Under review as a conference paper at ICLR 2025

RATE OF APPROXIMATION BY FLOWS: A CASE STUDY ON
THE EIKONAL EQUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Previous works have demonstrated the universal approximation capability of residual
networks through their continuous idealization as flow maps of dynamical systems.
However, informative results on their approximation rates in terms of depth (corre-
sponding to time) are generally lacking. From the viewpoint of approximation theory, a
major difficulty in addressing this gap lies in identifying an appropriate target space for
the approximation problem. In this paper, we introduce a restrictive but useful target
function space comprised of solutions to the eikonal equations, a type of first-order non-
linear partial differential equation, to investigate the approximation rates of flow map
families. We provide an estimate of the approximation error within this space, which
is notably different from classical rate estimates based directly on the smoothness of
target functions. This theoretical result further inspires a new learning-based algorithm
for solving the eikonal equation. Experimental results validate the effectiveness of our
proposed algorithm, including its robustness to spatial resolution and solution regularity,
as well as transferability among similar problems.

1 INTRODUCTION

Flow maps of dynamical systems play a crucial role in machine learning, offering both practical applica-
tions and theoretical insights. They are particularly valuable in generative modeling due to their inherent
dynamical structure and invertibility (Chen et al., 2018} |Song et al., [2020; [Papamakarios et al.| 2021).
Furthermore, deep neural networks with residual connections can be idealized as controlled dynamical
systems (Weinan, [2017; [Haber and Ruthotto, 2017), where the input-output mapping corresponds to a flow
map and the network depth relates to the maximal time horizon of the flow. This perspective underscores
the significance of understanding the approximation capabilities of flow map families in deep learning
theory.

In the context of machine learning, approximation theory studies how well functions in a target space
T can be approximated using a hypothesis space H, which is determined by the choice of model
architectures. Two main questions arise in approximation theory: density and approximation rate. The
former concerns whether H is dense in 7 in some topology, while the latter involves estimating the
approximation error for a function f € 7 in relation to the model’s complexity. For example, when # is
the space of polynomials, the Stone-Weierstrass theorem (Stone, |1948) establishes its density in the space
of continuous functions. Additionally, Jackson’s theorem (Jackson, [1930) provides an approximation
rate estimation, indicating that the error in approximating an order-r smooth function f using degree
m polynomials is bounded by C(r, f)m~", where C(r, f) is a constant depending on both r and f.
This approximation rate tells us the number of polynomial terms required to achieve a specific accuracy
in approximating f. Consequently, approximation rate results are more informative and practical than
density results, as they offer a quantitative measure of the cost for approximation, it also tells us which
functions can be approximated easily.

Despite established density results for flow map families over a broad range of dynamical systems (Li
et al. 2022; |Tabuada and Gharesitard, 2022; Ruiz-Balet and Zuazual 2023} |(Cheng et al., 2023)), the

Under review as a conference paper at ICLR 2025

approximation rate in terms of the maximal time horizon 7" (analogous to network depth) is not well-
understood. Existing results suffer from the curse of dimensionality or are limited to one-dimension case.
For instance, Ruiz-Balet and Zuazua| (2023)) showed that flow maps of continuous-time ResNet

#(t) = W()o(A()a(t) + b(1)), (1) € BY, (1)
with ReLU activation and piecewise constant parameters chosen from a bounded set can achieve an

approximation rate of O(T_d%) in L? over bounded subsets of R¢, but this rate deteriorates rapidly as
the dimension d increases. Similarly, L1 et al.| (2022) provided rate estimates for d = 1, but their results
do not generalize to higher dimensions. Consequently, it remains unclear when a deeper flow (larger T")
offers advantages over a shallower one for a given target function in general. From the perspective of
approximation theory, identifying an appropriate target space is crucial in bridging this gap.

In this paper, instead of establishing approximation rate in a general target space, our purpose is to focus
on a specific yet practically relevant setting. Specifically, we identify a novel target space comprising
solutions to the eikonal equation, a type of first-order nonlinear partial differential equation. By observing
that solutions to the eikonal equation can be represented via the flow map of a static vector field, we
propose a flow-based hypothesis space and develop an approximation architecture that first approximates
the underlying flow map and then computes its flow-based representation to approximate the solution.
This architecture resembles a flow idealization of recurrent networks with residual connections, where
each layer incorporates specific information about the solution. We establish an approximation rate
estimate within this hypothesis space, providing a quantitative measure of the approximation error with
respect to the network depth 7. Unlike classical smoothness-based approximation results [DeVore and
Lorentz (1993), our estimate depends on the dynamical structures of the solutions, offering a precise
setting where increasing depth yields provable performance improvements.

Moreover, our approximation results motivate a novel deep learning method, which we call the finite flow
method, for solving the eikonal equation. This method numerically implements our proposed flow-based
hypothesis space using a deep neural network. The flow-based representation further allows us to train
the network by minimizing the variational loss of the represented solution, which is a more efficient way
than minimizing the equation loss. Experimental comparisons with the fast marching method |Sethian
(1999)), a state-of-the-art finite difference solver, and existing physics-informed neural network (PINN)
methods bin Waheed et al.| (2021); |Grubas et al.[(2023)) demonstrate the effectiveness of our algorithm,
highlighting advantages in robustness to spatial resolution, solution regularity, and transferability among
similar problems.

In summary, the main contributions of this paper are as follows:

* By identifying the solutions to the eikonal equation as a target space, we construct a flow map
based hypothesis space and provide an approximation rate estimate in the space (Theorem |2.1J).
While the target family is restrictive, the resulting approximation rate does not suffer from the
curse of dimensionality.

* We show that, different from the classical approximation theory where the approximation error is
estimated by the smoothness of the target, our approximation rate result depends on dynamical
structures of the solution to the eikonal equation.

» We further show that while the target space is restrictive, it is useful. We develop the finite flow
method for solving the eikonal equation by numerically implementing our hypothesis space.
Our method demonstrates effectiveness compared to state-of-the-art finite difference solvers and
existing PINN methods, offering advantages in certain scenarios.

2 RELATED WORK

Approximation rate results of deep neural networks As a fundamental aspect in deep learning theory,
the expressive capability of deep neural networks has been extensively studied. The universal approxima-
tion results of different types of deep architectures have been established in the literature (Hornik et al.,

Under review as a conference paper at ICLR 2025

1989; |[Kidger and Lyons| |2020; L1 et al., 2022} |Yun et al.,[2019). Compared to the universal approximation
results, the approximation rates of deep neural networks are less understood. For deep fully connected
neural network with ReLU-type activation functions, a series of non-asymptotic approximation rate
results are obtained, e.g.|Yarotsky| (2018);[Shen et al.|(2019); Lu et al.| (2021)). Recently,|Chenghao et al.
extends similar results to ResNet with one-dimension output. These results all suffer from the curse of
dimensionality, since their target space are all general smooth function spaces. Some artificial function
classes are introduced for curse-of-dimensionlality-free results Montanelli| (2021)); Poggio et al.| (2017);
Hel (2023)), but these function spaces lack a clear connection to practical applications. For the family
of flow maps, there are fewer results on the approximation rate. By idealizing deep residual networks
as the flow map of a continuous-time dynamical system, the authors in [Ruiz-Balet and Zuazua) (2023))

provide an approximation rate of O(T~ d%) for deep residual networks with depth 7" in the target space
of all square integrable functions over a bounded set in R¢. This result suffers significantly from the
curse of dimensionality, limiting its practical insights. In|Li et al.|(2022), a nearly optimal rate for the
continuous-time ReLLU ResNet is obtained in one-dimension case. Although the approach is difficult to
extend to higher dimensions, this results reveals a difference of the flow-based approximation to classical
smoothness based approximation result.

