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Abstract

Representation learning has significantly driven the field to develop pretrained
models that can act as a valuable starting point when transferring to new datasets.
With the rising demand for reliable machine learning and uncertainty quantification,
there is a need for pretrained models that not only provide embeddings but also
transferable uncertainty estimates. To guide the development of such models,
we propose the Uncertainty-aware Representation Learning (URL) benchmark.
Besides the transferability of the representations, it also meaExamplessures the
zero-shot transferability of the uncertainty estimate using a novel metric. We apply
URL to evaluate eleven uncertainty quantifiers that are pretrained on ImageNet and
transferred to eight downstream datasets. We find that approaches that focus on
the uncertainty of the representation itself or estimate the prediction loss directly
outperform those that are based on the probabilities of upstream classes. Yet,
achieving transferable uncertainty quantification remains an open challenge. Our
findings indicate that it is not necessarily in conflict with traditional representation
learning goals. Code is available at https://github.com/mkirchhof/url.

1 Introduction

Pretrained models are a vital component of many machine learning applications. The driving force
behind their development has been representation learning benchmarks, e.g. Roth et al. (2020); Chen
et al. (2020): They task models to output representations e(x) of input data x that generalize across
datasets in a zero-shot manner. These pretrained representations provide a valuable starting point for
downstream applications, requiring less supervised data to be fine-tuned for specific tasks.

At the same time, uncertainty quantification remains a major challenge in the recent efforts towards
reliable machine learning (Collier et al., 2023; Tran et al., 2022). Uncertainty quantification refers to
estimating the degree of uncertainty or risk u(x) ∈ R in a model’s prediction. This is particularly
important in high-stakes applications such as medical image classification. Here, the model can
refrain from making predictions if the uncertainty, e.g., u(x) := 1−maxy P (Y = y|x), is too high
(Zou et al., 2023; Bouvier et al., 2022). Beyond classification, uncertainty is an inherent property
of vision and language (e.g., low image resolution or ambiguous text inputs) that cannot be learned
away even with large amounts of data (Chun et al., 2022; Kendall and Gal, 2017). Consequently,
recent literature suggests representing images not as points e(x), but as probabilistic embeddings
(Kirchhof et al., 2023; Collier et al., 2023; Chun et al., 2021). Here, u(x) is the variance parameter of
a distribution around e(x) in the embedding space, representing the input’s inherent ambiguity. This
can then be utilized for uncertainty-aware retrieval.
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A major hurdle on the way to reliable uncertainty estimates is that u(x) needs to be trained from
the ground up for each specific task, requiring substantial labeled data. Replicating the successes of
representation learning promises to reduce this burden by pretraining a u(x) which can be transferred
to downstream tasks in a zero- or finetuned few-shot manner. Yet, this transferability of u(x) to new
datasets has not been tested in literature, with previous benchmarks evaluating on the same datasets
they trained on (Detommaso et al., 2023; Nado et al., 2021). Thus, we propose a novel Uncertainty-
aware Representation Learning (URL) benchmark. Models that output both embeddings e(x) and
uncertainty estimates u(x) of any form are pretrained on large collections of upstream data and
evaluated on unseen downstream datasets. The transferability of their embeddings e(x) is evaluated
in terms of the Recall@1 (R@1), as in established representation learning benchmarks (Roth et al.,
2020; Chen et al., 2020). The transferability of their uncertainty estimates u(x) is evaluated with
a novel metric, the Recall@1 AUROC (R-AUROC). It naturally extends R@1-based benchmarks
and can be seamlessly integrated in as little as four lines of code, without requiring any new ground-
truth labels. Nonetheless, it is not only an abstract metric but has practical significance: Models with
higher R-AUROC are also more aligned with human uncertainties and react better to uncertainty-
inducing interventions like image cropping.

On this benchmark, we reimplement and train eleven state-of-the-art uncertainty estimators, from
class-entropy baselines over probabilistic embeddings to ensembles, with ResNet (He et al., 2016) and
ViT (Dosovitskiy et al., 2021) backbones on ImageNet-1k (Deng et al., 2009). Our main findings are:

1. Transferable uncertainty estimation is an unsolved challenge (Section 4.2),

2. MCInfoNCE and direct loss prediction generalize best (Section 4.3),

3. Uncertainty estimation is not always in conflict with embedding estimation (Section 4.4),

4. Models with good uncertainties upstream are not necessarily good downstream (Section 4.5),

5. URL captures how aligned a model is with human uncertainty (Section 4.6).

These findings demonstrate that pretraining models for downstream uncertainty estimation is an
important yet unsolved challenge. We hope that our benchmark will serve as a valuable resource in
guiding the field towards pretrained models with reliable and transferable uncertainty estimates.

2 Related work

Our benchmark connects recent uncertainty quantification benchmarks with representation and
zero-shot learning for unseen data, which we introduce below. Specific datasets and methods for
uncertainty quantification are described in the experiments section when they are benchmarked.

Uncertainty benchmarks. Uncertainty quantification has become an essential consideration for
reliable machine learning, and so several libraries have been recently developed to guide its advance-
ment (Detommaso et al., 2023; Nado et al., 2021). These libraries provide various metrics for eval-
uating and improving uncertainty estimates on in-distribution data. Galil et al. (2023b) and Galil
et al. (2023a) benchmarked over 500 large vision models trained on ImageNet from the timm (Wight-
man, 2019) library and reported that Vision Transformers (ViT) provide the best uncertainty esti-
mates. Further, scaling of these ViTs to up to 22B parameters and pretraining on a large corpus of
upstream data results in very accurate uncertainty estimates (Dehghani et al., 2023; Tran et al., 2022).
However, when moving away from in-distribution data, the quality of uncertainty estimates deteri-
orates (Tran et al., 2022) and we can only expect that they will be generally higher and allow for
out-of-distribution detection (Ovadia et al., 2019). This motivates our benchmark: We aim to de-
velop pretrained models that can generalize their uncertainty estimates and discriminate certain from
uncertain examples even within unseen datasets. While some works applied their uncertainty esti-
mates to unseen datasets (Cui et al., 2023; Collier et al., 2023; Ardeshir and Azizan, 2022; Karpukhin
et al., 2022), their downstream evaluations focused on embeddings, leaving the uncertainty estimates
untested. Our benchmark intends to bridge this gap and assess the transferability of uncertainty es-
timates, with the goal of enhancing large pretrained models towards zero-shot uncertainty estima-
tion. To design a benchmark for transferability, we connect the upper benchmarking techniques to
paradigms from representation and zero-shot learning below.
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1 def url_benchmark(pretrained_model , downstream_loader):
2 # Predict embeddings and uncertainties on downstream data
3 labels = embeddings = uncertainties = list()
4 for (image , label) in downstream_loader:
5 embededding , uncertainty = pretrained_model(image)
6 (labels , embeddings , uncertainties).append(label , embedding , uncertainty)
7
8 # Calculate R@1 and R-AUROC
9 next_neighbor_idx = search_most_similar(embeddings)

10 is_same_class = labels == labels[next_neighbor_idx]
11 r_at_1 = mean(is_same_class)
12 r_auroc = compute_auroc(uncertainties , not is_same_class)
13
14 return r_at_1 , r_auroc

Algorithm 1: Adding URL to existing representation learning benchmarks takes only the four
highlighted lines of code.

