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Abstract
Evaluating in-the-wild coding capabilities of large
language models (LLMs) is a challenging en-
deavor with no existing solution. We introduce
Copilot Arena, a platform to collect user pref-
erences through native integration into a devel-
oper’s working environment. Copilot Arena com-
prises a novel interface for comparing pairs of
model outputs, a sampling strategy to reduce ex-
perienced latency, and a prompting scheme to
enable code completion functionality. Copilot
Arena has served over 4.5 million suggestions
from 10 models and collected over 11k pairwise
judgements. Our results highlight the importance
of model evaluations in integrated settings. We
find that model rankings from Copilot Arena dif-
fer from those of existing evaluations, which we
attribute to the unique distribution of data and
tasks contained in Copilot Arena. We also iden-
tify novel insights into human preferences on code
such as an observed consistency in user prefer-
ence across programming languages yet signifi-
cant variation in preference due to task category.
We open-source Copilot Arena and release data
to enable human-centric evaluations and improve
understanding of coding assistants.

1. Introduction
As model capabilities improve, large language models
(LLMs) are increasingly integrated into user environments
and workflows. For example, software developers code
in integrated developer environments (IDEs) (Peng et al.,
2023), doctors rely on notes generated through ambient
listening (Oberst et al., 2024), and lawyers consider case
evidence identified by electronic discovery systems (Yang

*Equal contribution . †Co-senior Authors. 1Carnegie
Mellon University 2UC Berkeley. Correspondence to:
Wayne Chi <waynechi@andrew.cmu.edu>, Valerie Chen <va-
leriechen@cmu.edu>.

ICML 2025 Workshop on Models of Human Feedback for AI Align-
ment, Vancouver, Canada. Copyright 2025 by the author(s).

Real Tasks

Copilot Arena

 Real Users Real Environment

Limitations of existing evaluations

Static 
benchmarks do 
not have users in 

the loop

User studies 
operate on a 

limited, prescribed 
set of tasks

Preference 
evaluations do not 

occur in realistic 
coding envs

Figure 1. Copilot Arena is a platform for conducting realistic eval-
uations of code LLMs, collecting human preferences of coding
models with real users, real tasks, and in realistic environments,
aimed at addressing the limitations of existing evaluations.

et al., 2024a). Increasing deployment of models in produc-
tivity tools demands evaluation that more closely reflects
real-world circumstances (Hutchinson et al., 2022; Saxon
et al., 2024; Kapoor et al., 2024). While newer benchmarks
and live platforms incorporate human feedback to capture
real-world usage, they almost exclusively focus on evaluat-
ing LLMs in chat conversations (Zheng et al., 2023; Dubois
et al., 2023; Chiang et al., 2024; Kirk et al., 2024). Model
evaluation must move beyond chat-based interactions and
into specialized user environments.

In this work, we focus on evaluating LLM-based coding
assistants, specifically focusing on their ability to generate
code completions. Despite the popularity of these tools—
millions of developers use Github Copilot (Github, 2022)—
existing evaluations of the coding capabilities of new mod-
els exhibit multiple limitations (Figure 1, bottom). Tradi-
tional ML benchmarks evaluate LLM capabilities by mea-
suring how well a model can complete static, interview-style
coding tasks (Chen et al., 2021; Austin et al., 2021; Jain
et al., 2024a; White et al., 2024) and lack real users. User
studies recruit real users to evaluate the effectiveness of
LLMs as coding assistants, but are often limited to simple
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Figure 2. We introduce Copilot Arena, a VSCode extension to collect human preferences of code directly in a developer’s IDE. Copilot
Arena enables developers to use code completions from various models. The system comprises a) the interface in the user’s IDE which
presents paired completions to users (left), b) a sampling strategy that picks model pairs to reduce latency (right, top), and c) a prompting
scheme that allows diverse LLMs to perform code completions with high fidelity. Users can select between the top completion (green
box) using tab or the bottom completion (blue box) using shift+tab.

programming tasks (Vaithilingam et al., 2022; Ross et al.,
2023; Mozannar et al., 2024b) as opposed to real tasks.
Recent efforts to collect human feedback such as Chatbot
Arena (Chiang et al., 2024) are still removed from a real-
istic environment, resulting in users and data that deviate
from typical software development processes. We introduce
Copilot Arena to address these limitations (Figure 1, top),
and we describe our three main contributions below.

We deploy Copilot Arena in-the-wild to collect human
preferences on code. Copilot Arena is a Visual Studio Code
extension, collecting preferences directly in a developer’s
IDE within their actual workflow (Figure 2). Copilot Arena
provides developers with code completions, akin to the type
of support provided by Github Copilot (Github, 2022). Over
the past 3 months, Copilot Arena has served over 4.5 mil-
lion suggestions from 10 state-of-the-art LLMs, gathering
11604 votes across 1642 users. To collect user preferences,
Copilot Arena presents a novel interface that shows users
paired code completions from two different LLMs, which
are determined based on a sampling strategy that aims to
mitigate latency while preserving coverage across model
comparisons. Additionally, we devise a prompting scheme
that allows a diverse set of models to perform code comple-
tions with high fidelity.

We construct a leaderboard of user preferences and find
notable differences from existing static benchmarks and
human preference leaderboards. In general, we observe
that smaller models seem to overperform in other static
benchmarks compared to our leaderboard, while perfor-

mance among larger models is mixed. We attribute these
differences to the fact that Copilot Arena is exposed to users
and tasks that differ drastically from code evaluations in the
past. Our data spans 103 programming languages and 19
natural languages as well as a variety of real-world appli-
cations and code structures, while static benchmarks tend
to focus on a specific programming and natural language
and task (e.g. coding competition problems). Additionally,
while all of Copilot Arena interactions contain code contexts
and the majority involve infilling tasks, a much smaller frac-
tion of Chatbot Arena’s coding tasks contain code context,
with infilling tasks appearing even more rarely.

We derive new insights into user preferences of code
by analyzing Copilot Arena’s diverse and distinct data
distribution. We compare user preferences across differ-
ent stratifications of input data (e.g., common versus rare
languages) and observe which affect observed preferences
most. For example, while user preferences stay relatively
consistent across various programming languages, they dif-
fer drastically between different task categories (e.g. fron-
tend/backend versus algorithm design). We also observe
variations in user preference due to different features related
to code structure (e.g., context length and completion pat-
terns). We open-source Copilot Arena, all user votes, and
a curated subset of code contexts.1 Altogether, our results
highlight the necessity of model evaluation in realistic and
domain-specific settings.

1All code and data is available at https://github.com/
lmarena/copilot-arena.
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2. System Design
Copilot Arena is a VSCode extension that provides users
with pairs of inline code completions from various LLMs.
In return, users provide their votes on which completion
is better suited for their task. To avoid interrupting user
workflows, voting is designed to be seamless—users use
keyboard shortcuts to quickly accept one of the two comple-
tions into their code, which we interpret as a vote in favor
of the underlying model that produced it. Designed to allow
for developer’s day-to-day usage, the three core components
of Copilot Arena—overviewed in Figure 2—are the 1) User
Interface, 2) Model Sampling, and 3) Model Prompting.