Numerical methods for solving the eikonal equation The eikonal equation, a first-order nonlinear
partial differential equation, appears in various applications such as geometric optics, computer vision
and seismology Sethian et al.|(1999)). There are two well-known finite difference methods for the eikonal
equation: the fast marching method (FMM)|Chopp|(2001); Sethian|(1999) and the fast sweeping method
(FSM) [Fomel et al.| (2009); [Zhao| (2005). FMM computes solutions at grid points based on the logic
Dijkstra’s algorithm, whereas FSM solves the eikonal equation by iteratively sweeping through the
grids. Both methods are renowned for their efficiency and accuracy, making them widely adopted in
practical applications. The physics-informed neural network (PINN) |[Raissi et al.|(2019) has also been
applied to solve the eikonal equation bin Waheed et al.|(2021); (Grubas et al.| (2023)); |Smith et al.| (2020).
This approach involves training a neural network to approximate solutions to the eikonal equation by
minimizing the equation loss. Several factorization and regularization techniques have been introduced in
these works to enhance performance.

2.1 TARGET SPACE

For a given x, € R?, let Lip(R¢) N C* SRd \ {xs}) be the set of Lipschitz continuous functions in R¢
which is continuously differentiable in R% \ {x, }. For a given point -, € R?, we define the target function
space ¥ C Lip(R%) N CH(R?\ {z,}) as:

Y= {u|u>0,u(z) =0,|Vu| € Lip(R\ {z,}),0 < a < |Vu| < bforsome a,b € R}, (2)

i.e. there exists Lipschitz continuous function f,, with lower bound a > 0 and upper bound b, such that «
is the strongsolution of the equation:

{VU(Z‘) = fu(x)’ reR” \ {$S}7

u(zs) = 0.)

Equation [3]is called the (one-source) eikonal equation (Tranl 2021). We call z, the source point and f,,
the cost function of the equation. For general Lipschitz cost function, the viscosity solution of the eikonal

equation may not be in Lip(R%) N C1(R? \ {x4}) (Tran, 2021). However, that case is not considered in
this paper.

2.2 HYPOTHESIS SPACE

Let V,, := —Vu/|Vu| be a continuous unit vector field over R? \ {z}. By the method of characteristics
for eikonal equation, for any z € R? \ {x,}, it holds that

7(x)
u(x) = /o Ffu(z(t))dt,)

Under review as a conference paper at ICLR 2025

where z(t) satisfies the ODE:

{2(1&) = Vu(2(1)), (5)

z(0) =z,
7(x) is the minimal time of z(¢) to the source point . See Appendix [A.1]for details on this.

Let ov, (+,") : (z,t) — z(t) denote the flow map of equation In the following, we will also use
v (-,) to denote the flow of other given vector field V' defined in the same way. Replacing z(t) by
v, (z,t), equation gives a representation of u in terms of the flow map of the static vector field V,.
This observation inspires the consideration of approximating v via approximating the corresponding flow
map v, .

To avoid problems caused by the singularity of V,, at the source point, we introduce an auxiliary parameter
e > 0 and define x. as the indicator function of the domain {z € R? | ||z — x,|| > ¢}. For any
x € R\ {x,}, notice that

7(z) T
u(x) :A fu(‘qu(x’t))dt = ;1_{% o XE((PXEVu(aj»t))fu((ngVu($7t))dt7 (6)

for all T > 7(x). Therefore, over a bounded subset 2 of R? \ {}, with a small error in representing
u, we can avoid the trajectories of the flow touching the singularity of V,,, and uniformize the traveling
time to the origin by an upper bound of () over if we force the trajectory of v, (, -) to stop when it
reaches the e-neighborhood of the source point.

For given T > 0, and vector field V in R?, we define:

I (V)() = / Ne(@ror () fulprv (B,)
0

as long as ¢, v is well-defined over [0, T, i.e. the solution of the corresponding ODE exists and is
unique. We then introduce our hypothesis space to approximate v € 3 in the following definition:

Definition 2.1. Suppose W is a family of Lipschitz continuous vector field in R?. For auxiliary parameter
€ > 0 and maximal time horizon T, we define our hypothesis space to approximate the flow map u € X

as:
HEW, €)= {TT=(V) |V = %for some W € W, s.t. |[W| # 0 in R%}. (8)

In the flow view point, each element in H% (W, €) can be viewed as a continuous-layer deep neural
network with depth 7. Therefore, there are two components that measures the complexity of this
hypothesis space: the size of YV and the time horizon T, which corresponding to the layer width and
depth of the deep neural network, respectively. Intuitively, over a bounded domain Q, the approximation
error using H% (W, €) will be small if W is large and T" surpasses the maximal hitting time over €2, and
the auxiliary € is small.

Compared to the flow map approximation idealized from practical deep ResNet architectures, there are
two differences in the hypothesis space 7% (W, ¢). First, the flow maps used to represent functions in
HY(W, €) are time-invariant, i.e. the map in each layer are the same. Second, the expression I'¢(V) is
related to the flow map of V' at each time T, rather than just the final time T'. These differences are due to
the structure of the eikonal equation. Despite these differences, the essence of approximating v € X via
the hypothesis space HY. (W, ¢) is still the approximation by flow maps.

2.3 APPROXIMATION RATE RESULT AND ITS CONSEQUENCES

In this section, we will provide an approximation rate estimate for element u € 3 using the hypothesis
space HY (W, ¢) defined in the previous section. There are two terms in our estimation. The first term is
related to the time horizon 7', the depth of the network. When T is not large enough for all the initial

Under review as a conference paper at ICLR 2025

state in B(xs, 1) to reach the source point, there will be an error on the set no matter how accurate the
vector field Vy is approximated. This term will be zero when 7" surpasses the maximal hitting time. The
second term is dominated by the approximation error of |z — x|V in W, and also the regularity of f.
When T surpasses the maximal hitting time in B(x, 1), the approximation error will determined by the
expressive capability of the vector field hypothesis space W.