Representation and zero-shot learning. Transferability is generally evaluated by testing whether
models can make sensible decisions on unseen data. In zero-shot learning (Xian et al., 2017), the
model is tasked to give class-predictions on new downstream classes. This requires both learning a
transferable representation space on upstream data and creating classifier heads for the new classes
from auxiliary information. Representation learning benchmarks (Roth et al., 2020; Khosla et al.,
2020; Bengio et al., 2013) focus on the former. To this end, they use a metric similar to class accuracy,
the Recall@1 (R@1) (Mikolov et al., 2013). It calculates the model’s embeddings of all unseen
downstream data and compares whether each embedding’s next neighbor is in the same class or not.
This tells whether the embeddings are semantically meaningful, such that the pretrained model can
be successfully transferred to downstream tasks. We extend representation learning benchmarks to
additionally judge the transferability of uncertainty estimates. To this end, we propose a metric that
can be implemented on top of the R@1 in four lines of code in the next section.

3 Uncertainty-aware representation learning (URL) benchmark

3.1 Evaluating uncertainty about representations

To quantify its uncertainty, a model f : X → E × U is assumed to predict both an embedding
e(x) ∈ E and a scalar uncertainty value u(x) ∈ U ⊂ R for each input image x ∈ X . We do not
impose restrictions on how u(x) is calculated, e.g., it could be the negative maximum probability of
a softmax classifier, a predicted variance from a dedicated uncertainty module, or the disagreement
between ensemble members. The predicted uncertainty u(x) is commonly benchmarked in terms
of its expected calibration error (ECE), negative log-likelihood, area under the receiver-operator
characteristics curve (AUROC), or abstained prediction curves. All of these measures are w.r.t. the
correctness of a classification decision. Hence, u(x) can only be evaluated in-distribution with known
classes. Our setup involves unseen datasets and classes, so we need to develop a fitting measure.

To this end, let us take Lahlou et al. (2023)’s decision-theoretic perspective on uncertainty quantifica-
tion: Uncertainty quantification is loss prediction. The uncertainty expresses the expected loss of a
model’s decision on a specific datapoint. In Gaussian regression with an L2 loss, the expected loss is
the target’s variance, so an uncertainty quantifier u(x) should be proportional to it. In classification
with a 0-1 loss, u(x) should be proportional to the probability of returning the correct class.

In representation learning, the model’s decision is the embedding e(x) and the loss is the R@1. The
uncertainty quantifier’s goal is then to report the loss attached to the embedding, i.e., u(x) should
be proportional to whether the R@1 will be correct or not. This demonstrates the use case of u(x):
Telling whether an embedding e(x) can be trusted or could be misplaced in the embedding space.
This is an important property as models of the form x → e → y have an information bottleneck in
the quality of the embedding e(x) due to the data-processing inequality (Cover, 1999). For every
downstream task, a higher uncertainty u(x) about e(x) monotonically increases the loss of y(e(x)).
In other words, if the embedding is wrong, then the prediction in any downstream task will be wrong.
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We measure whether the uncertainty quantifier u(x) is proportional to the correctness of the embed-
ding e(x) via the AUROC with respect to whether the R@1 is correct (one) or not (zero), named
R-AUROC. As the R@1 is a 0-1 loss, the R-AUROC can be interpreted as the probability that an in-
correct embedding will receive a higher uncertainty score than a correct embedding (Fawcett, 2006).
An R-AUROC close to 1 means that u(x) clearly separates correct from incorrect embeddings, while
an R-AUROC of 0.5 means that it has no more predictive power than a random guess.

A positive trait of the R-AUROC is that it is indicative of how well-aligned the model is with human
uncertainties and how well the model reacts to uncertainty-inducing interventions (see Fig. 5 and
Section 4.6). It also does not require uncertainty ground-truths and takes only four lines of code to
implement into existing representation learning benchmarks, as shown in Algorithm 1. We choose the
AUROC over other calibration measures such as the ECE because it accepts uncertainties u(x) ∈ R
(instead of u(x) ∈ [0, 1]) and because it avoids some loopholes of the ECE. We discuss these and
more design choices behind this metric in Appendix A.

3.2 URL benchmark protocol

The R-AUROC can be evaluated on any downstream dataset that allows calculating the R@1, i.e.,
has class labels. Yet, in order to keep future results comparable, we propose a benchmark protocol
for uncertainty-aware representation learning (URL). Our code is based on timm (Wightman, 2019)
and available at https://github.com/mkirchhof/url.

Datasets. We train each model on ImageNet-1k (Deng et al., 2009) as upstream dataset. We note
that future works may use larger-scale upstream datasets (Collier et al., 2023; Tran et al., 2022) or
auxiliary information (Han et al., 2023; Ortiz-Jimenez et al., 2023), as long as they stay disjoint to the
downstream datasets. As downstream datasets, we follow the standardized representation learning
protocol of Roth et al. (2020) and use CUB-200-2011 (Wah et al., 2011), CARS196 (Krause et al.,
2013), and Stanford Online Products (Song et al., 2016). We follow the original splits that divide
their classes into equally sized train and test sets. Following Roth et al. (2020), we further divide the
classes in the train set equally into a train and a validation split. In our zero-shot transfering setup, all
models are trained only on the upstream ImageNet dataset and do not use the downstream train splits.
All results report the performance on the test sets, averaged across the three datasets and three seeds.

Hyperparameters. We use the downstream validation split to select the best learning rate, early
stopping, and further hyperparameters of each model individually, see also Appendix B. Each model
is tuned for 10 search iterations via Bayesian Active Learning (Biewald, 2020). The best model is
chosen based on the R-AUROC on validation data, where models with an R@1 below 0.1 on the
validation splits are filtered out. The best model is replicated on three seeds.

Architectures. Following uncertainty quantification and representation learning benchmarks (Wen
et al., 2021; Dusenberry et al., 2020; Roth et al., 2020), we use a ResNet-50 (He et al., 2016) with
an embedding space dimension of 2048 as a backbone. We further study ViT-Medium (Dosovitskiy
et al., 2021) backbones due to their performance (Galil et al., 2023a,b) and increasing number of large-
scale uncertainty quantifiers built on top of them (Collier et al., 2023; Tran et al., 2022). Methods
that predict u(x) with explicit modules use a 3-layer MLP head attached to the embeddings.

Training infrastructure. Each model is trained with an aggregated batch size of 2048, as recent
studies indicate higher batch sizes might benefit uncertainty quantification (Galil et al., 2023b). We
use the Lamb optimizer (You et al., 2020) with cosine annealing learning rate scheduling (Loshchilov
and Hutter, 2017) for all models since it performed best in preliminary experiments. The ResNets
and ViTs are trained on NVIDIA RTX 2080 Ti and A100 GPUs, respectively, for 32 epochs from a
checkpoint pretrained on ImageNet to reduce the computational costs. In total, the experiments took
3.2 GPU years of runtime.

