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ABSTRACT

Previous works have demonstrated the universal approximation capability of residual
networks through their continuous idealization as flow maps of dynamical systems.
However, informative results on their approximation rates in terms of depth (corre-
sponding to time) are generally lacking. From the viewpoint of approximation theory, a
major difficulty in addressing this gap lies in identifying an appropriate target space for
the approximation problem. In this paper, we introduce a restrictive but useful target
function space comprised of solutions to the eikonal equations, a type of first-order non-
linear partial differential equation, to investigate the approximation rates of flow map
families. We provide an estimate of the approximation error within this space, which
is notably different from classical rate estimates based directly on the smoothness of
target functions. This theoretical result further inspires a new learning-based algorithm
for solving the eikonal equation. Experimental results validate the effectiveness of our
proposed algorithm, including its robustness to spatial resolution and solution regularity,
as well as transferability among similar problems.

1 INTRODUCTION

Flow maps of dynamical systems play a crucial role in machine learning, offering both practical applica-
tions and theoretical insights. They are particularly valuable in generative modeling due to their inherent
dynamical structure and invertibility (Chen et al., 2018; Song et al., 2020; Papamakarios et al., 2021).
Furthermore, deep neural networks with residual connections can be idealized as controlled dynamical
systems (Weinan, 2017; Haber and Ruthotto, 2017), where the input-output mapping corresponds to a flow
map and the network depth relates to the maximal time horizon of the flow. This perspective underscores
the significance of understanding the approximation capabilities of flow map families in deep learning
theory.

In the context of machine learning, approximation theory studies how well functions in a target space
T can be approximated using a hypothesis space H, which is determined by the choice of model
architectures. Two main questions arise in approximation theory: density and approximation rate. The
former concerns whether H is dense in T in some topology, while the latter involves estimating the
approximation error for a function f ∈ T in relation to the model’s complexity. For example, when H is
the space of polynomials, the Stone-Weierstrass theorem (Stone, 1948) establishes its density in the space
of continuous functions. Additionally, Jackson’s theorem (Jackson, 1930) provides an approximation
rate estimation, indicating that the error in approximating an order-r smooth function f using degree
m polynomials is bounded by C(r, f)m−r, where C(r, f) is a constant depending on both r and f .
This approximation rate tells us the number of polynomial terms required to achieve a specific accuracy
in approximating f . Consequently, approximation rate results are more informative and practical than
density results, as they offer a quantitative measure of the cost for approximation, it also tells us which
functions can be approximated easily.

Despite established density results for flow map families over a broad range of dynamical systems (Li
et al., 2022; Tabuada and Gharesifard, 2022; Ruiz-Balet and Zuazua, 2023; Cheng et al., 2023), the
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approximation rate in terms of the maximal time horizon T (analogous to network depth) is not well-
understood. Existing results suffer from the curse of dimensionality or are limited to one-dimension case.
For instance, Ruiz-Balet and Zuazua (2023) showed that flow maps of continuous-time ResNet

ẋ(t) = W (t)σ(A(t)x(t) + b(t)), x(t) ∈ Rd, (1)

with ReLU activation and piecewise constant parameters chosen from a bounded set can achieve an
approximation rate of O(T− C

d2 ) in L2 over bounded subsets of Rd, but this rate deteriorates rapidly as
the dimension d increases. Similarly, Li et al. (2022) provided rate estimates for d = 1, but their results
do not generalize to higher dimensions. Consequently, it remains unclear when a deeper flow (larger T )
offers advantages over a shallower one for a given target function in general. From the perspective of
approximation theory, identifying an appropriate target space is crucial in bridging this gap.

In this paper, instead of establishing approximation rate in a general target space, our purpose is to focus
on a specific yet practically relevant setting. Specifically, we identify a novel target space comprising
solutions to the eikonal equation, a type of first-order nonlinear partial differential equation. By observing
that solutions to the eikonal equation can be represented via the flow map of a static vector field, we
propose a flow-based hypothesis space and develop an approximation architecture that first approximates
the underlying flow map and then computes its flow-based representation to approximate the solution.
This architecture resembles a flow idealization of recurrent networks with residual connections, where
each layer incorporates specific information about the solution. We establish an approximation rate
estimate within this hypothesis space, providing a quantitative measure of the approximation error with
respect to the network depth T . Unlike classical smoothness-based approximation results DeVore and
Lorentz (1993), our estimate depends on the dynamical structures of the solutions, offering a precise
setting where increasing depth yields provable performance improvements.

Moreover, our approximation results motivate a novel deep learning method, which we call the finite flow
method, for solving the eikonal equation. This method numerically implements our proposed flow-based
hypothesis space using a deep neural network. The flow-based representation further allows us to train
the network by minimizing the variational loss of the represented solution, which is a more efficient way
than minimizing the equation loss. Experimental comparisons with the fast marching method Sethian
(1999), a state-of-the-art finite difference solver, and existing physics-informed neural network (PINN)
methods bin Waheed et al. (2021); Grubas et al. (2023) demonstrate the effectiveness of our algorithm,
highlighting advantages in robustness to spatial resolution, solution regularity, and transferability among
similar problems.

In summary, the main contributions of this paper are as follows:

• By identifying the solutions to the eikonal equation as a target space, we construct a flow map
based hypothesis space and provide an approximation rate estimate in the space (Theorem 2.1).
While the target family is restrictive, the resulting approximation rate does not suffer from the
curse of dimensionality.

• We show that, different from the classical approximation theory where the approximation error is
estimated by the smoothness of the target, our approximation rate result depends on dynamical
structures of the solution to the eikonal equation.

• We further show that while the target space is restrictive, it is useful. We develop the finite flow
method for solving the eikonal equation by numerically implementing our hypothesis space.
Our method demonstrates effectiveness compared to state-of-the-art finite difference solvers and
existing PINN methods, offering advantages in certain scenarios.

