whether to present the intended item x(t) ∼ ψ(u; ti) (for π = 0), or suggest a break instead (π = 1).1
Denoting the overall composed policy by π ◦ ψ, our aim is to learn a breaking policy π that increases
engagement by complementing an existing ψ. Hence, our learning objective is:

argmaxπ∈Π Eu∼D ETPP

[
1
T |Su|

]
, (S0

u, Su) ∼ TPPπ◦ψ(u;T0 + T) (1)

Broadly, we expect breaks to negatively affect short-term engagement (i.e., entail longer ensuing
∆ti), but have the potential to improve engagement in the long run if scheduled appropriately.

Data and exploration. For learning an optimal breaking policy, we assume the system has access
to a dataset of previously logged interactions S = {(S0

1 , S1), . . . , (S
0
m, Sm)} for m train-time users

u1, . . . , um ∼ D, collected under a ‘clean’ recommendation policy ψ. It will be convenient to assume
that the system ‘featurizes’ user input sequences S0

u via a vector mapping ϕ used in learning. For
clarity, we overload notation and represent users as u = ϕ(S0

u) ∈ Rd. This allows us to support
additional user feedback (e.g., ratings) or information (e.g., demographics) as input to ϕ.

Since Eq. (1) is a policy problem (note breaks affect outcomes), learning requires some form
of exploration or experimentation. Here we aim for experimentation to be simple and minimal.
Specifically, we assume access to a small number of N additional datasets, S(j) = {(uk, Sk)}mj

k=1,
collected for different users, and under composed policies πj ◦ψ for various predetermined πj . These
datasets can either be given at the onset, or collected as part of the learning process; our only usage
of them will be for learning predictors ŷ = fj(u) of engagement rate y = 1

T |Su|. Ideally, we would
like to make do with only a few S(j) of small size and that can be gathered concurrently; our results
show that even a single additional dataset can be highly informative, and in some cases sufficient.

Learning to break. To effectively optimize Eq. (1), learning must anticipate the effects of different
breaking policies π ∈ Π on future sequences Su of unobserved users u. It will therefore be useful to
distinguish between the policy π itself, which determines when breaks are applied, and a component
for estimating individualized counterfactual engagement rates 1

T |Ŝu(π)| induced by π, which will
aid in choosing a good policy. Our focus will be on learning simple policies coupled with rich and
task-appropriate models of responsive user behavior. In particular, we set Π to include all stationary
policies, π(u) = π(pu), which for each user u recommends a break with a time-independent
personalized probability pu = p(u) ∈ [0, 1]. Stationary policies are interpretable, amenable to
efficient optimization, and straightforward to implement. As we show, despite their simplicity, such
policies can be quite expressive when coupled with an appropriate behavioral model.

3 Engagement via ‘Predator-Prey’ dynamics

To optimize engagement with breaks, we propose to model user behavior as a dynamical system of
Lotka-Volterra (LV) Predator-Prey equations. The model operates over continuous dynamics, which
has analytic and optimizational benefits; we later make the connection back to discrete sequences.

Behavioral model. Our model of user behavior views each user as acting based on two types of
time-dependent latent variables: internal drive for consumption, denoted by λ(t) ∈ R+; and intrinsic
interest, denoted by q(t) ∈ [0, 1]. Intuitively, we expect that engaging experiences will reinforce a
user’s desire to further consume; conversely, excessive exposure to content should slowly ‘erode’ her
interest—but left alone, will allow it to replenish (Thoman et al., 2011). Thus, drive and interest act
as balancing forces. Together, we model the time-dependent relations between λ(t) and q(t) as:

dλ

dt
= −αλ+ βλq,

dq

dt
= γq(1− q)− δλq (2)

where θ = (α, β, γ, δ) ≥ 0 parameterize the dynamics. For λ (drive, or ‘predator’), α determines its
natural decay rate, and β its interest-dependent self-reinforcement rate; for q (interest, or ‘prey’), γ
specifies its natural replenishment rate, and δ its rate of depletion from consumption. Note the two
equations are coupled: q mediates the reinforcement of λ, and λ mediates the depletion of q.

1This is similar in spirit to the ‘learning to defer’ paradigm (Madras et al., 2018), but in a different context.

4

0 20 40 60 80 100

Time t

0

5

10

15

20

C
on

su
m

p
ti

on
d

ri
ve
λ

(t
)

λ(t) and q(t) - Joint evolution over time

Consumption drive λ(t)

Intrinsic interest q(t)

Equilibrium consumption λ∗

0 5 10 15 20

Consumption drive λ(t)

0.3

0.4

0.5

0.6

0.7

0.8

In
te

re
st
q(
t)

(λ, q) - Phase-space diagram

(λ(t), q(t))

(λ∗, q∗)

0.3

0.4

0.5

0.6

0.7

In
te

re
st
q(
t)

Figure 1: Characteristic LV dynamics (Eq. (2)). (Left) Temporal relations between consumption
drive λ(t), intrinsic interest q(t), and equilibrium λ∗. Note how λ drops only some time after q has
depleted. (Right) Evolution of the same system in phase space (λ, q), with its equilibrium (λ∗, q∗).

Dynamical properties. The LV model in Eq. (2) describes consumption as a cycle: when interest
q(t) is high, drive to consume λ(t) increases, resulting in positive feedback; conversely, when λ(t) is
high, q(t) decreases, which expresses negative feedback. In general, λ grows until interest is too low
to sustain consumption, at which point consumption drops sharply, allowing interest to recover—and
the cycle repeats. The cycling behavior exhibits oscillations in λ and q, with one lagging after the
other. A typical trajectory is illustrated in Figure 1. Note how the drop in λ occurs only some time
after q is depleted; hence, anticipating (and preventing) the collapse of λ requires knowledge (and
conservation) of q. Thus, q serves as a resource: necessary for consumption, and of limited supply.

Over time, and if no interventions are applied, the magnitude of oscillations decreases, and the system
naturally approaches a stable equilibrium, denoted (λ∗, q∗), determined by the system parameters
θ = (α, β, γ, δ) and which attracts all initial conditions λ(0), q(0) (Takeuchi, 1996). Equilibrium
plays a key role in our approach, as it captures the notion of habits, which we aim to improve.

Engagement maximization as optimal control. To optimize engagement (Eq. (1)), we propose
to optimize λ∗ as an alternative proxy. Broadly, our approach will be to associate with each user
u a dynamical system parameterized by θu = (αu, βu, γu, δu), and recommend breaks which lead
to high values of the corresponding λ∗u = λ∗θu . Intuitively, if we think of 1

T |Su| as an ‘empirical’
rate (determined by the ∆ti in Su), then λ∗u is its continuous theoretical counterpart, and so ideally
we would like to find a θu for which λ∗u is the limiting behavior of 1

T |Su| (i.e., when ∆t → 0 and
T →∞). In practice, we expect λ∗u to be a useful target when the observed 1

T |Su| exhibits habits
that are ‘close enough’ to the theoretical equilibrium, and in Sec. 4.3 we make this condition precise.

Since our goal is to optimize a breaking policy, we must also be precise about the way breaks affect
dynamics in our model. Towards this, we introduce into Eq. (2) a control variable, p(t) ∈ [0, 1],
which acts as a ‘gate’ that controls the mediation strength between λ(t) and q(t) via:

dλ

dt
= −αλ+ βλq(1− p), dq

dt
= γq(1− q)− δλq(1− p) (3)

When p > 0, breaking has a dual effect: it decelerates drive λ, and at the same time, lets q recover.

Our goal will now be to solve the optimal control problem of finding p(t) which maximizes λ∗. Note
that not every dynamic controlling schedule guarantees convergence to some λ∗. Hence, we focus on
fixed controls, p ∈ [0, 1], which we prove converge to equilibrium, and having closed form.
Lemma 1. Let θ = (α, β, γ, δ) define an LV system as in Eq. (3). Then for any p ∈ [0, 1], we have:

λ∗θ(p) =
γ

δ

1

1− p

(
1− α

β

1

1− p

)
if p ∈ [0, 1− α/β] , and zero otherwise. (4)

Proof in Appendix A.1. For optimization, Lemma 1 is useful since it depicts λ∗ as a function of p,
parameterized by θ. Thus, given some θu for user u, our objective is to solve the control problem:

pu = argmaxp∈[0,1] λ
∗
θu(p) (5)

Optimizing engagement now reduces to solving Eq. (5); given pu, we make the connection back to
discrete time by setting the breaking policy to be π(pu), which recommends breaks at rate pu.