Further metrics. Uncertainty estimates aim to assess the errors made by individual models, so that
they are necessarily model- and performance-dependent. To provide a comprehensive view, we not
only evaluate the quality of the uncertainty estimate using R-AUROC but also consider the model’s
representation learning performance using R@1.

4

https://github.com/mkirchhof/url


4 Experiments

4.1 Uncertainty estimators

We apply URL to benchmark two baselines (CE, InfoNCE), five probabilistic embeddings approaches
(MCInfoNCE, ELK, nivMF, HIB, HET-XL), two direct variance models (Losspred, SNGP), and
two ensembles (Ensemble, MCDropout). We introduce each approach below and explain further
details on their reimplementations and hyperparameters in Appendix B and runtimes in Appendix C.7.

Cross Entropy (CE) is a supervised baseline which trains under a cross-entropy loss. It uses the
entropy of the upstream class probabilities u(x) := H(P (Y |x)) as uncertainty estimate.

InfoNCE (Oord et al., 2018) is an unsupervised baseline. Following SIMCLR (Chen et al., 2020), it
takes two random transforms of each image and pulls their embeddings towards each other and repels
them from the remaining batch. InfoNCE itself does not estimate u(x), so we use the embedding
norm u(x) := ∥e(x)∥2 as a heuristic (Kirchhof et al., 2022; Scott et al., 2021; Li et al., 2021).

MCInfoNCE (Kirchhof et al., 2023) follows the unsupervised setup of InfoNCE, but predicts a
certainty κ(x) =: 1/u(x) along with each embedding to define a distribution in the embedding space,
so called probabilistic embeddings. It draws samples from them and applies InfoNCE on each.

Expected Likelihood Kernel (ELK) (Kirchhof et al., 2022; Shi and Jain, 2019) also predicts
certainties κ(x) =: 1/u(x) to define probabilistic embeddings. The probabilistic embeddings are
compared to class distribution via an expected likelihood distribution-to-distribution kernel (Jebara
and Kondor, 2003). This makes it a supervised probabilistic embedding-based loss.

Non-isotropic von Mises-Fisher (nivMF) (Kirchhof et al., 2022) is analoguous to ELK, but models
class distributions as non-isotropic von Mises-Fisher distributions, thereby allowing different vari-
ances along each embedding space axis. Image certainties are still scalars κ(x) =: 1/u(x).

Hedged Instance Embeddings (HIB) (Oh et al., 2019) predicts variances σ(x) =: u(x) of proba-
bilistic embeddings. Samples are drawn to compute match probabilities between two images. It aims
to increase the match probabilities of same-class pairs and decrease that of different-class ones.

Heteroscedastic Classifier (HET-XL) (Collier et al., 2023) differs from the above probabilistic
embeddings approaches in that it predicts full covariance matrices Σ(x) in the embedding space. It
draws samples from these probabilistic embeddings to calculate the expected P (Y |x). We test both
u(x) := detΣ(x) and the class entropy u(x) := H(P (Y |x)) as possible uncertainty estimates.

Spectral-normalized Neural Gaussian Processes (SNGP) (Liu et al., 2020) model class logits
as Gaussian Processes with a predicted mean and a heteroscedastic variance. They are pooled into
class probabilities P (Y |x) and trained under a CE loss. The entropy of these probabilities serves as
uncertainty value u(x) := H(P (Y |x)).
Loss Prediction (Losspred) approaches (Upadhyay et al., 2023; Lahlou et al., 2023; Levi et al., 2022;
Laves et al., 2020; Yoo and Kweon, 2019) in regression treat uncertainty quantification as secondary
regression task. We apply the same principle to classification, where we task the uncertainty module
u(x) to predict the (gradient-detached) CE loss at each sample via an L2 loss added to the train loss.

Deep Ensembles (Lakshminarayanan et al., 2017) train multiple randomly initiated networks under a
CE loss to obtain several predictions. They are pooled one class distribution P (Y |x). We define the
uncertainty either via its entropy u(x) := H(P (Y |x)) or the Jensen–Shannon divergence between
the ensemble members’ class probability distributions. Following (Lee et al., 2015), we only train
multiple output heads and share the backbone to reduce computational complexity.

MCDropout (Gal and Ghahramani, 2016) applies Dropout (Srivastava et al., 2014) at inference time.
This gives multiple predictions per input, imitating the upper Ensemble. We use both the entropy
u(x) := H(P (Y |x)) and the Jensen–Shannon divergence between the ensemble members’ class
probability distributions as possible uncertainty metrics.

4.2 Transferable uncertainty estimation is an unsolved challenge

Fig. 1 presents the URL benchmark results, i.e., the R-AUROC calculated for all above approaches on
ResNet and ViT backbones. The barplot shows the minimum, average, and maximum performance
across three seeds of each hyperparameter-tuned approach.
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Figure 1: Zero-shot uncertainty estimates of pretrained models (bars) do not reach the performance
of many-shot models yet (dashed line). The URL benchmark aims to guide the field to close this gap.
Minimum, average, and maximum R-AUROC across three seeds.

Before comparing the models, we first investigate whether the transferability problem URL addresses
is already solved by any of the existing methods. To obtain an upper reference, we additionally train
a ResNet 50 with standard cross-entropy loss and entropy of the class probabilities as uncertainty
prediction on the downstream test classes (split into a train and test split for this experiment only). This
many-shot performance of 0.68 is not reached by any of the methods that transfer their uncertainty in
a zero-shot way, marking URL as an open challenge. In the standard R@1, this gap has already been
closed in representation learning (see Appendix C.1) and we hope that URL guides the field towards
the same for transferable uncertainty estimation.

4.3 MCInfoNCE and direct loss prediction generalize best

To compare the approaches in detail, in addition to Fig. 1, Fig. 2 reports both the downstream
uncertainty and R@1 performance. The overall best method is Losspred, with the second-best average
R-AUROC of 0.568, close to the best method, MCInfoNCE, with an average R-AUROC of 0.569,
while maintaining the second-best average R@1 of 0.53, close to the best R@1 of 0.57 achieved by
nivMF. MCInfoNCE marks the best performance in both metrics within the ResNet models, closely
followed by nivMF. This is remarkable as it is the only unsupervised method aside from the InfoNCE
baseline. One final noteworthy mention is ELK which provides decent uncertainty estimates on both
ResNets and ViTs, whereas most other models vary in their performance depending on the backbone.

When grouping the approaches, those that directly model the variance (Losspred, SNGP) appear
to have an edge on the ViTs, especially Losspred, which is the only method that disentangles
variance estimation from how the class logits are calculated. Such disentanglement via having two
losses could be added to other approaches in future works. Probabilistic embeddings, especially
MCInfoNCE, nivMF and ELK, also show promising performance both on the bigger ViTs and
the smaller ResNets. Ensembles fail to provide transferable uncertainty estimates. The baselines
unsurprisingly fail, indicating that well-calibrated class probabilities on the upstream dataset do not
serve as good uncertainties on downstream data. We investigate this further in Section 4.5.

