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Abstract

Offline reinforcement learning (RL) is a popular learning framework for control problems
where online interactions with the environment are expensive, risky, or otherwise imprac-
tical. Existing offline RL methods commonly assume full observability of the state, and
therefore there is a lack of offline RL methods that are specialized for the more general
case of partially-observable control. To address this gap, we propose Cross-Observability
Conservative Q-Learning (CO-CQL), an offline RL algorithm for partially-observable con-
trol that leverages fully-observable expert policies in an asymmetric learning setting. To
motivate the use of fully-observable experts for partially-observable control, we formalize
Cross-Observability Optimality Ratio (COOR), a theoretical measure of cross-observability
that quantifies the benefit of learning asymmetrically from a fully-observable expert, and
Cross-Observability Approximation Ratio (COAR), an estimation of COOR computable
from trained policies. Our empirical evaluation on a wide variety of partially-observable
challenges demonstrates that CO-CQL is able to exploit the guidance of fully-observable
experts to outperform other state-of-the-art offline algorithms.

1 Introduction

Standard online reinforcement learning (RL) involves learning from interactions with the environment (Sut-
ton & Barto, 2018). However, many real-world control problems are inconducive to online interactions due
to high costs and risks (Levine et al., 2020), e.g., autonomous driving and healthcare. To address this issue,
offline RL (a.k.a batch RL (Fujimoto et al., 2019)) has emerged as a data-driven solution where agents learn
from pre-collected interactions (Levine et al., 2020). Many such approaches (Kumar et al., 2020; Kostrikov
et al., 2021; Fujimoto & Gu, 2021) are developed assuming fully-observable (FO) control, whereas real-world
control problems are often partially-observable (PO), featuring noisy observations and hidden information.

In this work, we address offline partially observable RL through the lens of asymmetric RL, where the
learning agent can take advantage of privileged state information (Pinto et al., 2018; Baisero & Amato,
2022; Baisero et al., 2022) and/or a fully-observable expert policy (Weihs et al., 2021; Warrington et al.,
2021; Nguyen et al., 2022; Shenfeld et al., 2023) during training. Though the use of state information during
deployment is in clear conflict with the premise of partial observability, the availability of such information
during training is possible and beneficial in a number of realistic scenarios, e.g., when training in simulation
(via access to the simulation state), and when training in a highly controlled environment for deployment in
a less controlled one (via the placement of additional sensors in the training environment).

Our asymmetric partially-observable offline RL setting assumes access to a dataset containing both states
and observations, and to a fully-observable expert policy (which can itself be trained using the same dataset).
Given these prerequisites, our method learns a partially-observable policy entirely offline without requiring
online interactions. This reflects settings where access to a simulated or highly controlled training environ-
ment is available but expensive or limited, and where deployment must rely solely on partial observations,
such as autonomous driving (Chen et al., 2019; Codevilla et al., 2018; Ge et al., 2020), robotic locomo-
tion (Kumar et al., 2021; Margolis et al., 2022), and robotic grasping (Pinto et al., 2018; Chen et al., 2023).
This setting captures a broad range of practical cases: (a) when both a simulator and fully-observable expert
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are available, (b) when a dataset is pre-collected and only expert supervision is needed, and (c) when the
fully-observable expert is handcrafted or scripted and the simulator is only used to log data. Our method
applies in all such scenarios, and furthermore, although rare, our method can also clearly be applied in the
setting when both a mixed-observability dataset and fully-observable expert are available without requiring
a simulator.

Our contributions in this work are summarized as follows: (a) We motivate asymmetric learning of partial-
ly-observable tasks from fully-observable experts, and propose Cross-Observability Optimality Ratio (COOR),
as a theoretical measure to quantify the utility of fully-observable experts for partially-observable tasks;
(b) We propose Cross-Observability Approximate Ratio (COAR) as a practical estimation of COOR; (c) We
develop Cross-Observability Conservative Q-Learning (CO-CQL), a new offline RL algorithm that exploits
asymmetric learning for partially-observable control by combining conservative Q-function regularization
and behavior cloning objectives; (d) We perform an empirical evaluation of CO-CQL and other competitive
baselines on a wide variety of identified partially-observable control task archetypes; and (e) We perform an
analysis of robustness to dataset quality for CO-CQL. Our results demonstrate that in environments with
high COOR, even simple behavior cloning from fully-observable experts is able to achieve good performances.
Our hybrid CO-CQL method can leverage this guidance in high-COOR environments while improving upon
it by optimizing the standard RL objective. In environments with low COOR, CO-CQL is still able to exploit
the fully-observable guidance when useful, and ignore it when not.