\Y
Define C), := sulf)m||vu|| By the definition of 3, C',, > 1 is finite. In Appendix we show that 7(z) <
inf, |Vu
Culx — x| for all z € R4\ {x,}. Therefore, C,, gives a uniform upper bound of 7(x) over B(z,1).
. v . _
Moreover, define V,,(z) := —|x — :z:g||v—u(x) and denote Eyy(V,,) == infwew |[W —Vi|lL=(B(e.,0;))
U

as the approximation error of V,, in W. We then have the following theorem:
Theorem 2.1. Assume that ¢ < 1 and

(202 + C)(AEw (V) oo < e 9)
Then, for given T' > 0, and u € %, we have:

inf ||u — 'LAL”Ll(B(mS,l)) < Cl maX{Cu — T7 0}2 + CQ(4EW(VU)) Cu(L1+1)+2 + 035, (]0)
WEHY(W,e)

where L is the Lipschitz constant of V. The constants Cy, Cy and Cs are given by Cy = 27| fullso /Clus
Co =1Ly, (602 + 3C2), and C3 = 27|| ful|oo, with Ly, being the Lipschitz constant of f,, = |Vul|.

Proof idea. For given T < C,, the domain B(z,,1) can be divided into two parts: the set where
7(x) < T and the set where 7(z) > T. When the condition equation E] is satisfied, there exists
4 € HY%(W, €) whose corresponding flow can steer all points with 7(z) < T to the e-neighborhood of x5
within time 7. Therefore, the error for this part can be bounded by an ODE estimation in terms of the
difference between W/|W| and V. For the other part, besides the error of flow map approximation, there
is an additional error caused by the insufficient traveling time, which can be bounded via an estimation on
the measure of this set. See the detailed proof in Appendix [B.2] O

When W tends to a universal approximation familiy, the right-hand side of the inequality [I0]can actually
be arbitrarily small as long as 7" > C,. The estimation equation [10| implies that when 7" < C,, and
Ey(Vy,), € are small, the approximation error is bounded by a quadratic term of C,, — T'. In general, C,,
is only an upper bound of the maximal hitting time over B(x, 1). More precisely, we may expect that
the error is approximately quadratic in terms of Ty, — 71" With 7,5 being the supremum of 7(x) over
B(zs,1). We verify this numerically over 2D examples by calculating the flow map using ODE scheme
with small step length (see Appendix for the expression of these functions). Figure |1| shows the

log — log plot between (Tymax — 7') and the empirical approximation error over B(z5, 1) when Eyy (V,,),
¢ are small. The result verifies the approximately quadratic relation between them.

The approximation rate in Theorem [2.1] differs significantly from classical smoothness-based approxima-
tion results. For instance, in polynomial approximation, the error in approximating an order-r smooth
target function F' using polynomials of degree < n is bounded by Cn~"|F |y .», where |F |y r.» denotes
the Sobolev norm of F'in W™P. This implies that functions that are easy to approximate using polyno-
mials are those with higher order smoothness and small derivatives in each order. Conversely, in our
approximation result, the maximal time 7" is bounded by the ratio between the maximal and minimal
gradient norm of u. However, any smoothness assumptions on u or |Vu| cannot solely guarantee a bound
for C,, highlighting a fundamental difference from smoothness-based approximation.

Moreover, when T exceeds the maximal hitting time, the approximation rate in equation[I0|is related to the
smoothness of V, if W is a smoothness-based approximation family. However, the smoothness of V,, and
u can differ greatly. For instance, for any u € X of the form u = a(|x — x;|), where « : [0, 00) — [0, c0)
is an increasing function, we have Vu(;v) = x — x4, which is infinitely differentiable. Nevertheless, by

Under review as a conference paper at ICLR 2025

o{ — log error for uy ol — log error for u, 01 — log error for us
line with slope=2 line with slope=2 line with slope=2

-2

-2 _2
-6

._.6 _6
-8

-

-4 -3 -2 -1 0 -3 -2 -1 0 -4 -3 2 -1 0
109(|Tmax — T1) 109(|Tmax = T1) log(|Tmax = T1)

log Error

log Error

log Error
IS

Figure 1: The log — log plot between (Tmax — 1) and the empirical approximation error over 3 different
cost functions. Lines with slope 2 are plotted for comparison.

the definition of 3, such u only needs to be second-order differentiable. Hence, when V, is sufficiently
smooth, the approximation rate to v primarily depends on the smoothness of V,,, rather than w itself. This
characteristic contrasts with classical approximation schemes where () is approximated by a linear
combination of basis functions, in which the smoothness of u(x) controls the approximation quality.

In fact, the example of radial functions is not an isolated case. We provide Proposition[B.4]in Appendix[B.3}
indicating that in general, even if V,, is determined to have high order of smoothness, there still exists a
large degree of freedom in v € X such that its higher order smoothness cannot be guaranteed.

Let us now also contrast this with currently known rate estimates concerning the depth 7" of flow maps.
In|Ruiz-Balet and Zuazual (2023)), an estimation of the approximation rate by continuous-time ResNet
with activation function ReLU for general L? integrable target functions is provided. However, their result
suffers from the curse of dimensionality, and evaluating the complexity measure of the target function is
challenging. Compared to their setting, which approximates general target functions, our approach focuses
on a specific class of target functions with dynamical structures. Despite this restrictive setting, we obtain
a rate estimate which is curse-of-dimensionality-free with respect to time 7', indicating when a deeper
network should be used over a shallower one and the corresponding error we can expect. Additionally, our
identified target functions have the property that their gradient norms are bounded both above and below,
with the ratio of these bounds estimating 7". This setting is analogous to the 1D ReL.U flow approximation
in|Li1 et al.| (2022)), where target functions that can be approximated by flow within a finite time horizon
have derivatives bounded both above and below. These connections can offer valuable insights into the
properties target functions should possess for effective approximation by flow maps.

In summary, our approximation result identifies a restrictive but precise setting where the advantage of
using a deeper network can be quantified. Within such a setting, the approximation results by flows
are shown to be quite different to the smoothness-based approximation. This phenomenon provides
further evidence that smoothness should not be the correct measure of complexity for flow approximation.
Moreover, the common feature of our target functions to the previous results may provide valuable insights
into the key properties of target functions that can be effectively approximated by flow maps and deep
neural networks.

3 NUMERICAL IMPLEMENTATION: FINITE FLOW METHOD

In this section, by a numerical implementation of the hypothesis space H%. (W, €), we propose the Finite
Flow Method, a novel learning-based algorithm to solve the eikonal equation. In this setting of solving
PDE, we are assumed to priorly know the right hand side function f,, of equation [3|instead of u.