4.4 Uncertainty estimation is not always in conflict with embedding estimation

A commonly raised concern is whether or not uncertainty quantification deteriorates the prediction,
or, in the representation learning setup, the embedding quality. In the previous section, we have
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terms of uncertainty estimates (y-axis), measured by our R-AUROC, and embedding quality (x-axis),
measured by Recall@1. Three seeds per model and architecture.
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Figure 3: Best hyperparameters chosen for R@1 and for R-AUROC for each model. For some
models, there is one best hyperparameter for both, resulting in a point, but most have a large trade-off.
Average performance across three seeds.

already seen that Losspred can achieve both with only a slight trade-off to the best method in each
category. In this section, we further detail this question within each model class.

Fig. 3 shows the performance of the best hyperparameters chosen according to R-AUROC or
according to the R@1. If there was no trade-off, the points would lay at the same position or only
have a short line connecting them. This is the case for MCInfoNCE, ELK, nivMF, HET-XL, and
Ensemble on ViTs and MCInfoNCE, MCDropout, and InfoNCE on ResNets. The remaining 14 of
the 22 approaches show large tradeoffs, e.g., −0.21 R@1 for +0.01 R-AUROC for HIB on ViTs.
Whereas this comparison regards only the two extreme ends of the spectrum, Appendix C.2 measures
the rank correlation across all tested hyperparameters. It shows a similar conlusion, with 15 out of 22
approaches trading off uncertainty and prediction. However, from another perspective, Losspred,
nivMF, and MCInfoNCE are model classes that provide good performance in both simultaneously.
Hence, the question of whether there is a general trade-off between uncertainty estimation and
prediction is still up to debate. Studying these models and mitigating the model-internal trade-offs is
an interesting future work that we hope URL can enable.
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Figure 4: The R-AUROC on upstream data does not indicate the performance on downstream data
(left). Yet, the percentage of upstream images where a cropped version receives a higher uncertainty
is indicative (right). Plots show all hyperparameters, including non-optimal ones.

4.5 Models with good uncertainties upstream are not necessarily good downstream

We have seen that CE is unable to transfer its well-calibrated upstream uncertainty estimates to
downstream datasets. This brings up the question of how much the upstream and downstream
uncertainty quantification abilities coincide in general. Fig. 4 (left) shows that the majority of models
achieves an R-AUROC above 0.7 on the upstream seen classes. But this does not indicate a good
downstream performance (Rank Corr. 0.09), neither across nor within model classes (unlike up- and
downstream R@1, which transfers better, see Appendix C.3). This demonstrates that transferable
uncertainty quantification will not solve itself by merely becoming better on the upstream data.

This also opens a question about model choice: If the upstream performance cannot tell how well the
model’s uncertainty predictions will perform downstream, how should we select pretrained models?
In this paper, we used downstream validation data. However, if we are limited to upstream data,
we may test the uncertainty module in a more general task that also holds downstream. In Fig. 4
(right), we calculate how often the model assigns a higher uncertainty value to a cropped version of
an image than to the original image. The rank correlation of 0.54 with the downstream R-AUROC
signals that models that perform well on this general uncertainty task also tend to generalize better to
the downstream data. This means that general uncertainty tasks might be good heuristics to choose
models, reinforcing practices in recent literature (Kirchhof et al., 2023).

4.6 URL captures how well-aligned a model is with human uncertainty

While the R-AUROC is simple and theoretically founded, readers might still wonder why we want to
drive the development of models based on this rather technical-seeming metric. In this section, we
show that the R-AUROC reflects how well-aligned the model is with human uncertainties.

To verify this, we use five additional downstream datasets from Schmarje et al. (2022): CIFAR-10H
(Peterson et al., 2019), Benthic (Langenkämper et al., 2020; Schoening et al., 2020), Pig (Schmarje
et al., 2022), Turkey (Volkmann et al., 2022, 2021), and Treeversity#1 (Arnold Arboretum, 2020).
They present human annotators with naturally ambiguous images and record their uncertainty by
collecting multiple class annotations per image. The entropy of this distribution measures the
human uncertainty h(x) = H(Phuman(Y |x)). We can then measure the alignment of the model
f ’s uncertainties with human uncertainties via rank correlation a(f) = Rank Corr.({u(x), h(x)}x).
Fig. 5 (left) shows that this alignment metric a(f) is positively correlated with the R-AUROC (Rank
Corr. 0.80). Further, Fig. 5 (right) shows that the same holds for the correlation between R-AUROC
and how well a model detects the uncertainty introduced synthetically via cropping (Rank Corr. 0.71),
as in the previous section. This means that the R-AUROC is not just a technical metric, but reveals
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Figure 5: If a model has a high R-AUROC, it is likely also well-aligned with human uncertainties
(left). Further, it is likely able to detect uncertainties induced via synthetical cropping (right). All
results on five further downstream datasets from Schmarje et al. (2022).

how well a model’s uncertainty estimate is aligned with human and synthetical notions of uncertainty,
despite not requiring access to human uncertainty ground truths.

4.7 URL is no out-of-distribution detection benchmark

Last, we want to clarify how URL is different from out-of-distribution (OOD) detection benchmarks
like (Ovadia et al., 2019). While both test uncertainty estimates on OOD data, the goal is different:
In OOD detection benchmarks, the uncertainty estimates are tasked to be generally higher for
OOD than for in-distribution (ID) samples. In URL, we look only at the OOD data and see if the
uncertainties within this data are correctly sorted. This is because our use-case is not to build OOD or
anomaly detectors, but pretrained models whose uncertainty estimates generalize to new datasets. In
Appendices C.4 and C.5 we show that methods with good OOD detection abilities are not necessarily
good in URL or vice versa. This demonstrates that URL is concerned with predictive uncertainty
estimation (and generalization), which is largely driven by aleatoric uncertainty, rather than epistemic
uncertainty estimation, which is tested in OOD benchmarks.

5 Conclusion

Summary This paper proposes the uncertainty-aware representation learning (URL) benchmark.
On top of the Recall@1, URL adds an easy-to-implement metric that evaluates how well models
estimate uncertainties on unseen downstream data. Besides having a theoretical foundation, it also
behaves similarly to practical metrics like the alignment with human uncertainties. In benchmarking
eleven state-of-the-art approaches on ResNet and ViT backbones, we found that the challenge URL
poses is far from being solved. We hope that URL guides the field to overcome this challenge and
yield models with reliable pretrained uncertainty estimates.

Outlook We gathered some insights that might guide future developments: Both unsupervised and
supervised methods can learn transferable uncertainty estimates. This is not necessarily at stakes
with the embedding and prediction quality. However, many methods have internal trade-offs in their
hyperparameters. A deeper analysis of the reasons for this trade-off could allow us to control and
mitigate it. Loss prediction and probabilistic embedding methods are currently the most promising
approaches. They may be combined to enhance each other and define a new state-of-the-art.