5

4 Learning optimal breaking policies

We now turn to presenting our learning algorithm. Our approach to optimizing engagement consists
of two steps: (i) associating with each user u a set of LV parameters θu, and then (ii) finding pu which
maximizes λ∗θu(p), and plugging into π(pu). In practice, we add an intermediate prediction step,
which allows us to ‘shortcut’ directly from observations to optimal policies. We conclude with analysis
showing when learned policies π(pu) lead to good expected engagement Eu∼D ETPP

[
1
T |Su|

]
.

4.1 Embedding users in LV space

To find θu, a seemingly reasonable approach would be to fit an LV trajectory to the initial sequence
S0
u, i.e., by solving minθ

∑
i |∆ti − λθ(ti)| for the observed ti ∈ S0

u. This can be interpreted as
embedding S0

u in ‘LV-space’ by finding the nearest continuous trajectory, for which θ provides a
compact representation. However, a key issue with this approach is that S0

u contains past observations
made under a single policy π(p) (e.g., the ‘clean’ policy π(0)). To optimize future engagement, the
learned θu must correctly account for the affects of general p on possbile ensuing sequences Su.

As an alternative, we propose to find θu by fitting the entire equilibrium curve of λ∗θ(p) (Eq. (4)).
Formally, for each p, define the expected empirical engagement rate λ̄u(p) as:

λ̄u(p) = Eπ
[
1
T |Su|

]
, Su ∼ TPPπ(p)◦ψ(u;T) (6)

i.e., λ̄ is the rate of counterfactual future trajectories for all possible choices of p. Ideally, we would
like to find θ for which the learned curve λ∗θ(p) closely aligns with that of λ̄u(p) across p ∈ [0, 1]:

θ̄u = argmin
θ
∥λ̄u − λ∗θ∥ (7)

for some function norm ∥ · ∥, and for which λ∗
θ̄u

and λ̄u have similar maximizing p (since we aim for
optimizing λ∗θ to work well for λ̄u). Unfortunately, λ̄u is a theoretical construct, and so θ̄u cannot be
obtained from observations. Hence, we propose to replace λ̄u with a finite set of predictions.

The role of prediction. Recall our input consists of a primary dataset S(0) = S = {(ui, Si)}mi=1, as
well as additional ‘experimental’ datasets S(j) collected under different πj = π(pj) and of sizes mj

for j = 1, . . . , N . We can use these to learn individualized, policy-specific predictors fj(u) = fpj (u),
trained to predict for each user u her engagement rate y = 1

T |Su| under πj . For example, if we
train fj to minimize the squared error

∑
k(fj(uk) − yk)

2 on pairs (uk, yk) ∈ S(j), then fj(u)
should be a reasonable estimator of the expected λ̄u(pj). Hence, for a given u, a finite set of pairs
{(pj , fj(u))}Nj=1 gives points to which we can fit θ to λ∗θ . Our final criterion for choosing θ̂u is:

θ̂u = argmin
θ
∥f(u)− λ∗θ∥ = argmin

θ

N∑

j=1

(fj(u)− λ∗θ(pj))2 (8)

given here with the ℓ2 vector norm, and where f(u) = (f1(u), f2(u), . . . , fN (u)) ∈ RN+ . As we
will see next, optimizing over p requires only the ratios α/β and γ/δ, in which λ∗ is quadratic.
Hence, Eq. (8) can be efficiently solved using a polynomial Non-Negative Least Squares (NNLS)
regression solver (Chen and Plemmons, 2010).

The role of experimentation. Two parameters control the goodness of fit for θ̂u: the number of
experimental datasets, N , and their sizes, mj for j ∈ [N]. In general, increasing N provides more
data points for solving Eq. (8), and increasing each mj reduces noise for that point (i.e., fu(p) should
be closer to λ̄u). But experimentation is costly, and so in reality N and the mj may be small. As
motivation, we next show that under realizability and for accurate predictions, N = 2 suffices.

Proposition 1. Fix N = 2, and let p0, p1 ∈ [0, 1− α/β]. For a user u, if (i) exists θu s.t. λ̄u = λ∗θu ,
and (ii) fi(u) = λ̄u(pi) for i = 1, 2, then θ̂u is optimal, i.e., solving Eq. (8) gives θ̂u = θ̄u.

Proof in Appendix A.1, and relies on Lemma 1. Next, we discuss how to obtain π(u) from θu.

6

0.0 0.2 0.4 0.6

Probability of break (p)

0

2

4

6

E
q

u
ili

br
iu

m
co

n
su

m
p

ti
on
(λ
∗
δ γ

)

LV equilibrium consumption λ∗(p)

β
α = 0.7

β
α = 1.5

β
α = 2.8

1 2 3

System parameters (β/α)

0.0

0.1

0.2

0.3

0.4

O
p

ti
m

al
p

ol
ic

y
(p
∗)

Optimal stationary policy p∗(α/β)

β
α = 0.7

β
α = 1.5

β
α = 2.8

p∗
(
β
α

)

0.0 0.2 0.4 0.6

Probability of break (p)

4

5

6

7

8

C
on

su
m

p
ti

on
ra

te

Policy optimization from data

λ̄u(p)

λ∗
θ̄u

(p)

λ∗
θ̂u

(p)

(pi, fpi(u))

p̂

p∗

Figure 2: (Left) Equilibrium curves λ∗(p) and optimal policies p∗ (markers) for user types (θu) that:
benefit from breaks (green), do not require breaks (orange), and will inevitably churn (blue). (Center)
The optimal policy p∗ for all β/α, showing a second-order phase change at β/α = 2. (Right) An
illustration of the true counterfactual engagement curve (orange),

4.2 From predictions to optimal policies

Recall our goal is to learn an individualized breaking policy π that for each user u applies an appro-
priate, personalized breaking schedule π(u). To be able to generalize to unseen u, the conventional
approach is to learn a parameterized policy π(u; η), where η is optimized on training data, and
applied to new users at test-time. Our approach, by relying on predictions, circumvents the need to
learn parameterized policies: once the predictors {fj(u)}j have been learned, the policy problem
decomposes over users, and optimal policies π(u) are determined independently for each user.

Optimal policies. Given θu, our next result establishes a closed form solution for the optimal pu.
Note that Eq. (4) shows λ∗θ(p) is piece-wise polynomial in z = 1/(1− p). Solving for z, we get:
Lemma 2. Let θ = (α, β, γ, δ) define an LV system as in Eq. (3). Then the optimal p∗ is given by:

p∗(θ) = argmax
p∈[0,1]

λ∗θ(p) = 1− 2
α

β
if

α

β
≤ 1

2
, and zero otherwise. (9)

Proof in Appendix A.1. Hence, once θu is found, our learned policy is defined as:

π(u) = π(p̂u), where p̂u = p∗(θ̂u) (10)

Altogether, to compute p̂u, the least squares approach in Eq. (8) is applied to obtain the polynomial
coefficients

(
γu
δu
, αuγu
βuδu

)
, then αu

βu
is estimated from their ratio, and then plugged into Eq. (9) to obtain

p̂u. For N = 2, π(u) has a closed-form formulation as a function of predictions (Appendix A.2).

Additionally, note that by Eq. (10), p̂u exhibits a phase transition at αu

βu
= 1

2 , below which p̂u = 0.

Corollary 1. In LV space, π(u) partitions users to those who require breaks, and those who don’t.
Corollary 2. In the realizable case of Prop. 1, π(p̂u) idempotently improves over the myopic π(0).

Thus, the optimal policy can be interpreted as suggesting breaks only when it deems them necessary.
Figure 2 illustrates λ∗(p) curves, phase shift, and optimal and learned policies for various user types.

4.3 Theoretical guarantees

We are now ready to state our main theoretical result, which bounds the expected long-term en-
gagement obtained by our learned policy, π̂. Our bound shows that the gap between π̂ and the
optimal policy, πopt, is goverened by three additive terms, each relating to a different aspect of our
approach: modeling error (εLV), predictive error (εpred), and deviation from expected behavior (εdev).
A description and interpretation of each term follows shortly. For simplicity, we focus on N = 2.
Theorem 1 (Informal). Let p0, p1 ∈ [0, 1], and denote by πopt ∈ Π be the optimal stationary policy.
Then for the learned breaking policy π̂, we have:

Eu,πopt

[
1
T |Su|

]
− Eu,π̂

[
1
T |Su|

]
≤ ηTPP

|p1 − p0|
(εLV + εpred + εdev)

7

where ηTPP is a TPP-specific constant scale factor.