2 RELATED WORK

Approximation rate results of deep neural networks As a fundamental aspect in deep learning theory,
the expressive capability of deep neural networks has been extensively studied. The universal approxima-
tion results of different types of deep architectures have been established in the literature (Hornik et al.,
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1989; Kidger and Lyons, 2020; Li et al., 2022; Yun et al., 2019). Compared to the universal approximation
results, the approximation rates of deep neural networks are less understood. For deep fully connected
neural network with ReLU-type activation functions, a series of non-asymptotic approximation rate
results are obtained, e.g. Yarotsky (2018); Shen et al. (2019); Lu et al. (2021). Recently, Chenghao et al.
extends similar results to ResNet with one-dimension output. These results all suffer from the curse of
dimensionality, since their target space are all general smooth function spaces. Some artificial function
classes are introduced for curse-of-dimensionlality-free results Montanelli (2021); Poggio et al. (2017);
He (2023), but these function spaces lack a clear connection to practical applications. For the family
of flow maps, there are fewer results on the approximation rate. By idealizing deep residual networks
as the flow map of a continuous-time dynamical system, the authors in Ruiz-Balet and Zuazua (2023)
provide an approximation rate of O(T− C

d2 ) for deep residual networks with depth T in the target space
of all square integrable functions over a bounded set in Rd. This result suffers significantly from the
curse of dimensionality, limiting its practical insights. In Li et al. (2022), a nearly optimal rate for the
continuous-time ReLU ResNet is obtained in one-dimension case. Although the approach is difficult to
extend to higher dimensions, this results reveals a difference of the flow-based approximation to classical
smoothness based approximation result.

Numerical methods for solving the eikonal equation The eikonal equation, a first-order nonlinear
partial differential equation, appears in various applications such as geometric optics, computer vision
and seismology Sethian et al. (1999). There are two well-known finite difference methods for the eikonal
equation: the fast marching method (FMM) Chopp (2001); Sethian (1999) and the fast sweeping method
(FSM) Fomel et al. (2009); Zhao (2005). FMM computes solutions at grid points based on the logic
Dijkstra’s algorithm, whereas FSM solves the eikonal equation by iteratively sweeping through the
grids. Both methods are renowned for their efficiency and accuracy, making them widely adopted in
practical applications. The physics-informed neural network (PINN) Raissi et al. (2019) has also been
applied to solve the eikonal equation bin Waheed et al. (2021); Grubas et al. (2023); Smith et al. (2020).
This approach involves training a neural network to approximate solutions to the eikonal equation by
minimizing the equation loss. Several factorization and regularization techniques have been introduced in
these works to enhance performance.

2.1 TARGET SPACE

For a given xs ∈ Rd, let Lip(Rd) ∩ C1(Rd \ {xs}) be the set of Lipschitz continuous functions in Rd

which is continuously differentiable in Rd \{xs}. For a given point xs ∈ Rd, we define the target function
space Σ ⊂ Lip(Rd) ∩ C1(Rd \ {xs}) as:

Σ :=
{
u
∣∣ u ≥ 0, u(xs) = 0, |∇u| ∈ Lip(Rd \ {xs}), 0 < a ≤ |∇u| ≤ b for some a, b ∈ R

}
, (2)

i.e. there exists Lipschitz continuous function fu with lower bound a > 0 and upper bound b, such that u
is the strongsolution of the equation:{

|∇u(x)| = fu(x), x ∈ Rn \ {xs},
u(xs) = 0.

(3)

Equation 3 is called the (one-source) eikonal equation (Tran, 2021). We call xs the source point and fu
the cost function of the equation. For general Lipschitz cost function, the viscosity solution of the eikonal
equation may not be in Lip(Rd) ∩ C1(Rd \ {xs}) (Tran, 2021). However, that case is not considered in
this paper.

2.2 HYPOTHESIS SPACE

Let Vu := −∇u/|∇u| be a continuous unit vector field over Rd \ {xs}. By the method of characteristics
for eikonal equation, for any x ∈ Rd \ {xs}, it holds that

u(x) =

∫ τ(x)

0

fu(z(t))dt, (4)
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where z(t) satisfies the ODE: {
ż(t) = Vu(z(t)),

z(0) = x,
(5)

τ(x) is the minimal time of z(t) to the source point xs. See Appendix A.1 for details on this.

Let φVu
(·, ·) : (x, t) → z(t) denote the flow map of equation 23. In the following, we will also use

φV (·, ·) to denote the flow of other given vector field V defined in the same way. Replacing z(t) by
φVu

(x, t), equation 4 gives a representation of u in terms of the flow map of the static vector field Vu.
This observation inspires the consideration of approximating u via approximating the corresponding flow
map φVu

.

To avoid problems caused by the singularity of Vu at the source point, we introduce an auxiliary parameter
ε > 0 and define χε as the indicator function of the domain {x ∈ Rd | ∥x − xs∥ > ε}. For any
x ∈ Rd \ {xs}, notice that

u(x) =

∫ τ(x)

0

fu(φVu(x, t))dt = lim
ε→0

∫ T

0

χε(φχεVu(x, t))fu(φχεVu(x, t))dt, (6)

for all T > τ(x). Therefore, over a bounded subset Ω̃ of Rd \ {xs}, with a small error in representing
u, we can avoid the trajectories of the flow touching the singularity of Vu, and uniformize the traveling
time to the origin by an upper bound of τ(x) over Ω̃ if we force the trajectory of φVu(x, ·) to stop when it
reaches the ε-neighborhood of the source point.

For given T > 0, and vector field V in Rd, we define:

ΓT,ε
u (V )(x) :=

∫ T

0

χε(φχεV (x, t))fu(φχεV (x, t))dt, (7)

as long as φχεV is well-defined over [0, T ], i.e. the solution of the corresponding ODE exists and is
unique. We then introduce our hypothesis space to approximate u ∈ Σ in the following definition:
Definition 2.1. Suppose W is a family of Lipschitz continuous vector field in Rd. For auxiliary parameter
ε > 0 and maximal time horizon T , we define our hypothesis space to approximate the flow map u ∈ Σ
as:

Hu
T (W, ε) := {ΓT,ε

u (V ) | V =
W

|W |
for some W ∈ W, s.t. |W | ≠ 0 in Rd}. (8)

In the flow view point, each element in Hu
T (W, ε) can be viewed as a continuous-layer deep neural

network with depth T . Therefore, there are two components that measures the complexity of this
hypothesis space: the size of W and the time horizon T , which corresponding to the layer width and
depth of the deep neural network, respectively. Intuitively, over a bounded domain Ω̃, the approximation
error using Hu

T (W, ε) will be small if W is large and T surpasses the maximal hitting time over Ω̃, and
the auxiliary ε is small.

Compared to the flow map approximation idealized from practical deep ResNet architectures, there are
two differences in the hypothesis space Hu

T (W, ε). First, the flow maps used to represent functions in
Hu

T (W, ε) are time-invariant, i.e. the map in each layer are the same. Second, the expression ΓT,ε
u (V ) is

related to the flow map of V at each time T , rather than just the final time T . These differences are due to
the structure of the eikonal equation. Despite these differences, the essence of approximating u ∈ Σ via
the hypothesis space Hu

T (W, ε) is still the approximation by flow maps.

