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Abstract

Offline reinforcement learning (RL) aims to learn a policy from a static dataset with-1

out further interactions with the environment. Collecting sufficiently large datasets2

for offline RL is exhausting since this data collection requires colossus interactions3

with environments and becomes tricky when the interaction with the environment is4

restricted. Hence, how an agent learns the best policy with a minimal static dataset5

is a crucial issue in offline RL, similar to the sample efficiency problem in online6

RL. In this paper, we propose a simple yet effective plug-and-play pretraining7

method to initialize a feature of a Q-network to enhance data efficiency in offline8

RL. Specifically, we introduce a shared Q-network structure that outputs predic-9

tions of the next state and Q-value. We pretrain the shared Q-network through a10

supervised regression task that predicts a next state and trains the sharedQ-network11

using diverse offline RL methods. Through extensive experiments, we empirically12

demonstrate that our method enhances the performance of existing popular offline13

RL methods on the D4RL, Robomimic and V-D4RL benchmarks. Furthermore, we14

show that our method significantly boosts data-efficient offline RL across various15

data qualities and data distributions trough D4RL and ExoRL benchmarks. Notably,16

our method adapted with only 10% of the dataset outperforms standard algorithms17

even with full datasets.18

1 Introduction19

Sample efficiency is a crucial issue in reinforcement learning (RL) since typical RL considers an20

online learning nature that involves iterative processes between experience collections and policy21

improvements through online interactions with the environment [51]. Unfortunately, requiring22

excessive online interactions is impractical in several cases since data collection requires expensive23

costs and retains potential risks of the agent, e.g. hardware corruption. Offline RL is one approach to24

alleviate this sample efficiency problem, which provides a solution by avoiding online interactions25

with the environment [35]. In recent years, pretraining with offline RL and fine-tuning with online26

RL have been investigated to improve sample efficiency of the online interactions [41, 55, 44, 3].27

Similar to addressing the sample efficiency problem in online RL, learning offline RL with minimal28

datasets is necessary since collecting enormous experience charges expensive costs and unfavorable29

explorations, hampering the possibility of offline RL in the real world. In this paper, we name this30

problem as data efficiency where an agent tries to learn the best policy with minimal data in the31

offline RL scheme. Despite the necessity of data efficiency, this problem has not been treated enough32

in previous works. Although some researchers have evaluated their work empirically on reduced33

datasets in part of the experiments [1, 29, 31], they have overlooked this data efficiency problem. In34

the case of online RL, model-based RL and representation learning have proposed the resolution of35

sample efficiency problem [50, 21, 46, 47]. As in online RL, one can expect that offline model-based36
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Figure 1: Overview of our pretraining method. Our method splits the original Q-network into two
core architectures: a shared network that extracts the representation z from the concatenated vector
of state s and action a and separated heads for training the transition model network and Q-network,
respectively.

RL or representation method might resolve this data efficiency problem [64, 49, 56]. However,37

Figure 8 demonstrates that both approaches are unable to overcome this problem.38

In this work, we propose a simple yet effective plug-and-play method that pretrains a shared Q-39

network toward data-efficient offline RL. Specifically, the shared Q-network structure is composed of40

two parts as illustrated in Figure 1. First, a shared deep neural network layer (hφ) takes the state and41

action pair as inputs. Second, separate shallow output parts (gψ and fθ) consist of two linear layers42

that individually output a Q-value for a Q-function and a next state prediction for a transition model.43

The learning phase of the shared Q-network consists of a pretraining and an RL training phase. In the44

pretraining phase, the shared network attached with a shallow transition layer (hφ and gψ) is trained45

through a supervised regression task that predicts the transition model. After the pretraining phase46

where the shared network is initialized with the pretraining, the shared network is connected with a47

shallow Q layer (hφ and fθ) and trained with an existing offline RL value learning.48

We empirically demonstrate that our method improves the performance of existing popular offline RL49

methods on the D4RL [14], Robomimic [38] and V-D4RL [36] benchmarks. We also show that our50

method maintains data-efficient performance with fragments of the dataset across the data quality on51

the D4RL dataset. Moreover, we investigate our method across the data collection strategies on the52

ExoRL datasets [58], assuming a small dataset would have a shifted data distribution compared to a53

large dataset. As a result, we demonstrate that our method improves the performance regardless of54

the qualities of the datasets and the data distributions. Figure 7 and Figure 10 show that our method55

with 10% of datasets outperforms vanilla algorithms even with full datasets. Furthermore, Figure 856

demonstrates that our method indeed outperforms the offline model-based RL and representation57

approaches in reduced datasets.58

2 Related Works59

Offline RL. Offline RL aims to learn a policy with static data without further interactions with the60

environment. Previous approaches have mainly addressed the distribution shift problem, which is61

caused by the idea that queries of the Q-function over out-of-distribution actions may yield overly62

optimistic values during offline training [17, 30, 35, 31, 15, 27]. Recently, scalability to a large63

dataset and neural network model has been studied [8, 42, 52]. In other fields, pretraining with offline64

RL and fine-tuning with online RL is examined to improve sample efficiency in the online interaction65

step [41, 55, 44, 3]. In contrast, distinct experiments over the way to consuming the static dataset66

have been conducted, e.g., an imbalanced dataset, unlabeled data, and even data corruption under an67

offline RL scheme [26, 63, 57]. While prior research [1, 29, 31] often has evaluated their work on68

reduced datasets as a partial result, the field overlooks the data efficiency problem itself as a main69

contribution. In contrast, we aim to improve the data efficiency in offline RL (i.e., learning the best70

policy with minimal data). In this work, we propose a simple yet effective plug-and-play method for71

pretraining a shared Q-network toward the data-efficient offline RL.72

Sample efficient RL. A common issue in most RL algorithms is sample efficiency: excessive73

interactions with the environment are required to learn an optimal policy. For this reason, sample74
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efficiency has been an active research topic in RL [28, 62, 11]. Model-based RL [50, 10, 21, 20, 24]75

is a common approach to resolve sample inefficiency by learning a (latent) dynamics model and76

using it to generate additional transition samples. Otherwise, effective pretraining [47, 62] and data77

augmentation [32, 28] play a critical role in improving sample efficiency in RL. Recently, offline-to-78

online [34, 3, 44, 13, 41] and foundation model [2, 48, 6, 5, 4] have tackled this problem where the79

poor sample efficiency of online RL regime is alleviated by leveraging large offline data.80

Data efficient Offline RL. In this work, we define data efficiency in offline RL as the ability81

of an algorithm to learn an optimal policy from a minimal static dataset of pre-collected samples.82

This contrasts with sample efficiency, which we use to describe the ability to learn effectively with83

few environment interactions in online RL. Some previous work [46, 47] mention data-efficient84

approaches. However, they have focused on online RL scheme, therefore, the actual meaning is85

sample efficiency in our contents. These methods employ self-predictive tasks in latent space to86

enhance representation learning, relying on techniques like data augmentation [61] and target encoders87

[25] to improve performance. In contrast, our approach uses supervised learning for pretraining within88

a shared network architecture, requiring no additional techniques. From the various experimental89

setting, we demonstrate that our method improves performance in offline RL, effectively addressing90

our defined data efficiency problem with minimal static datasets.91

3 Pretraining Q-network with Transition Model Helps Improving data92

efficiency93

Algorithm 1 Pretraining Q-network scheme for Offline RL

Input: Dataset D of transition (s, a, s′), learning rate α
Initialize parameters φ,ψ
for each gradient step do

Sample a mini-batch B ∼ D
Compute the transition model estimation error

Lpre(φ,ψ) =
∑

(s,a,s′)∈B

(s′ − (gψ ◦ hφ)(s, a))2

Update weights of the shared network and transition model network

φ← φ− α∇φLpre(φ,ψ), ψ ← ψ − α∇ψLpre(φ,ψ)

end for
Output: Pretrained weights φ of the shared network

In this paper, we propose a simple yet effective pretraining method adapting features of the transition94

model into the initialization of Q-network to improve data efficiency in offline RL. To this end, we95

design Q-network that partially shares a network with the estimation of the transition model. In96

particular, the transition model is constructed as follows:97

ŝ′ = (gψ ◦ hφ)(s, a), (s, a) ∈ S ×A, (1)

where ŝ′ is the estimated next state, gψ is a parameterized linear function, and hφ is shared with the98

Q-network, which is defined as99

Qφ,θ(s, a) = (fθ ◦ hφ)(s, a), (s, a) ∈ S ×A, (2)

where fθ is also a parameterized linear function that represents the linear output layer and hφ100

represents the fully connected neural network layers shared with the transition model in (1). The101

overall structures of the neural networks are illustrated in Figure 1.102

In our method, the transition model gψ ◦ hφ is pretrained by minimizing the mean squared prediction103

error loss function104

Lpre(φ,ψ) =
∑

(s,a,s′)∈D

(s′ − (gψ ◦ hφ)(s, a))2 (3)
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over the pre-collected dataset D which includes a given set of the transition (s, a, s′). Afterward,105

the pretrained parameter φ can be used as an initial or fixed parameter for standard RL algorithms106

based on the Q-network structure in (4) without any modification. The overall pretraining process is107

summarized in Algorithm 1 for offline RL. We also note that similar principles can be applied for108

online RL as well, and the corresponding algorithm is given in Appendix A.109

Later in this paper, we empirically demonstrate that combining our pretraining method with existing110

offline RL methods can effectively improve their performances. Moreover, we demonstrate that our111

method indeed improves data efficiency through some experiment settings in offline RL.112

3.1 Analysis: Based on the Projected Bellman Equation113

Figure 2: Reduced approximation error with
the expanded column space of Hφ. In linear
approximation, there exists Qπ outside of the col-
umn space of Hφ. To deal with this problem, the
projected Bellman equation projects Qπ to ΠQπ

which exists in the column space of Hφ.