Formal statement, precise definitions, and proof are given in Appendix A.3. The proof consists of
three main steps: We begin with a clean LV system at T =∞, and quantify the downstream effect of
perturbing the optimal policy. Then, we plug in the learned policy, and bound the gap due to predictive
errors and finite T . The final step makes the transition from continuous dynamics to the discrete TPP.
We next detail the role of each of the five terms in the bound, and how they can be controlled.

• Predictive error: Since targets y = 1
T |Su| are real, εpred is simply the expected regression error

over users, measured here in RMSE. As is standard, εpred can be reduced by increasing the number
of samples m, or by learning more expressive predictive functions f (e.g., larger neural nets).

• Modeling error: LV dynamics permit tractable learning; but as any hypothesis class, this trades
off with model capacity. Here, εLV quantifies the error due limited expressive power. Further
reducing εLV can be achieved by consider richer dynamic models—a challenge left for future work.

• Deviation from expectation: The learned p̂u rely on predicted equilibrium, but are trained on
finite-horizon data. In expectation, εdev captures how finite sequences deviate from their mean.
As a rule of thumb, we expect larger T to reduce this form of noise, but this cannot be guaranteed.

• Sensitivity : For N = 2, the term |p1 − p0| quantifies the added value of exploring beyond the
default breaking policy of p0. Intuitively, when the points are farther away, fitting the equilibrium
curve is easier. Thus, for the likely case of p0 = 0, the experimental breaking rate p1 should be
chosen to balance between performance gain and overexposure of experimental subjects to breaks.

5 Experiments

We conclude with an empirical evaluation of our approach on semi-synthetic data. We use the
MovieLens 1M dataset to generate recommendations and simulate user behavior, this enabling us to
evaluate counterfactual outcomes under different policies. See Appendix B for additional details.

5.1 Experimental setup

Data. The MovieLens 1M dataset (Harper and Konstan, 2015) includes 1,000,209 ratings provided
by 6,040 users and for 3,706 items, which we use to obtain features, determine the dynamics, and
emulate ϕ. We sample and hold out 30% of all ratings rux via user-stratified sampling, to which
we apply Collaborative Filtering (CF) to get user features u and item features x that approximate
u⊤x ≈ rux (d = 8, RMSE = 0.917, r ∈ [1, 5]). This mimics a process where ϕ is based on items
recommended by ψ and rated by users. We then take the remaining data points and randomly assign
1,000 users to the test set, on which we evaluate policies. The remaining users are assigned to the train
set, which is then further partitioned into the main S and the different S(j) per experimental condition.

Recommendation policy and user behavior. Following Kalimeris et al. (2021); Hron et al. (2022),
we set ψ to recommend based on learned softmax scores, softmax(u⊤x), taken over all non held-out
x having ratings for u. For user behavior, we generate discrete interaction sequences Su in a way that
relates to our dynamic model, but is nonetheless quite distinct. Specifically, each user u is associated
with discrete-time latent-state variables, updated via an LV discretization scheme (see Appendix B.5).
These, together with recommended items xi = x(ti), determine consecutive ∆ti ∈ Su. Importantly,
we let ∆ti depend on u’s rating for xi, namely ru,xi

, which we interpret as u’s utility from consuming
xi. We parameterize this dependence via ‘immediate’, item-specific consumption gain parameters
βui that depend on ru,xi

, and for simplicity set αu, γu, δu to be fixed.

Note that since βui depends on the recommended xi, it varies in time, and hence there is no single β
that underlies the dynamics: even in the limit (∆t→ 0, T →∞), user behavior cannot be described
by a continuous LV system, which implies εLV > 0 (see Appendix Figure 5). Since the baseline
RMSE is high, we set βui ∝ r̃2u,xi

, where r̃u,xi
= κru,xi

+ (1 − κ)u⊤x, so that κ interpolates
between predicted ratings (κ = 0) and true ratings (κ = 1). This allows us to (indirectly) control
εpred. For all experiments we use T = 100, and so expect a roughly fixed εdev > 0.

Methods. We compare our approach (LV) to several baselines: (i) a default policy which my-
opically optimizes for immediate engagement (and so does not break); (ii) a ‘safety switch’ policy

8

default

safety@16

safety@14
best-

of LV
oracle

-2%

0%

2%

4%

6%

8%

%
im

pr
ov

em
en

t
(v

s.
d

ef
au

lt
)

Engagement for different policies (κ = 0.5)

0.0 0.1 0.2 0.3 0.4

Learned LV policy (p̂u)

-5%

0%

5%

10%

15%

20%

%
im

pr
ov

em
en

t
(v

s.
d

ef
au

lt
)

Engagement per LV breaking schedule

ˆβ/α

p̂

LV decision rule

κ = 1

κ = 0.5

κ = 0

default

0.1 0.2 0.3 0.4

Assigned treatment (p1)

-2%

0%

2%

4%

6%

%
im

pr
ov

em
en

t
(v

s.
d

ef
au

lt
)

Engagement for varying p1 (p0 = 0)

LV, κ = 1

LV, κ = 0.5

LV, κ = 0

best-of, κ = 1

best-of, κ = 0.5

best-of, κ = 0

Figure 3: Results on the MovieLens 1M dataset. (Left) Performance gain of different approaches
(relative to default policy). (Center) Performance of LV by user group, partitioned by learned
policies p̂u. (Right) Sensitivity to an increasingly aggressive experimental p1 (N = 2, p0 = 0).

(safety@τ) that breaks once consumption surpasses a threshold τ ; (iii) a prediction-based pol-
icy (best-of) that chooses the best observed pu = argmaxpj fj(u) (rather than optimizing over
pu ∈ [0, 1]); and (iv) an oracle benchmark which directly optimizes the (generally unknown) true
underlying dynamics. We measure mean long-term engagement rate (LTE) for each approach, and
report averages and standard errors computed over 10 random splits. Performance is measured relative
to the default baseline as it represents no change in policy (typical absolute values are LTE ≈ 10).

5.2 Results and analysis

Main results. Figure 3 (left) compares the performance of our method to other policies. Here we
set p0 = 0, use N = 3 with pj ∈ {0.05, 0.1, 0.15}, and consider κ = 0.5 (note κ affects all policies).
As can be seen, our approach significantly improves over default (+6.5%). For safety@τ ,
improvement over the optimal τ = 16 (+5.73%; chosen in hindsight) shows the importance of being
preemptive; for the slightly smaller τ = 14, breaks are harmful. The gap from best-of (+2.21%)
quantifies the gain from the optimization step in Eq. (9), and the close performance to oracle
(-1.19%) suggests that optimizing the empirical curve (Eq. (8)) works well as as proxy.

User types. Figure 3 (center) shows for our approach how gain in LTE varies across learned
breaking policies p̂u > 0. For increasingly-accurate predictions (κ ∈ {0, 0.5, 1}), the main plot
shows performance gains for each group of users, partitioned by their p̂u values (binned; plot shows
average and unit standard deviation per bin). Gains until p̂u ≤ 0.15 are mild, but for p̂u > 0.15, the
general trend is positive: users who are deemed to require more frequent breaks, benefit more from
breaking. Gains until p̂u ≤ 0.3 increase for all κ, but for p̂u > 0.3, extrapolation becomes difficult:
note the higher variation within each κ, as well as significant differences across κ. This highlights the
importance of accurate predictions for inferring optimal p̂u when the experimental pi are small. The
inlaied plot shows that, in line with our theory, p̂u exhibits an empirical phase shift in the estimated θ̂u.

Treatments. Figure 3 (right) shows the effects of experimental treatments on performance. Focusing
on N = 2, we fix p0 = 0, and consider increasingly aggressive experimentation by varying
p1 ∈ (0, 0.4]. For our approach, increasing p1 helps, which is anticipated by our theoretical bound.
For the best-of approach, larger p1 also helps, but exhibits population-level optimum (p1 ≈ 0.24),
which is easy to ‘overshoot’. Note that when prediction accuracy is low (κ = 0), experimentation is
essential: if p1 is not sufficiently large, then performance can sharply deteriorate.

6 Discussion

Our paper studies the novel problem of learning optimal breaking policies for recommendation.
We posit a tight connection between long-term engagement and user well-being, and argue that
optimizing the former requires careful consideration of the latter. Viewing cognitive capacity as a
limited but conservable resource, we propose Lotka-Volterra dynamics as a behavioral model that
enables effective, responsible, and sustainable optimization of recommendation ecosystems. As any

9

policy task that involves humans, care must be taken regarding potential risks. While our experiments
show that optimizing engagement also improves well-being, this need not always be the case; in
fact, merely measuring well-being in reality is challenging. Breaks, as interventions, are presumably
‘safe’, in the sense that at worst they may lead to suboptimal performance (for system) or satisfaction
(for users). But breaks can also be used nefariously, e.g., by enabling temporally-varying rewards
(Eyal, 2019). As such, breaking policies should be deployed accountably and transparently.