2 Related Work

We briefly summarize other related work in offline RL and partially-observable control.

Offline Fully-Observable RL. Behavior Cloning (BC) (Bain & Sammut, 1999) employs supervised learn-
ing to learn directly from a dataset of expert demonstrations. Twin-Delayed DDPG with Behavior Cloning
(TD3+BC) (Fujimoto & Gu, 2021) uses BC as an auxiliary objective on a policy primarily trained via
TD3 (Fujimoto et al., 2018). Conservative Q-Learning (CQL) (Kumar et al., 2020) applies a conservative
regularizer on value models to reduce overestimation biases. While CQL and TD3+BC aim to minimize the
sampling of out-of-behavior-distribution actions, Implicit Q-Learning (IQL) (Kostrikov et al., 2021) avoids
the issue by learning a value function from the dataset’s state-action pairs. All of these methods are primarily
designed and evaluated on fully-observable control, whereas we address partially-observable control.

Online Partially-Observable RL. Although many works have focused on online fully-observable RL, far
fewer address partially-observable control (Weihs et al., 2021; Warrington et al., 2021). Cross-Observability
Soft Imitation Learning (COSIL) (Nguyen et al., 2022) is the most similar to our work in using a fully-
observable expert as part of an auxiliary behavior cloning objective. The key difference is that COSIL is an
online algorithm, whereas ours is fully offline, with no environment feedback during learning. Furthermore,
our algorithm requires key modifications to better fit the offline setting, e.g., additional regularization of the
Q-function to reduce distribution shift and Q-value overestimation.

Offline Partially-Observable RL. Offline partially-observable RL is a challenging and under-explored
area, as it inherits difficulties from both offline RL and partially-observable RL. Guo et al. (2022) recently
proposed a theoretical approach to solving linear POMDPs via causal inference in a provably efficient manner.
Concurrently, Lu et al. (2022) introduced Proxy variable Pessimistic Policy Optimization (P3O) which
also uses causal inference for estimating pessimistic value functions. However, both works lack empirical
evaluation, and primarily demonstrate theoretical advances to the field. In contrast, our proposed CO-CQL
method is a practical algorithm that we are able to evaluate empirically. Gu et al. (2023) and Hong et al.
(2023) explore representation learning in the offline setting. The former learns discrete proxy representations
of states, which are then mapped to observation histories through a secondary encoder; a policy is learned
to predict actions based on these proxy representations. The latter shows that combining a bisimulation
metric with an offline algorithm can allow for learning of more compact observation history representations,
thereby improving overall sample efficiency. Instead of high-level observation history abstraction, we focus on
whether low-level MDP expert supervision can improve partially-observable offline learning. We hypothesize
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that the representation learning techniques of Gu et al. (2023) and Hong et al. (2023) could be integrated
into our approach in future work to improve sample efficiency and performance.

3 Background

In this section, we briefly summarize the background in partially-observable control relevant to our work.

Partially-Observable Markov Decision Processes. A partially-observable Markov decision process
(POMDP) (Åström, 1965) is a discrete-time control problem defined by a tuple (S, A, O, p0, T, O, R, γ), with
state space S, action space A, observation space O, starting distribution p0(s), stochastic transition function
T (s, a, s′), stochastic observation function O(a, s, o), reward function R(s, a), and discount factor γ.

Contrary to fully-observable agents, a partially-observable agent observes the state indirectly via noisy
and stochastic observations. As a result, partially-observable policies act based on their observable action-
observation history ht = (o0, a0, . . . , ot−1, at−1, ot) ∈ H. The objective of partially-observable RL is to train a
history-based policy π : H → ∆A that maximizes the total expected episodic return JRL = E [

∑
t γtR(st, at)].

Offline Reinforcement Learning. Offline RL is a form of off-policy RL. Assuming fully-observable
control, the agent is trained on a static dataset of fully-observable transitions DMDP = {(s, a, r, s′)i}N

i=1
generated by a behavior policy πB. The goal of offline RL is to train a policy π to maximize the RL objective
JRL using the offline dataset rather than online interactions. In partially-observable control, the dataset
contains observation data (typically in history form) rather than state data DPOMDP = {(h, a, r, o)i}N

i=1.