In this section, we analyze how our method can114

resolve the data efficiency problem from the115

perspective of the projected Bellman equation.116

For simplicity and convenience of presentation,117

we assume that the state and action spaces are118

discrete and finite, and the transition is determin-119

istic. However, the principles in this paper can120

be extended to more general continuous state121

and continuous action cases. Our analysis is122

based on the observation that Q-function with123

neural networks can be generally represented by124

(2). Following this context, our analysis starts125

by viewing the conventional MLP into two sep-126

arate parts: a feature function, hφ, and a linear127

function approximator, θ. Defining the feature vector z = hφ(s, a) ∈ Rm, it can be rewritten as128

Qφ,θ(s, a) =

m∑
i=1

θihφ,i(s, a) = ⟨θ, hφ(s, a)⟩ (4)

where (s, a) ∈ S ×A. When φ is fixed, then the above structure can be viewed as a linear function129

approximation with the feature function hφ,i. Our method pretrian hφ,i by minimizing the loss in (3).130

In this work, the output before the last layer of MLP correspond to the latent space (feature) z and the131

last linear layer is correspond to θ (i.e., Qθ,φ(s, a) = hφ(s, a)
T θ). Therefore, the interpretation based132

on the linear function approximation is expected to be a reasonable model to explain the phenomenon133

in our method.134

It is well known that with linear function approximation, the corresponding standard Bellman equation135

Qφ,θ(s, a) = R(s, a) + γ
∑
s′∈S

Pπ(s′|s, a)
∑
a′∈A

Qφ,θ(s
′, a′)

may not admit a solution in general. However, typical TD-learning algorithms are known to converge136

to the unique fixed point of the projected Bellman equation. In particular, considering the vector form137

of the Bellman equation, Qφ,θ = R+ γPπQφ,θ, the projected Bellman equation [39] is known to138

admit a solution139

Qφ,θ = Π(R+ γPπQφ,θ)

where Π is the projection onto the column space, C(Hφ), of the feature matrix Hφ defined as140

Hφ :=


...

hφ(s, a)
T

...

 .
The corresponding solution is known to have the error bound141

||Qφ,θ −Qπ||∞ ≤
1

1− γ
||ΠQπ −Qπ||∞, (5)

where Qπ is the true Q-function corresponding to the target policy π. As can be seen from the above142

bound, the error depends on the feature matrix Hφ. We can observe that the smaller the distance143
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between C(Hφ) and Qπ, the smaller the error between Qφ,θ and Qπ. Therefore, a proper choice144

of the feature function is key to the successful estimation of Qπ. In other words, expanding the145

dimension of the feature matrix’s column space reduces the Bellman error.146

With the neural network function approximation, typical value-based RL algorithms update both φ147

and θ simultaneously via TD-learning algorithms. Since the feature functions, hφ,i, are in general148

nonlinear and non-convex in φ, it may sometimes converge to a local optimal solution. This in149

turn implies that appropriate initialization or pretraining of the feature functions, hφ,i, can play an150

important role for estimating Q-function with smaller approximation errors on the right-hand side of151

(5) by avoiding suboptimal local solutions.152

Figure 3: The Rank of the latent space of Q-network
during the training time. We compare the rank of the
latent space between a vanilla TD3+BC and TD3+BC
adapted with our method over 512 samples. Our method
maintains higher rank of the latent space, leading to
reduced approximation error.

Figure 3 exhibits that adapting our method153

shows a significantly higher rank than the154

rank of the vanilla method. The full version155

of the Figure is on Appendix H. From the156

results, we claim that our method indeed ex-157

pands the column space C(Hφ) and covers158

higher dimensional vector space in R|S×A|,159

leading to more precise Q-function esti-160

mation. In other words, we might learn161

a more precise Q-function with the same162

amount of samples, and it means that we163

can get a desirably estimated Q-function164

with less data. In the following section,165

we demonstrate our claim with empirical166

experiments.167

We conjecture that the pretraining approach with the transition model introduced in the previous168

section can effectively shape the feature functions so that the column space C(Hφ) can cover higher169

dimensional vector space in R|S×A|. As shown in Figure 2, this eventually results in a reduction of170

the solution error on the right-hand side of (5). To support this, we empirically compare the rank of171

the Q-network in the latent space between vanilla and the pretrained TD3+BC with our method over172

512 data samples.173

4 Experiments174

In this section, we evaluate our method over existing offline RL methods with the popular offline175

RL benchmarks, D4RL, the more complex domain, Robomimic, and the image-based environment,176

V-D4RL. Furthermore, we examine our method over the partial fragments of D4RL and ExoRL177

datasets for data-efficient offline RL. We introduce a detailed experimental setup and baselines in the178

following paragraphs and provide empirical results subsequently.179

Experimental setup and Baselines. We have considered heterogeneous tasks and diverse datasets180

for precise comparisons. For the locomotion task, our method is compared with existing methods181

in the popular D4RL benchmark [14]. Three different embodied agents and five distinct datasets182

are considered in order to validate the effectiveness of our method: HalfCheetah, Hopper, Walker2d183

for agents and random, medium-replay, medium, medium-expert, expert for datasets. We plug our184

method into the popular offline RL methods, AWAC [40], CQL [31], TD3+BC [15], and IQL185

[27]. To verify the benefits of our method, we compared the normalized scores between the vanilla186

method and the one combined with our pretraining method. For the tabletop manipulation tasks, we187

evaluate our method on the Robomimic benchmark, [38], where off-the-shelf offline RL methods188

are already implemented. Two different tabletop tasks and mixed-quality datasets are considered to189

verify the scalability of our method: Lift, Can for tasks and Machine-Generated (MG) for datasets.190

We compare the success rate the tasks, where IQL, TD3+BC, BCQ [17], and IRIS [37]. For the191

image-based environment, we evaluate our method on Cheetah Run and Walker Walk tasks in V-D4RL192

benchmark [36]. We build our method on DrQ+BC. For data-efficient offline RL, we have evaluated193

our method across the reward qualities of the datasets of D4RL Gym locomotion tasks on MOPO [64],194

MOBILE [49] and ACL [56] to compare our method with offline model-based RL and representation195

approaches, and the dataset collection strategies for walker walk (i.e. SMM, RND, ICM) and point196
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Table 1: Averaged normalized scores on the D4RL benchmark over 5 seeds. In each column
corresponding to different RL methods, values on the left-hand side are scores of the baseline methods
directly taken from the literature. The values on the right-hand side of each column represent scores
of our methods combined with the baselines. The increased scores compared to the baselines are
highlighted in blue font, and they are reported with the mean and standard deviations over five random
seeds.