2.1. User Interface

Traditional code completion tools (e.g., GitHub Copi-
lot (Github, 2022)) only show one completion at a time.
However, showing two code completions simultaneously en-
ables us to collect preference judgments on the same context
and facilitate a more seamless user experience (Chiang et al.,
2024; Lu et al., 2024). As such, we propose an interface
that allows a user to view two completions in a head-to-head
manner; to our knowledge, we are the first to introduce an
interface that does so. We propose a design inspired by Git
Diff—a well-established tool familiar to many developers—
which displays code from the current commit and code from
the incoming commit stacked vertically, one on top of the
other. In a similar manner, given an existing code context,
we also stack responses from two different model outputs.
This allows users to examine both completions together (an
example of how the completions are visualized is in Fig-
ure 2). The user can accept the top suggestion using tab
and the bottom suggestion using shift+tab, or decide
neither is appropriate and continue typing. The only distinc-
tion between our system and conventional inline completion
systems is the inclusion of a second suggestion, resulting in
a user experience that is familiar overall.

We make several other notable design decisions. First, we
repeat the first line in the ghost text of the top completion
so that both top and bottom completions are entirely ghost
text. Not repeating the text—as is the case with a single
completion—was an alternative we considered, but our ini-
tial pilot studies indicated that the discrepancy between top
(partial ghost text) and bottom (full ghost text) completions
was more likely to confuse users. Second, we always wait
for both completions to finish generating before showing
them to the user to reduce the effects of latency on user
preference, which we aim to study separately in Section 5.2.
Lastly, we randomize the ordering of the completions to
remove top-bottom bias from our preference evaluation. We
discuss additional design decisions in Appendix A.1.
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Figure 3. The likelihood of users accepting one of the two com-
pletions as a function of empirical pairwise latency (determined
by the slower of the two models). As latency increases, users are
less likely to accept a completion. We devise a sampling strategy
described in Section 2.2 which reduces pairwise latency by 33%
while also ensuring sufficient coverage of unique model pairs.

2.2. Model Sampling

A key challenge in building a realistic environment for cod-
ing assistance is providing responsive code completion. De-
veloper expectations for low latencies impact not only user
satisfaction and retention, but also directly affect their likeli-
hood to provide preference data. The slower the completions
are returned to the user, the less likely users are to vote (i.e.
users select neither completion) (Figure 3). However, many
model providers do not optimize their API endpoints for
low-latency use cases, requiring us to explore a sampling
strategy that improves our system-wide latency.

Since the Copilot Arena interface shows two code com-
pletions together, the slowest completion determines the
latency. Thus, given a set of M models {1, . . . ,M}, we let
Fmax(l; i, j) denote the cumulative density function (CDF)
for the maximum latency between models i and j. Because
latencies tend to be long-tailed, we model Fmax(l; i, j) as a
log-normal CDF with parameters estimated from our his-
torical data. Our objective will then be to minimize the
expected latency of the chosen model pair under the distri-
bution induced by our observed data,

L(θ) = E(i,j)∼pθ,L∼Fmax(l;i,j)[L], (1)

where pθ is a distribution over model pairs,

pθ(i, j) =
exp(θij/τ)∑
k<l exp(θkl/τ)

. (2)

Above, τ is a temperature parameter that interpolates be-
tween a latency-optimized distribution and a uniform dis-
tribution, allowing us to trade off latency and coverage of
unique model pairs. The parameters θ ∈ R(

M
2 ) are opti-

mized via gradient descent to minimize (Eq. 1). In practice,
we set τ to values between 5 and 10 to ensure sufficient cov-
erage. By deploying our algorithm, we observed a decrease
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Figure 4. We evaluate the effectiveness of our Snip-It method by
comparing LLM performance on infilling tasks (using pass@1)
before and after applying Snip-It. We evaluate 9 different models
of varying performance across 4 different prompt templates (i.e.,
ways of encoding the prefix and suffix in the prompt): each point
represents one model and one prompt template pair. We observe
that, across the board, all pairs generally benefit from the Snip-It
method (e.g., lie above the diagonal line).

in median experienced latency by 33% (from 1.61 to 1.07
seconds) compared to a uniform distribution.

2.3. Model Prompting

During real development processes, developers frequently
modify or expand upon existing code which requires models
to infill between code segments. However, many popular
coding models such as GPT-4o or Sonnet 3.5 are instruction-
tuned (Wei et al., 2022) and trained to output text left-
to-right autoregressively, rather than to “fill-in-the-middle”
(FiM) (Fried et al., 2023; Gong et al., 2024). In prelimi-
nary experiments, we observed poor, essentially unusable
performance of instruction-tuned models on FiM tasks. Ac-
cordingly, we use offline datasets to improve chat models’
infilling capabilities through prompt engineering. We in-
clude full experimental details and results in Appendix A.2.

Offline Evaluation Set-up. Our set-up uses the HumanEval-
infilling dataset (Bavarian et al., 2022) which consists of
1640 examples where random spans in a completed portion
of code are masked out to simulate FiM behavior. To incor-
porate prefix and suffix information, we began with several
prompt templates from Gong et al. (2024) with modifica-
tions to align the prompts with chat models (e.g., initial
instruction and few-shot examples). The templates capture
different ways to encode information about the given code
context. For example, prefix-suffix-middle presents the code
context in the order of prefix and then suffix, and the LLM
is asked to output the middle.

Vanilla performance on FiM tasks. We find that the suc-

cess of standard prompt templates varies greatly between
models (Table 2). This is not necessarily an indication that
models cannot code as clearly many state-of-the-art chat
models are proficient coders (Jain et al., 2024a; Lin et al.,
2024). Instead, the vast majority of the errors result in for-
matting issues or duplicate code segments rather than logical
errors, indicating that FiM performance is inhibited more
by low-level formatting issues than high-level coding capa-
bilities: see examples of these errors in Appendix A.2.3.

Post-processing using Snip-It. While it is not feasible to
retrain these models because many of them offer API ac-
cess only, we explore alternative approaches via prompting
to improve chat models’ abilities to complete FiM tasks.
Specifically, we allow the model to generate code snippets,
which is a more natural format, and then post-process the
snippets into a FiM completion. Our approach—Snip-It—is
as follows: the model is prompted with the same prompts
as above (e.g. prefix-suffix-middle) but with instructions
to begin by repeating a portion of the prefix and similarly
end by repeating a portion of the suffix. Then, we remove
any portion of the output code that already exists in the
input, similar to recent agentic search-replace tools (An-
thropic, 2024). As shown in Figure 4, we found that, rel-
ative to the baseline, Snip-It provides robust performance
gains for infilling: performance improved in 93% of the
conditions. High-performing models improve substantially
(e.g., Claude-3.5-Sonnet improves from 56.1% to 73.0%),
while initially struggling models improve dramatically (e.g.,
Llama-3.1-70B from 7.4% to 49%). While offline eval-
uation is not a perfect metric, we find that these drastic
improvements enable these models for FiM tasks.