2.3 APPROXIMATION RATE RESULT AND ITS CONSEQUENCES

In this section, we will provide an approximation rate estimate for element u ∈ Σ using the hypothesis
space Hu

T (W, ε) defined in the previous section. There are two terms in our estimation. The first term is
related to the time horizon T , the depth of the network. When T is not large enough for all the initial
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state in B(xs, 1) to reach the source point, there will be an error on the set no matter how accurate the
vector field Vf is approximated. This term will be zero when T surpasses the maximal hitting time. The
second term is dominated by the approximation error of |x− xs|Vf in W , and also the regularity of f .
When T surpasses the maximal hitting time in B(xs, 1), the approximation error will determined by the
expressive capability of the vector field hypothesis space W .

Define Cu :=
supx |∇u|
infx |∇u|

. By the definition of Σ, Cu ≥ 1 is finite. In Appendix B.1, we show that τ(x) ≤

Cu|x − xs| for all x ∈ Rd \ {xs}. Therefore, Cu gives a uniform upper bound of τ(x) over B(xs, 1).

Moreover, define Ṽu(x) := −|x−xs|
∇u

|∇u|
(x) and denote EW(Ṽu) := infW∈W ∥W − Ṽu∥L∞(B(xs,Cf ))

as the approximation error of Ṽu in W . We then have the following theorem:
Theorem 2.1. Assume that ε < 1 and

(2C2
u + Cu)(4EW(Ṽu))

1
Cu(L+1)+2 < ε (9)

Then, for given T > 0, and u ∈ Σ, we have:

inf
û∈Hu

T (W,ε)
∥u− û∥L1(B(xs,1)) ≤ C1 max{Cu − T, 0}2 + C2(4EW(Ṽu))

1
Cu(L+1)+2 + C3ε, (10)

where L is the Lipschitz constant of Ṽu. The constants C1, C2 and C3 are given by C1 = 2π∥fu∥∞/Cu,
C2 = πLfu(6C

3
u + 3C2

u), and C3 = 2π∥fu∥∞, with Lfu being the Lipschitz constant of fu = |∇u|.

Proof idea. For given T ≤ Cu, the domain B(xs, 1) can be divided into two parts: the set where
τ(x) ≤ T and the set where τ(x) > T . When the condition equation 9 is satisfied, there exists
û ∈ Hu

T (W, ε) whose corresponding flow can steer all points with τ(x) ≤ T to the ε-neighborhood of xs

within time T . Therefore, the error for this part can be bounded by an ODE estimation in terms of the
difference between W/|W | and Vu. For the other part, besides the error of flow map approximation, there
is an additional error caused by the insufficient traveling time, which can be bounded via an estimation on
the measure of this set. See the detailed proof in Appendix B.2.

When W tends to a universal approximation familiy, the right-hand side of the inequality 10 can actually
be arbitrarily small as long as T ≥ Cu. The estimation equation 10 implies that when T < Cu and
EW(Ṽu), ε are small, the approximation error is bounded by a quadratic term of Cu − T . In general, Cu

is only an upper bound of the maximal hitting time over B(xs, 1). More precisely, we may expect that
the error is approximately quadratic in terms of τmax − T with τmax being the supremum of τ(x) over
B(xs, 1). We verify this numerically over 2D examples by calculating the flow map using ODE scheme
with small step length (see Appendix C.1 for the expression of these functions). Figure 1 shows the
log− log plot between (τmax − T ) and the empirical approximation error over B(xs, 1) when EW(Ṽu),
ε are small. The result verifies the approximately quadratic relation between them.

The approximation rate in Theorem 2.1 differs significantly from classical smoothness-based approxima-
tion results. For instance, in polynomial approximation, the error in approximating an order-r smooth
target function F using polynomials of degree ≤ n is bounded by Cn−r|F |W r,p , where |F |W r,p denotes
the Sobolev norm of F in W r,p. This implies that functions that are easy to approximate using polyno-
mials are those with higher order smoothness and small derivatives in each order. Conversely, in our
approximation result, the maximal time T is bounded by the ratio between the maximal and minimal
gradient norm of u. However, any smoothness assumptions on u or |∇u| cannot solely guarantee a bound
for Cu, highlighting a fundamental difference from smoothness-based approximation.

Moreover, when T exceeds the maximal hitting time, the approximation rate in equation 10 is related to the
smoothness of Ṽu if W is a smoothness-based approximation family. However, the smoothness of Ṽu and
u can differ greatly. For instance, for any u ∈ Σ of the form u = α(|x− xs|), where α : [0,∞) → [0,∞)

is an increasing function, we have Ṽu(x) = x− xs, which is infinitely differentiable. Nevertheless, by

5



250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

Under review as a conference paper at ICLR 2025

Figure 1: The log− log plot between (τmax − T ) and the empirical approximation error over 3 different
cost functions. Lines with slope 2 are plotted for comparison.

the definition of Σ, such u only needs to be second-order differentiable. Hence, when Ṽu is sufficiently
smooth, the approximation rate to u primarily depends on the smoothness of Ṽu, rather than u itself. This
characteristic contrasts with classical approximation schemes where u(x) is approximated by a linear
combination of basis functions, in which the smoothness of u(x) controls the approximation quality.

In fact, the example of radial functions is not an isolated case. We provide Proposition B.4 in Appendix B.3,
indicating that in general, even if Ṽu is determined to have high order of smoothness, there still exists a
large degree of freedom in u ∈ Σ such that its higher order smoothness cannot be guaranteed.

Let us now also contrast this with currently known rate estimates concerning the depth T of flow maps.
In Ruiz-Balet and Zuazua (2023), an estimation of the approximation rate by continuous-time ResNet
with activation function ReLU for general L2 integrable target functions is provided. However, their result
suffers from the curse of dimensionality, and evaluating the complexity measure of the target function is
challenging. Compared to their setting, which approximates general target functions, our approach focuses
on a specific class of target functions with dynamical structures. Despite this restrictive setting, we obtain
a rate estimate which is curse-of-dimensionality-free with respect to time T , indicating when a deeper
network should be used over a shallower one and the corresponding error we can expect. Additionally, our
identified target functions have the property that their gradient norms are bounded both above and below,
with the ratio of these bounds estimating T . This setting is analogous to the 1D ReLU flow approximation
in Li et al. (2022), where target functions that can be approximated by flow within a finite time horizon
have derivatives bounded both above and below. These connections can offer valuable insights into the
properties target functions should possess for effective approximation by flow maps.

In summary, our approximation result identifies a restrictive but precise setting where the advantage of
using a deeper network can be quantified. Within such a setting, the approximation results by flows
are shown to be quite different to the smoothness-based approximation. This phenomenon provides
further evidence that smoothness should not be the correct measure of complexity for flow approximation.
Moreover, the common feature of our target functions to the previous results may provide valuable insights
into the key properties of target functions that can be effectively approximated by flow maps and deep
neural networks.