AWAC CQL IQL TD3+BC

Random
HalfCheetah 2.6±0.4→51.1±0.9 21.7±0.9→31.9±2.6 10.3±0.9 → 18.3±1.0 2.3±0.0→14.8±0.5
Hopper 28.6±8.9→59.5±33.8 10.7±0.1→30.2±2.7 9.4±0.4 → 10.7±0.4 10.7±3.2→31.6±0.2
Walker2d 7.8±0.2→13.1±3.9 2.7±1.2→19.6±4.5 7.9±0.5 → 8.9±0.7 5.9±1.0→11.2±5.1

Medium
HalfCheetah 48.4±0.1→54.6±1.5 37.2±0.3→39.9±18.8 46.6±0.2→48.9±0.2 43.5±0.1→49.2±0.3
Hopper 88.4±8.8→101.7±0.2 44.2±10.8→90.6±2.2 76.9±5.8→78.6±2.2 67.0±1.9→71.5±2.2
Walker2d 53.0±33.2→89.5±0.9 57.5±8.3→84.7±0.7 83.8±1.5→83.6±1.1 82.1±1.0→87.1±0.6

Medium Replay
HalfCheetah 46.1±0.3→55.8±1.3 41.9±1.1→47.6±0.4 43.4±0.3→45.5±0.2 40.0±0.5→45.8±0.3
Hopper 101.3±0.6→106.7±0.6 28.6±0.9→98.6±2.1 96.2±1.9→99.4±1.7 73.9±7.3→100.2±1.6
Walker2d 88.1±0.6→100.3±2.1 15.8±2.6→87.7±1.3 77.9±2.1→88.0±1.7 58.0±3.6→92.0±1.6

Medium Expert
HalfCheetah 76.4±2.8→90.1±1.9 27.1±3.9→82.8±6.5 94.8±0.2→95.3±0.1 76.8±2.8→96.9±0.9
Hopper 113.0±0.7→113.2±0.2 111.4±1.2→111.1±0.8 101.8±7.5→105.8±11.3 102.2±9.6→113.0±0.2
Walker2d 103.3±15.3→111.9±0.3 68.1±13.1→91.6±42.5 111.6±0.7→112.1±0.9 109.5±0.2→111.6±0.4

Expert
HalfCheetah 94.4±0.8→93.5±0.1 82.4±7.4→97.1±1.0 96.4±0.2 → 97.4±0.1 94.0±0.2→98.9±0.6
Hopper 112.8±0.4→112.9±0.1 111.2±2.1→112.1±0.4 113.1±0.6 → 113.3±0.5 113.0±0.1→113.4±0.3
Walker2d 110.4±0.0→111.2±0.4 103.8±7.6→110.6±0.3 110.7±0.3 → 112.8±1.1 109.9±0.3→111.0±0.2

Figure 4: Learning curves of TD3+BC. The blue and orange curves are, respectively, the normalized
scores of TD3+BC and TD3+BC pretrained with our method. The vertical red reference lines split
the pretraining and main training phases. After the pretraining phase, TD3+BC combined with our
method quickly outperforms the vanilla TD3+BC by a large margin.

mass maze (i.e. Proto, Diayn) in ExoRL [58] on TD3 [16] and CQL. See Appendix C for a more197

detailed setup for tasks and datasets and Appendix E for more implementation details.198

4.1 Performance Improvement in Offline RL Benchmarks199

To demonstrate the effectiveness of our method over existing offline RL methods, we evaluate our200

method on D4RL and Robomimic datasets. In Table 1, the normalized scores between the vanilla and201

the one combined with our method are compared for each environment and dataset in D4RL. Our202

method combined with the baselines (i.e., AWAC, CQL, IQL, TD3+BC) improves the corresponding203

original methods in most cases, across diverse environments and datasets. The blue scores in Table 1204

mean increased performance compared to the original baseline algorithms. Specifically, one can205

observe that CQL exhibits a +49% increased performance on average compared to the original206

baselines.207

Figure 4 shows the learning curves of TD3+BC and the results verify the effectiveness of our method.208

After the pretraining period (indicated by the red vertical lines), one can notice that the learning curves209

rapidly increase and achieve higher returns compared to the original methods. These results suggest210

that our method accelerates training and enhances performance with only a few lines of modifications211

on top of the baselines. Full graphs of TD3+BC are provided on Figure 13 in Appendix G.212

Additional experiments are conducted on large-scale robotic manipulation tasks in Robomimic213

benchmark, to verify the effectiveness of our method for complex tasks. our method is evaluated214

with tasks containing suboptimal transitions, where our method improves the baselines on the D4RL215

benchmark. The averaged success rate of four offline RL baselines is reported in Figure 5 with216

and without applying our method. As can be seen, all the methods with our pretraining method are217
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Figure 5: Averaged success rate on the Robomimic
benchmark. We evaluate both vanilla methods without
pretraining (blue) and methods with pretraining (or-
ange). 7 out of 8 cases depict notably improved perfor-
mance in both environments.

Figure 6: DrQ-v2 and our method over
3 seeds in the V-D4RL benchmark. We
evaluate our method on the image-based en-
viornment, V-D4RL. Figure shows that our
method enhances DrQ-v2.

Figure 7: Averaged normalized scores in reduced datasets across data quality. This figure shows
the overall performance of our method across reduced dataset (i.e., 1%, 3%, 10%, 30%, 100%)
for three environments (i.e., halfcheetah, hopper, walker2d) in D4RL. From the overall results, we
conclude that our method guarantees better performance even in 10% of the datasets regardless of the
data quality of the dataset, and even 1% for the random datasets and 3% for the medium datasets.

improved over the baselines in seven out of eight cases. Therefore, we conclude that our method also218

effectively performs in solving more complex tasks. We also have conducted experiments on Adroit,219

24-DOF environment, in Appendix D. We have applied our method to AWAC, IQL and TD3+BC,220

and conducted total 12 experiment (i.e., four environments × three datasets) for each algorithm over221

five seeds. In most cases, our method improves the performance. These results also demonstrate that222

our method is effective in solving complex tasks.223

Our method can be extended to high-dimensional state space formulation. Similar to other vision-224

based DRL, our method can be built upon popular visual offline RL methods by replacing the original225

state input with representation input that is extracted from the visual encoder. We experiment on how226

our method scales to higher dimensions in the V-D4RL benchmark [36]. According to Figure 6, our227

method successfully improves the performance of the baseline, DrQ-v2 [59].228

4.2 data efficiency across the Qualities of the Datasets229

To validate the data efficiency of our method, regardless of the dataset quality, we have examined our230

method with TD3+BC in reduced datasets (i.e., 1%, 3%, 10%, 30%, 100% of each dataset) across the231

data quality (i.e., random, medium, medium replay, medium expert, expert) on D4RL over 5 seeds. To232

construct the reduced datasets, we have uniformly sampled the transition segments (i.e., (s, a, r, s′))233

from each dataset. Using these reduced, small datasets, we conduct both pre-training and RL training.234

7



Figure 8: Comparison of our method with the other approaches on D4RL. We compare existing
model-free offline RLs with our method to offline model-based RLs (i.e., MOPO, MOBILE) and a
representation RL (i.e., ACL) on D4RL over 3 seeds. The graph shows integrated results over medium,
medium-replay, medium-expert datasets. The results show that our method maintains the performance
in reduced datasets, especially 1%, unlike the other approaches.

Figure 9: Average returns in reduced datasets across the dataset collection strategies. We
evaluate our method over different dataset collection strategies (i.e., SMM, RND, ICM). TD3 with our
method outperforms the vanilla TD3 overall and even training with 10% of datasets outperforms the
vanilla TD3 with full datasets. From the results, we demonstrate that our method is data-efficient
regardless of the data distributions.

On the random datasets (a leftmost section in Figure 15), training with our method with only 1% of235

the dataset outperforms the vanilla TD3+BC trained with full datasets at halfcheetah and warker2d236

environments. On the medium datasets (right to the random in Figure 15), our method shows similar237

or improved results compared to the vanilla TD3+BC with full datasets by only using 3% of the238

datasets. On the other datasets (i.e. medium-replay, medium-expert, and expert), our method with239

10% datasets totally outperforms the vanilla TD3+BC with full datasets. From the overall results in240

Figure 7, we conclude that our method guarantees better performance for offline RL even in 10%241

amount of the original datasets, regardless of the data quality of the dataset. These results demonstrate242

that our method is indeed data-efficient and requires minimal amount of static datasets in offline RL243

scheme.244

We also compare our method with offline model-based RL and representation approaches. We apply245

our method to TD3+BC and AWAC. We adopt MOPO [64] and MOBILE [49] as representatives of246

offline model-based RL, ACL [56] as a representation representative. We conduct the experiments on247

D4RL, medium, medium-replay, medium-expert datasets over three seeds. Figure 8 shows integrated248

results over the datasets and Figure 16 shows details. The results show that our method maintains the249

performance in reduced datasets compared with the other approaches that spend extra training budget250

(e.g., training and forwarding the transition). As a result, we claim that our method is the most proper251

choice for data-efficient offline RL.252

4.3 data efficiency across the Data Distributions253

We assume that a small dataset would have a shifted distribution compared to a large dataset, for254

instance, some small datasets have narrow support of visited states. Based on the assumption we have255

made, we evaluate our method across different dataset collection strategies since each dataset has a256
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different data distribution. In ExoRL [58], we chose TD3 as a comparison algorithm and SMM [33],257

RND [7], and ICM [43], as walker walk task datasets. In [58], ICM shows the best performance,258

followed by RND, SMM, and TD3 shows the best performance in ICM. We compare TD3 to TD3259

with our method in reduced datasets (i.e., 1%, 10%, 100%) over three seeds. To construct reduced260

datasets, we select the data from the front. With same reduced datasets, we conduct both pre-training261

and RL-training. Figure 9 shows the results. For all datasets, applying our method with only 10% of262

datasets outperforms vanilla TD3 with full datasets. Especially in RND, even training with 1% of263

datasets shows a significantly high average return.264

Figure 10: Effectiveness of our method over narrow sup-
port of the visited states datasets. (Left) Visualized goal-
reaching point mass agents and trajectories with different
goals, portions, and exploration methods. (Right) Averaged
return of CQL trained with two datasets with and without
our pretraining method.