3. System Deployment
Deployment Details. The Copilot Arena extension is adver-
tised in online open-source communities and made available
on the VSCode extension store, where it is free to down-
load. Similar to the set-up employed by Chiang et al. (2024)
and Lu et al. (2024), participants are not compensated for
using the extension, as in a traditional user study, but in-
stead receive free access to state-of-the-art models. In ad-
dition to logging all preference judgments made by users
of Copilot Arena, we also log the latency of each model re-
sponse, the type of file the user is writing, the prefix and suf-
fix length (characters and tokens), each completion length,
which model was in the top versus bottom position, and
a unique userID—all of which allows users to utilize the
extension without revealing the content of what the user is
working on. Given the sensitive nature of programming, we
established clear privacy controls to give users the ability
to restrict our access to their data. Depending on privacy
settings, we also collect the user’s code context and model
responses. Appendix B provides a copy of the specific user
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instructions and privacy guidelines. The data collection pro-
cess is fully compliant with appropriate laws and regulations
regarding user privacy within our institution and locale.

Data collection process. We select 10 state-of-the-art mod-
els to balance a set of open and commercial models, as
well as generalist and code-specific models. In latter anal-
ysis, we refer to LLMs by shortened names to conserve
space: please check Table 3 for full model names. Across
1642 users, we have served over 4.5 million suggestions and
collected 11604 votes over the course of 3 months. Overall,
we find that all models received between 2-5K votes, satis-
fying our coverage objective. In general, the median time to
vote—the time taken after the completion is displayed to the
user—was 7 seconds, suggesting that users did not accept all
suggestions immediately and considered both completions.
A more in-depth overview of data analysis is in Appendix C.

Data Release. Upon publication, we will release the full
dataset of 11604 votes, with non-deanonymizing features
(e.g., context length or file type). Despite giving users full
control over their privacy, we take a conservative approach
to data release given the potential sensitivity of coding data.
To demonstrate the type of code users write using Copilot
Arena, we will also release a hand-curated set of 500 ex-
amples that contain the prefix, suffix, and both completions.
This portion of the dataset spans all 10 models and cap-
tures a variety of downstream applications—Appendix C
shows multiple examples. Two authors carefully checked
this set of examples to ensure the code also contained no
sensitive information or personally identifiable information.
We intend to continue a slow release in the future.

4. Model Rankings
4.1. Copilot Arena Leaderboard

We construct a leaderboard using our user preference judge-
ments. Let n denote the number of judgments and M the
number of models. For each battle i ∈ [n], we define:
Xi ∈ {−1, 0, 1}: Xi,m = 1 if model m is presented in the
top position, Xi,m = −1 if presented in the bottom posi-
tion, and 0 otherwise. The outcome Yi ∈ {0, 1}, where 1
indicates the top model won. As is standard in other work
on pairwise preference evaluation (Chiang et al., 2024; Lu
et al., 2024), we apply a Bradley-Terry (BT) model (Bradley
& Terry, 1952) to estimate the relative strengths of models
β ∈ RM , where the probability pij that model i beats model
j can be modeled as:

pij =
eβi

eβi + eβj
.

We bootstrap the battles in the BT calculation to construct
a 95% confidence interval for the rankings, which are used
to create a leaderboard that ranks all models, where each
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Figure 5. We compare model rankings in Copilot Arena (1st col-
umn) to existing evaluations, both static benchmarks (2nd-4th
column) and live preference evaluations (last two columns). For
existing evaluations, we show the change in rank relative to Copi-
lot Arena rank, with positive values in green denoting models
performing better on existing evaluations, negative values in red
denoting models performing worse, and a dash indicating that the
model is not present in the live leaderboard. We also report the
Spearman rank correlation coefficients between Copilot Arena and
other leaderboards.

model’s rank is determined by which other models’ lower
bounds fall below its upper bound.

Constructing our leaderboard (Figure 5, 1st column), we
find that our leaderboard is segmented into multiple tiers
based on the estimated βi values (Table 4). In the first tier,
DeepSeek Coder and Claude Sonnet-3.5 are at the top, with
Codestral following closely behind. In general, we observe
that code-specific models (e.g., DeepSeek Coder and Code-
stral) are competitive with general-purpose state-of-the-art
models (e.g. Claude Sonnet-3.5), especially if they are
trained to infill. In the second tier, there are 5 models of
varying sizes and from different model providers that have
relatively similar strengths. In the final tier, users preferred
two models the least. In particular, Qwen-2.5-coder is an ex-
ception, performing notably worse than other code-specific
models. Implementation of leaderboard computation and
additional ablations on provided in Appendix D.

4.2. Comparison against Prior Evaluations

We compare our leaderboard to existing evaluations which
encompass both live preference leaderboards with human
feedback and static benchmarks (Figure 5, 2nd-5th col-
umn). For human preferences, we compare against Chat-
bot Arena (Chiang et al., 2024)—an in-the-wild platform
for evaluating human preferences on chat capabilities—
across both the general leaderboard and the coding subset.
For static coding benchmarks, we select three that are re-
cent and continue to be maintained (of which we have at
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Table 1. We compare Copilot Arena with prior evaluations in terms
of scale, context length, task type, and code structure. Copilot
Arena provides broad coverage across programming languages
(PL), natural languages (NL), context length in characters, mul-
tiple task types, and structural dimensions—whether the context
contains code and fill-in-middle (FiM) tasks are present. Chatbot
Arena (code) only contains code in 40% and infilling in 2.6% of
its input and is denoted by . In Figure 5, we compare against
benchmarks that are updated with the latest models (denoted by
*).

Scale Context Len Task Structure

Benchmark # PL # NL p50 p95 Multi Code FiM

Copilot Arena 103 19 1.6k 18k ✓ ✓ ✓

HumanEval 1 1 0.4k 0.9k ✗ ✓ ✗
HumanEval-XL 12 23 0.4k 0.9k ✗ ✓ ✗
SAFIM 4 1 3k 5.9k ✓ ✓ ✓
LiveCodeBench* 1 1 1.4k 2.5k ✗ ✓ ✗
LiveBench* 1 1 2.3k 3.9k ✓ ✓ ✗
BigCodeBench* 1 1 1.1k 1.9k ✓ ✓ ✗

Chatbot Arena (general)* ≥ 17 ≥ 49 0.7k 2.9k ✓
Chatbot Arena (code)* ≥ 17 ≥ 39 1.4k 7.8k ✓

least 8 out of 10 overlapping models): LiveBench (White
et al., 2024)—a collection of benchmarks designed to mit-
igate test set contamination—LiveCodeBench (Jain et al.,
2024a)—a code benchmark designed to mitigate test set
contaimnation—and BigCodeBench (Zhuo et al., 2024)–a
benchmark for code generation which focuses on function
calls. We do not compare to rankings from any user studies
because they are difficult to keep updated in comparison to
both static benchmarks and live comparative systems.

We find the highest correlation (rs = 0.62) with Chatbot
Arena (coding) (Chiang et al., 2024) and similarly high
correlation (rs = 0.48) with Chatbot Arena (general). How-
ever, we find a low correlation (rs ≤ 0.1) with most static
benchmarks. The stronger correlation with human pref-
erence evaluations compared to static benchmarks likely
indicates that human feedback captures distinct aspects of
model performance that static benchmarks fail to measure.
We notice that smaller models tend to overperform (e.g.,
GPT-4o mini and Qwen-2.5-Coder 32B), particularly in
static benchmarks. We attribute these differences to the
unique distribution of data and tasks that Copilot Arena
evaluates over, which we explore in more detail next.