Representation of the solution In the finite flow method, we choose the vector field hypothesis space W
to be the set of functions represented by a deep neural network N [Ny with parameters 6. Subsequently,
we calculate the corresponding function ug in H%.(W, €) using an Euler scheme to approximate the real
solution u. Due to the indicator function introduced to avoid the singularity at the source point, higher

Under review as a conference paper at ICLR 2025

order ODE scheme will essentially be first order near the source point. Therefore, we choose to use
the Euler scheme for computational efficiency. Moreover, to avoid differentiability problem to 6 during
training, we adopt a smooth approximation of the indicator function x. which is adapted to the ODE step
size. The details are shown in Appendix [C.2]

Loss Function According to the variational formulation of the eikonal equation (Tran,|[2021), we have

T
u(z) = inf{/o fulev, (@ 0)dt | [Vulloo < 1,8t 0(x,0) = 2, 0(x,T) = 2} (1n

That is, the integral curve of V,, from x to x; always minimize the integral of f,, along the curve connecting
x and xs. This suggests initializing ug such that its corresponding flow converges to a small neighborhood
of x, as realized in Appendix We then train the network by minimizing the following loss function
to evaluate the solution over the bounded domain €2:

L(0) == agl = /Q lg(2)Pde, p> L. (12)

Intuitively, as long as the learning rate is small, the flow of ug will keep converging to a small neighborhood
of x4 during training; otherwise, L(#) will increase during the training steps. In practice, we can simply
evaluate equation [I2] by the empirical average over a set of samples. Notice that the loss [I2] does not
incorporate the derivative of the neural network. Therefore, during the training process, only the first order
derivative of the neural network is calculated. This is more computationally efficient than minimizing
the equation loss, as used in the physics-informed neural networks(PINN). A diagram of the finite flow
method is shown in figure[2] Here, we use finite residual blocks to approximate the flow map representing
the solution, and that is why we call it the finite flow method. Suppose we are using the ODE size At
to calculate the flows, and the time horizon is T' = N At, then the network for the finite flow method
consists of N repeated blocks with residual connections, where the output at each block all contributes to
the final output.

0 — 2p—>P—— =z —»E?—» PR ZN-1 :(P > zn

A

Atx.f At f Aty. f
Y
ug(z LP(u

" N z2 le N 9()

|

]] |] |

+Id +Id TId :

|

NNy Update 6 |

Vom ——¥0 e e . !

‘NN,9| +4

Figure 2: A diagram of the finite flow method. Here z, = z,,_1 + Atxe(2n—1) f(2n—1) records a sum
over the history outputs at each block. Therefore, the final output is actually related to the state at each
block, instead of only the last block in most neural network architectures.

4 EXPERIMENTS

In this section, we provide numerical test of our proposed finite flow method in solving the one-source
eikonal equation[3] In the experiments, we compare our method to the fast marching method, one of the
state-of-the-art finite difference methods for solving the eikonal equation, and existing PINN methods
PINNeik (bin Waheed et al., 2021)) and NES-OP (Grubas et al., 2023). All the experiments presented
in this section solves the one-source eikonal equation |3|over Q@ = [-1,1]?> C R? with z; = (0,0).
Additional numerical details are provided in Appendix [C.3]

Under review as a conference paper at ICLR 2025

4.1 COMPARISON TO FAST MARCHING METHOD

4.1.1 ROBUSTNESS TO SPATIAL RESOLUTION OVER DATA

We first demonstrate the robustness of the finite flow method to the spatial resolution comparing to the
fast marching method(FMM). To do this, we consider a cost function f corresponding to the solution

function:

u(z,y) = Va2 +y2(0.5(x — 0.5)2 + sin(y) + 3) (13)
For the finite flow method, we use grid points from various mesh sizes in the domain [—1, 1]? as training
data to train the neural network. As a comparison, we also solve the equations on each such grid using the
second order FMM. We then evaluate the mean absolute error (MAE) compared to the exact solution for
both the finite flow method and FMM. The results are shown in Figure [3a} It can be seen that the error of
the fast marching method is almost linear to the spatial resolution in data. In comparison, the performance
of the finite flow method is robust to the spatial resolution of the training data. A relatively small number
of training data can result in a high accuracy, compared to the FMM. This advantage can be useful in
high-dimensional problems where small grid size is in general not available.

—e— FMM
Finite flow 100
1072
1071
w w
s s
-2
103 10 —e— dt=0.04
dt=0.02
1073y —e— dt=0.01
—e— dt=0.005
1074, : ; ! | |
1071 1072 1073 1072 1073 1074
Mesh Size Inference Step Size
a) Error vs. Spatial Resolution (b) Error vs. ODE step size of finite flow method

Figure 3: Factors that affect the accuracy of finite flow method. (a) The mean absolute error of the solution
for finite flow method trained over grids with different mesh size. (b) The relation between the solution
accuracy and the ODE step size used to inference the solution for networks trained with ODE step size
0.04,0.02,0.01 and 0.005.

Besides the spatial resolution, there is another more important parameter that affects the accuracy of finite
flow method, which is the time step of the ODE scheme. We investigate the effect of different time step
length in both the training and evaluation process to the solution accuracy of finite flow method. The
results are shown in Figure [3b] It can be seen that we can use a smaller time step length in the evaluation
process to achieve a higher accuracy, while the training process can be done with a larger time step length
for efficiency. However, when the time step in the evaluation step goes below a certain threshold, the
accuracy will start to decrease. In our experiments, we observe that the ratio of the optimal time step
length in the evaluation process to the training process should be between 0.02 to 0.05.

4.1.2 TRANSFERABILITY AMONG SIMILAR PROBLEMS

In this section, we present the transferability of finite flow method amoung similar problems. Specifically,
we consider the scenario where the cost function is perturbed from the original one. We study if
the finite flow method trained on the original cost function can adapt to the new cost function within
minor computational cost. To do this, we consider train a network for a cost function fm—igina](x, y) =

1+ 1.5¢=3(@=0-9°+(u=09%) (¢ achieve an MAE of 1.05 x 1073. A perturbation function fs(z,y) =

Under review as a conference paper at ICLR 2025

Se—3((=+0.9)?+(y+0.4)*) with a scale factor d is then added to the cost function to get ferturbed (2, Y) 1=
foriginal (2, ¥) + f5(x,y). We then use the trained network over forigina as an initialization for fperwrbea. For
a given perturbation scale J, we compute the number of training steps needed for the pre-trained network
to achieve an MAE of 10~ for the perturbed cost function. In Figure El, we plot the ratio of the transfer
learning steps to the number of training steps in solving the original equation for f. In comparison, we
also plot the ratio of the computation time of the FMM in solving the perturbed problem to the original
problem. The results show that for finite flow method, the pre-trained network can significantly reduce
the computational cost for solving the perturbed cost function, especially when the perturbation is small.
In comparison, the computational cost of the fast marching method keeps almost the same as solving the
original problem. This result shows the potential of the finite flow method in significantly reducing the
computational cost in solving similar problems, particularly in large scale and high-dimensional problems.

g
o

o
o

o
o

—e— Finite Flow Method
Fast Marching Method

o
i

o
N]

Computational Cost Ratio

o
o

0.1 0.2 0.3 0.4 0.5
Scale of Perturbation

Figure 4: The ratio of additional computational cost for solving the perturbed cost function to the cost for
solving the original problem. For finite flow method, the cost is measured by the number of additional
training steps needed to achieve the MAE of 103 for the perturbed cost function. For FMM, the cost is
measured by the computation time for solving the perturbed equation.

4.2 ROBUSTNESS TO SOLUTION REGULARITY COMPARED TO PINN

In this part, we provide a comparison to existing PINN methods for the eikonal equation, NES-OP (Grubas
et al.,|2023)) and PINNeik (bin Waheed et al.| 2021).