3 NUMERICAL IMPLEMENTATION: FINITE FLOW METHOD

In this section, by a numerical implementation of the hypothesis space Hu
T (W, ε), we propose the Finite

Flow Method, a novel learning-based algorithm to solve the eikonal equation. In this setting of solving
PDE, we are assumed to priorly know the right hand side function fu of equation 3 instead of u.

Representation of the solution In the finite flow method, we choose the vector field hypothesis space W
to be the set of functions represented by a deep neural network NNθ with parameters θ. Subsequently,
we calculate the corresponding function uθ in Hu

T (W, ε) using an Euler scheme to approximate the real
solution u. Due to the indicator function introduced to avoid the singularity at the source point, higher

6
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order ODE scheme will essentially be first order near the source point. Therefore, we choose to use
the Euler scheme for computational efficiency. Moreover, to avoid differentiability problem to θ during
training, we adopt a smooth approximation of the indicator function χε which is adapted to the ODE step
size. The details are shown in Appendix C.2.

Loss Function According to the variational formulation of the eikonal equation (Tran, 2021), we have

u(x) = inf{
∫ T

0

fu(φVu
(x, t))dt | ∥Vu∥∞ ≤ 1, s.t. φ(x, 0) = x, φ(x, T ) = xs}. (11)

That is, the integral curve of Vu from x to xs always minimize the integral of fu along the curve connecting
x and xs. This suggests initializing uθ such that its corresponding flow converges to a small neighborhood
of xs, as realized in Appendix C.2. We then train the network by minimizing the following loss function
to evaluate the solution over the bounded domain Ω:

L(θ) := ∥ūθ∥pp =

∫
Ω

|ūθ(x)|pdx, p ≥ 1. (12)

Intuitively, as long as the learning rate is small, the flow of uθ will keep converging to a small neighborhood
of xs during training; otherwise, L(θ) will increase during the training steps. In practice, we can simply
evaluate equation 12 by the empirical average over a set of samples. Notice that the loss 12 does not
incorporate the derivative of the neural network. Therefore, during the training process, only the first order
derivative of the neural network is calculated. This is more computationally efficient than minimizing
the equation loss, as used in the physics-informed neural networks(PINN). A diagram of the finite flow
method is shown in figure 2. Here, we use finite residual blocks to approximate the flow map representing
the solution, and that is why we call it the finite flow method. Suppose we are using the ODE size ∆t
to calculate the flows, and the time horizon is T = N∆t, then the network for the finite flow method
consists of N repeated blocks with residual connections, where the output at each block all contributes to
the final output.

Figure 2: A diagram of the finite flow method. Here zn = zn−1 +∆tχε(xn−1)f(xn−1) records a sum
over the history outputs at each block. Therefore, the final output is actually related to the state at each
block, instead of only the last block in most neural network architectures.

4 EXPERIMENTS

In this section, we provide numerical test of our proposed finite flow method in solving the one-source
eikonal equation 3. In the experiments, we compare our method to the fast marching method, one of the
state-of-the-art finite difference methods for solving the eikonal equation, and existing PINN methods
PINNeik (bin Waheed et al., 2021) and NES-OP (Grubas et al., 2023). All the experiments presented
in this section solves the one-source eikonal equation 3 over Ω = [−1, 1]2 ⊂ R2 with xs = (0, 0).
Additional numerical details are provided in Appendix C.3.
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4.1 COMPARISON TO FAST MARCHING METHOD

4.1.1 ROBUSTNESS TO SPATIAL RESOLUTION OVER DATA

We first demonstrate the robustness of the finite flow method to the spatial resolution comparing to the
fast marching method(FMM). To do this, we consider a cost function f corresponding to the solution
function:

u(x, y) =
√
x2 + y2(0.5(x− 0.5)2 + sin(y) + 3) (13)

For the finite flow method, we use grid points from various mesh sizes in the domain [−1, 1]2 as training
data to train the neural network. As a comparison, we also solve the equations on each such grid using the
second order FMM. We then evaluate the mean absolute error (MAE) compared to the exact solution for
both the finite flow method and FMM. The results are shown in Figure 3a. It can be seen that the error of
the fast marching method is almost linear to the spatial resolution in data. In comparison, the performance
of the finite flow method is robust to the spatial resolution of the training data. A relatively small number
of training data can result in a high accuracy, compared to the FMM. This advantage can be useful in
high-dimensional problems where small grid size is in general not available.

(a) Error vs. Spatial Resolution (b) Error vs. ODE step size of finite flow method

Figure 3: Factors that affect the accuracy of finite flow method. (a) The mean absolute error of the solution
for finite flow method trained over grids with different mesh size. (b) The relation between the solution
accuracy and the ODE step size used to inference the solution for networks trained with ODE step size
0.04, 0.02, 0.01 and 0.005.

Besides the spatial resolution, there is another more important parameter that affects the accuracy of finite
flow method, which is the time step of the ODE scheme. We investigate the effect of different time step
length in both the training and evaluation process to the solution accuracy of finite flow method. The
results are shown in Figure 3b. It can be seen that we can use a smaller time step length in the evaluation
process to achieve a higher accuracy, while the training process can be done with a larger time step length
for efficiency. However, when the time step in the evaluation step goes below a certain threshold, the
accuracy will start to decrease. In our experiments, we observe that the ratio of the optimal time step
length in the evaluation process to the training process should be between 0.02 to 0.05.

4.1.2 TRANSFERABILITY AMONG SIMILAR PROBLEMS

In this section, we present the transferability of finite flow method amoung similar problems. Specifically,
we consider the scenario where the cost function is perturbed from the original one. We study if
the finite flow method trained on the original cost function can adapt to the new cost function within
minor computational cost. To do this, we consider train a network for a cost function foriginal(x, y) =

1 + 1.5e−3((x−0.4)2+(y−0.4)2) to achieve an MAE of 1.05 × 10−3. A perturbation function fδ(x, y) =
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δe−3((x+0.4)2+(y+0.4)2) with a scale factor δ is then added to the cost function to get fperturbed(x, y) :=
foriginal(x, y)+ fδ(x, y). We then use the trained network over foriginal as an initialization for fperturbed. For
a given perturbation scale δ, we compute the number of training steps needed for the pre-trained network
to achieve an MAE of 10−3 for the perturbed cost function. In Figure 4, we plot the ratio of the transfer
learning steps to the number of training steps in solving the original equation for f . In comparison, we
also plot the ratio of the computation time of the FMM in solving the perturbed problem to the original
problem. The results show that for finite flow method, the pre-trained network can significantly reduce
the computational cost for solving the perturbed cost function, especially when the perturbation is small.
In comparison, the computational cost of the fast marching method keeps almost the same as solving the
original problem. This result shows the potential of the finite flow method in significantly reducing the
computational cost in solving similar problems, particularly in large scale and high-dimensional problems.