5. Data Analysis
5.1. Exploring Copilot Arena Data

Evaluating models in real user workflows leads to a diverse
data distribution in terms of programming and natural lan-
guages, tasks, and code structures—e.g., context lengths,
last-line contexts, and completion structures (Figure 6). We
discuss how our data distribution compares against those
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C++ (3%)
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Line Comments
(34%)

Docstring/ Block comments
(5%)

Last-line Contexts

FiM
(65%)

Completion-only
(35%)

Completion Structures

Figure 6. Copilot Arena data is diverse in programming and natural
languages, downstream tasks, and code structures (e.g., context
lengths, last-line contexts, and completion structures).

considered in prior evaluations (Table 1).

Programming and Natural Language: Previous bench-
marks such as HumanEval (Chen et al., 2021) cover a lim-
ited number of languages, primarily focusing on Python
and English (Bavarian et al., 2022; Jain et al., 2024a; White
et al., 2024; Zhuo et al., 2024). While recent work such as
HumanEval-XL (Peng et al., 2024) and SAFIM (Gong et al.,
2024) has expanded coverage to up to a dozen program-
ming languages, Copilot Arena covers 103 programming
languages which is an order of magnitude more than most
other benchmarks. While the distribution of programming
languages is not uniform, there is still a core set of pro-
gramming languages which contain a significant number of
votes (Appendix C). Similarly, while the majority of Copi-
lot Arena users (45%) write in English, we also identify 19
different natural languages which is comparable to Chat-
bot Arena (general) (Chiang et al., 2024) and benchmarks
focused on multilingual generation (Peng et al., 2024).

Downstream Tasks: Existing benchmarks tend to source
problems from coding competitions (Jain et al., 2024a;
White et al., 2024), handwritten programming chal-
lenges (Chen et al., 2021), or from a curated set of GitHub
repositories (Gong et al., 2024). In contrast, Copilot Arena
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users are working on a diverse set of realistic tasks, includ-
ing but not limited to frontend components, backend logic,
and ML pipelines (we provide representative examples of
the different task clusters in Appendix C.1). Coding style
problems (i.e., algorithm design) comprise a much smaller
portion—18%—of Copilot Arena’s data. Further, the dis-
tribution of downstream tasks for our in-editor suggestions
differs from questions raised by chat conversations, e.g., in
Chatbot Arena (Chiang et al., 2024), where coding questions
also focus on code explanation or suggesting commands.

Code Structures and Context Lengths: Most coding
benchmarks follow specific structures, e.g., taking struc-
tured docstrings as input (Chen et al., 2021; Zhuo et al.,
2024; Jain et al., 2024a; White et al., 2024) or infilling
tasks (Bavarian et al., 2022; Gong et al., 2024). This means
that most benchmarks have relatively short context lengths
(e.g., all HumanEval (Chen et al., 2021) problems are less
than 2k characters). Similarly, Chiang et al. (2024) focuses
on natural language input collected from chat conversations,
with many prompts not including any code context (e.g.,
40% of Chatbot Arena’s coding tasks contain code context
and only 2.6% focus on infilling). As such, input prompts
are also relatively short, with 95% of prompts falling be-
tween 1-3k characters. Unlike any existing evaluation, Copi-
lot Arena is structurally diverse, comprising a mixture of
infilling versus code completion and forms of docstring
tasks. Since users are working in actual IDEs, they work
on significantly longer inputs: the median context length is
around 1.6k characters and 95% of inputs fall within 18k
characters.

5.2. Understanding User Preferences of Code

Given our diversity of input features, we evaluate how each
impacts user preference. We partition each feature into
contrasting subsets (e.g. FiM vs non-FiM), which we refer
to as X and X̃ . For each subset, we compute the win-rate2

matrix W ∈ RM×M where W (X) represents the win-rate
matrix of subset X and Wij ∈ [0, 1]. For each feature, we
compute a win-rate difference matrix ∆ ∈ RM×M , which
represents the number of substantial differences in the win-
rate between W (X) and W (X̃).

∆i,j = 1[(Wi,j(X)−Wi,j(X̃)) > ϵ]

In our analysis, substantial changes are those in the top
90th percentile of win-rate changes (ϵ = 0.166). Since
M = 10, the maximum amount of significant changes is 90
(|∆| ≤ 90).

We compute ∆ for four input features—task type, context
length, FiM, and programming language—where contrast-
ing strata are present in sufficient quantity (≥ 10%) within

2Inspecting win-rates helps circumvent potential issues that
may arise from applying BT regression to slices with fewer votes.

Front/Backend Long Context FiM Non-Python
deepseek-coder

claude-3.5-sonnet

codestral

llama-3.1-405b

gemini-flash-002

gemini-pro-002

gpt-4o-2024-08-06

llama-3.1-70b

qwen-2.5-coder-32b

gpt-4o-mini

 0,-3 +2, 0 +1, 0  0, 0

+4, 0  0,-1 +2, 0 +1, 0

+1, 0 +1,-1  0, 0  0, 0

+1,-4 +1,-1  0, 0  0, 0

+1,-2  0, 0 +1,-2  0, 0

+1, 0 +3, 0 +2, 0  0,-1

+1, 0  0,-2  0,-2 +1, 0

+4, 0 +1, 0 +1,-2  0, 0

 0,-2  0,-3  0, 0  0,-2

+1,-3  0, 0  0,-1 +1, 0

% Total Changes: 31.1 17.8 15.6 6.7

Figure 7. Significant win-rate changes as a result of different data
partitions: frontend/backend versus algorithmic problems, long
versus short contexts, FiM vs non-FiM, non-Python vs Python. We
report the number of positive and negative changes (e.g., +1/-2
means that a model improved over 1 model and worsened against
2 models). In general, we observe the largest percentage of total
changes as a result of differences in task, while the smallest effects
as a result of differences in programming language.

our dataset. We stratify the data as follows: For tasks, we
compare frontend/backend against algorithm design. For
context length, we compare the top 20% against the bottom
20%. For FiM, we compare FiM against completion only.
For programming languages, we compare all other program-
ming languages against Python. We stratify these input fea-
tures to highlight differences between the data distribution
in Copilot Arena compared to static benchmarks (Table 1),
where a positive win-rate indicates increased model perfor-
mance on data that may be considered out of the distribution
of typical static benchmarks. See Appendix E for full data
on win-rates.

Downstream task significantly affects win-rate, while
programming languages have little effect. Changing
task type significantly affects relative model performance,
with 28 significant win-rate changes (31.1% of all possi-
ble changes). This gap may indicate that certain models
are overexposed to competition-style algorithmic coding
problems. On the other hand, the effect of programming
language on win-rates was remarkably small, resulting in
only 6 (6.6%) significant changes, meaning that models that
perform well on Python will likely perform well on another
language. We hypothesize that this is because of the inherent
similarities between programming languages, and learning
one improves performance in another, aligning with trends
reported in prior work (Peng et al., 2024). Context length
and FiM have moderate effects to win-rate, which lead to
16 (17.8%) and 14 (15.6%) significant changes respectively.