Furthermore, we consider apoint mass265

maze environment in ExoRL to in-266

vestigate whether our method is ef-267

fective even in narrow support of the268

visited states datasets. Figure 10 visu-269

alizes the trajectories of each reduced270

dataset collected by DIAYN [12], and271

Proto [60] strategies (i.e., 1% of DI-272

AYN, 7% of Proto). In comparison273

with Figure 2 in [58], our reduced274

dataset settings cover more narrow275

support of visited states. The top right276

figure of DIAYN shows that there are277

a few trajectories around the top right278

goal and the bottom left right figure of279

Proto also shows that there are a few280

trajectories around the bottom right281

goal in Figure 10. To demonstrate282

our method is effective even with a283

dataset with this shifted state distri-284

bution, we evaluated our method on285

reduced point mass maze datasets described in Figure 10 over short (reach top right) and long (reach286

bottom right) goals with CQL. Figure 10 demonstrates that our method shows significant performance287

even with narrow data distribution. From the results, we conclude that our method is indeed more288

data-efficient than the other methods regardless of different choices of the data distribution.289

5 Conclusion290

In this paper, we propose a simple yet effective data-efficient offline RL method that pretrains a shared291

Q-network with the transition dynamics prediction task, maintaining reasonable performance even292

with a small training dataset. To pretrain the Q-network, we design a shared network architecture293

that outputs predictions of the next state and Q-value. This structure makes our method easy to apply294

to any existing offline RL algorithms and efficiently boosts data efficiency.295

To demonstrate the effectiveness of our strategy, we conduct experiments with various settings in296

offline RL. From the results, we demonstrate that our method significantly improves the performance297

of existing offline RL algorithms over D4RL, Robomimic and V-D4RL benchmarks. We also298

demonstrate that our method is indeed data-efficient across the different data qualities from D4RL299

and the different data distributions from ExoRL.300

Limitations & Future Works. This paper might have considered with a standard problem setting for301

offline RL. Since conventional popular offline RL methods often have chosen model-free architecture302

that learns the Q value function to learn the best policy, the proposed design organizes to exploit such303

structures. However, as suggested in [47, 54], offline pretraining can also benefit diverse domains304

(e.g. unsupervised learning, goal-conditioned RL). Simpleness and plug-and-play capability enable305

the architecture to be advantageous for extensive applications. We leave future work to expand our306

method toward various offline RL problems, e.g., offline to online RL, goal-conditioned RL, and307

real-world applications.308
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A Pretraining Q-network for Online RL (Off-Policy)491

Algorithm 2 Pretraining phase for Online RL (Off-policy)

Input: Learning rate α
Initialize parameters φ,ψ and a buffer D
for each gradient step do

Uniformly sample a random action and collect a transition
a ∼ U(amin, amax)
s′ ∼ p(s′|s, a)
Update the buffer with a collected transition
D ← D ∪ {(s, a, r, s′)}
Sample a mini-batch B ∼ D
Compute the forward dynamics prediction error

Lpre(φ,ψ) =
∑

(s,a,s′)∈B

(s′ − (gψ ◦ hφ)(s, a))2

Update weights of the shared network and forward network

φ← φ− α∇ϕLpre(φ,ψ), ψ ← ψ − α∇ψLpre(φ,ψ)

end for
Output: Pretrained weights φ of the shared network, collected buffer D

Algorithm 3 Pretraining phase for Online RL (Off-policy) with pre-collected dataset

Input: Dataset Dpre of transition (s, a, s′), Learning rate α
Initialize parameters φ,ψ
for each gradient step do

Sample a mini-batch B ∼ Dpre
Define the loss function

Lpre(φ,ψ) =
∑

(s,a,s′)∈B

(s′ − (gψ ◦ hφ)(s, a))2

Take the gradient descent step

φ← φ− α∇ϕLpre(φ,ψ), ψ ← ψ − α∇ψLpre(φ,ψ)

end for
Output: Pretrained weights φ of the shared network

We extended our pretraining method to popular online off-policy RL methods by incorporating492

the pretraining phase ahead of the main training phase. During the pretraining phase of the online493

agent, a trajectory dataset was obtained by either initializing the replay buffer with actively collected494

interaction data by uniformly sampling a random action or offline static dataset.495

For experiments on online RL using an off-policy setting, we adopted soft actor-critic (SAC) [19] and496

twin delayed deep deterministic policy gradient algorithm (TD3) [16]. We compare these algorithms497

with and without our pretraining method on OpenAI Gym MuJoCo tasks. For a fair comparison, all498

algorithms were trained for 1 million time steps on each task over 5 seeds.499

Table 2 presents the results of the experiments following Algorithm 2 which collects the pretraining500

dataset by uniformly sampling random actions. Incorporating our pretraining phase shows better501

performance in more than half of the results. Additionally, we trained both SAC and TD3 with the502

pre-collected dataset from the D4RL for the pretraining phase along the Algorithm 3. Note that503

we only used the pre-collected dataset during the pretraining phase. Table 3 shows the best scores504

among the 5 datasets (i.e., random, medium, medium replay, medium expert, expert). Interestingly,505

pretraining with the suboptimal-level dataset (medium-replay) shows better performance compared506

to the expert-level dataset.507
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Table 2: Results of Off-policy RL application on OpenAI gym MuJoCo tasks
SAC TD3

HalfCheetah-v2 10065.77±621.80→11005.51±374.14 10644.63±190.42→11697.71±236.01
Hopper-v2 3357.07±30.64→1419.55±137.55 3365.08±94.69→3454.83±129.34
Walker2d-v2 4279.67±509.51→2697.92±674.29 4193.11±435.31→4481.19±190.93
Ant-v2 4191.17±986.11→4399.56 766.24 5172.78±659.02→4407.40±759.64
Humanoid-v2 5545.70±85.00→479.09 83.86 5247.14±187.64→5816.16±199.25
Pusher-v2 -190.77±88.51→-133.96 29.00 -22.94±0.52→-22.85±1.25

Table 3: Results of Off-policy RL pretrain with the D4RL OpenAI gym MuJoCo datasets
SAC TD3

HalfCheetah-v2 10402.79±1675.67 11820.06±269.76
Hopper-v2 3405.95±70.87 3465.25±149.87
Walker2d-v2 4785.15±247.37 4559.38±1007.69

From the above experiments, we conjecture that pretrained online RL (off-policy) has limitations508

when they only exploit random action data for pretraining. A marginal state distribution induced by509

uniformly sampling random actions is close to the initial state distribution, limiting the diversity in510

the dataset and eventually leading to an increase in forward dynamics uncertainty. Consequently,511

there are fewer opportunities to learn the good features of forward dynamics with random action512

datasets than suboptimal-level datasets. This explains why Table 2 shows worse results than Table 3.513

We also applied another approach introduced in section B to online RL settings. The results, shown514

in Table 4, indicate that more than half exhibit enhanced performance compared to reported scores in515

Table 2.516

Table 4: Results of Off-policy RL with Additional Loss
SAC TD3

HalfCheetah-v2 8498.68±3195.13 9588.53±866.30
Hopper-v2 3539.39±133.47 3523.67±202.52
Walker2d-v2 4847.86±135.52 3819.68±552.84
Ant-v2 3710.73±917.35 5401.0±844.56
Humanoid-v2 5576.98±106.31 5489.73±38.28
Pusher-v2 -158.66±55.02 -25.47±34.00

B Another Design Choice using Our Shared Q-Network Structure517

In this section, we introduce another approach that also utilizes features of forward dynamics using518

the shared networks as in the previouse pretraining method. In this approach, we use the following519

modified loss that adds the forward model loss to the loss for the Q-function estimation:520

LQ = LTD + Ldynamics (6)

In this way, the shared network is trained throughout the entire training period without the pretraining521

phase. We adopt TD3+BC for evaluation and the results are presented in table 5. On TD3+BC,522

this approach also outperforms almost all of the vanilla scores. Simply adding the supervised loss523

term of state prediction without any multiplier or technique demonstrates improved performance.524

Consequently, we suggest that our shared Q-network can be expanded in other directions and we525

expect that it holds significant potential for further research.526
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Table 5: Averaged normalized scores of TD3+BC with additional loss on D4RL benchmark. We
depict increased scores compared to their original scores in blue color and report mean and standard
deviations over 5 random seeds.