Figure 4: The ratio of additional computational cost for solving the perturbed cost function to the cost for
solving the original problem. For finite flow method, the cost is measured by the number of additional
training steps needed to achieve the MAE of 10−3 for the perturbed cost function. For FMM, the cost is
measured by the computation time for solving the perturbed equation.

4.2 ROBUSTNESS TO SOLUTION REGULARITY COMPARED TO PINN

In this part, we provide a comparison to existing PINN methods for the eikonal equation, NES-OP (Grubas
et al., 2023) and PINNeik (bin Waheed et al., 2021).

The key difference of finite flow method to PINN is that finite flow method uses a network to formulate
the vector field Vu = −∇u/|∇u| and represent the solution using the flow-based representation, while
the PINN directly use the network output to represent the solution u. Intuitively, this implies that PINN is
suitable to problems where u is regular, while the finite flow method will perform well when ∇u/|∇u| is
regular. In general, when u is smooth enough, ∇u/|∇u| will should also be smooth. However, as we
discussed in previous sections, the converse does not hold. Therefore, we may expect that in cases when
u and Vu are both regular, both PINN and finite flow method can work well. Moreover, there should
also exist cases when ∇u/|∇u| is simple but u itself is not, such that the finite flow method will perform
better.

To validate this understanding, we test the performance of the three methods for two cost functions f1 and
f2, see Appendix C.3 for the form of f1 and f2. Here, f1 is a simple smooth cost function without sharp
spatial change, while f2 is f1 plus a perturbation with relatively small scale but a sharp spatial oscillation.
This perturbation does not change the vector field for f1 too much. The results of the three methods are
compared in Table 1. We can see that for f1, the best case of all the three methods perform well. PINNeik
achieves the highest accuracy in the best case, while finite flow method is more stable in the typical case.
In the case of f2, finite flow method outperforms both the PINN methods. Both PINNeik and NES-OP
show a significant drop in performance for f2 compared to f1. The result validates that comparing to
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the PINN methods, the finite flow method is more robust to the regularity of the solution as long as the
regularity of the vector field Vu is still good. This shows a potential of the finite flow method to handle
equations with highly heterogeneous cost functions, which is commonly faced in the applications of
geophysics (Virieux and Operto, 2009).

Average Best Worst

MAE for f1

Finite Flow 1.06× 10−4 9.66× 10−5 1.23× 10−4

PINNeik 7.17× 10−2 8.02× 10−5 3.58× 10−1

NES-OP 5.09× 10−4 4.49× 10−4 5.16× 10−4

MAE for f2

Finite Flow 6.05× 10−4 5.92× 10−4 6.32× 10−4

PINNeik 1.44× 100 4.76× 10−3 3.54× 100

NES-OP 1.58× 10−3 1.32× 10−3 1.70× 10−3

Table 1: Comparison of the solution accuracy of finite flow method, PINNeik, and NES-OP over f1
and f2. All three methods are trained over the 200 × 200 regular grids of [−1, 1]2 using batch size of
10000. The MAE is evaluated over the 101× 101 regular grid points of [−1, 1]2. 5 independent runs are
performed for each method, and the best, worst and average MAE are reported.

5 LIMITATIONS AND FUTURE WORK

Currently, our theory and proposed numerical solver only handles the strong solution case. In the general
case when the characteristic lines of the eikonal equation have intersections, the network in the finite
flow method may not learn the correct directions near these intersections. However, according to the
variational form of the solution, the flow-based representation is still valid in this case, except that the
vector field Vu can have discontinuities over a measure-zero set. In this direction, a direct future work
is to design algorithm for weak solution case of the eikonal equation. Moreover, we believe the idea of
identifying target space through solutions of PDEs can be generalized to a broader setting, especially for
the Hamilton-Jacobi equations (Arnol’d, 2013). In the future work, we will explore the approximation
results for other non-linear target spaces derived from non-linear PDEs with inspired learning algorithms
for solving the PDE.
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A PROPERTIES OF THE EIKONAL EQUATIONS

A.1 LINE OF CHARACTERISTICS

Considering solving equation 3 using the method of characteristics(Evans, 2022), the characteristic ODE
reads as: 

ẋ(t) = DpH = p(t)
|p(t)|

ṗ(t) = −DxH = −∇f(x(t))

ż(t) = p ·DpH = |p(t)| = f(x)

(14)

with the initial condition x(0) = xs, z(0) = 0 and p(0) ∈ Rd. Here, p and z stands for the value of
∇u and u along the characteristics, respectively. Different initial conditions p(0) correspond to different
characteristic lines. If the strong solution of equation 3 exist, the trajectory of x in equation 14 will not
intersect in Rd \ {xs}. Therefore, for any u ∈ Σ, considering solving the backward ODE of equation 14
with the initial condition x(0) = x gives the flow-based representation 4 in Section 2.2.

A.2 VARIATIONAL FORMULATION OF THE EIKONAL EQUATION

The solution to the eikonal equation has a variational formulation.
Proposition A.1. Given any u ∈ Σ, for any x ∈ Rd \ {xs}, the following holds:

u(x) = inf

{
T : γ ∈ AC([0, t],Rn) , γ(0) = x, γ(T ) = xs, |γ′(s)| ≤ 1

fu(γ(T ))
a.e.
}

= inf

{∫ T

0

fu(γ(t))dt : γ ∈ AC([0, T ],Rn) , γ(0) = 0, γ(T ) = xs, |γ′(t)| ≤ 1 a.e.

}
.

(15)

i.e. the solution u is the value function of the optimal control problem of reaching the source point xs

with the minimal cost under the spatial cost function fu. The locally optimal control is just given by
the vector field Vu = −∇u/|∇u|. This property also provides an optimality property of the flow-based
representation 4, which is the basis for the loss function used in our proposed finite flow method. We
refer to Tran (2021) for the proof of this proposition. In fact, the variational formulation holds in the more
general setting of viscosity solutions.