References
Baumeister, R. F., Bratslavsky, E., Muraven, M., and Tice, D. M. (1998). Ego depletion: is the active

self a limited resource. Journal of personality and social psychology., 74(5).

Bergum, B. O. and Lehr, D. J. (1962). Vigilance performance as a function of interpolated rest.
Journal of Applied Psychology, 46(6):425.

Cao, J., Sun, W., Shen, Z.-J. M., and Ettl, M. (2020). Fatigue-aware bandits for dependent click
models. In AAAI, pages 3341–3348.

Chaney, A. J., Stewart, B. M., and Engelhardt, B. E. (2018). How algorithmic confounding in
recommendation systems increases homogeneity and decreases utility. In Proceedings of the 12th
ACM conference on recommender systems, pages 224–232.

Chen, D. and Plemmons, R. J. (2010). Nonnegativity constraints in numerical analysis. In The birth
of numerical analysis, pages 109–139. World Scientific.

Constine, J. (2018). Instagram says ‘you’re all caught up’ in first time-well-spent feature. techcrunch.
[Online; accessed 23-September-2022].

Curmei, M., Haupt, A. A., Recht, B., and Hadfield-Menell, D. (2022). Towards psychologically-
grounded dynamic preference models. In Proceedings of the 16th ACM Conference on Recom-
mender Systems, RecSys ’22, page 35–48, New York, NY, USA. Association for Computing
Machinery.

Danziger, S., Levav, J., and Avnaim-Pesso, L. (2011). Extraneous factors in judicial decisions.
Proceedings of the National Academy of Sciences, 108(17):6889–6892.

Dean, S. and Morgenstern, J. (2022). Preference dynamics under personalized recommendations. In
Proceedings of the 23rd ACM Conference on Economics and Computation, EC ’22, page 795–816,
New York, NY, USA. Association for Computing Machinery.

Ding, X., Xu, J., Chen, G., and Xu, C. (2016). Beyond smartphone overuse: identifying addictive
mobile apps. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, pages 2821–2828.

Dubey, R., Griffiths, T. L., and Dayan, P. (2022). The pursuit of happiness: A reinforcement learning
perspective on habituation and comparisons. PLoS Comput. Biol., 18(8).

Duncan, J. P., Aubele-Futch, T., and McGrath, M. (2019). A fast-slow dynamical system model of
addiction: Predicting relapse frequency. SIAM Journal on Applied Dynamical Systems, 18(2):881–
903.

Eyal, N. (2019). Hooked : how to build habit-forming products / Nir Eyal with Ryan Hoover.
Portfolio/Penguin, New York, updated edition edition.

Farmer, J. D. (2002). Market force, ecology and evolution. Industrial and Corporate Change,
11(5):895–953.

Gilboa, S., Shirom, A., Fried, Y., and Cooper, C. (2008). A meta-analysis of work demand stressors
and job performance: examining main and moderating effects. Personnel psychology, 61(2):227–
271.

Gorbach, N. S., Bauer, S., and Buhmann, J. M. (2017). Scalable variational inference for dynamical
systems. Advances in neural information processing systems, 30.

10

Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishanker, N., and Sriram, S.
(2006). Modeling customer lifetime value. Journal of service research, 9(2):139–155.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19.

Helton, W. S. and Russell, P. N. (2017). Rest is still best: The role of the qualitative and quantitative
load of interruptions on vigilance. Human factors, 59(1):91–100.

Hennfng, R. A., Sauter, S. L., Salvendy, G., and Krieg Jr, E. F. (1989). Microbreak length, perfor-
mance, and stress in a data entry task. Ergonomics, 32(7):855–864.

Hofbauer, J., Sigmund, K., et al. (1998). Evolutionary games and population dynamics. Cambridge
university press.

Hron, J., Krauth, K., Jordan, M. I., Kilbertus, N., and Dean, S. (2022). Modeling content creator
incentives on algorithm-curated platforms. arXiv preprint arXiv:2206.13102.

Hug, N. (2020). Surprise: A python library for recommender systems. Journal of Open Source
Software, 5(52):2174.

Jiang, R., Chiappa, S., Lattimore, T., György, A., and Kohli, P. (2019). Degenerate feedback loops
in recommender systems. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, pages 383–390.

Kahneman, D. (1973). Attention and effort, volume 1063. Citeseer.

Kalimeris, D., Bhagat, S., Kalyanaraman, S., and Weinsberg, U. (2021). Preference amplification
in recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 805–815.

Kleinberg, J., Mullainathan, S., and Raghavan, M. (2022). The challenge of understanding what users
want: Inconsistent preferences and engagement optimization. arXiv preprint arXiv:2202.11776.

Kleinberg, R. and Immorlica, N. (2018). Recharging bandits. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pages 309–319. IEEE.

Krauth, K., Dean, S., Zhao, A., Guo, W., Curmei, M., Recht, B., and Jordan, M. I. (2020). Do offline
metrics predict online performance in recommender systems? arXiv preprint arXiv:2011.07931.

Leqi, L., Kilinc Karzan, F., Lipton, Z., and Montgomery, A. (2021). Rebounding bandits for modeling
satiation effects. Advances in Neural Information Processing Systems, 34:4003–4014.

Lotka, A. J. (1910). Contribution to the theory of periodic reactions. The Journal of Physical
Chemistry, 14(3):271–274.

Madras, D., Pitassi, T., and Zemel, R. (2018). Predict responsibly: improving fairness and accuracy
by learning to defer. Advances in Neural Information Processing Systems, 31.

Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., and Burke, R. (2020). Feedback
loop and bias amplification in recommender systems. In Proceedings of the 29th ACM international
conference on information & knowledge management, pages 2145–2148.

Monge Roffarello, A. and De Russis, L. (2019). The race towards digital wellbeing: Issues and
opportunities. In Proceedings of the 2019 CHI conference on human factors in computing systems,
pages 1–14.

Montag, C., Zhao, Z., Sindermann, C., Xu, L., Fu, M., Li, J., Zheng, X., Li, K., Kendrick, K. M.,
Dai, J., et al. (2018). Internet communication disorder and the structure of the human brain: Initial
insights on wechat addiction. Scientific reports, 8(1):1–10.

Mullette-Gillman, O. A., Leong, R. L., and Kurnianingsih, Y. A. (2015). Cognitive fatigue destabilizes
economic decision making preferences and strategies. PloS one, 10(7):e0132022.

11

Muraven, M. and Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does
self-control resemble a muscle? Psychological bulletin, 126(2):247.

Perez, S. (2018). Apple unveils a new set of ‘digital wellness’ features for better managing screen
time. TechCrunch, June, 4. [Online; accessed 23-September-2022].

Rauch, J. (2018). Slow media: Why slow is satisfying, sustainable, and smart. Oxford University
Press.

Robertson, S. E. (1977). The probability ranking principle in ir. Journal of documentation.

Ross, H. A., Russell, P. N., and Helton, W. S. (2014). Effects of breaks and goal switches on the
vigilance decrement. Experimental brain research, 232(6):1729–1737.

Ryder, T., Golightly, A., McGough, A. S., and Prangle, D. (2018). Black-box variational inference
for stochastic differential equations. In International Conference on Machine Learning, pages
4423–4432. PMLR.

Samuelson, L. (1998). Evolutionary games and equilibrium selection, volume 1. MIT press.

Sanna Passino, F., Maystre, L., Moor, D., Anderson, A., and Lalmas, M. (2021). Where to next? a
dynamic model of user preferences. In Proceedings of the Web Conference 2021, WWW ’21, page
3210–3220, New York, NY, USA. Association for Computing Machinery.

Schmit, S. and Riquelme, C. (2018). Human interaction with recommendation systems. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 862–870. PMLR.

Scholl, M. P., Calinescu, A., and Farmer, J. D. (2021). How market ecology explains market
malfunction. Proceedings of the National Academy of Sciences, 118(26):e2015574118.

Sievertsen, H. H., Gino, F., and Piovesan, M. (2016). Cognitive fatigue influences students’ perfor-
mance on standardized tests. Proceedings of the National Academy of Sciences, 113(10):2621–
2624.