Random Medium Medium Replay Medium Expert Expert

HalfCheetah-v2 11.45±0.51 48.23±0.33 44.93±0.29 93.55±1.00 96.59±0.25
Hopper-v2 31.54±0.42 70.86±2.17 90.39±7.34 113.44±0.35 113.28±0.20
Walker2d-v2 13.46±6.58 82.65±1.65 86.11±1.54 111.88±0.63 110.98±0.22

(a) HalfCheetah (b) Hopper (c) Walker2d

(d) Lift (e) Can (f) Walker Walk

Figure 11: Illustrations of environments.

C Tasks and Datasets527

In this section, we provide detailed experimental setups for the tasks and datasets. Illustrated528

environments can be found in Figure 11529

C.1 D4RL530

D4RL consists of 8 separate tasks. In this work, we utilized one of them for the main experi-531

ments; OpenAI Gym MuJoCo continuous control tasks. It consists of 4 different environments (i.e.,532

HalfCheetah, Walker2d, Hopper, and Ant) and 5 heterogeneous datasets in terms of data quality for533

each environment. Each dataset is collected along the below strategies:534

• Random (1M samples): Collected from a randomly initialized policy.535

• Expert (1M samples): Collected from a policy trained to completion with SAC.536

• Medium (1M samples): Collected from a policy trained to approximately 1/3 the perfor-537

mance of the expert.538

• Medium-Expert (almost 2M samples): A 50-50 split of medium and expert data.539
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• Medium-Replay (almost 3M samples): Collected from the replay buffer of a policy trained540

up to the performance of the medium agent.541

All environments have the same episode limit of 1000 and the goal of each locomotion agent is to542

run as fast as possible without falling to the ground. More detailed information can be found at543

https://github.com/Farama-Foundation/D4RL.544

C.2 Robomimic545

Robomimic provides a large-scale and diverse collection of task demonstrations spanning multiple546

human or robotic demonstrations of varying quality. We considered machine-generated (MG) datasets547

generated by training an SAC agent for each task and then using intermediate policies to generate548

mixed-quality datasets. We selected this dataset for evaluation since our method demonstrated549

superior performance with suboptimal datasets on the D4RL benchmark. All environments have550

the same episode limit of 400. The goal of the Lift environment is lifting the cube above a certain551

height and the goal of the Can environment is placing the can into the corresponding container. More552

detailed information can be found at https://github.com/ARISE-Initiative/robomimic.553

C.3 ExoRL554

They provide exploratory datasets for 6 DeepMind Control Stuite domains (i.e., Cartpole, Cheetah,555

Jaco Arm, Point Mass Maze, Quadruped, Walker) and totally 19 tasks. For each domain, they556

collected datasets by running 9 unsupervised RL algorithms (i.e., APS, APT, DIAYN, Disagreement,557

ICM, ProtoRL, Random, RND, SMM) from URLB for total of 10M steps. More detailed information558

can be found at https://github.com/denisyarats/exorl?tab=readme-ov-file.559

D Experiments on Adroit in D4RL560

We conducted additional experiments on adroit in D4RL [14] benchmark to validate that our method561

can be adopted to different complex domains. An illustration of the Adroit environment can be found562

in Figure 12. The Adroit domain involves controlling a 24-DoF robotic hand with 4 different control563

tasks (i.e., Pen, Door, Hammer, and Relocate) and 3 heterogeneous datasets as following:564

• Human: Collected with the 25 human demonstrations provided in the DAPG [45] repository.565

• Cloned: a 50-50 split between demonstration data and 2500 trajectories sampled from a566

behavioral cloned policy on the demonstrations. The demonstration trajectories are copied567

to match the number of behavioral cloned trajectories.568

• Expert: Collected with 5000 trajectories sampled from an expert that solves the task,569

provided in the DAPG repository.570

For experiments, we compared AWAC, IQL, and TD3+BC with/without our pretraining method571

over 5 seeds. Table 6 yields averaged normalized scores for each task. Overall, learning with our572

pretraining phase demonstrates enhanced performance. From these results, we conclude that our573

method can be effective in complex domains not only tabletop but dexterous manipulation as well.574

E Implementation Details575

In this section, we provide detailed implementation setups for extensive experiments. Since we576

suggest a plug-and-play pretraining method for popular offline RL methods, we reuse open-source577

code for comparative results: TD3+BC1, IQL2, AWAC3, and CQL4 for D4RL. We use off-the-shelf578

offline methods in the official repository5 for the Robomimic environment. We only use open-source579

baselines which use PyTorch for fair comparisons. On the D4RL, we train each agent with 1M580

1https://github.com/sfujim/TD3_BC
2https://github.com/Manchery/iql-pytorch
3https://github.com/hari-sikchi/AWAC
4https://github.com/young-geng/CQL
5https://github.com/ARISE-Initiative/robomimic
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Figure 12: The tasks of Adroit. (top left) Pen - aligning a pen with a target orientation, (top right)
Door - opening a door, (bottom left) Hammer - hammering a nail into a board, (bottom right)
Relocate - moving a ball to a target position.

Table 6: Averaged normalized scores on Adroit. Left-hand side scores are scores of vanilla
methods. Right-hand side scores are scores of baselines combined with our pretraining method. We
depict increased scores compared to their original scores in blue color and report mean and standard
deviations over 5 random seeds.

AWAC IQL TD3+BC

Human
Pen 146.19±5.29→157.60±5.28 101.87±14.34→104.66±17.30 20.32±5.97→20.78±10.93
Hammer 7.98±9.41→36.95±35.13 14.33±5.22→17.78±9.27 2.40±0.16→2.38±0.17
Door 60.82±12.38→29.96±22.43 6.74±1.31→5.81±3.20 -0.09±0.00→-0.04±0.04
Relocate 1.51±1.05→3.91±2.21 1.20±1.05→1.52±1.11 -0.29±0.01→-0.18±0.13

Cloned
Pen 145.37±4.19→144.48±3.42 98.38±16.13→97.76±16.90 39.69±18.95→48.18±11.27
Hammer 10.37±7.88→12.61±8.66 8.94±2.07→11.38±4.46 0.59±0.17→1.17±0.61
Door 2.95±2.97→9.59±7.73 5.61±3.02→5.00±1.44 -0.23±0.11→-0.03±0.03
Relocate 0.04±0.09→0.18±0.21 0.91±0.45→1.06±0.40 -0.02±0.09→-0.13±0.09

Expert
Pen 163.99±1.19→163.73±1.88 148.38±2.46→147.79±3.06 131.73±19.15→141.10±10.28
Hammer 130.08±1.30→130.04±0.48 129.46±0.42→129.50±0.36 33.36±34.61→59.76±52.35
Door 106.67±0.28→106.95±0.16 106.45±0.29→106.71±0.28 0.99±0.83→0.87±1.48
Relocate 109.70±1.32→111.27±0.35 110.13±1.52→109.82±1.45 0.57±0.33→0.22±0.13

Total 885.67±47.35→907.26±87.94 732.40±48.27→738.79±59.23 229.03±80.40→274.08±87.49

gradient steps for each environment over 5 seeds. Also, we evaluate each agent with 5 rollouts every581