B PROPOSITIONS AND PROOFS

B.1 ESTIMATION ON τ(x)

We have the following proposition on the estimation of τ(x), which is a direct consequence of the
variational formulation of the eikonal equation.
Proposition B.1. For any u ∈ Σ, denote

Cu := sup
x

|∇u(x)|/ inf
x

|∇u(x)| ∈ [1,∞). (16)

Then, for any x ∈ Rd \ {xs}, we have

τ(x) ≤ Cu∥x− xs∥. (17)

Proof. By Proposition 15, we have

τ(x) inf
x

|∇u(x)| ≤ u(x) ≤ τ(x) sup
x

|∇u(x)|, (18)

which completes the proof.
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B.2 PROOF OF THEOREM 2.1

AW(ε) := {φχεV | V =
W

|W |
for some W ∈ W}, (19)

as the flow map family corresponds to the hypothesis space Hu
T (W, ε). We will first provide an approxi-

mation error estimate of φVu over B(xs, 1) using the hypothesis space AW(ε).

Theorem B.2. Suppose ε. Define Ṽu(x) := |x− xs|Vu(x). Then, there exists φ ∈ AW(ε) such that

|φ(x, t)− φVu
(x, t)| ≤ C(4EW(Ṽu))

1
Cu(L+1)+2 + 2ε, (20)

for all x, t with |x − xs| ≤ 1 and t ≤ τ(x). Here, L is the Lipschitz constant of Ṽu, C = 6C2
u + 3Cu,

EW(Ṽu) := infW∈W ∥W − Ṽu∥L∞(B(xs,Cu)) represents the approximation error of Ṽu in W .

Proof. By the definition of EW(Ṽu), there exists W ∈ W such that

|W (x)− |x− xs|Vu(x)| ≤ 2EW(Ṽu) (21)

for all x s.t. |x− xs| ≤ Cu. Let x(t) denote the solution of the ODE:{
ẋ(t) = Vu(x(t)),

x(0) = x.
(22)

Let x̃(t) denote the solution of the ODE: {
˙̃x(t) = W (x̃)

|W (x̃)| ,

x̃(0) = x.
(23)

For t ∈ [0, τ(x)], we have

d

dt
|x(t)− x̃(t)| ≤

∣∣∣∣Vu(x(t))−
W (x̃)

|W (x̃)|

∣∣∣∣ ≤ |Vu(x(t))− Vu(x̃(t))|+
∣∣∣∣Vu(x̃(t))−

W (x̃)

|W (x̃)|

∣∣∣∣ . (24)

For the first term, from ||x|Vu(x)− |x̃|Vu(x̃)| ≤ L|x− x̃|, we have

|x− xs||V (x)− V (x̃)| ≤ L|x− x̃|+ |(|x− xs| − |x̃− xs|)|V (x̃)| ≤ (L+ 1)(|x− x̃|), (25)

i.e.

|V (x)− V (x̃)| ≤ (L+ 1)
|x− x̃|
|x− xs|

. (26)

For the second term, we have∣∣∣∣V (x̃(t))− W (x̃(t))

|W (x̃(t))|

∣∣∣∣ ≤ 1

|W (x̃)|
(|(|W (x̃)| − |x− xs|)V (x̃)|+ |W (x̃)− |x̃− xs|V (x̃)|)

≤ 4EW(Ṽu)

|W (x̃)|

(27)

Therefore, we have
d

dt
|x(t)− x̃(t)| ≤ (L+ 1)

|x− x̃|
|x− xs|

+
4EW(Ṽu)

|W (x̃)|
. (28)

From Proposition B.1, |x(t)− xs| ≥ 1
Cu

(τ − t). We have

|W (x̃(t))|+ ≥ |x̃(t)− xs| − EW(Ṽu)+ ≥ 1

Cu
(τ − t)− |x(t)− x̃(t)| − EW(Ṽu). (29)
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We then have

d

dt
|x(t)− x̃(t)| ≤ Cu(L+ 1)

τ − t
|x− x̃|+ 4EW(Ṽu)

1
Cu

(τ − t)− |x(t)− x̃(t)| − EW(Ṽu)
, (30)

as long as the right-hand side of equation 29 is positive. It follows that

|x(t)− x̃(t)| ≤ (τ − t)−Cu(L+1)

∫ t

0

(4EW(Ṽu))(τ − s)Cu(L+1)

1
Cu

(τ − s)− |x(s)− x̃(s)| − EW(Ṽu)
ds. (31)

The following lemma holds:

Lemma B.3. Suppose τ > 2C2
u(4EW(Ṽu))

1
Cu(L+1)+2 and 4EW(Ṽu) ≤ 1

2Cu
. When t ≤ τ −

2C2
u(4EW(Ṽu))

1
Cu(L+1)+2 , we have

|x(t)− x̃(t)| ≤ Cu(4EW(Ṽu))
1

Cu(L+1)+2 . (32)

Proof of the Lemma. Prove by contradiction. Denote Cu(4EW(Ṽu))
1

Cu(L+1)+2 as α. Suppose the con-
clusion does not hold, take t0 as the infimum of the t in [0, τ − α] such that the inequality fails. Since
|x(0)− x̃(0)| = 0 and |x(t)− x̃(t)| is continuous, we have t0 > 0. From equation 31, we have

|x(t)− x̃(t)| ≤ (τ − s)−Cu(L+1)

∫ t

0

(4EW(Ṽu))(τ − t)Cu(L+1)

1
Cu

(τ − s)− α− EW(Ṽu)
ds

≤ (τ − t)−Cu(L+1)

∫ t

0

(4EW(Ṽu))τ
Cu(L+1)

1
Cu

(τ − s)− α− EW(Ṽu)
ds

=
(4EW(Ṽu))τ

Cu(L+1)

(τ − t)Cu(L+1)
Cu log(

1

Cu
(τ − t)− α− EW(Ṽu))

∣∣∣t
0

≤ Cu(4EW(Ṽu))τ
Cu(L+1)

(τ − t)Cu(L+1)
log

τ

τ − t− Cu(α+ EW(Ṽu))

≤ Cu(4EW(Ṽu))τ
Cu(L+1)

(τ − t)Cu(L+1)
(

τ

τ − t− Cu(α+ EW(Ṽu))
+ 1)

(33)

for [0, t0). By continuity, we have

|x(t0)− x̃(t0)| ≤
Cu(4EW(Ṽu))τ

Cu(L+1)

(τ − t0)Cu(L+1)
(

τ

τ − t0 − Cu(α+ EW(Ṽu))
+ 1)

≤ Cu(4EW(Ṽu))τ
Cu(L+1)

(2Cuα)Cu(L+1)
(

τ

2Cuα− Cu(α+ EW(Ṽu))
+ 1)

≤ (4EW(Ṽu))
2

Cu(L+1)+2

(2C2
u)

Cu(L+1)

2(τ)

α

≤ (4EW(Ṽu))
1

Cu(L+1)+2 ≤ α,

(34)

which is a contradiction. Here we use Cu ≥ 1, τ ≤ Cu.