The key difference of finite flow method to PINN is that finite flow method uses a network to formulate
the vector field V,, = —Vu/|Vu| and represent the solution using the flow-based representation, while
the PINN directly use the network output to represent the solution w. Intuitively, this implies that PINN is
suitable to problems where wu is regular, while the finite flow method will perform well when Vu/|Vu| is
regular. In general, when « is smooth enough, Vu/|Vu| will should also be smooth. However, as we
discussed in previous sections, the converse does not hold. Therefore, we may expect that in cases when
u and V,, are both regular, both PINN and finite flow method can work well. Moreover, there should
also exist cases when Vu /| Vul is simple but w itself is not, such that the finite flow method will perform
better.

To validate this understanding, we test the performance of the three methods for two cost functions f; and
2., see Appendix [C.3|for the form of f; and fs. Here, f; is a simple smooth cost function without sharp
spatial change, while f5 is f1 plus a perturbation with relatively small scale but a sharp spatial oscillation.
This perturbation does not change the vector field for f; too much. The results of the three methods are
compared in Table[l} We can see that for f;, the best case of all the three methods perform well. PINNeik
achieves the highest accuracy in the best case, while finite flow method is more stable in the typical case.
In the case of f5, finite flow method outperforms both the PINN methods. Both PINNeik and NES-OP
show a significant drop in performance for fo compared to fi. The result validates that comparing to

Under review as a conference paper at ICLR 2025

the PINN methods, the finite flow method is more robust to the regularity of the solution as long as the
regularity of the vector field V,, is still good. This shows a potential of the finite flow method to handle
equations with highly heterogeneous cost functions, which is commonly faced in the applications of
geophysics (Virieux and Opertol, [2009).

Average Best Worst

Finite Flow 1.06 x 10~% 9.66 x 107°> 1.23 x 10~%
MAE for f; PINNeik 717x 1072 8.02x107% 358x 107!
NES-OP 509 x 107%* 449 x10~* 5.16 x 1074

Finite Flow 6.05 x 1074 5.92 x10"% 6.32x10°%
MAE for f» PINNeik 1.44 x 10° 4.76 x 1073 3.54 x 109
NES-OP 1.58 x 1072 1.32x 1073 1.70 x 103

Table 1: Comparison of the solution accuracy of finite flow method, PINNeik, and NES-OP over f;
and f,. All three methods are trained over the 200 x 200 regular grids of [—1, 1]? using batch size of
10000. The MAE is evaluated over the 101 x 101 regular grid points of [—1, 1]2. 5 independent runs are
performed for each method, and the best, worst and average MAE are reported.

5 LIMITATIONS AND FUTURE WORK

Currently, our theory and proposed numerical solver only handles the strong solution case. In the general
case when the characteristic lines of the eikonal equation have intersections, the network in the finite
flow method may not learn the correct directions near these intersections. However, according to the
variational form of the solution, the flow-based representation is still valid in this case, except that the
vector field V,, can have discontinuities over a measure-zero set. In this direction, a direct future work
is to design algorithm for weak solution case of the eikonal equation. Moreover, we believe the idea of
identifying target space through solutions of PDEs can be generalized to a broader setting, especially for
the Hamilton-Jacobi equations (Arnol’d, |2013). In the future work, we will explore the approximation
results for other non-linear target spaces derived from non-linear PDEs with inspired learning algorithms
for solving the PDE.

REFERENCES

Vladimir Igorevich Arnol’d. Mathematical methods of classical mechanics, volume 60. Springer Science
& Business Media, 2013.

Umair bin Waheed, Ehsan Haghighat, Tariq Alkhalifah, Chao Song, and Qi Hao. Pinneik: Eikonal
solution using physics-informed neural networks. Computers & Geosciences, 155:104833, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

Jingpu Cheng, Qianxiao Li, Ting Lin, and Zuowei Shen. Interpolation, approximation and controllability
of deep neural networks. arXiv preprint arXiv:2309.06015, 2023.

LIU Chenghao, Enming Liang, and Minghua Chen. Characterizing resnet’s universal approximation
capability. In Forty-first International Conference on Machine Learning.

David L Chopp. Some improvements of the fast marching method. SIAM Journal on Scientific Computing,
23(1):230-244, 2001.

Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303. Springer Science &
Business Media, 1993.

10

Under review as a conference paper at ICLR 2025

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.

Sergey Fomel, Songting Luo, and Hongkai Zhao. Fast sweeping method for the factored eikonal equation.
Journal of Computational Physics, 228(17):6440-6455, 2009.

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural eikonal solver: Improving accuracy
of physics-informed neural networks for solving eikonal equation in case of caustics. Journal of
Computational Physics, 474:111789, 2023.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems, 34(1):
014004, 2017.

Juncai He. On the optimal expressive power of relu dnns and its application in approximation with
kolmogorov superposition theorem. arXiv preprint arXiv:2308.05509, 2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359-366, 1989.

Dunham Jackson. The theory of approximation, volume 11. American Mathematical Soc., 1930.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference on
learning theory, pages 2306-2327. PMLR, 2020.

Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An approximation
perspective. Journal of the European Mathematical Society, 25(5):1671-1709, 2022.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for smooth
functions. SIAM Journal on Mathematical Analysis, 53(5):5465-5506, 2021.

Hadrien Montanelli. Deep relu networks overcome the curse of dimensionality for generalized bandlimited
functions. Journal of Computational Mathematics, 39(6), 2021.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research, 22(57):1-64, 2021.

Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why and
when can deep-but not shallow-networks avoid the curse of dimensionality: a review. International
Journal of Automation and Computing, 14(5):503-519, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686-707, 2019.

Domenec Ruiz-Balet and Enrique Zuazua. Neural ode control for classification, approximation, and
transport. SIAM Review, 65(3):735-773, 2023.

James A Sethian. Fast marching methods. SIAM review, 41(2):199-235, 1999.

James A Sethian et al. Level set methods and fast marching methods, volume 98. Cambridge Cambridge
UP, 1999.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation characterized by number
of neurons. arXiv preprint arXiv:1906.05497, 2019.

Jonathan D Smith, Kamyar Azizzadenesheli, and Zachary E Ross. Eikonet: Solving the eikonal equation
with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(12):10685—
10696, 2020.

11

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Marshall H Stone. The generalized weierstrass approximation theorem. Mathematics Magazine, 21(5):
237-254, 1948.

Paulo Tabuada and Bahman Gharesifard. Universal approximation power of deep residual neural networks
through the lens of control. IEEE Transactions on Automatic Control, 68(5):2715-2728, 2022.

Hung V Tran. Hamilton—Jacobi equations: theory and applications, volume 213. American Mathematical
Soc., 2021.

Jean Virieux and Stéphane Operto. An overview of full-waveform inversion in exploration geophysics.
Geophysics, 74(6):WCC1-WCC26, 2009.

Ee Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 1(5):1-11, 2017.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In
Conference on learning theory, pages 639-649. PMLR, 2018.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Are trans-
formers universal approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077,
2019.

Hongkai Zhao. A fast sweeping method for eikonal equations. Mathematics of computation, 74(250):
603-627, 2005.