Smaller models tend to perform better on data similar
to static benchmarks, while the performance of larger
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models is mixed. For example, Qwen-2.5 Coder performs
noticeably worse on frontend/backend tasks (-2), longer con-
texts (-3), and non-Python settings (-2). We observe similar
trends for the two other small models (Gemini Flash and
GPT-4o mini) across multiple features. We hypothesize that
overexposure may be particularly problematic for smaller
models. On the other hand, performance amongst larger
models is mixed. For example, Gemini-1.5 Pro performs
noticeably better (+3) on long context which aligns with
its goal of long context understanding (Team et al., 2024).
However, Llama-3.1 405B underperforms on frontend/back-
end tasks (-4).

Surprisingly, models explicitly trained for infilling do not
experience large changes to win-rate. Neither DeepSeek
Coder, Codestral, nor Qwen-2.5 Coder sees any noticeable
performance gains due to FiM. We run an experiment using
DeepSeek Coder’s Chat API with Snip-It (rather than FiM)
and observe that relative model performance remains con-
sistent (Table 6). These results suggest that Copilot Arena
captures signals about code quality or usefulness rather than
just formatting.

5.3. Insights and Takeaways

Based on our findings, we discuss two key insights and their
implications for developing new models:

Model performance is dictated by task, context, and code
structure. For example, while Claude 3.5 Sonnet excels at
frontend and backend tasks, Gemini Pro and Deepseek out-
perform at longer contexts. With the exception of different
programming languages, we observed that any other varia-
tion to the setting or use case affected model performance.
Since there seems to be no model that is “one-size-fits-all,” it
is important for end users and developers of LLM-powered
applications to choose their model depending on their use
case. Alternatively, a routing approach based on input code
context (Frick et al., 2025) is an interesting direction for
future research.

Human preference data is essential for effective code
generation models. The discrepancy between our leader-
board and static benchmarks indicates that current models
are likely not trained on human preference data. Recent
approaches have considered this, but still have significant
gaps (e.g., Qwen-2.5 Coder trains on LLM-as-a-Judge pref-
erences as a proxy for human preferences (Qwen et al.,
2025)). We believe that training code models on human
preference data is a promising future research direction.
By releasing Copilot Arena data, we hope to help address
the need for human preference data in real-world coding
contexts.

6. Related Work
Human Preferences for Evaluations. A diverse set of hu-
man preferences—including binary preferences (Bai et al.,
2022), fine-grain feedback (Wu et al., 2023; Kirk et al.,
2024), and natural language (Scheurer et al., 2022)—are in-
creasingly used for training and fine-tuning LLMs (Ouyang
et al., 2022). Preferences are also important for human-
centric evaluation, especially as LLMs are deployed in con-
texts that involve human interaction. Platforms like Chatbot
Arena (Chiang et al., 2024) and Vision Arenas (Chou et al.,
2024; Lu et al., 2024) provide a way for users to inter-
act with LLMs and provide paired preference judgments.
However, existing arenas lack integration into actual user
environments to reflect the diverse data that may appear in a
user’s workflow. We study the use case of LLMs as coding
assistants and introduce Copilot Arena to ground preference
evaluations in a developer’s working environment.

Evaluations of LLM coding capabilities. Static
benchmarks, e.g., HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), largely focusing on interview-
style programming problems have been the most commonly
used to evaluate coding capabilities (Lu et al., 2021; Ni-
jkamp et al., 2023; Zhu et al., 2022; Wang et al., 2023;
Liu et al., 2023; Jimenez et al., 2023; Khan et al., 2023;
Yan et al., 2023; Cassano et al., 2023; Muennighoff et al.,
2023; Dinh et al., 2023; Yang et al., 2024b), measured
using pass@k. Recent benchmarks aim to create more
realistic problems, which include multi-turn program eval-
uations (Nijkamp et al., 2023) and repository-level chal-
lenges (Jimenez et al., 2023; Jain et al., 2024b), and create
live benchmarks that reduce contamination risks (Jain et al.,
2024a; White et al., 2024). Our evaluation platform comple-
ments the existing suite of benchmarks by contextualizing
model evaluations in an actual user’s workflow as coding
assistants, measuring a model’s quality based on user pref-
erences. Preference data retains signal when models output
slightly incorrect, but still useful answers as opposed to a
strict or all or nothing when evaluating using test cases.

A growing set of user studies aim to study human inter-
actions with LLMs (Lee et al., 2023), particularly how
programmers use LLM assistance for software develop-
ment (Barke et al., 2023; Vaithilingam et al., 2022; Ross
et al., 2023; Peng et al., 2023; Mozannar et al., 2024a; Mu-
rali et al., 2024; Chen et al., 2024). A notable work by Cui
et al. (2024) conducted a field study on GitHub Copilot
with many users. However, these studies generally face
challenges of scale in terms of the number of users and the
models considered, primarily relying on commercial tools
like GitHub Copilot or ChatGPT. Mozannar et al. (2024b)
conducted a study to evaluate six different LLMs of varying
performance and Izadi et al. (2024) similarly conducted a
study with three different LLMs, but the models evaluated
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in both studies are no longer considered state-of-the-art. Our
platform aims to address these challenges by building and
deploying an actual coding assistant that allows for scalable
and adaptable evaluation as new models emerge.

7. Discussion
Limitations. Although we have a diverse set of users and
use cases, it is unclear to what extent our results encapsu-
late all real-world use cases. We run extensive pilot tests
to ensure platform usability, but we recognize that certain
aspects—specifically our pairwise completions and slower
latency—do not perfectly mirror real-world platforms such
as Github Copilot. Further, while we rank models based
on user preferences, this should not be treated as the sole
defining metric of model quality, but instead an informa-
tive one. In this work, we evaluate multiple LLMs with
strong coding capabilities; however, we are unable to in-
clude Github Copilot because the model powering Github
Copilot is not available via API. Additionally, since this
is a live service, model performance directly affects user
retention (and votes), rendering it difficult for us to evaluate
weaker coding models. Finally, due to privacy considera-
tions, we choose not to release all code contexts collected
in the study without careful post-processing. We strive to
make all data open through periodic releases.

Future Work. Our analyses of Copilot Arena data stress the
need to create a diverse set of questions, including multiple
written and programming languages, downstream applica-
tions, and code structures. Copilot Arena findings highlight
the importance of conducting evaluations with real users,
tasks, and environments. To extend this platform, future
evaluations may also consider building on the Copilot Arena
system in multiple ways: more nuanced forms of feedback
in the programming setting, including measuring trajectories
and code persistence metrics, and more forms of interaction,
including inline prompt editing and chat dialogue within
an IDE. We open-source Copilot Arena to facilitate these
future extensions.

8. Conclusion
We introduce a platform, Copilot Arena, to evaluate LLMs
in the wild using live human feedback for the use case of
coding assistants. Copilot Arena is deployed and has col-
lected over 11604 votes across 10 models; we will release a
curated dataset to showcase the diversity of user preferences.
We show that evaluating the coding capabilities of LLMs
in Copilot Arena leads to rankings that differ from existing
approaches which rely on static benchmarks or chat-based
interactions, demonstrating how these differences could be
attributed to the shift in distribution between Copilot Arena
and prior evaluations. These different contexts also facil-

itate further understanding of how user preferences vary,
highlighting the importance of evaluating new models with
real users, tasks, and environments.
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A. Additional System Details
We describe further implementation details and considerations for each of the three key system components: user interface,
model routing, and model prompting

A.1. User Experience

We make several additional design decisions surrounding our user interface.