The Lemma gives an estimate of |x(t) − x̃(t)| when t ≤ τ − 2C2
u(4EW(Ṽu))

1
Cu(L+1)+2 . For t ∈

[τ − 2C2
u(4EW(Ṽu))

1
Cu(L+1)+2 , τ ] and the case when τ ≤ 2C2

u(4EW(Ṽu))
1

Cu(L+1)+2 , we can consider
the simplest estimation that

d

dt
|x(t)− x̃(t)| ≤ 2 (35)
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Combine with the result of the Lemma, we have:

|x(t)− x̃(t)| ≤ (2C2
u + Cu)(4EW(Ṽu))

1
Cu(L+1)+2 , (36)

for all t ∈ [0, τ(x)]. Now denote Ṽ := W
|W | . We have actually shown that

|φṼ (x, t)− φVu
(x, t)| ≤ (2C2

u + Cu)(4EW(Ṽu))
1

Cu(L+1)+2 , (37)

for all |x − xs| ≤ 1 and t ∈ [0, τ(x)]. Notice that the trajectory of Ṽu and χεVu with the same initial
condition x will be the same before the first time tε when |x̃(t)− xs| = ε. Since

|x(tε)− xs| ≤ (2C2
u + Cu)(4EW(Ṽu))

1
Cu(L+1)+2 + ε, (38)

we have
tε ≥ τ − (2C2

u + Cu)(4EW(Ṽu))
1

Cu(L+1)+2 − ε. (39)

Therefore, we have

|φṼ (x, t)− φVχεṼ
(x, t)| ≤ 2(τ − tε) ≤ 2(2C2

u + Cu)(4EW(Ṽu))
1

Cu(L+1)+2 + 2ε. (40)

It then follows that

|φVχεṼ
(x, t)− φVu

(x, t)| ≤ (τ − tε) ≤ (6C2
u + 3Cu)(4EW(Ṽu))

1
Cu(L+1)+2 + 2ε, (41)

for all |x− xs| ≤ 1 and t ∈ [0, τ(x)]. Since φVχεṼ
∈ AW(ε), the theorem is proved.

Now we can give the proof of Theorem 2.1

Proof of Theorem 2.1. From Theorem B.2 and equation 36 in its proof, we know that when

(2C2
u + Cu)(4EW(Ṽu))

1
Cu(L+1)+2 < ε, (42)

there exists φ = φχεV ∈ AW(ε) such that equation 20 holds, and its trajectory will reach the ε-
neighborhood of xs before time τ(x). That is, |φ(x, t)− xs| = ε for all x ∈ B(0, 1) and t > τ(x).

For this V with φ = φχεV we have

∥u− ΓT,ε
u (V )(x)∥L1(B(0,1)) =

∫
B(0,1)

∥u(x)− û(x)∥dx

=

∫
x∈B(0,1),τ(x)≤T

∥u(x)− ΓT,ε
u (V )(x)∥dx+

∫
x∈B(0,1),τ(x)>T

∥u(x)− ΓT,ε
u (V )(x)∥dx

(43)

For the first term, we have∫
x∈B(0,1),τ(x)≤T

∥u(x)− ΓT,ε
u (V )(x)∥dx

=

∫
x∈B(0,1),τ(x)≤T

∥
∫ τ(x)

0

(fu(φVu
(x, t))− χε(φ(x, t))fu(φ(x, t)dt)) ∥dx

≤
∫
x∈B(0,1),τ(x)≤T

(∫ τ(x)

0

(fu(φVu(x, t))− fu(φ(x, t)dt)) dt+

∫ τ(x)

max{τ(x)−2ε,0}
∥fu(φ(x, t)dt)∥dt

)
dx

≤
∫
x∈B(0,1),τ(x)≤T

∫ τ(x)

0

Lfu∥φVu
(x, t)− φ(x, t)∥dtdx+ 2m({x ∈ B(0, 1), τ(x) ≤ T})∥fu∥∞ε

(44)
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Here we use the estimation in equation 39 on the first hitting time of φ(x, ·) to the ε-neighborhood of xs.
For the second term, we have∫

x∈B(0,1),τ(x)>T

∥u(x)− ΓT,ε
u (φ)(x)∥dx

=

∫
x∈B(0,1),τ(x)>T

∥
∫ τ(x)

0

(
fu(φVu

(x, t))− fu(φ(x, t))dt+

∫ τ(x)

T

fu(φ(x, t))dt

)
∥dx

≤
∫
x∈B(0,1),τ(x)>T

∫ τ(x)

0

Lfu∥φVu
(x, t)− φ(x, t)∥dtdx+ ((Cu − T ) + 2ε)m({x ∈ B(0, 1), τ(x) > T})∥fu∥∞

(45)
Combine both, by equation 20, we have

∥u− ΓT,ε
u (V )(x)∥L1(B(0,1))

≤ πLuCu(6C
2
u + 3Cu)(4EW(Ṽu)+)

1
Cu(L+1)+2 + 2π∥fu∥∞ε+ (Cu − T )m({x ∈ B(0, 1), τ(x) > T})∥fu∥∞

(46)
When T ≤ Cu, we have

m({x ∈ B(xs, 1), τ(x) > T}) = π −m({x ∈ B(xs, 1), τ(x) ≤ T})

≤ π −m({x ∈ B(xs, 1), Cu|x− xs| ≤ T}) = π(1− (
T

Cu
)2).

(47)

When T > Cu, it is clear that m({x ∈ B(xs, 1), τ(x) > T}) = 0. Combine this with the previous
estimation, we have the conclusion of the theorem.

B.3 PARTIAL DETERMINATION RELATION BETWEEN Ṽu AND u

Proposition B.4. For d ≥ 3, suppose u ∈ Σ is C2 in Rd \ {xs}. Define

Ru := {v ∈ Σ | Vv = Vu}. (48)

Then, for any continuous function h over Rd such that 0 < a ≤ h ≤ b for some constant a, b, and
∇h(x) ∥ ∇u(x) for all x ∈ Rd \ {xs}, there exists v ∈ Ru such that |∇v| = h|∇u|.