12

Under review as a conference paper at ICLR 2025

A PROPERTIES OF THE EIKONAL EQUATIONS

A.1 LINE OF CHARACTERISTICS

Considering solving equation 3| using the method of characteristics(Evans| [2022), the characteristic ODE
reads as:

. t
i(t) = DpH = [

p(t) = —D,H = =V f(z(t)) (14)
£(t) =p-DpH = [p(t)| = f(z)

with the initial condition z(0) = x5, 2(0) = 0 and p(0) € R<. Here, p and z stands for the value of
Vu and u along the characteristics, respectively. Different initial conditions p(0) correspond to different
characteristic lines. If the strong solution of equation [3]exist, the trajectory of « in equation[T4] will not
intersect in R? \ {z,}. Therefore, for any u € 3, considering solving the backward ODE of equation
with the initial condition x(0) = z gives the flow-based representation E]in Section

A.2 VARIATIONAL FORMULATION OF THE EIKONAL EQUATION

The solution to the eikonal equation has a variational formulation.
Proposition A.1. Given any u € %, for any v € R?\ {z,}, the following holds:

e N S
) =t {755 € AC(0.A,R) 2(0) = 2.5(T) = ()] < -y 0

T (15)
= inf {/0 fu(y(t))dt : v € AC ([0, T],R™) ,v(0) = 0,%(T) = s, ‘Vl(t)| <1 a-e-} .

i.e. the solution u is the value function of the optimal control problem of reaching the source point x
with the minimal cost under the spatial cost function f,. The locally optimal control is just given by
the vector field V,, = —Vu/|Vul. This property also provides an optimality property of the flow-based
representation 4] which is the basis for the loss function used in our proposed finite flow method. We
refer toTran| (2021) for the proof of this proposition. In fact, the variational formulation holds in the more
general setting of viscosity solutions.

B PROPOSITIONS AND PROOFS

B.1 ESTIMATION ON 7(x)

We have the following proposition on the estimation of 7(x), which is a direct consequence of the
variational formulation of the eikonal equation.

Proposition B.1. For any u € ¥, denote

Cy :=sup |Vu(z)|/inf [Vu(z)| € [1,00). (16)
Then, for any x € R4\ {x,}, we have
7(2) < Cullz — . (17
Proof. By Proposition[I5] we have
7(2) f [Vu(z)] < u(z) < 7(2)sup [Vu(z)], (18)
which completes the proof. O

13

Under review as a conference paper at ICLR 2025

B.2 PROOF OF THEOREM [2.1]

w
Aw(e) ={py.v |V = W] for some W € W}, (19)
as the flow map family corresponds to the hypothesis space 1. (W, €). We will first provide an approxi-
mation error estimate of yy,, over B(zs, 1) using the hypothesis space Ay (g)

Theorem B.2. Suppose c. Define V,,(x) := |x — 4|V, (). Then, there exists p € Ay () such that

(@, t) — o, (x,8)] < C(4Byw(V,)) TommTe 4 2¢,

(20)
for all x,t with |x — x| < 1andt < 7(x). Here, L is the Lipschitz constant of V,,, C = 6C2 + 3C,,,
EW(V) :=infwew |W — Vi | Lo (B(z.,C.)) represents the approximation error of Vi, in W.

Proof. By the definition of EW(VU), there exists W € W such that

W () = o — 2| Vu(2)| < 2Bw(V2)

(21)
forall z s.t. |z — zs| < Cy. Let z(t) denote the solution of the ODE:
B(t) = Va(z(t)),
{x(O) =uz. 22)
Let Z(t) denote the solution of the ODE:
#() = f e
{5:(0) =z. @3
For t € [0, 7(z)], we have
d . w(z@) _ _ W(Z)
o) = 301 < [V (et0) - (| < Waa(0) - Vo) + |Vida(0) - T 2
For the first term, from ||z|V,,(x) — |Z|V.(Z)] < L] z|, we have
2 —zs|[V(2) = V(2)| < Llw — & + |(Jo — x| = [= 2:)V(@)] < (L+D(lz —2]), (25
ie. -
Vi) = V@) < (LD 26)
For the second term, we have
- W (Z(t)) 1 _ ~ - - -
< 4Ew (Vy)
T W@
Therefore, we have ~
d _ - 4F .
Zla(t) = &) < (L+1) f ;J' + |VIV/V((5:)|). 28)
From Proposition |(t) — x| > &~ (7 —t). We have

W (@) [+ = [2(t) — 25| = Bw (V) + 2 C%(T —t) = |2(t) = (t)| = Bw (V). (29)

14

Under review as a conference paper at ICLR 2025

We then have
d) Cu(L+1 N 4By (V,
Dty st < D05y i) oo
dt Tt oo (T =1) = [x(t) = ()| = Ew(Va)
as long as the right-hand side of equation [29]is positive. It follows that
t AE ~u _ &\Cu(L+1)
|(E(t) _ f(t)| < (7_ _ t)*Cu(LJrl)\/ - (W(V))(T ~S) _ds. (31)
0 o (T —s) —lx(s) = Z(s)| = Ew(Va)

The following lemma holds:

Lemma B.3. Suppose 7 > 203(4EW(Vu))Cu<L1+1)+2 and 4Bw(V,) < 5. Whent < 7 —

20,
2C2(4Ew (V) CuTFDT2, e have
[2(t) = #(0)] < CuldBy(V2)) T2, (32)
Proof of the Lemma. Prove by contradiction. Denote C,,(4Ey, (V) CLTTEDT? as a. Suppose the con-

clusion does not hold, take ¢(as the infimum of the ¢ in [0, 7 — «] such that the inequality fails. Since
|z(0) — &(0)| = 0 and |z(t) — Z(t)| is continuous, we have t; > 0. From equation[31] we have

t g 7 — $)Cu(L+1)
|a(t) — #(t)] < (7 — 5)"CuE+D /0 %E(VTV(VZ)))E o j)EWW)
C’u u

< (r— t)—cu(L+1) /t (4EW(Vu))TC“(LH)~
- 0 %(T*S)*&*Ew(vu)
_ (4B (V)7 O D 1 vk
_ log(——(r—t) —a—E (33)
(7 — t)Cull+D) G Og(Cu (r=t)—a=Ew(tu) 0
CullBy (V)T r
(T 00T BT 0 (0 + Bw(V)
< C (4EW(VU)) L+1)(T _ + 1)
B (1 —t)CutD) T—t—Cula+ Ew(Va))
for [0, to). By continuity, we have
Cu(4Eyy(V,))rCu L+ T
x(tg) — x(to)| < = +1
G R o T
Cu(4Eyy(V,))rCu L+ T L)
= (2C,a)Cu(I+D) 2C,a — Cy(a + Ew(Vy)) (34)
_ (4Bw (V) 5772 2(r)
= (2C2)Cu(L+1) o
< (4Bw (Vi) =0 < a,
which is a contradiction. Here we use C,, > 1, 7 < C,,. O

The Lemma gives an estimate of |z(t) — Z(t)| when t < 7 — 2C2(4Ew(Vy,)) cuTrn7E. For t €