• We cache generated completions. If the user continues typing, we try to retrieve a matching pair of completions.

• We set a 0.5 second delay before automatically generating completions.

• If two completions are identical, then we return only one copy.

• If one model returns an empty string, then we only display the other, non-empty completion.

• We limit the number of lines each completion can generate (default of 20), but allow users to customize this limit.

• After the user votes, we reveal the model pair and their choice to the user. We also show the user a history of their votes.

• We limit the input file size to be 8,000 tokens, which covers nearly all user file lengths.

A.2. Prompting Diverse Models

To enable the evaluation of a diverse set of models, we devise a prompting scheme to facilitate code completion functionality
of models that were not necessarily trained to “fill-in-the-middle.” Note that we focus on prompting-based approaches and
do not fine-tune any LLMs, as many models we evaluate are commercial, closed models.

Prompt templates. The following are an overview of prompt templates from Gong et al. (2024) that we experimented
with:3

1. Prefix-Suffix-Middle (PSM). PSM presents the code context in the order of prefix and then suffix, using XML notation to
demarcate prefix, suffix, and middle segments (e.g., <PREFIX> and </PREFIX>). The LLM is then asked to output
the middle segment given the prompt.

2. Suffix-Prefix-Middle (SPM). SPM is identical to PSM except that the suffix appears before the prefix, which may be more
natural than having the suffix appear directly before the output as is the case with PSM.

3. Mask. Rather than using start and end tokens to denote the prefix and suffix, the Mask prompt uses a special “sentinel”
token to indicate the masked (i.e. middle) code segment (Guo et al., 2024). The LLM is then requested to fill in the
masked code segment.

4. Instructed Prefix Feeding (IPF). IPF begins with the Mask prompt and then repeats the prefix as a “prefill” of the
completion for the language model.4 This is similar to IPF in Guo et al. (2024), except with instructions adjusted to better
align with chat models. This approach allows non-FiM-trained models the ability to better tackle FiM tasks (Fried et al.,
2023).

3Full prompt templates are provided in our code: https://github.com/lmarena/copilot-arena
4Nowadays, many completion APIs are deprecated; however, many chat APIs provide the ability to “pre-fill” tokens in the response

which is similar to forcing the LLM to do a completion
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A.2.1. PSM EXAMPLE

Fill in code and output nothing else. Respect spacing, new lines, and
indentation. Start with <CODE> and end with </CODE>.

Be VERY mindful of indentation. Make sure it is correct.

Example 1:
<PREFIX>class Calculator {{
add(number) {{

this.result +=</PREFIX>
<SUFFIX> subtract(number) {{

this.result -= number;
return this;

}}
}}</SUFFIX>
<CODE> number;

return this;
}}</CODE>

Example 2:
<PREFIX>from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to

each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enu</PREFIX>
<SUFFIX> != idx2:

distance = abs(elem - elem2)
if distance < threshold:

return True

return False</SUFFIX>
<CODE>merate(numbers):

if idx</CODE>

Task:
<PREFIX>{prefix}</PREFIX>
<SUFFIX>{suffix}</SUFFIX>
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A.2.2. EVALUATION RESULTS

On these various templates, we evaluate 9 models on the HumanEval-infilling dataset (Bavarian et al., 2022), which consists
of 1640 examples where random spans in a completed portion of code are masked out to simulate FiM behavior.

Table 2. pass@1 of code completions with different prompt templates (PSM, SPM, Mask). We observe that for all models and most
prompt templates, our Snip-It method improves pass@1.

Group Model psm spm mask ipf snip psm snip spm snip mask snip ipf

Open Code
Deepseek-Coder-V2.5 0.551 0.519 0.414 0.229 0.585 0.584 0.597 0.614
Qwen-2.5-32B 0.169 0.065 0.113 0.005 0.563 0.611 0.534 0.521

Open
Llama-3.1-405B-Instruct-Turbo 0.254 0.224 0.145 0.038 0.553 0.583 0.531 0.463
Llama-3.1-70B-Instruct-Turbo 0.074 0.079 0.061 0.029 0.490 0.527 0.312 0.323

Commercial
Gemini-1.5-Pro-002 0.620 0.599 0.562 0.338 0.561 0.659 0.259 0.491
GPT-4o 0.607 0.477 0.505 0.033 0.620 0.670 0.609 0.524
Claude-3.5-Sonnet 0.561 0.565 0.552 0.374 0.730 0.710 0.705 0.507
Gemini-1.5-Flash-002 0.434 0.376 0.277 0.286 0.409 0.403 0.301 0.394
GPT-4o-mini 0.099 0.055 0.088 0.019 0.429 0.480 0.361 0.342

A.2.3. ERRORS WITHOUT SNIP-IT

Below are two examples of errors without Snip-It from GPT-4o mini. Red indicates the incorrect code that the model filled
in.

from typing import List
def below_zero(operations: List[int]) -> bool:
""" You’re given a list of deposit and withdrawal operations on a bank account

that starts with zero balance. Your task is to detect if at any point the
balance of account fallls below zero, and at that point function should
return True. Otherwise it should return False. >>> below_zero([1, 2, 3])
False >>> below_zero([1, 2, -4, 5]) True """
balance = balance += op

if balance < 0:
balance += op
if balance < 0:

return True
return False

from typing import List
def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this

function is a string represented multiple groups for nested parentheses
separated by spaces. For each of the group, output the deepest level of
nesting of parentheses. E.g. (()()) has maximum two levels of nesting while
((())) has three. >>> parse_nested_parens(’(()()) ((())) () ((())()())’) [2,
3, 1, 3] """

def parse_paren_group(s):
depth += 1

max depth = max(max depth, depth)
if char == ’)’:

B. User information
Below we provide a copy of the general instructions and privacy instructions for users.

15



Copilot Arena: A Platform for Code LLM Evaluation in the Wild

Table 3. To conserve space, we refer models by shortened name in the main text but provide full model name below for completeness.

Full Model Name Shortened Name

deepseek-coder-fim deepseek-coder
claude-3-5-sonnet-20240620 claude-3.5-sonnet
codestral-2405 codestral
llama-3.1-405b-instruct llama-3.1-405b
gemini-1.5-flash-002 gemini-flash-002
gemini-1.5-pro-002 gemini-pro-002
gpt-4o-2024-08-06 gpt-4o-2024-08-06
llama-3.1-70b-instruct llama-3.1-70b
qwen-2.5-coder-32b-instruct qwen-2.5-coder-32b
gpt-4o-mini-2024-07-18 gpt-4o-mini

B.1. General instructions

Step 1: Install the extension and restart Visual Studio Code after installation. If installed successfully, you will see Copilot
Arena show up on the bottom right corner of your window and the check mark changes to a spinning circle when a
completion is being generated, Note, if you are using any other completion provider (e.g. Github Copilot), you must disable
them when using Copilot Arena.