Takeuchi, Y. (1996). Global dynamical properties of Lotka-Volterra systems. World Scientific.

Thoman, D. B., Smith, J. L., and Silvia, P. J. (2011). The resource replenishment function of interest.
Social Psychological and Personality Science, 2(6):592–599.

Trélat, E. and Zuazua, E. (2015). The turnpike property in finite-dimensional nonlinear optimal
control. Journal of Differential Equations, 258(1):81–114.

Wang, J.-C. and Lin, J.-P. (2003). Are personalization systems really personal?-effects of conformity
in reducing information. In 36th Annual Hawaii International Conference on System Sciences,
2003. Proceedings of the, pages 10–pp. IEEE.

Warlop, R., Lazaric, A., and Mary, J. (2018). Fighting boredom in recommender systems with linear
reinforcement learning. Advances in Neural Information Processing Systems, 31.

Weibull, J. W. (1997). Evolutionary game theory. MIT press.

12

A Deferred proofs

A.1 Properties of Lotka-Volterra systems

Definition A.1 (Static policy equilibrium). Let λ(t), q(t) denote a Lokta-Volterra model characterized
by parameters θ = (α, β, γ, δ) ∈ R4

+, as defined in Equation 2. Let p ∈ [0, 1], and denote by πp the
static policy corresponding to p. For λ(0), q(0) > 0, the static equilibrium of the system is defined
as:

λ∗(p; θ) = lim
t→∞

λ(t)

q∗(p; θ) = lim
t→∞

q(t)

We denote λ∗(p) = λ∗(p; θ) when θ is clear from the context. We denote λ∗(p;u) = λ∗(p; θu) when
a user u ∈ U characterized by parameters θu is given and clear from the context.
Proposition A.1 (Global stability). λ∗(p; θ) exists and uniquely defined for all θ ∈ R4

+, p ∈ [0, 1]
and for all initial conditions λ(0), q(0) > 0.

Proof. See (Takeuchi, 1996, Section 3.2).

Lemma A.1 (Equilibrium of LV behavioral model. Formal proof of Lemma 1). Assume a Lokta-
Volterra model characterized by θ = (α, β, γ, δ) ∈ R4

+, and let p ∈ [0, 1] denote the proportion of
interactions in which a forced break is served. The static equilibrium of the model under static policy
πp is given by:

λ∗(p) =

{
γ
δ

1
1−p

(
1− α

β
1

1−p

)
p ∈

[
0, 1− α

β

]

0 otherwise

q∗(p) =

{
α
β

1
1−p p ∈

[
0, 1− α

β

]

1 otherwise

Proof. The LV dynamical system is given by Equation 3:

dλ

dt
= −αλ+ β(1− p)λq

dq

dt
= γq(1− q)− δ(1− p)λq

when p ∈
[
0, 1− α

β

]
we equate dλ

dt = 0, dq
dt = 0 and obtain the result. The solution is guaranteed to

be valid, as both λ∗(p) > 0 and q∗(p) ∈ [0, 1].

Conversely, when p /∈
[
0, 1− α

β

]
, there exists ϵ > 0 such that d

dt log λ < −ϵ < 0 for all λ > 0,
q ∈ [0, 1]. From this we obtain that log λ(t) tends towards −∞, and therefore λ(t) tends towards
0, and λ∗(p) = 0 as required. When λ(t) is close to zero, the interaction terms vanish in the dq

dt
equation, and q(t) grows logistically towards 1.

Proposition A.2 (Equilibrium bounds). For a Lotka-Volterra model, the static equilibrium λ∗(p) is
bounded by:

0 ≤ λ∗(p) ≤ βγ

4αδ

Proof. Denote x = 1
1−p . From Lemma A.1, for x ∈

[
1, βα

]
the equilibrium consumption λ∗(x) is

given by:

λ∗(x) =
γ

δ
x

(
1− α

β
x

)

and is zero otherwise. The equilibrium is a quadratic function of x with roots x ∈
{
0, βα

}
, and

therefore attains its maximum at x = β
2α . Plugging back the maximizing x into λ∗ we obtain

13

the upper bound. Lower bound is attained as the equilibrium in Lemma A.1 is clipped by 0 from
below.

Lemma A.2 (Optimal static policy. Formal proof of Lemma 2). The optimal static policy for a
Lotka-Volterra system is given by:

popt =

{
1− 2αβ

α
β ≤ 1

2

0 α
β >

1
2

And the optimal equilibrium engagement rate is given by:

λ∗opt =

{ βγ
4αδ

α
β ≤ 1

2
γ
δ

(
1− α

β

)
α
β >

1
2

Proof. Denote x = 1
1−p . From Proposition A.2, the global maximum of λ∗(x) is attained at x = β

2α .

Consider two cases: When α
β ≤ 1

2 , we obtain that xopt = β
2α ≥ 1, and therefore popt = 1− 1

x ∈ [0, 1].
From this we obtain that in this case the global maximum is attained on the simplex, and given by the
formula from Proposition A.2. Conversely, when α

β >
1
2 , we obtain p = 1− 1

x < 0, and therefore
xopt translates to a negative value of p. As λ∗(p) is uni-modal, the optimal policy restricted to the
simplex [0, 1] in this case is attained on the closest boundary point p = 0.

Figure 2 provides graphical intuition for this proof (left and center subplots).

Proposition A.3 (Inference of α/β from two-treatment equilibrium data. Formal proof of Proposi-
tion 1). Let λ(t), q(t) be a Lokta-Volterra model, let p1, p2 ∈ [0, 1]. Denote by λ∗(p1), λ∗(p2) the
static equilibrium rates corresponding to static policies πp1 , πp2 , and assume λ∗(p1), λ∗(p2) > 0.
The parameter ratio α

β is given by the following formula:

α

β
=

(1− p2)λ∗(p2)− (1− p1)λ∗(p1)
1

1−p1 −
1

1−p2

Proof. From Lemma A.1, the equilibrium consumption λ∗(p) is given by:

λ∗(p) =
γ

δ

1

1− p

(
1− α

β

1

1− p

)

=
γ

δ

1

1− p −
α

β

γ

δ

(
1

1− p

)2

When λ∗(pi) is observed for different policies p1, . . . , pm ∈
[
0, 1− α

β

]
, we obtain a polynomial

regression problem for the parameters α
β and α

β
γ
δ , which can be solved e.g using Non-Negative Least

Squares.

When m = 2, we obtain a system of two linear equations. Apply Cramer’s rule to obtain:

γ

δ
=

λ∗(p2)
(1−p1)2 −

λ∗(p1)
(1−p2)2

1
(1−p1)(1−p2)2 −

1
(1−p1)2(1−p2)

=
(1− p2)2λ∗(p2)− (1− p1)2λ∗(p1)

p2 − p1
(11)

α

β

γ

δ
=

λ∗(p2)
(1−p1) −

λ∗(p1)
(1−p2)

1
(1−p1)(1−p2)2 −

1
(1−p1)2(1−p2)

= (1− p1)(1− p2)
(1− p2)λ∗(p2)− (1− p1)λ∗(p1)

p2 − p1
(12)

And therefore α
β is given by:

α

β
=

λ∗(p2)
(1−p1) −

λ∗(p1)
(1−p2)

λ∗(p2)
(1−p1)2 −

λ∗(p1)
(1−p2)2

= (1− p1)(1− p2)
(1− p2)λ∗(p2)− (1− p1)λ∗(p1)
(1− p2)2λ∗(p2)− (1− p1)2λ∗(p1)

14

A.2 Model fitting from engagement predictions

Notations. In this section only, we use the common notation q = 1− p to denote complementary
probabilities.