5k gradient steps for TD3+BC, AWAC, and CQL and 10k gradient steps for IQL. We report the best582

scores for all tables and figures. On the Robomimic, we train each agent with 200k gradient steps for583

each environment over 5 seeds. Also, we evaluate each agent with 50 rollouts over 5 seeds. For all584

experiments, we used RTX-A5000 GPU for training and evaluation.585

F Discussions586

In this section, we address the potential concerns regarding our method’s novelty since it closely587

connects with prior approaches in relevant fields. We provide our detailed discussions in separate588

subsections of each topic.589

Representation Learning. Over recent years, the field has observed a significant amount of literature590

working on predictive representation in RL. Concerning the similarity with prior works, we claim that591

the idea of pretraining shared Q-network for improving data efficiency is remarkable. Our method592

pretrains the neural networks with the next state prediction objective to improve an underlying RL593

agent’s performance and data efficiency similar to [46, 18]. However, [46] has proposed an online594
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training method in a self-supervised learning manner whereas our method considers supervised learn-595

ing for pretraining. Since the self-predictive task in [46] is conducted in latent space, representation596

learning is essentially involved with the task.597

Therefore, adopting advanced training techniques including data augmentation [61] and the use of598

a target encoder [25] significantly affect the RL agent’s performance. Additionally, [46] suggests599

a self-supervised representation learning with the latent transition prediction task in the online RL600

regime. In comparison, our method alleviates an introduction of extra techniques other than the601

shared network architecture, proving superior performance in offline RL benchmarks of diverse602

environments, e.g. locomotion and manipulation tasks.603

[18] has presented an unsupervised learning method that encodes the belief state capturing sufficient604

information of the hidden true state from a past interaction history. In other words, the main interest605

of [18] is how the neural network architecture trained with unsupervised learning extracts adequate606

information concerning the true state in POMDP, not how the underlying RL method given rich607

representation performs decision-making problem well. Specifically, the network architecture in [18]608

is based on GRU, RNN based sequential network, and predicts a next observation ot+1 using action609

at and a belief state bt that contains the partial information of the previous trajectory. Conversely, our610

method is implemented on MLP with the shared network architecture and predicts the next state st+1611

using current state st and action at without a past history.612

Model-based RL. One might argue that our method lacks novelty with the idea of training a neural613

network with the transition dynamics prediction task. Obviously, the idea of approximating the614

transition dynamics [50] for downstream RL training is not what we first suggest. However, we615

contend that our method has a few refuting viewpoints with previous similar works. TDMPC [24]616

and TDMPC2 [23] are model-based single and multi-task RL approaches, which recursively feed617

the output of the same network (i.e. the encoder and task embedding network) for the transition618

model and value learning. The outputs of the shared backbone networks correspond to the latent619

representation and task embedding vector, respectively, and most latent model-based RL approaches620

including TDMPC reuse the outputs for the transition model and value learning. On the other621

hand, our method presents a shared network architecture resembling the dueling architecture [53]622

to pretrain the shared backbone network with a separated stream (a header) of the transition model623

and Q-network. Additionally, this paper presents a two-phase training scheme: the transition model624

combined with the shared network is trained with the transition dynamics prediction task in the first625

phase and the Q-network, consisting of an MLP header and the shared network initialized with the626

parameter of the shared network in the first phase, is trained with the downstream RL value learning627

task in the second phase.628

JOWA [9] is an offline world model for multi-task RL with a shared Transformer backbone network for629

sequential a next-token prediction task. By modeling the decision-making problem to the sequential630

token prediction task, the backbone network, tokenizer, and header are trained in a supervised manner631

with the offline dataset. While the main purpose of JOWA is scaling an offline world model across632

multiple tasks with generalized performance over unseen tasks, this paper intends to improve the633

data efficiency of conventional offline RL approaches in single-task RL. Furthermore, our method634

alleviates additional training after offline RL training with a novel two-phase training strategy while635

JOWA allows few-shot fine-tuning for sample efficient transfer with a multi-game environment. Even636

with a similar purpose of data efficiency, our method entails a minimal algorithmic change with a637

consistent training budget compared to previous approaches.638

Dreamer [22] has brought a notable advancement in model-based RL. Dreamer suggests a world639

model for decision-making with a considerate design of the latent transition model and reconstructive640

objective. Since jointly learning an accurate world model and actor in a multi-task environment641

is challenging, the expensive cost of collecting samples often becomes problematic. In contrast,642

our method does not necessitate extra modifications of conventional offline RL and proves its643

sufficient performance gains in comprehensive experiments. Considering previous improvements644

in representation learning usually involve state-of-the-art design choices (e.g. data augmentation),645

this paper would contribute to reasonable architectural achievements for researchers by presenting a646

minimal training structure with verified performance profit.647
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G Learning Curves648

In this section, we provide the full results of learning curves in the section 4.1 for further information.649

Figure 13: Learning curves of TD3+BC on the D4RL benchmark.
650

H Rank of Latent Space during the Learning Time651

Figure 14: The Rank of the latent space of Q-network during the training. (Full version)
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I Experiments with Linear Approximated Q-network652

In this section, We pretrained TD3+BC and froze it except for the last linear layer during the remaining653

learning time. The blue-colored scores indicate improved scores from the reported scores from the654

original TD3+BC. Although only the last linear layer of the pretrained TD3+BC was trained and the655

shared network was frozen, it shows better performance than the vanilla CQL. Moreover, it shows656

better performance than the others over the suboptimal level of the datasets (i.e., random, medium,657

medium replay).

Table 7: Results of pretrained TD3+BC which approximated with linear Q function.
AWAC CQL IQL TD3+BC freezed TD3+BC

Random
HalfCheetah 2.2 21.7±0.9 10.2±1.3 6.03±2.65
Hopper 9.6 10.7±0.1 11.0±0.1 11.59±10.56
Walker2d 5.1 2.7±1.2 1.4±1.6 7.18±0.58

Medium
HalfCheetah 37.4 37.2±0.3 47.4 42.8±0.3 42.64±1.19
Hopper 72.0 44.2±10.8 66.4 99.5±1.0 67.16±3.56
Walker2d 30.1 57.5±8.3 78.3 79.7±1.8 72.03±0.78

Medium Replay
HalfCheetah 41.9±1.1 44.2 43.3±0.5 40.21±0.79
Hopper 28.6±0.9 94.7 31.4±3.0 64.41±19.54
Walker2d 15.8±2.6 73.9 25.2±5.1 41.02±12.05

Medium Expert
HalfCheetah 36.8 27.1±3.9 86.7 97.9±4.4 47.35±8.73
Hopper 80.9 111.4±1.2 91.5 112.2±0.2 95.07±15.27
Walker2d 42.7 68.1±13.1 109.6 101.1±9.3 74.75±0.59

Expert
HalfCheetah 78.5 82.4±7.4 105.7±1.9 61.93±10.71
Hopper 85.2 111.2±2.1 112.2±0.2 113.13±0.39
Walker2d 57.0 103.8±7.6 105.7±2.7 57.14±44.96

Total 764.3±61.5 979.3±33.4 801.64±132.34

658
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J Experiments with Various Amount of Data659

In this section, we provide more details in section 4.2 of the dataset size. We conducted each660

experiment with the same settings in subsection 4.1 over 5 seeds and reported the results that exhibit661

averaged normalized scores.

Figure 15: Averaged normalized scores across dataset optimal quality and sizes. This figure
compares the performance of our method with TD3+BC in reduced datasets (i.e., 1%, 3%, 10%, 30%,
100% of each dataset) to vanilla TD3+BC across the data quality (i.e., random, medium, medium
replay, medium expert, expert) on D4RL. From the overall results (Bottom Right), we conclude that
our method guarantees better performance even in 10% of the datasets regardless of the data quality
of the dataset.

662

(a) Medium (b) Medium Replay

(c) Medium Expert (d) Average

Figure 16: Comparison with offline model-based RL and representation approaches. We
compare TD3+BC, AWAC, CQL with ours to offline model-based RLs (i.e., MOPO, Mobile) and
a representation RL (i.e., ACL) on D4RL over 3 seeds. The gragh shows results over medium,
medium-replay, medium-expert datasets. The results show that our method maintains the performance
in reduced datasets, especially 1%, unlike the other approaches.
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Table 8: Results of pretrained AWAC over various size.
w/o pretrain w/ pretrain 10% w/ pretrain 30% w/ pretrain

Random
HalfCheetah 2.2 9.71±3.08 36.37±1.47 51.10±0.89
Hopper 9.6 97.05±3.24 93.35±6.32 59.47±33.79
Walker2d 5.1 8.57±0.47 8.36±1.30 13.11±3.91

Medium
HalfCheetah 37.4 55.47±1.52 56.64±2.68 54.63±1.45
Hopper 72.0 101.28±0.78 101.32±0.20 101.73±0.20
Walker2d 30.1 95.14±1.46 91.38±1.37 89.51±0.88

Medium Replay
HalfCheetah 51.00±0.69 52.12±0.76 55.75±1.30
Hopper 103.67±1.81 107.69±1.71 106.67±0.59
Walker2d 104.10±1.57 105.42±1.97 100.31±2.11

Medium Expert
HalfCheetah 36.8 83.18±1.69 86.55±0.94 90.05±1.89
Hopper 80.9 113.01±0.71 113.34±0.09 113.23±0.22
Walker2d 42.7 117.26±1.77 114.68±2.18 111.88±0.28

Expert
HalfCheetah 78.5 91.54±1.04 93.46±0.54 93.48±0.11
Hopper 85.2 113.02±0.17 113.18±0.20 112.86±0.10
Walker2d 57.0 117.92±2.07 112.55±0.56 111.22±0.35