Step 2: Copilot Arena currently supports two main feature: read autocomplete and in-line editing (beta) below to understand
how to use each one. Since we show paired responses, the way you use them are slightly different than your standard AI
coding tools!

Step 3: This step is optional. If applicable, you can change what data is saved by Copilot Arena by following the instructions
in ”Privacy Settings”.

Step 4: Create a username by clicking the Copilot Arena icon on the sidebar; detailed instructions are also in “Create an
account”. Your username will be used for a future leaderboard to compare individual preferences.

B.2. Privacy Instructions

Privacy Settings. Your privacy is important to us. Please read carefully to determine which settings are most appropriate for
you. To generate completions, the code in your current file is sent to our servers and sent to various API providers. This
cannot be changed.

Data Collection. By default, we collect your code for research purposes. You can opt-out of this. If you are working on
code containing sensitive information, we recommend that you opt out of data collection. To opt-out of data collection,
please change codePrivacySettings to Debug. We will only log your code for debugging. To disable logging entirely, please
change codePrivacySettings to Private. Opting-out means any bugs you encounter will be non-reproducable on our end. You
can find these settings by searching for Copilot Arena in your vscode settings or clicking the gear button of the Copilot
Arena extension -> Extension Settings.

Removing your data. If you would like to have the option in the future for us to delete any of your data, you must create an
account on Copilot Arena following instructions described in “Create an account.” To remove your data, you can email any
of the Copilot Arena maintainers with your username.

Data Release. Prior to releasing any collected code snippets to enable future research efforts, we will run a PII detector and
remove any identified entities to further ensure no personal information is released.

C. Data Analysis
Natural Language Detection. To detect natural languages, we used the lingua language detector (Stahl, 2024). We set
the detector to all available languages (except for Latin due to false positives), and picked the language with the highest
confidence that was greater than 0.7. Additionally, we filtered for languages that appeared at least 5 times. Results are
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in Figure 8. For Table 1, since Chatbot Arena does not track natural languages, we ran the same detection algorithm for
Chatbot Arena.
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Figure 8. Natural languages in Copilot Arena

Programming Language Detection. We detect programming languages in Copilot Arena by using the file’s extension
type (Figure 9). For Table 1, since Chatbot Arena does not track programming languages, we checked for the language of
codeblocks instead.
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Figure 9. Programming languages in Copilot Arena. For image clarity, we only show programming languages that appear more than 10
times.
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Task detection. Since Copilot Arena code contexts are fairly long, we employ a multi-step process to cluster code contexts,
via LLM-as-a-judge (Zheng et al., 2023). We specifically use GPT-4o-mini due to its speed and price.

First, we summarize all code contexts into short one-sentence descriptions.

System Prompt
You are a helpful assistant that describes code files in a single, concise
sentence. Focus on the main purpose and functionality of the code. Keep
descriptions clear, technical, and under 100 characters. Do not mention
file names or extensions in your description.

General Prompt
Describe this code in one sentence

Next, we prompt a model to cluster all one-sentence descriptions.

General Prompt

You are a code organization expert.
Analyze the provided code descriptions and:
1. Identify 5-10 main functional clusters or themes
2. Assign each description to the most appropriate cluster
3. Provide a brief name and description for each cluster
4. Format the response as valid JSON with the following structure:
{

"clusters": [
{

"name": "cluster_name",
"description": "brief cluster description",
"descriptions": ["description", "description2"]

}
]

}

Finally, we provide the full code context and ask the LLM to categorize the context given aforementioned clusters. Note that
we sanity-checked clusters manually and removed redundant ones.
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System Prompt
Please categorize the following code into one of these categories:

• User Interaction and Input Handling: Code that manages user inputs, prompts, and basic interaction with the
system

• Frontend Development and UI Design: Code snippets focused on designing user interfaces and creating
interactive components.

• Backend Development and APIs: Server-side logic, data management, and API integration for applications.

• Algorithm Design and Problem Solving: Code implementing algorithms to solve computational problems or
optimize tasks.

• Data Processing and File Operations: Code that reads, writes, or processes data from files and other data
sources.

• Game Development and Simulations: Code focused on creating games, simulations, and managing game
dynamics.

• Artificial Intelligence and Machine Learning: Code related to AI and machine learning for training, inference,
and application.

General Prompt
Only respond with the exact category name that best fits. No other text.
Here’s the code:
[code content]

Model Votes. We ensured that our leaderboard has coverage across all models, where each model received at least 2,000
votes, as shown in Figure 10.
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Figure 10. Number of votes for each language model.
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Figure 11. Number of votes over time.

Code Structure Detection. To detect the presence of FiM, we check if there exists a suffix. If there is only the prefix, we
label it as ”completion-only”. To detect if there are comments, we check if any of the 5 previous lines start with common
comment styles (e.g. #, //). We check for block comments in a similar fashion using docstring styles (e.g. """, /** */).

Completion Bias. Users selected the first completion 86% of the time, revealing a completion order bias. We investigated
whether the bias was due to users instinctively pressing Tab for the first completion, as it requires a simpler keystroke
than Shift-Tab. Analysis of decision times revealed that users spent a median of 6 seconds selecting the first completion,
indicating this action was not automatic. However, users still took longer (9 seconds) to select the second completion,
suggesting they deliberated more between the two options.
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Figure 12. Completion similarity vs. decision time, grouped by selection of the first or second code completion.

We hypothesized that the extended deliberation resulted from users comparing completion differences. To validate this, we
evaluated code similarity between completion pairs using the Levenshtein ratio. The dataset was refined by removing outliers
(identical or very dissimilar completions) and excluding comments to minimize the impact of documentation differences.
As shown in Figure 12, decision time increased with completion similarity for the second completion, indicating greater
deliberation for highly similar completions. This trend was absent for the first completion, suggesting this extra deliberation
did not occur for these cases.

Cost. We estimate that the total cost to collect our dataset is approximately $5k USD.

C.1. Example Data

We provide examples of code contexts from each of the task categories. For readability, we select examples with shorter
context lengths. Upon publication, we will also open-source more diverse examples (including those with significantly
longer context lengths).

20



Copilot Arena: A Platform for Code LLM Evaluation in the Wild

Artificial Intelligence and Machine Learning

from main13 import knn, mlp
import pandas as pd

for pclass in [1, 2, 3]:
for fare in range(10, 200, 10):

my_df = pd.DataFrame({
"Pclass": [pclass]*3,
"Name": [24]*3,
"Sex": [0]*3,
"Age": [19]*3,
"SibSp": [0]*3,
"Parch": [0]*3,
"Fare": [fare]*3,
"Embarked": ["S", "Q", "C"]

})
my_df = pd.get_dummies(my_df, columns=["Embarked"], prefix="Embarked")
my_df["Embarked_S"] = my_df["Embarked_S"].astype(int)
my_df["Embarked_C"] = my_df["Embarked_C"].astype(int)
my_df["Embarked_Q"] = my_df["Embarked_Q"].astype(int)

predictions = {
"knn": knn.predict(my_df),
"mlp": mlp.predict(my_df)

}
ans_df = pd.DataFrame(index=[fare], columns=[1, 2, 3])
ans_df.at[fare, pclass] = predictions

print(ans_df)