Definition A.2 (Empirical value of α/β). For single-channel experiments with forced-break proba-
bilities p1, p2, denote λi = λ∗(pi), fi = fpi(u), qi = 1−pi. The empirical value of the α

β parameter
is given by the following formula:

α̂

β
=
q1q2 (q1f1 − q2f2)

q21f1 − q22f2

Proposition A.4 (α/β estimation error from prediction errors). Given a single-channel Lokta-Volterra

system with parameter α
β ≥ 1. Let p1, p2 ∈

[
1, αβ

]
, denote λ∗i = λ∗(pi) ∈ R+, and let fi = λ∗i + εi

be the predicted engagement rates corresponding to p1, p2. When |ε1|, |ε2| ≤ ε ≤ γ
δ
|p1−p2|

4 , the
estimation error is bounded by:

∣∣∣∣
α

β
− α̂

β

∣∣∣∣ ≤
ε

|p1 − p2|
βδ

αγ

Proof. denote qi = 1− pi. The value of αβ is given by Proposition A.3:

α

β
=
q1q2 (q1λ

∗
1 − q2λ∗2)

q21λ
∗
1 − q22λ∗2

And the estimator for αβ is obtained by replacing the true value with their predictions:

α̂

β
=
q1q2 (q1f1 − q2f2)

q21f1 − q22f2

=
q1q2 (q1(λ

∗
1 + ε1)− q2(λ∗2 + ε2))

q21(λ
∗
1 + ε1)− q22(λ∗2 + ε2)

The estimation error is given by:

∣∣∣∣
α

β
− α̂

β

∣∣∣∣ =
∣∣∣∣

q21q
2
2(q1 − q2)(ε2λ∗1 − ε1λ∗2)

(q21λ
∗
1 − q22λ∗2)(q21λ∗1 − q22λ∗2 − (q21ε1 − q22ε2))

∣∣∣∣

= (q1q2)
2

︸ ︷︷ ︸
≡(i)

∣∣∣∣
q1 − q2

q21λ
∗
1 − q22λ∗2

∣∣∣∣
︸ ︷︷ ︸

≡(ii)

|ε2λ∗1 − ε1λ∗2|︸ ︷︷ ︸
≡(iii)

∣∣∣∣
1

q21λ
∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

∣∣∣∣
︸ ︷︷ ︸

≡(iv)

We now proceed to bound each factor:

• For (i), the term (q1q2)
2 is bounded by 1 since q1, q2 ∈ [0, 1].

• For (ii), the term
∣∣∣ q1−q2
q21λ

∗
1−q22λ∗

2

∣∣∣ is equal to
(
γ
δ

)−1
by Eq. (11).

• For (iii), from Proposition A.2 we obtain the bound 0 ≤ λ∗i ≤ βγ
4αδ , and therefore the term

|ε2λ∗1 − ε1λ∗2| is bounded by 2
(
βγ
4αδ

)
ε = βγ

2αδ ε.

15

• For (iv), the term
∣∣∣ 1
q21λ

∗
1−q22λ∗

2−(q21ε1−q22ε2)

∣∣∣ is equal to:

(iv) ≡
∣∣∣∣

1

q21λ
∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

∣∣∣∣

=
1

|p1 − p2|

∣∣∣∣
q21λ

∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

p1 − p2

∣∣∣∣
−1

=
1

|p1 − p2|

∣∣∣∣∣∣∣∣∣

q21λ
∗
1 − q22λ∗2
p1 − p2︸ ︷︷ ︸

Eq. (11)

−q
2
1ε1 − q22ε2
p1 − p2

∣∣∣∣∣∣∣∣∣

−1

=
1

|p1 − p2|

∣∣∣∣
γ

δ
− q21ε1 − q22ε2

p1 − p2

∣∣∣∣
−1

Note that
∣∣∣ q

2
1ε1−q22ε2
p1−p2

∣∣∣ ≤ 2ε
|p1−p2| . When ε is small enough, and specifically when the bound

ε ≤ γ
δ
|p1−p2|

4 holds, we obtain:
∣∣∣∣
γ

δ
− q21ε1 − q22ε2

p1 − p2

∣∣∣∣
−1

≤ δ

γ

∣∣∣∣1−
1

2

∣∣∣∣
−1

≤ 2
δ

γ

and therefore:

(iv) ≤ 2

|p1 − p2|
δ

γ

Aggregating results (i)-(iv) above, we obtain the overall bound:
∣∣∣∣
α

β
− α̂

β

∣∣∣∣ = (q1q2)
2

︸ ︷︷ ︸
≤1

∣∣∣∣
q1 − q2

q21λ
∗
1 − q22λ∗2

∣∣∣∣
︸ ︷︷ ︸

= δ
γ

|ε2λ∗1 − ε1λ∗2|︸ ︷︷ ︸
≤ βγ

2αδ ε

∣∣∣∣
1

q21λ
∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

∣∣∣∣
︸ ︷︷ ︸

≤ 2
|p1−p2|

δ
γ

≤ ε

|p1 − p2|
βδ

αγ

Proposition A.5 (Cost of α/β estimation error). Let αβ be the engagement ratio parameter of a

one-channel Lotka-Volterra system, and let
ˆ(α
β

)
be an estimate of these parameters. Let λ∗opt be the

engagement rate of the optimal static policy, and denote λ∗(x) = λ∗ (p̂(x)). When
∣∣∣∣αβ −

ˆ(α
β

)∣∣∣∣ ≤

min
{
α
2β , 1

}
The price of estimation error is bounded by:

λ∗opt − λ∗
(

ˆ(α
β

))
≤
(γ
δ

)
min

{(
2
α

β

)−2
∣∣∣∣∣
α

β
−

ˆ(α
β

)∣∣∣∣∣,
(
4
α

β

)−1
}

Proof. Denote r = α
β , x =

ˆ(α
β

)
, and assume without loss of generality that γδ = 1 and r ≤ 1. The

optimal equilibrium engagement rate is given by:

λ∗opt =

{
1
4r r ∈

(
0, 12

]

1− r r ∈
(
1
2 , 1
]

The chosen policy p̂(x) is given by:

p̂(x) =

{
1− 2x x ∈

[
0, 12

]

0 otherwise

16

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

∆α
β

=
ˆ(α
β

)
− α

β

0.0

0.2

0.4

0.6

0.8

1.0

∆
λ
∗

=
λ
∗ (
p
∗)
−
λ
∗ (
p̂
)

Cost of estimation error for different values of α
β

, and the corresponding upper bounds

α
β = 0.30

α
β = 0.40

α
β = 0.60

α
β = 0.80

Figure 4: Graphical illustration of Proposition A.5. Cost of estimation error for different values of αβ ,
and their corresponding upper bounds given by the claim.

Assume without loss of generality that x ∈
[
0, 12

]
, as values of x outside the interval can be clipped

to its edges without affecting the result. The equilibrium engagement rate of the selected policy is
given by:

λ∗(x) = λ∗ (p̂(x)) =

{
0 x ∈

[
0, r2

]
1
2x

(
1− r

2x

)
x ∈

(
r
2 ,

1
2

]

Denote ∆(x) = λ∗opt − λ∗(x). We obtain:

∆(x) = λ∗opt − λ∗(x) =





1
4r r ∈

(
0, 12

]
, x ∈

[
0, r2

]
(x−r)2
4x2r r ∈

(
0, 12

]
, x ∈

(
r
2 ,

1
2

]

(1− r) r ∈
(
1
2 , 1
]
, x ∈

[
0, r2

]

(1− r)− 1
2x

(
1− r

2x

)
r ∈

(
1
2 , 1
]
, x ∈

(
r
2 ,

1
2

]

Observe that 1
4r ≥ 1− r for all r ∈ (0, 1], and therefore we obtain for all x, r:

∆(x) ≤ 1

4r
(13)

From the convexity of ∆(x) in the region around x = r we obtain:

∆(x) ≤ 1

2r2
|x− r| (14)

Finally, combining the two bounds yields the final result. A geometric interpretation of this claim is
illustrated in Figure 4.

A.3 Optimal stationary policy from engagement predictions

Definition A.3 (Expected observable rate). Let u ∈ U , p ∈ [0, 1], and T > 0. Let p ∈ [0, 1], denote
the corresponding static policy by πp. The expected observable rate λ̄u(p;T) is defined as:

λ̄u(p;u) = Eπ
[
1

T

∣∣TPPπp(u;T)
∣∣
]

where expectation is taken over the stochastic decisions of πp.
Definition A.4 (Lokta-Volterra approximation of TPP). Let u ∈ U , and T > 0. Denote by p∗ the
maximizer of expected observable rate:

p∗ = argmax
p∈[0,1]

λ̄u(p;u)

The LV approximation of TPP(u;T) is defined as:

θ∗u = argmin
θ

max
p∈[0,1]

∣∣λ̄u(p;u)− λ∗(p; θ)
∣∣

such that argmaxp λ
∗(p; θ) = p∗. The corresponding approximation error is defined as:

εLV,u = max
p∈[0,1]

∣∣λ̄u(p;u)− λ∗(p; θ∗u)
∣∣

17

Notations. When u is clear from the context, we denote θ∗ = θ∗u, εLV = εLV,u. We use α∗, β∗, . . .
to refer to the corresponding parts of the Lokta-Volterra parameters vector θ∗.