Limitations Although URL allows using any upstream benchmark, we have focused on ImageNet-
1k to train all current methods on the same ground. We leave the investigation of further scaled
datasets to forthcoming research. Further, we hyperparameter-tuned each model individually with the
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same budget, but the vast number of hyperparameters in some models, like SNGP, means that our
active learning search may have missed some fruitful combinations. Finally, our study concentrates
on zero-shot uncertainty estimates. It will be an interesting endeavour to see if pretrained models
with good zero-shot estimates also accelerate learning uncertainties in few-shot scenarios.
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A FAQ on URL benchmark and R-AUROC

A.1 Why AUROC with respect to R@1 and not accuracy?

First attempts in zero-shot learning literature measured the accuracy on unseen classes. This required
learning not only an embedder, but also constructing classifier labels, usually through prototypes
or attributes. Subsequent approaches in representation and deep metric learning seeked generally
transferable embeddings, where no information is known about the test classes. So, it was impossible
to give class logits and calculate an accuracy. Instead they measure the R@1. We have the same
goal of transferring uncertainty estimates to unknown test conditions, so we built up the uncertainty
benchmark on predicting whether the R@1 will be correct or wrong. This measures the risk inherent
to the embedding, rather than the (classification) downstream task, which is unknown in advance.
However, the risk in the embedding is a bottleneck to the potential subsequent classification layer
and we indeed observe in Appendix C.3 that R@1 and accuracy are highly correlated, so that the
difference is negligible.

A.2 Why a ranking-based metric (AUROC) and not probability-based calibration?

The AUROC measures if the predicted uncertainties are ranked such that the most uncertain have the
most erroneous predictions. It is intriguing to use a different metric, which is to predict the probability
of error directly as a value in [0, 1]. However, this metric fundamentally cannot be calibrated before
the downstream task is known: In classification, we do not know how many classes there will be and
beyond classification, our uncertainty metric should indicate the prediction risk, but without knowing
the loss or its range in before, we cannot calibrate the uncertainty estimates. Therefore, the best
strategy is to give a correctly ranked uncertainty metric, which is what AUROC measures. It can be
calibrated into the [0, 1] region for the downstream task at hand once data is available. Another point
is that a [0, 1] estimate has the trivial solution of always giving a random prediction the certainty being
the prior over the classes. A ranking based metric cannot do that, as that would have an AUROC of
0.5. The AUROC thus forces the model to quantify how uncertain it is, not only that it is uncertain.

A.3 Does URL measure predictive, aleatoric, or epistemic uncertainty?

The R-AUROC in our setup measures the predictive uncertainty, in other words, the overall expected
risk of a prediction. We believe this overall uncertainty is most relevant when seeking a reliable model.
Note, however, that the AUROC uses a rank-based relative comparison of the uncertainty estimates.
This means that a constant high uncertainty on out-of-distribution data does not suffice; instead, the
model needs to quantify how uncertain it is, not just that it is uncertain. This is influenced both by the
inherent ambiguity of the downstream sample (aleatoric) and how far it is from the upstream data
(epistemic).

A.4 How is the AUROC implemented precisely?

We use the TorchMetrics implementation (Detlefsen et al., 2022). It applies the trapezoidal rule
and uses every uncertainty value as a possible threshold.

A.5 Why CUB200-2011, CARS196, and Stanford Online Products?

Our definition of URL is agnostic of the datasets and can be applied to any downstream dataset.
For this paper, we use CUB200-2011 (Wah et al., 2011), CARS196 (Krause et al., 2013), and
Stanford Online Products (Song et al., 2016), because they are commonly used as zero-shot learning
and representation learning datasets. We hope that this status prevents data-leakage to upstream
pretraining datasets.

A.6 Can URL also be implemented for downstream datasets that don’t have labels?

Throughout this paper, we measure the R@1 by seeing if the next neighbor of a test image has the
same class label. This is to ensure the compatibility with representation learning benchmarks. One can
also define a self-supervised R@1 (e.g., seeing if a crop of the same image is detected as belonging
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to that image). In this case, R-AUROC automatically generalizes to this form of supervision, as it
still measures errors in R@1, regardless of how it was computed.

A.7 Can URL be applied beyond vision tasks?

Yes. URL can be deployed whenever there is a downstream dataset on which we measure a R@1.

B Reimplementations and hyperparameters

All methods benchmarked in this paper are re-implemented and hyperparameter tuned to ensure
a consistent comparison. First, let us explain the hyperparameters shared by all approaches: As
backbones, we use ResNet-50 (He et al., 2016) architectures with 224x224 inputs and 2048-dim max-
pooled embeddings, and ViT-Medium (Dosovitskiy et al., 2021) with an input size of 256x256 split
into 16x16 patches. All models are tuned for 32 epochs with a Lamb optimizer (You et al., 2020). 16
minibatches of size 128 are accumulated to reach a summed batch size of 2048, unless otherwise
noted. The learning rate is fixed at the first epoch, then warmed up for five epochs and cooled down
using a cosine scheduler (Loshchilov and Hutter, 2017). The learning rate is a hyperparameter for
all approaches, searched over a range of [0.0001, 0.01]. The hyperparameter search is extended by
more runs if the optimal value is close to a boundary. Let us now describe the approaches and their
additional hyperparameters in detail. All optimal hyperparameters are reported in the code appendix.

B.1 Cross-Entropy (CE)

The CE baseline applies a cross-entropy loss to the class-logits output by a final linear layer appended
to the embeddings. It has no hyperparameters except the learning rate.

B.2 InfoNCE

InfoNCE (Oord et al., 2018) uses two random crops per input image that are considered positive,
whereas the remaining batch is considered negative. This results in a doubled VRAM usage, so that
the batch size is reduced to 21 minibatches of 96 images each. InfoNCE uses an (inverse) temperature
parameter t, tuned within [8, 64]. All embeddings e are normalized to lay on the unit sphere, where
e+1 and e+2 denote the positive and e− all negative embeddings. The final loss is

L = −t · e+1
⊤
e+2 + log

∑
e−∈Batch

exp
(
t · e+1

⊤
e−

)
+ log

∑
e−∈Batch

exp
(
t · e+2

⊤
e−

)
. (1)

B.3 MCInfoNCE

MCInfoNCE (Kirchhof et al., 2023) works similar to InfoNCE, except that it does not directly
compare the embeddings, but samples from estimated posteriors s+1,i ∼ vMF(e+1 , κ(e

+
1 )), s

+
2,i ∼

vMF(e+2 , κ(e
+
2 )), s

−
i ∼ vMF(e−, κ(e−)). The concentration, i.e., inverse uncertainty, κ is estimated

from a 3-layer MLP attached to the embeddings. Its initial value is either randomly initialized
or warmed up to 0.001, which is a hyperparameter. The second hyperparameter is its (inverse)
temperature t ∈ [8, 64]. Like InfoNCE, it uses a reduced batch size of 21 times 96. The loss is
obtained by calculating the InfoNCE loss for 16 samples si from the respective posteriors.