[T — 202 (4Ew(V,,)) emezoi=d 7] and the case when 7 < 202 (4B (V,,)) CutEADT2 | we can consider
the simplest estimation that

d .
= x(t) — 2(t)] <2 (35)

15

Under review as a conference paper at ICLR 2025

Combine with the result of the Lemma, we have:

l2(t) — #(1)] < (2C% + C) (4B (V,)) Totmrmz, (36)

forall ¢t € [0, 7(x)]. Now denote V := \%I . We have actually shown that

g (2,) — v, (z,1)] < (202 + Cu) (4Ew (V) Tatm=, (37)

for all |z — x| < 1and t € [0, 7(x)]. Notice that the trajectory of V,, and x.V,, with the same initial
condition x will be the same before the first time ¢. when |Z(t) — 5| = &. Since

[2(te) — @] < (202 + C)(ABw (V) o777 e, (38)
we have ~ .

te > 71— (202 + C)(4Ew(V,,)) Cumin — ¢, (39)

Therefore, we have
lop (2.8) = pv_y (@) < 2(r — 1) < 2202 + C) (4B (V) ToEF 72 422, (40)

It then follows that
v, o (2,1) — v, (2,1)] < (7 — t.) < (6C2 + 3C,) (4By(V,,)) TeF D7 + 2, 1)
forall |z — z,| < 1and t € [0, 7(x)]. Since py,_, € Aw(e), the theorem is proved. O

Now we can give the proof of Theorem [2.1]

Proof of Theorem[2.1] From Theorem B.2]and equation [36in its proof, we know that when
(207 + Cu) (4B (V) om0 <, “2)

there exists ¢ = @,.v € Apw(e) such that equation 20| holds, and its trajectory will reach the e-
neighborhood of x before time 7(x). That is, |p(z,t) — x| = e forall x € B(0,1) and ¢ > 7(z).

For this V' with ¢ = ¢, 1 we have

Ju =TT @ a0y = [(o) - i) |da
B(0,1) 3)

lu(e) = L= (V)(2)|ldz + / lu(z) = L= (V)(2)||dz
z€B(0,1),7(z)>T

n/wEB(O,l),T(w)ST

For the first term, we have

/ lu(z) — TT4(V)()|dz
z€B(0,1),7(x)<T

()
-/ 1] Gulow(@0) = xeloo)l 1) o
2€B(0,1),7(z)<T Jo

() ()
< /zeB(O,l),T(:v)gT (/0 (fulv, (z,1)) — fu(w(x,t)dt))dH/ IIfu(sO(fE,t)dt)lldt> dz

max{7(z)—2¢e,0}

()
</ | Erllove) et 0ldtds + 2m({e € BO).7(w) < T e
z€B(0,1),7(z)<T JO
(44)

16

Under review as a conference paper at ICLR 2025

Here we use the estimation in equation [39|on the first hitting time of ¢(x, -) to the e-neighborhood of z,.
For the second term, we have

/ oo @) ~TE @@
S ,1),7(x)>

7(x) T(x)
- / || / (fu«ovu(x,t» — fulple,t)dt + / fuw(x,t))dt) ldz
zeB(0,1),7(x)>T 0 T

(@)
S/ / Ly,
z€B(0,1),7(z)>T JO

Combine both, by equation[20] we have

Ju =TS (V) (@)l L1 (B(0,1))
< WLUCM(GCZ + 3Cu)(4EW(Vu)+) CuT + 27| fulloo€ + (Coy = TYm({x € B(0,1),7(x) > T}H| fulloo

v, (z,1) — @z, t)||dtdz + (Cu = T) + 2e)m({z € B(0,1),7(z) > T})|| fulloo
(45)

(46)
When T < C,,, we have
m({z € B(zs,1),7(z) > T}) =7 —m({x € B(zs,1),7(z) <T})
T 47
<7 —m({x € B(xs,1),Cylz — 25| <T}) =7(1— (0—)2) “7)
When T > C,, it is clear that m({z € B(x,1),7(x) > T}) = 0. Combine this with the previous
estimation, we have the conclusion of the theorem. O
B.3 PARTIAL DETERMINATION RELATION BETWEEN f/u AND u
Proposition B.4. For d > 3, suppose u € ¥ is C? in R? \ {z,}. Define
Ry ={veXx|V,=V,}. (48)

Then, for any continuous function h over R such that 0 < a < h < b for some constant a,b, and
Vh(z) || Vu(z) for all x € R\ {z}, there exists v € R, such that |Vv| = h|Vul.

Proof. Since uis C% in R%\ {x,}, we have that V,, is C! in R? \ {z,}. We then have

Vu

h|Vu|V, = —h - |Vu| vl

= —hVu. (49)

We then claim that —hVu is the gradient of some C* function over R? \ {z,}. By Poincaré’s lemma,
since R? \ {z,} is simply connected, we only need to check that

6](]18111) - 61(}7/6]1,6) = 8]h81u — aihﬁju = 0, Vl,] = 1, e ,d, (50)

which follows directly from the assumption that V1 || Vu. Therefore, we can assume that there exists
w € CH(RY\ {x,}), such that

h|Vu|V, = Vuw. (51)
We can assume that w(x,) = 0. Then, we can deduce that —w is positive in R? \ {z,}. Since V,, is unit,

this implies that |Vw| = h|Vu|. According to u € ¥ and 0 < a < |Vh| < b, we deduce that —w € X.
Let v = —w, then we have

Vo = =Vo/|Vu| =V, (52)
indicating that v € R,,.

O

17

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

C.1 VERIFICATION OF APPROXIMATION RATE

We numerically verify the approximation rate with s = (0,0) and the following 3 functions over
B(x,,1) C R2.

s ui(z,y) = /22 + y2(sin(z + 3) + cos(¥ + 1))
o ug(z,y) = Va2 + y%(sin(x + 2y) + 3)

.« us(z,y) /22 + v2(675(9570‘35)275(%0.35)2 + 675(z+0.35)275(z+0.35)2).
The graph of w1, us, us and their corresponding cost functions fi, fa, f3 are shown.

u_2

1.0 1.0 s L0 u_3
2.0
4
05 05 4
0.5 15
3
3
> 0.0 > 0.0 - 00
2 : 1.0
2
-0.5 1 -0.5 1 -0.5 0.5
-1.01 -1.0 ! -
-1.0 -05 00 1.0 1.0 -05 00 05 1.0 %70 -05 00 05 10
X X
Figure 5: Graph of uy, uo, us
1.0 2
3.5 s 25
3.0 05
4 2.0
2.5
> 0.0 15
2.0 3 ’
15 -05 2 1.0
L0 05
-1.0 x
1.0 -05 00 05 1.0
X

Figure 6: Graph of f1, fa, f3

To test approximation error with respect to 7, for each u;(i = 1,2, 3), we simply take ‘N/ui to belong to

W to make Eyy (V') = 0. Then, for the vector field V,,, and 300 dirrerent values of 7' € [0, 3], we use
the Euler scheme with step size 1074 and e = 3 x 10™* to numerically compute I'2>¢(V,,,)(x) over 10°
uniformly sampled points in B(z, 1) to evaluate the L' approximation error.