Total 1261.90±22.05 1286.43±22.28 1265.01±48.07

Table 9: Results of pretrained IQL over varying dataset sizes.
w/o pretrain w/ pretrain 10% w/ pretrain 30% w/ pretrain

Random
HalfCheetah 6.92±0.63 12.65±2.53 18.28±1.02
Hopper 8.17±0.54 9.93±1.19 10.67±0.41
Walker2d 8.26±0.64 9.08±0.96 8.88±0.71

Medium
HalfCheetah 47.4 46.51±0.18 47.87±0.21 48.85±0.16
Hopper 66.4 75.72±3.23 80.76±3.51 78.62±2.21
Walker2d 78.3 82.62±1.03 83.89±1.69 83.63±1.14

Medium Replay
HalfCheetah 44.2 33.49±1.26 41.16±0.50 45.48±0.17
Hopper 94.7 80.59±8.25 91.08±3.67 99.43±1.71
Walker2d 73.9 39.08±10.42 75.33±4.17 87.95±1.68

Medium Expert
HalfCheetah 86.7 87.44±2.52 93.66±0.46 95.25±0.14
Hopper 91.5 93.89±10.67 91.05±18.78 105.77±11.31
Walker2d 109.6 111.23±0.83 111.65±0.93 112.09±0.93

Expert
HalfCheetah 77.85±3.82 95.88±0.44 97.40±0.13
Hopper 109.16±3.25 112.85±1.30 113.34±0.46
Walker2d 113.76±2.55 112.53±1.35 112.80±1.08

Total 974.68±49.84 1069.36±41.69 1118.46±23.25

NeurIPS Paper Checklist663

1. Claims664

Question: Do the main claims made in the abstract and introduction accurately reflect the665

paper’s contributions and scope?666

Answer: [Yes]667

Justification: In the abstract and introduction, we summarize our work and explain our goal668

of this research.669

Guidelines:670

• The answer NA means that the abstract and introduction do not include the claims671

made in the paper.672

• The abstract and/or introduction should clearly state the claims made, including the673

contributions made in the paper and important assumptions and limitations. A No or674

NA answer to this question will not be perceived well by the reviewers.675
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• The claims made should match theoretical and experimental results, and reflect how676

much the results can be expected to generalize to other settings.677

• It is fine to include aspirational goals as motivation as long as it is clear that these goals678

are not attained by the paper.679

2. Limitations680

Question: Does the paper discuss the limitations of the work performed by the authors?681

Answer: [Yes]682

Justification: We describe the limitations of our work and future work to overcome those683

issues in section 5.684

Guidelines:685

• The answer NA means that the paper has no limitation while the answer No means that686

the paper has limitations, but those are not discussed in the paper.687

• The authors are encouraged to create a separate "Limitations" section in their paper.688

• The paper should point out any strong assumptions and how robust the results are to689

violations of these assumptions (e.g., independence assumptions, noiseless settings,690

model well-specification, asymptotic approximations only holding locally). The authors691

should reflect on how these assumptions might be violated in practice and what the692

implications would be.693

• The authors should reflect on the scope of the claims made, e.g., if the approach was694

only tested on a few datasets or with a few runs. In general, empirical results often695

depend on implicit assumptions, which should be articulated.696

• The authors should reflect on the factors that influence the performance of the approach.697

For example, a facial recognition algorithm may perform poorly when image resolution698

is low or images are taken in low lighting. Or a speech-to-text system might not be699

used reliably to provide closed captions for online lectures because it fails to handle700

technical jargon.701

• The authors should discuss the computational efficiency of the proposed algorithms702

and how they scale with dataset size.703

• If applicable, the authors should discuss possible limitations of their approach to704

address problems of privacy and fairness.705

• While the authors might fear that complete honesty about limitations might be used by706

reviewers as grounds for rejection, a worse outcome might be that reviewers discover707

limitations that aren’t acknowledged in the paper. The authors should use their best708

judgment and recognize that individual actions in favor of transparency play an impor-709

tant role in developing norms that preserve the integrity of the community. Reviewers710

will be specifically instructed to not penalize honesty concerning limitations.711

3. Theory assumptions and proofs712

Question: For each theoretical result, does the paper provide the full set of assumptions and713

a complete (and correct) proof?714

Answer: [Yes]715

Justification: Although we do not provide any proof in this paper, we use some theoretical716

results from prior work in Section 3. Before utilizing the theorem of prior work, we explain717

how the work is related to our work.718

Guidelines:719

• The answer NA means that the paper does not include theoretical results.720

• All the theorems, formulas, and proofs in the paper should be numbered and cross-721

referenced.722

• All assumptions should be clearly stated or referenced in the statement of any theorems.723

• The proofs can either appear in the main paper or the supplemental material, but if724

they appear in the supplemental material, the authors are encouraged to provide a short725

proof sketch to provide intuition.726

• Inversely, any informal proof provided in the core of the paper should be complemented727

by formal proofs provided in appendix or supplemental material.728
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• Theorems and Lemmas that the proof relies upon should be properly referenced.729

4. Experimental result reproducibility730

Question: Does the paper fully disclose all the information needed to reproduce the main ex-731

perimental results of the paper to the extent that it affects the main claims and/or conclusions732

of the paper (regardless of whether the code and data are provided or not)?733

Answer: [Yes]734

Justification: We explain our method in detail, and provide the example code in supplemen-735

tary material.736

Guidelines:737

• The answer NA means that the paper does not include experiments.738

• If the paper includes experiments, a No answer to this question will not be perceived739

well by the reviewers: Making the paper reproducible is important, regardless of740

whether the code and data are provided or not.741

• If the contribution is a dataset and/or model, the authors should describe the steps taken742

to make their results reproducible or verifiable.743

• Depending on the contribution, reproducibility can be accomplished in various ways.744

For example, if the contribution is a novel architecture, describing the architecture fully745

might suffice, or if the contribution is a specific model and empirical evaluation, it may746

be necessary to either make it possible for others to replicate the model with the same747

dataset, or provide access to the model. In general. releasing code and data is often748

one good way to accomplish this, but reproducibility can also be provided via detailed749

instructions for how to replicate the results, access to a hosted model (e.g., in the case750

of a large language model), releasing of a model checkpoint, or other means that are751

appropriate to the research performed.752

• While NeurIPS does not require releasing code, the conference does require all submis-753

sions to provide some reasonable avenue for reproducibility, which may depend on the754

nature of the contribution. For example755

(a) If the contribution is primarily a new algorithm, the paper should make it clear how756

to reproduce that algorithm.757

(b) If the contribution is primarily a new model architecture, the paper should describe758

the architecture clearly and fully.759

(c) If the contribution is a new model (e.g., a large language model), then there should760

either be a way to access this model for reproducing the results or a way to reproduce761

the model (e.g., with an open-source dataset or instructions for how to construct762

the dataset).763

(d) We recognize that reproducibility may be tricky in some cases, in which case764

authors are welcome to describe the particular way they provide for reproducibility.765

In the case of closed-source models, it may be that access to the model is limited in766

some way (e.g., to registered users), but it should be possible for other researchers767

to have some path to reproducing or verifying the results.768

5. Open access to data and code769

Question: Does the paper provide open access to the data and code, with sufficient instruc-770

tions to faithfully reproduce the main experimental results, as described in supplemental771

material?772

Answer: [Yes]773

Justification: We have used open source benchmarks and datasets, and provide the example774

code in supplementary material. Therefore, data and code are open accessible.775

Guidelines:776

• The answer NA means that paper does not include experiments requiring code.777

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/778

public/guides/CodeSubmissionPolicy) for more details.779

• While we encourage the release of code and data, we understand that this might not be780

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not781

including code, unless this is central to the contribution (e.g., for a new open-source782

benchmark).783
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• The instructions should contain the exact command and environment needed to run to784

reproduce the results. See the NeurIPS code and data submission guidelines (https:785

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.786

• The authors should provide instructions on data access and preparation, including how787

to access the raw data, preprocessed data, intermediate data, and generated data, etc.788