We are now ready to state and prove the main theorem for this section:
Theorem A.1 (Regret bound for learned static policy. Formal version of Theorem 1). Let p1, p2 ∈
[0, 1] denote two static forced-break policies, and denote by U the set of users, and assume they
remain engaged under the stationary policies π(p1) and π(p2). Assume Su(p;T) ∼ TPPπp◦ψ(u;T),

and let µ =
(
maxu∈U

γ̄u
δ̄u

)
·
(
maxu′∈U

δ̄u′
γ̄u′

)
, ν = maxu∈U

(
β̄u

ᾱu

)
.

Let fp1 , fp2 : U → R+ be functions predicting 1
T |Su (p1;T)|, 1

T |Su (p2;T)|, respectively. Denote
the learned policy by p̂, and the optimal policy by p∗.

If (i) the expected RMSE of fp1 , fp2 is bounded by εpred, (ii) the average absolute deviation of
1
T |TPP(u;T)| is bounded by εdev, and (iii) the expected LV approximation error of the system is
bounded by εLV, then the learned policy p̂ has bounded regret:

Eu,π
[∣∣ 1
T |Su (p∗;T)| − 1

T |Su (p̂;T)|
∣∣] ≤ ηTPP

|p1 − p2|
(εpred + εdev + εLV)

where expectation is taken over stochastic choices of policies, and ηTPP = g(µ, ν) ∈ poly(µ, ν).

Proof. By assumption (i), the functions fp1 , fp2 have bounded expected RMSE:

Eu
[(
fpi(u)− 1

T |Su (pi;T)|
)2] ≤ ε2pred (15)

Applying Jensen’s inequality with the convex function φ(x) = x2 yields:
(
Eu
[∣∣fpi(u)− 1

T |Su (pi;T)|
∣∣])2 ≤ Eu

[(
fpi(u)− 1

T |Su (pi;T)|
)2]

Combining with Eq. (15) and taking the square root, we obtain an upper bound on the expected
absolute error:

Eu
[∣∣fpi(u)− 1

T |Su (pi;T)|
∣∣] ≤ εpred (16)

Let ∆f = |fpi(u)− λ∗(pi)| apply the triangle inequality to obtain:

∆f = |fpi(u)− λ∗(pi)|
≤
∣∣fpi(u)− 1

T |Su (u;T)|
∣∣+
∣∣ 1
T |Su (u;T)| − λ̄(pi;u)

∣∣+
∣∣λ̄(pi;u)− λ∗(pi)

∣∣

Denote εf = εpred + εdev + εLV. Applying the triangle inequality and using the bounds in Eq. (16)
together with assumptions (ii), (iii), we obtain:

Eu,π[∆f] ≤Eu
[∣∣fpi(u)− 1

T |Su (u;T)|
∣∣]

+ Eu,π
[∣∣ 1
T |Su (u;T)| − λ̄(pi;u)

∣∣]

+ Eu
[∣∣λ̄(pi;u)− λ∗(pi; θ∗u)

∣∣]

≤εpred + εdev + εLV = εf (17)

Denote θ∗u = (α, β, γ, δ). The empirical value
ˆ(α
β

)
of
(
α
β

)
is given by Definition A.2. Denote the

estimation error by ∆α
β
=

∣∣∣∣
ˆ(α
β

)
−
(
α
β

)∣∣∣∣.

By Proposition A.4, the following pointwise upper bound on ∆α
β

applies when ∆f ≤ γ
δ
|p1−p2|

4 :

∆α
β
≤ ∆f

|p1 − p2|
βδ

αγ
(18)

Plugging in the bound on the expected value of ∆f into Eq. (18), we obtain in expectation:

Eu,π
[
∆α

β
| ∆f ≤

γ

δ

|p1 − p2|
4

]
≤ Eu,π

[
∆f

|p1 − p2|
βδ

αγ
| ∆f ≤

γ

δ

|p1 − p2|
4

]

≤ εf
|p1 − p2|

max
u

βδ

αγ
(19)

18

Next, we apply Proposition A.5. Denote ∆λ∗ = λ∗(p∗)−λ∗(p̂), and define the following probability
event:

A =

(
∆f ≤

γ

δ

|p1 − p2|
4

)
and

(
∆α

β
≤ 1

2ν

)

Note that the bound in Proposition A.5 is represented as a minimum between two functions, one
linear in ε and one constant. To leverage this property, apply the law of total expectation:

Eu,π[∆λ∗] = Eu,π[∆λ∗ | A]P[A] + Eu,π
[
∆λ∗ | Ā

]
P
[
Ā
]

(20)

Under A, the first term in Eq. (20) can be bounded by the linear term in Proposition A.5. Taking
P[A] ≤ 1 and combining with equation Eq. (18):

Eu,π[∆λ∗ | A]P[A] ≤ Eu,π[∆λ∗ | A]

≤ Eu,π
[
β2γ

2α2δ
∆α

β
| A
]

≤ Eu,π
[
β2γ

2α2δ

∆f

|p1 − p2|
βδ

αγ
| A
]

≤ ν3

2|p1 − p2|
εf (21)

The expectation factor in the second term of Eq. (20) can be bounded by the constant term in
Proposition A.5:

Eu,π
[
∆λ∗ | Ā

]
≤ 1

4
max
u

βγ

αδ
≤ ν

4
max
u

γ

δ
(22)

Decompose the probability factor P
[
Ā
]

using the law of total probability:

P
[
Ā
]
= P

[
∆f >

γ

δ

|p1 − p2|
4

]
+ P

[
∆α

β
>

1

2ν
| ∆f ≤

γ

δ

|p1 − p2|
4

]
P
[
∆f ≤

γ

δ

|p1 − p2|
4

]

≤ P
[
∆f >

γ

δ

|p1 − p2|
4

]
+ P

[
∆α

β
>

1

2ν
| ∆f ≤

γ

δ

|p1 − p2|
4

]

Apply Markov’s inequality P[|X| ≥ a] ≤ E[|X|]
a on the probabilities to obtain:

P
[
∆f >

γ

δ

|p1 − p2|
4

]
≤ Eu,π[∆f]

(
γ

δ

|p1 − p2|
4

)−1

≤
by Eq. (17)

εf
4

|p1 − p2|
max
u

δ

γ
(23)

P
[
∆α

β
>

1

2ν
| ∆f ≤

γ

δ

|p1 − p2|
4

]
≤ Eu,π

[
∆α

β
| ∆f ≤

γ

δ

|p1 − p2|
4

]

≤
by Eq. (19)

εf
|p1 − p2|

max
u

βδ

αγ

≤ εf
|p1 − p2|

νmax
u

δ

γ
(24)

Plugging back equations Eq. (21), Eq. (22),Eq. (23),Eq. (24) into equation Eq. (20), we obtain bounds
for each term:

Eu,π[∆λ∗] = Eu,π[∆λ∗ | A]P[A]︸ ︷︷ ︸
by Eq. (21)

+Eu,π
[
∆λ∗ | Ā

]
︸ ︷︷ ︸

by Eq. (22)

P
[
Ā
]

︸ ︷︷ ︸
by Eq. (23),Eq. (24)

(25)

we obtain:

Eu,π[∆λ∗] ≤ εf
|p1 − p2|

(
ν3

2
+

(
ν +

ν2

4

)
µ

)
= ελ∗

19

To obtain the regret bound on the empirical rates, we apply assumptions (ii), (iii) once again to bound
the expected difference between λ∗(p) and 1

T |Su (p;T)|, and apply the triangle inequality:

Eu,π
[∣∣ 1
T |Su (p∗;T)| − 1

T |Su (p̂;T)|
∣∣] ≤ ελ∗ + 2(εdev + εLV)

Note that ν
|p1−p2| > 1, as β

α ≥ 1 since all the users are assumed to remain engaged in the
long term, and |p1 − p2| ≤ 1 as p1, p2 ∈ [0, 1]. Therefore, the function ηTPP = g(µ, ν) =(
ν3

2 +
(
ν + ν2

4

)
η + 2ν

)
satisfies:

Eu,π
[∣∣ 1
T |Su (p∗;T)| − 1

T |Su (p̂;T)|
∣∣] ≤ ηTPP

|p1 − p2|
(εpred + εdev + εLV)

B Experimental details

B.1 Data

We base our experimental environment on the MovieLens 1M dataset, which is a standard benchmark
dataset used widely in recommendation system research (Harper and Konstan, 2015). The dataset
includes 1,000,209 ratings provided by 6,040 users and for 3,706 movies. Rating are in the range
{1, . . . , 5}, and all users in the dataset have at least 20 reported ratings. The dataset is publicly
available at: https://grouplens.org/datasets/movielens/1m/.