L =
1

16

16∑
i=1

−t · s+1,i
⊤
s+2,i + log

∑
s−i ∈Batch

exp
(
t · s+1,i

⊤
s−i

)
+ log

∑
s−i ∈Batch

exp
(
t · s+2,i

⊤
s−i

)
(2)

B.4 Expected Likelihood Kernel (ELK)

ELK uses a ProxyNCA formulation, as proposed in Kirchhof et al. (2022). Like MCInfoNCE, it
parametrizes posteriors ζ = vMF(e, κ(e)) from each image’s normalized embeddings e and a 3-
layer MLP for κ. Its initial value is either randomly initialized or warmed up to 0.001, which is a
hyperparameter. ELK is supervised and learns vMF class distributions ρc for each class c = 1, . . . , C.
The concentrations of these classes are scaled up by the hyperparameter t ∈ [8, 64], which takes a

15



similar role to the inverse temperature in the previous losses. These are compared to the embedding
posteriors via a distribution-to-distribution similarity function elk_sim. This is solved analytically,
not requiring sampling. With ρ∗ denoting the true class of the given sample, the loss can be written as

L = −elk_sim(ζ, ρ∗) + log

C∑
c=1

exp (elk_sim(ζ, ρc)) . (3)

B.5 Non-isotropic von Mises-Fisher (nivMF)

nivMF (Kirchhof et al., 2022) has the same hyperparameters and loss as ELK, except that the class
proxy distributions ρc are non-isotropic vMFs. Since the expected-likelihoood between the image
embeddings’ vMFs and the classes’ non-isotropic vMFs has no analytical solution, it is Monte-Carlo
approximated with 16 samples.

L = −approx_elk_sim(ζ, ρ∗) + log

C∑
c=1

exp (approx_elk_sim(ζ, ρc)) . (4)

B.6 Hedged Instance Embeddings (HIB)

HIB (Oh et al., 2019), like MCInfoNCE, takes samples from estimated posteriors sn,i ∼
vMF(en, κ(en)), where en are the image’s L2 normalized embeddings en and κ is estimated by a
3-layer MLP. Its initial value is either randomly initialized or warmed up to 0.001, which is a hyper-
parameter. HIB then calculates a matching probability by comparing the samples of every pair of
images n,m in the batch: pn,m =

∑16
i=1 sigmoid

(
t · s⊤n,ism,i + b

)
, where t ∈ [8, 64] is a hyperpa-

rameter similar to the (inverse) temperature and b ∈ [−8, 8] is a second hyperparameter. The match-
ing probability should be high for images with the same label and low for images with different labels.
Let Isame denote the pairs of images with the same label and Idifferent the pairs with different labels,
both without self-matches. Then the loss is

L = − 1

|Isame|
∑

(n,m)∈Isame

log pn,m +
1

|Idifferent|
∑

(n,m)∈Idifferent

log pn,m , (5)

where | · | denotes the cardinality of the set. As opposed to the original implementation, we use
cosine distances instead of L2 distances and remove the prior regularizer. This is to make HIB
more comparable to the other approaches in this paper. We also changed the second term from
encouraging low log match probabilities for different labels (− log(1− pn,m)) to discouraging high
ones (+ log pn,m), which stabilized training. HIB requires additional VRAM and thus uses 21
batches of size 96 (43 of size 48 on ViTs).

B.7 Heteroscedastic Classifier (HET-XL)

HET-XL (Collier et al., 2023) predicts a distribution in the embedding space for each image. It
then takes samples and calculates a Monte Carlo estimate of the expected model output under the
embedding distribution. As opposed to the other probabilistic embedding approaches from above, it
operates in Euclidean space by predicting a Gaussian distribution N (ϕ(x; θ),Σ′(x; θcov)) with a low-
rank approximation of the covariance matrix Σ′(x; θcov) = V (x)⊤V (x) + diag(d(x)). V (x) and
d(x) are output by a linear layer attached to the embeddings. The number of columns in V increases
the rank of the low-rank approximation, but also the number of parameters that the final linear layer
has to predict, and thus the memory requirements. We thus set this hyperparameter to 1 (exploratory
experiments with a rank of 10 did not show increased performance). The final loss is
Lcross-entropy

(
Eϵ′

[
softmaxτ (W⊤(ϕ(x; θ) + ϵ′(x))

]
, y
)

with ϵ′(x) ∼ N (0,Σ′(x; θcov)) , (6)
where the softmax temperature τ is a learnable parameter.

B.8 Spectral-normalized Neural Gaussian Processes (SNGP)

SNGP (Liu et al., 2020) predicts a Gaussian distribution

N
(
ϕ(x)⊤β, ϕ(x)⊤

(
I +Φ⊤Φ

)−1
ϕ(x)

)
(7)
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over the class logits, which is cast into class probabilities via a mean-field approximation. These
class probabilities are then trained under a CE loss. β is a learnable parameter matrix, ϕ(x) =
cos (Wh(x) + b) is a feature embedding based on frozen random parameters W and b, and Φ⊤Φ is
the empirical covariance matrix of the feature embeddings over the training dataset. The method also
applies spectral normalization to the hidden weights in each layer in order to satisfy input distance
awareness. We treat whether to apply spectral normalization through the network and whether to use
layer normalization in the last layer as hyperparameters.

B.9 Direct Loss Prediction (Losspred)

Losspred trains a classifier under a cross-entropy loss and uses its uncertainty module κ, a 3-layer
MLP attached to the embedding space, to predict the value of the cross-entropy loss. Both components
are balanced by the hyperparameter λ ∈ [0.01, 0.99]:

L = Lcross-entropy(x, y) + λ
(
κ(x)− Ldetached

cross-entropy(x, y)
)2

. (8)

The gradients of Ldetached
cross-entropy inside the L2 loss are detached to prevent fitting it to κ(x), instead of

the other way around. Besides λ, a second hyperparameter is whether or not to warm up κ to 0.001.

B.10 Deep Ensemble

Ensemble (Lakshminarayanan et al., 2017) has 10 classifier heads attached to the embedding space.
Their logits are transformed into probabilities by a softmax and then averaged. This average is trained
under a CE loss. Ensemble has no hyperparameters other than the learning rate.

B.11 MCDropout

MCDropout (Srivastava et al., 2014) trains with a dropout rate of [0.05, 0.25], which is a hyperpa-
rameter. During inference time, it keeps the dropout activated to sample 10 logits and averages them
like Ensemble.

C Additional results

C.1 Pretrained models already close the gap in terms of R@1

This section compares the models in terms of their R@1. To this end, we hyperparameter-tuned them
with respect to R@1, and not R-AUROC. Similar to the main text, we also add an additional baseline
that was trained on the downstream classes, where the original test split was split into equal sized
train and test splits.

Fig. 6 shows these performances. As opposed to the R-AUROC, we can see that the gap between
pretrained zero-shot and many-shot models is much tighter in terms of the R@1. The best pretrained
ResNet-50 has an average R@1 of 0.48 vs. 0.54 when training on the downstream data.