• The authors should provide scripts to reproduce all experimental results for the new789

proposed method and baselines. If only a subset of experiments are reproducible, they790

should state which ones are omitted from the script and why.791

• At submission time, to preserve anonymity, the authors should release anonymized792

versions (if applicable).793

• Providing as much information as possible in supplemental material (appended to the794

paper) is recommended, but including URLs to data and code is permitted.795

6. Experimental setting/details796

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-797

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the798

results?799

Answer: [Yes]800

Justification: In experiment, section 4, we explained our experiment settings801

Guidelines:802

• The answer NA means that the paper does not include experiments.803

• The experimental setting should be presented in the core of the paper to a level of detail804

that is necessary to appreciate the results and make sense of them.805

• The full details can be provided either with the code, in appendix, or as supplemental806

material.807

7. Experiment statistical significance808

Question: Does the paper report error bars suitably and correctly defined or other appropriate809

information about the statistical significance of the experiments?810

Answer: [Yes]811

Justification: In all experiments results, we described mean and standard deviation. See812

section 4813

Guidelines:814

• The answer NA means that the paper does not include experiments.815

• The authors should answer "Yes" if the results are accompanied by error bars, confi-816

dence intervals, or statistical significance tests, at least for the experiments that support817

the main claims of the paper.818

• The factors of variability that the error bars are capturing should be clearly stated (for819

example, train/test split, initialization, random drawing of some parameter, or overall820

run with given experimental conditions).821

• The method for calculating the error bars should be explained (closed form formula,822

call to a library function, bootstrap, etc.)823

• The assumptions made should be given (e.g., Normally distributed errors).824

• It should be clear whether the error bar is the standard deviation or the standard error825

of the mean.826

• It is OK to report 1-sigma error bars, but one should state it. The authors should827

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis828

of Normality of errors is not verified.829

• For asymmetric distributions, the authors should be careful not to show in tables or830

figures symmetric error bars that would yield results that are out of range (e.g. negative831

error rates).832

• If error bars are reported in tables or plots, The authors should explain in the text how833

they were calculated and reference the corresponding figures or tables in the text.834

8. Experiments compute resources835
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Question: For each experiment, does the paper provide sufficient information on the com-836

puter resources (type of compute workers, memory, time of execution) needed to reproduce837

the experiments?838

Answer: [Yes]839

Justification: In Appendix E, we denoted the resource of computation.840

Guidelines:841

• The answer NA means that the paper does not include experiments.842

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,843

or cloud provider, including relevant memory and storage.844

• The paper should provide the amount of compute required for each of the individual845

experimental runs as well as estimate the total compute.846

• The paper should disclose whether the full research project required more compute847

than the experiments reported in the paper (e.g., preliminary or failed experiments that848

didn’t make it into the paper).849

9. Code of ethics850

Question: Does the research conducted in the paper conform, in every respect, with the851

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?852

Answer: [Yes]853

Justification: We read the NeurIPS Code of Ethics, and there are no violation in our work.854

Guidelines:855

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.856

• If the authors answer No, they should explain the special circumstances that require a857

deviation from the Code of Ethics.858

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-859

eration due to laws or regulations in their jurisdiction).860

10. Broader impacts861

Question: Does the paper discuss both potential positive societal impacts and negative862

societal impacts of the work performed?863

Answer:864

Justification: Our work will mostly affect engineering field rather than societal since we865

experimented on specific locomotion tasks.866

Guidelines:867

• The answer NA means that there is no societal impact of the work performed.868

• If the authors answer NA or No, they should explain why their work has no societal869

impact or why the paper does not address societal impact.870

• Examples of negative societal impacts include potential malicious or unintended uses871

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations872

(e.g., deployment of technologies that could make decisions that unfairly impact specific873

groups), privacy considerations, and security considerations.874

• The conference expects that many papers will be foundational research and not tied875

to particular applications, let alone deployments. However, if there is a direct path to876

any negative applications, the authors should point it out. For example, it is legitimate877

to point out that an improvement in the quality of generative models could be used to878

generate deepfakes for disinformation. On the other hand, it is not needed to point out879

that a generic algorithm for optimizing neural networks could enable people to train880

models that generate Deepfakes faster.881

• The authors should consider possible harms that could arise when the technology is882

being used as intended and functioning correctly, harms that could arise when the883

technology is being used as intended but gives incorrect results, and harms following884

from (intentional or unintentional) misuse of the technology.885
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• If there are negative societal impacts, the authors could also discuss possible mitigation886

strategies (e.g., gated release of models, providing defenses in addition to attacks,887

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from888

feedback over time, improving the efficiency and accessibility of ML).889

11. Safeguards890

Question: Does the paper describe safeguards that have been put in place for responsible891

release of data or models that have a high risk for misuse (e.g., pretrained language models,892

image generators, or scraped datasets)?893

Answer: [NA]894

Justification: Our method shows robust results.895

Guidelines:896

• The answer NA means that the paper poses no such risks.897

• Released models that have a high risk for misuse or dual-use should be released with898

necessary safeguards to allow for controlled use of the model, for example by requiring899

that users adhere to usage guidelines or restrictions to access the model or implementing900

safety filters.901

• Datasets that have been scraped from the Internet could pose safety risks. The authors902

should describe how they avoided releasing unsafe images.903

• We recognize that providing effective safeguards is challenging, and many papers do904

not require this, but we encourage authors to take this into account and make a best905

faith effort.906

12. Licenses for existing assets907

Question: Are the creators or original owners of assets (e.g., code, data, models), used in908

the paper, properly credited and are the license and terms of use explicitly mentioned and909

properly respected?910

Answer: [Yes]911

Justification: We wrote reference faithfully.912

Guidelines:913

• The answer NA means that the paper does not use existing assets.914

• The authors should cite the original paper that produced the code package or dataset.915

• The authors should state which version of the asset is used and, if possible, include a916

URL.917

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.918

• For scraped data from a particular source (e.g., website), the copyright and terms of919

service of that source should be provided.920

• If assets are released, the license, copyright information, and terms of use in the921

package should be provided. For popular datasets, paperswithcode.com/datasets922

has curated licenses for some datasets. Their licensing guide can help determine the923

license of a dataset.924

• For existing datasets that are re-packaged, both the original license and the license of925

the derived asset (if it has changed) should be provided.926

• If this information is not available online, the authors are encouraged to reach out to927

the asset’s creators.928

13. New assets929

Question: Are new assets introduced in the paper well documented and is the documentation930

provided alongside the assets?931

Answer: [Yes]932

Justification: We described our proposed new assets in section 3. Moreover, we provided933

the code of implementation in supplemental materials.934

Guidelines:935

• The answer NA means that the paper does not release new assets.936
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• Researchers should communicate the details of the dataset/code/model as part of their937

submissions via structured templates. This includes details about training, license,938

limitations, etc.939

• The paper should discuss whether and how consent was obtained from people whose940

asset is used.941

• At submission time, remember to anonymize your assets (if applicable). You can either942

create an anonymized URL or include an anonymized zip file.943

14. Crowdsourcing and research with human subjects944

Question: For crowdsourcing experiments and research with human subjects, does the paper945

include the full text of instructions given to participants and screenshots, if applicable, as946

well as details about compensation (if any)?947

Answer: [NA]948

Justification: Our research does not involve crowdsourcing or research with human sub-949

jects. We only conducted extensive experiments on MuJoCo locomotion and Robomimic950

manipulation simulation tasks.951

Guidelines:952

• The answer NA means that the paper does not involve crowdsourcing nor research with953

human subjects.954

• Including this information in the supplemental material is fine, but if the main contribu-955

tion of the paper involves human subjects, then as much detail as possible should be956

included in the main paper.957

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,958

or other labor should be paid at least the minimum wage in the country of the data959

collector.960

15. Institutional review board (IRB) approvals or equivalent for research with human961

subjects962

Question: Does the paper describe potential risks incurred by study participants, whether963

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)964

approvals (or an equivalent approval/review based on the requirements of your country or965

institution) were obtained?966

Answer: [NA]967

Justification: Our research does not involve crowdsourcing or research with human sub-968

jects. We only conducted extensive experiments on MuJoCo locomotion and Robomimic969

manipulation simulation tasks.970

Guidelines:971

• The answer NA means that the paper does not involve crowdsourcing nor research with972

human subjects.973

• Depending on the country in which research is conducted, IRB approval (or equivalent)974

may be required for any human subjects research. If you obtained IRB approval, you975

should clearly state this in the paper.976

• We recognize that the procedures for this may vary significantly between institutions977

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the978

guidelines for their institution.979

• For initial submissions, do not include any information that would break anonymity (if980

applicable), such as the institution conducting the review.981

16. Declaration of LLM usage982

Question: Does the paper describe the usage of LLMs if it is an important, original, or983

non-standard component of the core methods in this research? Note that if the LLM is used984

only for writing, editing, or formatting purposes and does not impact the core methodology,985

scientific rigorousness, or originality of the research, declaration is not required.986

Answer: [NA]987

Justification: Our work is not related with LLMs.988
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Guidelines:989

• The answer NA means that the core method development in this research does not990

involve LLMs as any important, original, or non-standard components.991

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)992

for what should or should not be described.993
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