Data partitioning. To learn latent user and item features, 30% of all ratings were drawn at random.
Stratified sampling was applied to ensure that all users and items were covered, and so that each users
have roughly the same proportion of ratings used for this step. These ratings were only used only for
learning a CF model, and were discarded afterwards. The remaining 70% data points were used for
training and testing. For these, we first randomly sampled 1,000 users to form the test set. Then, the
remaining users were partitioned into the main train set S, which included 70% (≈3,528) of these
users, and the experimental treatment sets S(j), each including 10% (≈504) users for N = 3. This
procedure was repeated 10 times, and we report average results and standard errors.

B.2 Implementation details
• Hardware: All experiments were run on a single laptop, with 16GB of RAM, M1 Pro processor,

and with no GPU support.
• Runtime: A single run consisting the entire pipeline (data loading and partitioning, collaborative

filtering, training classifiers, simulating dynamics, learning policies, measuring and comparing
performance) takes roughly 20 minutes. The main bottleneck is the discrete LV simulation, taking
roughly 70% of runtime to compute, mostly due to bookkeeping necessary for the non-stationary
baselines. Simulation code was optimized using the NUMBA jit compiler, which improves runtime.

• Optimization packages:
– Collaborative filtering (CF): We use the SURPRISE package (Hug, 2020), which includes an

implementation of the SVD algorithm for CF. All parameters were set to default values.
– Regression: We use the SCIKIT-LEARN implementation of linear regression for predicting

long-term engagement from user features (i.e the prediction models fj(u) in Eq. (8)). All
parameters were set to default values.

– Non-Negative Least Squares (NNLS): We use the SCIPY.OPTIMIZE implementation of NNLS.
The algorithm was used with its default parameters.

• Code: Code for reproducing all of our figures and experiments is available in the following
repository: https://github.com/edensaig/take-a-break.

B.3 Other baselines
• Safety: In each step of the TPP simulation, look k step back, and calculate the empirical rate
λ̃i =

k
ti−ti−k

. If this rate exceeds the threshold λ̃i > τ , the policy enters a ‘cool-down’ policy
state, serving only forced breaks until the next time period. In our experiments, we used thresholds
τ ∈ {14, 16}, k = 10 look-behind steps, and defined the cool-down period as 0.5 time units.

20

https://grouplens.org/datasets/movielens/1m/
https://github.com/edensaig/take-a-break

0 20 40 60 80 100

time

20

40

60

80

100

120

L
at

en
t

co
n

su
m

p
ti

on
d

ri
ve
λ

(t
)

Discrete simulation (B = 1)

0 20 40 60 80 100

time

Discrete simulation (B = 10)

0 20 40 60 80 100

time

Continuous ODE

λ(t) Cumulative rate Theoretical λ∗

Figure 5: Example discrete sequence Su ∼ TPP(u;T), compared to continuous LV dynamics. Our
TPP produces discrete sequences that are qualitatively different from their continuous-time analogs
(blue lines), Nonetheless, it captures the general properties of our proposed behavioral model: note
how cumulative averaging behavior (orange dashes) exhibits ‘habit formation’, which our equilibrium
approach targets (blue dots). For the same initial conditions λ(0), q(0), the figure shows how varying
the number of recommended items per step (B) ‘smooths’ the discrete behavior (left: B = 1, center:
B = 10). For fixed βu(t) = βu, when B → ∞, and when ∆t → 0, TPP sequences approach a
continuous LV trajectory; in general, and particularly when βu(t) varies by step and per recommended
items—this is not the case.

• Oracle: To estimate the effect of perfect predictions, we implement an oracle predictor foraclep (u)
which has access to the latent user parameters. For a given u and for each p, the predictor
outputs the infinite-horizon LV equilibrium for u, namely foraclep (u) = λ∗(p; θ̃u). We define
θ̃u = (αu, β̃u, γu, δu), where αu, γu, δu are the unobserved parameters for the given user, and β̃u
is the expected value of βux induced by the distribution over recommended items x induced by the
recommendation policy ψ. We view θ̃u as a useful proxy for the otherwise unattainable θ̄u.

B.4 Hyperparameters

• Collaborative filtering: We used d = 8 latent factors and enabled bias terms, which ensured
performance is close to the benchmark of RMSE = 0.873 reported in the SURPRISE documentation.
We used the vanilla SVD solver, with all hyper-parameters set to their default values.

• Recommendation policy: Softmax temperature was set to 0.5.

• Prediction: We trained regressors f(u) on input feature vectors u ∈ Rd+2 consisting of: (i) SVD
latent user factors, (ii) SVD user bias terms, (iii) an additional feature consisting of the average
predicted ratings for unseen items (exponentiated and normalized), which we found to slightly
improve predictive performance. We chose to focus on linear models since the treatment datasets
are relatively small (each |S(j)| ≈ 500), and since other model classes (including boosted trees
and MLPs) did not perform significantly better.

• Discrete TPP: Interaction sequences for each user were generated according to an LV discretization
scheme, described in detail in the next section. Latent sates were initialized randomly with relative
uniform noise around the theoretical LV equilibrium point (λ0, q0) = ((1 + ξλ)λ

∗, (1 + ξq)q
∗),

where ξλ, ξq ∼ Uniform(−0.1, 0.1). Latent states were updated each B = 10 recommendations
to stabilize noise (see Figure 5). When x is recommended to u at time t, latent states and ∆t are
set according to βu(t), which depends on ratings rux (true or mixed with predictions u⊤x via κ).
Specifically, we use βu(t) = r2ux/5 ∈ {0.2, 0.8, 1.8, 3.2, 5}, which is convex, to accentuate the
role of low ratings since they are underrepresented in the data. For B ≥ 1, we take the effective
βu(t) to be the average over the B items recommended in that step. We set α = 1.3, and chose
γ = 0.2, δ = 0.01 (which together determine scale) so that typical values for engagement rate
1
T |Su| are on the order of ≈ 10 for the chosen T = 100.

B.5 Discrete TPP

The TPP we use for simulating user behavior is based on a discretization of the LV system described
in Eq. (2), based on the forward Euler method with variable step sizes.

21

Each user is associated with discrete latent states λi, qi, and parameters αu, γu, δu. Initial states
λ0, q0 are set randomly. At each step, and in time ti, the system recommends xi = x(ti), which
triggers updates in latent states, and determines the next time of interaction ti+1. As noted, these
update depend on item-specific parameters βu,xi

.

Under stationary policy π(p), the system recommends an item with probability (1− p), and suggests
a break with probability p. The simulator considers B recommendation opportunities at each step.
For each k ∈ {1, . . . , B}, denote by Ik ∈ {0, 1} the break indicator, equal to 0 when a break is
recommended at the k-th slot in the batch. Denote by x ∼ ψ the item recommended by the underlying
policy ψ, and by β(x) = r2ux/5 the corresponding LV hyperparameter as defined above. For a given
horizon T , the TPP process generating Su is described by Algorithm 1:

Algorithm 1: Discrete TPP for user u
Input: Break probability p ∈ [0, 1]

Stationary content recommendation probability ψ
Time horizon T > 0

Output: Interaction sequence Su ∼ TPPπ(p)◦ψ(u;T)
Initialize i = 0, t0 = 0, Su = {};
while ti < T do

foreach k ∈ {1, . . . , B} do
Ik ∼ Bernoulli(1− p);
xk ∼ ψ;
βk ←− β(ruxk

);
end
∆ti = λ−1

i ;

λi+1 ←− λi +
(
−α+

∑B
k=1 Ikβk

B qi

)
λi∆ti ;

qi+1 ←− qi +
(
γ(1− qi)−

∑B
k=1 Ikδ

B λi

)
qi∆ti ;

ti+1 ←− ti + λ−1
i+1 ;

Su ←− Su ∪ {(ti, (x1, . . . , xB), (I1, . . . , IB))} ;
i←− i+ 1 ;

end

22

	Introduction
	Related work

	Learning setting
	Engagement via `Predator-Prey' dynamics
	Learning optimal breaking policies
	Embedding users in LV space
	From predictions to optimal policies
	Theoretical guarantees

	Experiments
	Experimental setup
	Results and analysis

	Discussion
	Deferred proofs
	Properties of Lotka-Volterra systems
	Model fitting from engagement predictions
	Optimal stationary policy from engagement predictions

	Experimental details
	Data
	Implementation details
	Other baselines
	Hyperparameters
	Discrete TPP