Surprisingly, when it comes to R@1, CE is among the best two approaches both for ResNet and ViT
backbones. In fact, three of the four best approaches on ViTs and two of the four on ResNets rely
on CE as part of their loss. The approaches that do not rely on CE are probabilistic embeddings –
nivMF on ResNet and ViT and ELK on ResNet.

C.2 R@1 and R-AUROC correlate negatively in most models

In extension to the plot that compared the best hyperparameter setup for R-AUROC to the best for
R@1, Fig. 7 and Fig. 8 present the trade-offs for all tested hyperparameters.

The general picture is the same as in the comparison of best vs best: Most models show a trade-
off between achieving the best R-AUROC and the best R@1. This is indicated by a negative rank
correlation in 15 out of 22 models. Still, there are some models where the uncertainty estimation
and prediction performances correlate moderately positively (0.4 ≤ Rank Corr. ≤ 0.72). These are
InfoNCE and MCInfoNCE on ResNets, and HET-XL, nivMF, and HIB on ViTs.
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Figure 6: Pretrained models achieve an almost as good R@1 on unseen downstream data as models
trained on the downstream data. Minimum, average, and maximum R@1 per model. Model
hyperparameters were optimized w.r.t. R@1.

As mentioned in Appendix B, each approach was tested on 10 hyperparameters, with 2 additional
runs on other seeds for the best hyperparameters. The reason that some plots show less than 12 points
is that those had a R@1 < 0.1 on the downstream datasets and were excluded from the analysis.
Some plots also show more than 12 points. This is because their best hyperparameter for R@1 was
unlike that for R-AUROC, adding another 2 runs on different seeds for the R@1. Further, some
approaches had optimal hyperparameters close to the original search bounds, such that the search
was extended, leading to additional points in the plots.
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Figure 7: R@1 and R-AUROC are negatively correlated on seven out of ten model classes with
ResNet backbones. Plot shows all tested hyperparameter combinations.
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Figure 8: R@1 and R-AUROC are negatively correlated on seven out of ten model classes with ViT
backbones. Plot shows all tested hyperparameter combinations.
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C.3 Further correlation of up- and downstream metrics

This section reports further metrics for each model. These include a new metric (top-1 accuracy on
upstream ImageNet) and all downstream metrics (R@1, R-AUROC, percentage where cropped image
has higher uncertainty) on the upstream dataset.

Fig. 9 shows the pairwise correlations between all metrics, for every tested hyperparameter setting.
Let us first consider the new metric, ImageNet top-1 accuracy, on its own. The best-performing
models are a CE and a nivMF ViT, with an accuracy of 0.84 each. Other than them, Losspred and
HET-XL on ViTs also have a high accuracy, similar to the results on the R@1 benchmark.

Regarding correlations between metrics, accuracy and R@1 are highly correlated, as expected.
Further, models with a high accuracy or R@1 on ImageNet also have a high R@1 on the downstream
data, resulting in the small gap explained in Appendix C.1. While up- and downstream R-AUROC
do not correlate, up- and downstream percentage of cropped images having a higher uncertainty
correlate nearly linearly. This reinforces that the percentage can be considered as a general notion of
uncertainty. It should, however, be noted that ELK ViTs already achieve a performance of 0.99 on
this metric, even on downstream data, such that it is not able to guide the field as well as R-AUROC.

0.0

0.2

0.4

0.6

0.8

U
ps

tr
ea

m
A

cc
ur

ac
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
ps

tr
ea

m
R

@
1

0.3

0.4

0.5

0.6

0.7

0.8

U
ps

tr
ea

m
R

-A
U

R
O

C

0.0

0.2

0.4

0.6

0.8

1.0

U
ps

tr
ea

m
Pc

t.
C

ro
pp

ed
H

as
B

ig
ge

rU
nc

.

0.2

0.3

0.4

0.5

0.6

D
ow

ns
tr

ea
m

R
@

1

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

D
ow

ns
tr

ea
m

R
-A

U
R

O
C

0.0 0.2 0.4 0.6 0.8

Upstream Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

ns
tr

ea
m

Pc
t.

C
ro

pp
ed

H
as

B
ig

ge
rU

nc
.

0.0 0.2 0.4 0.6 0.8

Upstream R@1
0.3 0.4 0.5 0.6 0.7 0.8

Upstream R-AUROC
0.0 0.2 0.4 0.6 0.8 1.0

Upstream Pct. Cropped Has Bigger Unc.
0.2 0.3 0.4 0.5 0.6

Downstream R@1
0.450 0.475 0.500 0.525 0.550 0.575

Downstream R-AUROC
0.0 0.2 0.4 0.6 0.8 1.0

Downstream Pct. Cropped Has Bigger Unc.

Figure 9: Correlations between several up- and downstream metrics across all models and hyperpa-
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C.4 Class-entropy is useful for OOD detection
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Figure 10: Cross-entropy and embedding norm-based uncertainty estimators have the best OOD
detection capabilities. Averaged AUROC of distinguishing ImageNet vs CUB, ImageNet vs CARS,
and ImageNet vs SOP. Error bars indicate minimum/maximum performance across seeds.
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Figure 11: Embeddings of OOD images tend to have smaller L2-norms than embeddings of ID
images. Embedding norms are from InfoNCE models that use the (inverse) norm as uncertainty
estimate (without using them during training) and reach an OOD AUROC of 0.73.

In this section, we study if uncertainties on downstream data are generally higher than for the upstream
data. To this end, we perform out-of-distribution detection experiments: Using the same pretrained
models as before, we calculate their uncertainties on downstream dataset samples and on an equally
sized set of upstream samples. We quantify how well the predicted uncertainties distinguish whether
the sample was from a downstream dataset (1) or not (0) by calculating the AUROC on ImageNet vs
CUB, ImageNet vs CARS, and ImageNet vs SOP, and averaging them across the datasets.

Fig. 10 shows the average result across all seeds, along with minimum and maximum performances.
Generally, pretrained models perform differently than in the URL benchmark in the main text. This
is because the OOD task benchmarks epistemic uncertainty (i.e., OOD data just has to have generally
high uncertainties). On the other hand, the URL benchmark tests predictive uncertainties on OOD
data. There, it is not enough to predict high values on OOD data but the models need to differentiate
within them, which lays more focus on aleatoric uncertainty. In more detail, models that directly
predict variances or losses do not provide as good OOD performance. Models that use class-entropy
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as uncertainty estimates (SNGP, HET-XL, CE, Ensemble, and, only on ViTs, MCDropout) and
also InfoNCE, which uses the norm of the embedding vector, do work well.

There is an intuitive explanation for this. The latter models implicitly provide epistemic uncertainty
estimates by construction: ResNets and ViTs embed inputs with less known features closer to the
origin. As an example, Fig. 11 shows that for InfoNCE, the embedding norms of OOD samples are
smaller. Note that this is no trained behaviour; InfoNCE only trains on normalized embeddings, so
the norms occur naturally. In InfoNCE, we use this embedding norm directly as uncertainty estimator.
But the same happens in models that use the class entropy: Embeddings with small norm lay close to
the origin, where they lead to uniform distributions over the classes, i.e., a high entropy.