Frontend Development and UI Design

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>

</head>
<body>

<script>
function getRandomNumber(min,max) {

return Math.floor(Math.random()*)
}

</script>
</body>
</html>
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Algorithm Design and Problem Solving

import java.util.*;

public class hashmapImplementation {
static class HashCode<K, V>{ //generics -> we can use any data type for
key and value.

private class Node{
K key;
V value;

public Node(K key, V value){
this.key = key;
this.value = value;

}
}

private int size; //n
private LinkedList<Node> buckets[]; //N = buckets.length
-> array of linkedlists

@SuppressWarnings("unchecked")
public HashCode() {

this.size = 0;
this.buckets = new LinkedList[4];
for (int i = 0; i < buckets.length; i++) {

buckets[i] = new LinkedList<>();
}

}

public void put(K key, V value){

}
}

public static void main(String args[]){
}

}
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Data Processing and File Operations

import os
from pipeline.chain_function import *
path_name = "./pipeline_genereated_img/"

def upload_data(image_path):
# image_path = os.listdir("pipeline_genereated_img")[0]
full_path = path_name+image_path
element = generate_img_summaries(full_path)

def upload_img_2_json():
# Write data to JSON file
json_file_path = "./img_json_stored/"+image_path
json_file_path = json_file_path.replace(".pdf",".json")
with open(json_file_path, ’w’) as file:

json.dump({"result": element}, file, indent=4)

print(f"Data successfully uploaded to {json_file_path}")

User Interaction and Input Handling

print("Hello World")
namevar = input("Enter name ")

print("Welcome " + namevar)
#Write python code to download and run deepseek model locally in my windows
computer. I have python and pytorch installed in my computer.

#To download and run a DeepSeek model locally on your Windows computer,
you can follow these steps:
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Game Development and Simulations

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Player : MonoBehaviour
{

// Start is called before the first frame update
public float speed = 1f;

void Start()
{

transform.position = new Vector3(0,0,0);
}

// Update is called once per frame
void Update()
{

transform.Translate(Vector3.left * speed * Time.deltaTime );
}

}

Backend Development and APIs

async def discover_device(emp_user_no, access_token, repositories):
print(f"dicsover_device")

async def check_device_health(request_type, payload, mesage_id, emp_user_no,
repositories)

print(f"check_device_health")

async def

D. Details on Model Ranking

Computing BT Coefficients. We estimate β̂ by running a logistic regression:

β̂ = arg min
β∈RM

1

n

n∑
i=1

CE(σ(X⊤
i β), Yi) (3)

where CE represents the cross-entropy loss and σ is the sigmoid function. We use the sklearn package with l2 penalty and
no intercept term. We bootstrap the ranking calculation by sampling with replacement for 100 rounds to compute the 95%
confidence interval. In our leaderboard, we use codestral as an anchor model.

BT Ablations. Since confounding variables (e.g., length of the response or other stylistic formatting (Singhal et al., 2023))
may influence preference judgments, we also control for these variables in the BT model. Given a set of style features,
which include model latency and completion length, we add a style vector to the BT model Z⃗ where= Zi ∈ RS is a vector
of S style features comprising the normalized difference between the feature values of both model responses. The extended
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BT model includes the style coefficients γ ∈ RS and can be written as:

β̂, γ̂ = arg min
β∈RM ,γ∈RS

1

n

n∑
i=1

CE(σ(X⊤
i β + Z⊤

i γ), Yi)

where CE represents the cross-entropy loss and σ is the sigmoid function. The resulting β̂ represents model strengths
adjusted for style effects, while γ̂ quantifies the influence of style on user preferences. β̂ values are used to create the ordered
ranking of models on the leaderboard.

Since we observe a completion bias (described in Appendix C), we perform an additional experiment to verify that we
collected sufficient votes across all pairs. To do so, we upsampled and downsampled model pairs that had fewer and more
comparisons, respectively, so that the difference between the most and least voted pair is within 10%. We find that the
rankings remain identical to the ranking obtained using the full set of votes. This provides additional confidence in our
reported leaderboard.

When comparing the original leaderboard (Table 4) and the style-controlled version (Table 5), we see minimal changes to
the overall “tiers” described in the main text. While we observe some changes in the middle tier (e.g., Llama-3.1-405b,
Gemini-1.5-Flash, and Gemini-1.5-Pro swap places as well as GPT-4o and Llama-3.1-70b), we do not observe significant
changes between tiers.

Table 4. βi values for each model bootstraped over 100 samples: their lower, rating, and upper bounds.
Model Lower bound β estimate Upper bound
deepseek-coder-fim 0.04 0.07 0.10
claude-3-5-sonnet-20240620 0.02 0.06 0.09
codestral-2405 -0.02 0.00 0.02
llama-3.1-405b-instruct -0.07 -0.04 -0.01
gemini-1.5-flash-002 -0.06 -0.04 -0.01
gemini-1.5-pro-002 -0.08 -0.05 -0.02
gpt-4o-2024-08-06 -0.09 -0.06 -0.03
llama-3.1-70b-instruct -0.10 -0.07 -0.04
qwen-2.5-coder-32b-instruct -0.16 -0.13 -0.10
gpt-4o-mini-2024-07-18 -0.19 -0.15 -0.12

Table 5. βi and γi values for each model bootstraped over 100 samples: their lower, rating, and upper bounds.
Model Lower Rating Upper
deepseek-coder-fim 0.05 0.08 0.11
claude-3-5-sonnet-20240620 0.03 0.06 0.09
codestral-2405 -0.02 -0.00 0.03
gemini-1.5-flash-002 -0.06 -0.03 -0.01
llama-3.1-405b-instruct -0.07 -0.04 -0.00
gemini-1.5-pro-002 -0.09 -0.05 -0.01
llama-3.1-70b-instruct -0.09 -0.06 -0.03
gpt-4o-2024-08-06 -0.09 -0.07 -0.04
qwen-2.5-coder-32b-instruct -0.16 -0.13 -0.10
gpt-4o-mini-2024-07-18 -0.18 -0.15 -0.12
Model Lower bound γ estimate Upper bound
Model latency -0.33 -0.17 0.00
Response length 0.11 0.21 0.32

E. Additional Results
We provide additional details about win-rate analysis in Figure 13, 14, 15, and 16. We also showcase an experiment testing
our prompting approach in Table 6
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Figure 13. Win-rate difference based on Task: frontend/backend versus algorithmic design problems.

Table 6. A controlled experiment with a fixed model, DeepSeek Coder, where we vary whether we use the model’s FiM capability or we
use Snip-It to post-process the model as we would with other models that do not have native FiM capability. While we were not able to
obtain a significant number of votes before deepseek-coder was deprecated, we still observe that β estimates are comparable between the
two variants. This shows that our Snip-It approach can roughly recover FiM capabilities.

Model Lower bound β estimate Upper bound
deepseek-coder-fim 0.04 0.07 0.10
deepseek-coder -0.04 0.06 0.15
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Figure 14. Win-rate difference based on FiM: whether the task is FiM or not.
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Figure 15. Win-rate difference based on context length: context length in top versus bottom 20 percentile.
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Figure 16. Win-rate difference based on programming language (PL): Non-python code versus Python code.
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