C.2 DETAILS OF THE FINITE FLOW METHOD
C.2.1 NETWORK ARCHITECTURE

Since the underlying vector field V,, of the one-source problem has an attractor at the source point x5, we
design the following network architecture to formulate Vj in the finite flow method:
x — x5 + MLP(x)

Vol@) = = T MLP ()]

(53)

18

Under review as a conference paper at ICLR 2025

where MLP is an multilayer perceptron with input and output dimension being the state dimension of the
equation. The weight in the output layer of MLP is initialized as zero to ensure that the integral curves of
Vp is initialized to converge at the source point. This will overcome the issues related to singularity at the
source point and make the training dynamics using the variational loss more stable.

C.2.2 MOLLIFIED INDICATOR FUNCTION

To overcome the differentiability issue caused by the indicator function ., we choose a smooth mollifier
which is adapted to the ODE stepsize as its substitution. Specifically, in numerical experiments, we
replace x. with a mollifier p which is defined to be p(z) = h(||x — x4||/At), where At is the stepsize
for the Euler scheme, and h(r) is given by h(r) = softplus(4(r — 3)) — softplus(4(r — 3) — 1). Such a
mollifier can be regarded as a smooth approximation of . for £ = 4At. The graph of p when At = 0.01
is shown below.

p(x) with At =0.01

1.0

Figure 7: Graph of p when At = 0.01

Here, for the numerical stability, we mollify a neighborhood with radius 4At of x4 to ensure that the
trajectory calculated using ODE scheme with step length At will not go out of it once entered.

C.3 EXPERIMENTAL DETAILS IN SECTION[4]

In this section, we provide the implementation details of the experiments in Section] For all the
experiments on the finite flow method, the network structure follows equation 53] with MLP is a fully
connected neural network with 4 hidden layers and 55 neurons in each layer with 9517 trainable parameters.
We implement all the learning-based solver using the equinox library, which is based on the JAX
framework. All the training processes use the Adam optimizer. The experiments are conducted on a single
NVIDIA RTX 3090 GPU. We perform the second order fast marching method using the eikonalfm
package.

C.3.1 IMPLEMENTATION DETAILS IN SECTION [£.1.1]

In the first experiment in Section .1.1] we compare the finite flow method with the fast marching method
on grids with different mesh size. For each given mesh size, we train the network using an ODE step size
of 5 x 1073 and a learning rate of 10~ with the Adam optimizer. The ODE step in for inference is set to
be 2.5 x 10~%. The maximal batch size is set to 50000.

For a fair comparison of the finite flow method and the fast marching method, we evaluate the MAE of
finite flow method over the 100 x 100 regular grids of [—1, 1] x [—1, 1], which are mostly not incorporated

19

Under review as a conference paper at ICLR 2025

Figure 8: Images of the cost function f; and f5.

in the training set. The error of the fast marching method is evaluated over the same grids used for solving
the equation. This difference in the evaluation set is due to the different nature of the two methods.

In the second experiment in Section[#.1.2] for all the networks, the training set is the 100 x 100 regular
grids of [—1,1] x [~1,1]. A full-batch training with learning rate of 5 x 10~* of are applied to all the
networks for 500 epochs.

C.3.2 IMPLEMENTATION DETAILS IN SECTION 4.1.2}

In Section[#.1.2] since the explicit solution of the eikonal equation is not available, we use the solution
got by the second order fast marching method with mesh size 4 x 10~ as reference.

The network for solving foriginal 18 trained over the 200 x 200 regular grids of [—1,1] x [—1,1].
C.3.3 IMPLEMENTATION DETAILS IN SECTION [4.2]

The function f; and f; used in the experiment are given by

i) = [V ute,)l with u = /a2 +2(sin(e + 5) + cos(S + 1), s
F2(z,y) = fi(2,y) +sin(10m/22 + (1 + 0.22)%y?)

The image of f; and f> are shown in Figure 8] The comparison of their corresponding vector fields are
shown in Figure[9]

For fs, since the explicit solution is not know, we use the solution got by the second order fast marching
method with mesh size 2 x 10~ as reference. For all three networks, the training set is the 200 x 200
regular grids of [—1, 1] x [—1, 1]. The batch size is set to be 10000. The networks are all trained with
Adam optimizer. Other details of the training setting are listed below:

The network size for the PINNeik and NES-OP is 5 hidden layers with 50 neurons in each layer with
10401 parameters in total, which is close to the network size of the finite flow method.

For the finite flow method, the training epoch is 150 for both f; and f, with learning rate 5 x 10~*. For
the two PINN methods, the training epoch is 30000 for f; and 60000 for f» with learning rate 2.5 x 10~4,

20

Under review as a conference paper at ICLR 2025

Vs,

Vr

Vb A A s s s

[
t

VA s

LI S T B

\

[AV A A a4
A A A A i

|

|
NNNNN NN A A Ao
NNNNNN N S A

LI T T

Ay

i

ERNNNN N Y Y S e e
e T Y R A e e i

. N (e e e o e = -
P N e O 2. N

PR A S B L T

PV A AV Ay AV B VNN N e

PAV RV Ay YA B B S N N S SN

P I A

f

L S U U N NN

(L U VAN S
t
}
\

1
t

P A

LI S L N N N AN
AT L U W W N AN

tA ottt
1

f

7
/

1.00

0.751

0.50

0.251

0.00

-0.251

-0.50

-0.751

-1.00

/

'

|

'

'

|

'

I A

AV A AV AV o s

'

'

i
\

NN)

Vv

I AV A A A A
J f K X w

v
|

\

NN ONON N

SNNNNNN Y Lo
R R NN N Y S e e

e (e e e - - -
N . NI WS S .

AV S A AF B B U N

PRV AV EF AV AN R .

LI N N

t

f

Lrr st

rrt
trt

-~ -

/
t

LN U U W N A NN
AL L U O VU U N

t
\

i
\

t

L S

t

1.00

0.75

0.50

0.254

0.00

-0.25

-0.50

-0.75

-1.00

Figure 9: Image of the vector fields V; and V5 corresponding to f1 and fs, respectively.

21

	Introduction
	Related work
	Target space
	Hypothesis space
	Approximation rate result and its consequences

	Numerical implementation: Finite Flow Method
	Experiments
	Comparison to fast marching method
	Robustness to spatial resolution over data
	Transferability among similar problems

	Robustness to solution regularity compared to PINN

	Limitations and future work
	Properties of the eikonal equations
	Line of characteristics
	Variational formulation of the eikonal equation

	Propositions and Proofs
	Estimation on (x)
	Proof of Theorem 2.1
	Partial determination relation between u and u

	Experimental Details
	Verification of Approximation Rate
	Details of the finite flow method
	Network architecture
	Mollified indicator function

	Experimental details in sec:experiments
	Implementation details in sec:exp1
	Implementation details in sec:exp2
	Implementation details in sec:exp3