Proof. Since u is C2 in Rd \ {xs}, we have that Vu is C1 in Rd \ {xs}. We then have

h|∇u|Vu = −h · |∇u| ∇u

|∇u|
= −h∇u. (49)

We then claim that −h∇u is the gradient of some C1 function over Rd \ {xs}. By Poincaré’s lemma,
since Rd \ {xs} is simply connected, we only need to check that

∂j(h∂iu)− ∂i(h∂ju) = ∂jh∂iu− ∂ih∂ju = 0, ∀i, j = 1, · · · , d, (50)

which follows directly from the assumption that ∇h ∥ ∇u. Therefore, we can assume that there exists
w ∈ C1(Rd \ {xs}), such that

h|∇u|Vu = ∇w. (51)

We can assume that w(xs) = 0. Then, we can deduce that −w is positive in Rd \ {xs}. Since Vu is unit,
this implies that |∇w| = h|∇u|. According to u ∈ Σ and 0 < a ≤ |∇h| ≤ b, we deduce that −w ∈ Σ.
Let v = −w, then we have

Vv = −∇v/|∇v| = Vu, (52)

indicating that v ∈ Ru.
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C EXPERIMENTAL DETAILS

C.1 VERIFICATION OF APPROXIMATION RATE

We numerically verify the approximation rate with xs = (0, 0) and the following 3 functions over
B(xs, 1) ⊂ R2.

• u1(x, y) =
√
x2 + y2(sin(x+ 1

2 ) + cos(y2 + 1))

• u2(x, y) =
√
x2 + y2(sin(x+ 2y) + 3)

• u3(x, y) =
√
x2 + y2(e−5(x−0.35)2−5(x−0.35)2 + e−5(x+0.35)2−5(x+0.35)2).

The graph of u1, u2, u2 and their corresponding cost functions f1, f2, f3 are shown.

Figure 5: Graph of u1, u2, u3

Figure 6: Graph of f1, f2, f3

To test approximation error with respect to T , for each ui(i = 1, 2, 3), we simply take Ṽui
to belong to

W to make EW(Ṽ ) = 0. Then, for the vector field Vui and 300 dirrerent values of T ∈ [0, 3], we use
the Euler scheme with step size 10−4 and ε = 3× 10−4 to numerically compute ΓT,ε

u (Vui)(x) over 105
uniformly sampled points in B(xs, 1) to evaluate the L1 approximation error.

C.2 DETAILS OF THE FINITE FLOW METHOD

C.2.1 NETWORK ARCHITECTURE

Since the underlying vector field Vu of the one-source problem has an attractor at the source point xs, we
design the following network architecture to formulate Vθ in the finite flow method:

Vθ(x) = − x− xs +MLP(x)

|x− xs +MLP(x)|
(53)
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where MLP is an multilayer perceptron with input and output dimension being the state dimension of the
equation. The weight in the output layer of MLP is initialized as zero to ensure that the integral curves of
Vθ is initialized to converge at the source point. This will overcome the issues related to singularity at the
source point and make the training dynamics using the variational loss more stable.

C.2.2 MOLLIFIED INDICATOR FUNCTION

To overcome the differentiability issue caused by the indicator function χε, we choose a smooth mollifier
which is adapted to the ODE stepsize as its substitution. Specifically, in numerical experiments, we
replace χε with a mollifier ρ which is defined to be ρ(x) = h(∥x− xs∥/∆t), where ∆t is the stepsize
for the Euler scheme, and h(r) is given by h(r) = softplus(4(r − 3))− softplus(4(r − 3)− 1). Such a
mollifier can be regarded as a smooth approximation of χε for ε = 4∆t. The graph of ρ when ∆t = 0.01
is shown below.

Figure 7: Graph of ρ when ∆t = 0.01

Here, for the numerical stability, we mollify a neighborhood with radius 4∆t of xs to ensure that the
trajectory calculated using ODE scheme with step length ∆t will not go out of it once entered.

C.3 EXPERIMENTAL DETAILS IN SECTION 4

In this section, we provide the implementation details of the experiments in Section 4. For all the
experiments on the finite flow method, the network structure follows equation 53 with MLP is a fully
connected neural network with 4 hidden layers and 55 neurons in each layer with 9517 trainable parameters.
We implement all the learning-based solver using the equinox library, which is based on the JAX
framework. All the training processes use the Adam optimizer. The experiments are conducted on a single
NVIDIA RTX 3090 GPU. We perform the second order fast marching method using the eikonalfm
package.

C.3.1 IMPLEMENTATION DETAILS IN SECTION 4.1.1

In the first experiment in Section 4.1.1, we compare the finite flow method with the fast marching method
on grids with different mesh size. For each given mesh size, we train the network using an ODE step size
of 5× 10−3 and a learning rate of 10−3 with the Adam optimizer. The ODE step in for inference is set to
be 2.5× 10−4. The maximal batch size is set to 50000.

For a fair comparison of the finite flow method and the fast marching method, we evaluate the MAE of
finite flow method over the 100×100 regular grids of [−1, 1]× [−1, 1], which are mostly not incorporated
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Figure 8: Images of the cost function f1 and f2.

in the training set. The error of the fast marching method is evaluated over the same grids used for solving
the equation. This difference in the evaluation set is due to the different nature of the two methods.

In the second experiment in Section 4.1.2, for all the networks, the training set is the 100× 100 regular
grids of [−1, 1]× [−1, 1]. A full-batch training with learning rate of 5× 10−4 of are applied to all the
networks for 500 epochs.

C.3.2 IMPLEMENTATION DETAILS IN SECTION 4.1.2

In Section 4.1.2, since the explicit solution of the eikonal equation is not available, we use the solution
got by the second order fast marching method with mesh size 4× 10−4 as reference.

The network for solving foriginal is trained over the 200× 200 regular grids of [−1, 1]× [−1, 1].

C.3.3 IMPLEMENTATION DETAILS IN SECTION 4.2

The function f1 and f2 used in the experiment are given by

f1(x, y) = ∥∇u(x, y)|∥, with u =
√
x2 + y2(sin(x+

1

2
) + cos(

y

2
+ 1)),

f2(x, y) = f1(x, y) + sin(10π
√
x2 + (1 + 0.2x)2y2)

(54)

The image of f1 and f2 are shown in Figure 8. The comparison of their corresponding vector fields are
shown in Figure 9.

For f2, since the explicit solution is not know, we use the solution got by the second order fast marching
method with mesh size 2× 10−4 as reference. For all three networks, the training set is the 200× 200
regular grids of [−1, 1] × [−1, 1]. The batch size is set to be 10000. The networks are all trained with
Adam optimizer. Other details of the training setting are listed below:

The network size for the PINNeik and NES-OP is 5 hidden layers with 50 neurons in each layer with
10401 parameters in total, which is close to the network size of the finite flow method.

For the finite flow method, the training epoch is 150 for both f1 and f2 with learning rate 5× 10−4. For
the two PINN methods, the training epoch is 30000 for f1 and 60000 for f2 with learning rate 2.5× 10−4.

20



1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

Under review as a conference paper at ICLR 2025

Figure 9: Image of the vector fields V1 and V2 corresponding to f1 and f2, respectively.
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