In summary, the OOD experiment reveals that probabilistic embeddings and loss prediction methods
provide aleatoric uncertainty estimates, whereas models that explicitly or implicitly use the embedding
norm provide good epistemic uncertainty estimates. Some models, like SNGP, provide a mixture
and are good in both tasks.

C.5 Uncertainties on mixtures of in- and out-of-distribution data
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Figure 12: Cross-entropy based uncertainties provide the best mix of OOD detection capability and
ordering within ID and OOD uncertainties. R-AUROC on mixed ImageNet+CUB, ImageNet+CARS,
and ImageNet+SOP data. Error bars indicate minimum/maximum performance across seeds.

In some applications, models might encounter a mixture of in-distribution and out-of-distribution
data. In this case, the model both needs to assign higher uncertainties to the OOD data and it needs to
differentiate the uncertainties within both the ID and the OOD sets. This blends the OOD detection
of the previous experiment with traditional ID calibration and the OOD calibration of the URL
benchmark.

Fig. 12 measures the R-AUROC on a mixture of upstream and downstream data. As in the previous
experiment, we use 50/50 splits of ImageNet+CUB, ImageNet+CARS, and ImageNet+SOP, and
average across those combinations. We find that HET-XL and SNGP, which previously performed
well on both OOD detection and the URL benchmark, also perform well on this mixed task. The
remaining models tend to follow the ranking of the OOD benchmark rather than that of URL. This
indicates that good epistemic uncertainty estimation outweighs aleatoric uncertainty estimation in
this task. This is intuitive, because the R-AUROC measures how likely it is that a wrong prediction
has a higher uncertainty than a correct one. In such a 50/50 split of ID and OOD data, the capability
to distinguish ID from OOD data, and thus data with generally less errors from data with generally
more errors, thus leads to a higher R-AUROC.
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This serves to demonstrate that the quality of an uncertainty estimate always depends on the task and
setup at hand. While OOD detection and ID calibration are ideally both reflected within the very
same predictive uncertainty value, both are of different importance depending on the data mixture.

C.6 Few-shot uncertainties starting from pretrained models
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Figure 13: Cross-entropy training on the downstream test data reaches the zero-shot AUROC of 0.6
at 2-5 samples. R-AUROC of pretrained models when finetuned on the downstream test classes.

In this section, we provide an initial attempt on a few-shot experiment. We use both the best three
pretrained models (ELK, MCInfoNCE, and nivMF for ResNet 50; ELK, Losspred, and SNGP
for ViT Medium) along with the CE model as pretrained checkpoints and continue to train under
the same hyperparameters and losses on k ∈ {1, 2, 5, 10} samples of each class of the downstream
datasets. This is done on the test classes of the downstream classes, which were separated into disjoint
train and test samples for this experiment. We train on each CUB/CARS/SOP separately and average
their performance.

Fig. 13 shows the minimum, maximum and average performance across the seeds. First, we can
see that the normal cross entropy training reaches the zero-shot R-AUROC of the currently best
pretrained models at around 2 samples per class (totaling in 200 samples on CUB, 196 on CARS, and
22636 on SOP). This again demonstrates the point that the challenge URL addresses is unsolved yet.
It also shows that knowledge of the specific downstream task can increase the uncertainty estimators
quality even at only a few samples. Second, we find that most pretrained models increase their
performance as well. This, however, happens not for all models and is highly noisy. We attribute this
to the simple setup of our experiment, which uses the same hyperparameters as for the pretraining and
performs standard training as opposed to specialized few-shot methods. Finding best practices to tune
pretrained uncertainties to downstream few-shot tasks is a promising undertaking for future research.

C.7 Uncertainty estimation does not add significant computational costs

Table 1 reports the computational complexity during all benchmarks. It shows the number of
parameters as proxy for RAM usage, the duration of the first training epoch and evaluation, and the
time needed for each sample during evaluation. These results were collected on the go and there are
possible confounders such as network storage workload. We thus recommend to interpret them as
rough indicators. Note also that ViTs were run on NVIDIA A100 GPUs, and ResNets on NVIDIA
RTX2080TIs (except HET-XLon ResNet, due to RAM usage).

First, we see that explicit uncertainty estimation does not come at a high RAM cost. The 3-layer
MLP serving as uncertainty head for MCInfoNCE, ELK, nivMF, HIB, and Losspred adds 4.2M
parameters to a ResNet or 2.6M to a ViT. The difference is due to the ViT’s lower-dimensional
embedding space. Bigger increases occur only for ensembles, which uses additional classifiers with
10 · 2.1M parameters on ResNets and each 10 · 0.5M on ViTs.
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Model Parameters (Millions) Epoch Time (s) Inference time per sample (ms)

R
es

N
et

50
on

R
T

X
20

80
T

I CE 25.6 5971 3.7
InfoNCE 23.5 6703 3.7
MCInfoNCE 27.7 6656 3.8
ELK 29.8 6703 3.8
nivMF 29.8 6256 3.8
HIB 29.8 7279 3.8
HET-XL (on A100) 33.9 (4189) (2.3)
Losspred 29.8 6526 3.7
MCDropout 25.6 7105 13.1
Ensemble 46.0 6002 3.7
SNGP 28.7 7632 3.7

V
iT

M
ed

iu
m

on
A

10
0

CE 38.9 4922 2.8
InfoNCE 38.3 7804 2.7
MCInfoNCE 41.0 9883 2.4
ELK 41.5 4838 2.7
nivMF 41.5 4121 2.4
HIB 41.5 3950 2.5
HET-XL 39.4 4205 2.4
Losspred 41.5 3814 2.6
MCDropout 38.9 4721 9.6
Ensemble 44.0 4107 2.5
SNGP 42.0 4811 2.9

Table 1: Computational costs of all approaches. Epoch times include training on ImageNet as well as
evaluating on all eight downstream datasets.

Training times should be interpreted with caution due to the aforementioned network storage. How-
ever, in general uncertainty estimates do not seem to exceedingly increase the train time, with be-
tween -22% and +28% over the CE baseline. Taking multiple samples during training (MCInfoNCE,
nivMF, HIB, HET-XL) also does not systematically increase runtime. This is likely due to their
efficient sampling implementations (Kirchhof et al., 2022; Davidson et al., 2018; Ulrich, 1984). The
only consistent runtime cost occurs when training unsupervised models (InfoNCE, MCInfoNCE),
which need to forward propagate two augmentations of each sample to obtain have positive pairs.

Similarly, providing an uncertainty estimate at inference takes only up to 0.1 additional milliseconds
on ResNets, because the uncertainties are all calculated within a single forward pass, and sampling
was only required for the losses during training. The only exception here is MCDropout, which
requires making 10 full forward passes during inference, which increases the time by a factor of
roughly 3.6. The factor is not 10, because loading the data and storing the results is part of the
measured elapsed time.

In summary, we find that uncertainty estimates only have small computational costs if they are
implemented in a forward fashion.
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