Learning a partially-observable policy solely on observation data is extremely difficult. Our work employs an
asymmetric framework to aid training by assuming access to an offline dataset that includes both observation
and state data D = {(h, s, a, r, s′, o)i}N

i=1, and a well-performing fully-observable expert µ : S → ∆A.

Conservative Q-Learning (CQL). Kumar et al. (2020) develop a state-of-the-art offline RL algorithm
for fully-observable control that employs the principle of pessimism (Buckman et al., 2020) to prevent value
overestimation. In their work, Kumar et al. (2020) propose two forms for CQL. One form of CQL combines
a standard DQN objective (Mnih et al., 2015)

JQ
CQL = 1

2 Es,a,r,s′∼D

[(
r + γ max

a′
Q(s′, a′) − Q(s, a)

)2
]

+ λR(Q) , (1)

with a conservative value regularizer, R(Q) = Es∼D [maxa Q(s, a)] −Es,a∼D [Q(s, a)] that minimizes the gap
between maximal and in-distribution values. When the action space is continuous, an auxiliary policy model
µ(s) ≈ argmaxa Q(s, a) is trained to estimate maximal values.

Another form of CQL combines soft actor-critic (SAC) objectives with the value regularizer,

Jπ
CQL = Es∼D,a∼π(s) [α log π(a | s) − Q(s, a)] , (2)

JQ
CQL = 1

2 Es,a,r,s′∼D

[(
r + γ Ea′∼π(s′) [Q(s′, a′) − α log π(a′ | s′)] − Q(s, a)

)2
]

+ λR(Q) . (3)

Cross-Observability Soft Imitation Learning (COSIL). Nguyen et al. (2022) propose an online RL
method that exploits a pre-trained fully-observable agent to guide the training of a partially-observable agent
via an objective that incorporates a policy divergence D as a pseudo-reward,

JCOSIL = E

[∑
t

γt (R(st, at) − αD (µ(st), π(ht)))
]

, (4)

4 Leveraging Fully-Observable Solutions for Partially-Observable Offline RL

In this section we first introduce a theoretical framework to justify learning via cross-observability, then a
practical approximation to it that is computable, and finally CO-CQL, our proposed algorithm based on
conservative cross-observability imitation learning for offline RL.
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4.1 Cross-Observability Optimality Ratios

Let A∗
PO(h), A∗

FO(s) ⊆ A denote the subsets of actions that are optimal for a partially-observable agent and
a fully-observable agent respectively acting on a history h and a state s. It is a fundamental property of
partially-observable control that A∗

PO(h) and A∗
FO(s) are not generally equivalent, and agents acting upon

different information may have to take different actions to act optimally. However, this is not necessarily
always the case, and many control problems feature a significant overlap between optimal partially-observable
and fully-observable actions. We quantify this notion as a cross-observability optimality ratio.
Definition 4.1 (Cross-Observability Optimality Ratio (COOR)). For any given history and state, ρ∗(h, s) ∈
[0, 1] is the ratio of optimal fully-observable actions that are also optimal for partially-observable control.

ρ∗(h, s) = |A∗
PO(h)

⋂
A∗

FO(s)|
|A∗

FO(s)| . (5)

Agent Starting 
Location
Goal Location

Optimal POMDP 
Action
Optimal MDP 
ActionOracle Location

Figure 1: Simplified HeavenHell. A partially-
observable agent must visit an oracle to gather in-
formation, while a fully-observable agent does not.

Simplified HeavenHell Example. Consider the
simplified variant of HeavenHell (Blai & Geffner, 1998)
shown in Figure 1. The agent must identify and reach
the good exit while avoiding the bad exit. A fully-
observable agent directly observes the good exit loca-
tion, and moves accordingly. A partially-observable
agent must first visit an oracle to identify the exits
and reduce its state uncertainty, and then backtrack
to reach the good exit. Although the optimal partially-
observable policy and the optimal fully-observable pol-
icy differ, there are several history-state pairs (about two thirds) with overlapping optimal behaviors.

Approximate Ratio. Computing COOR requires expert domain knowledge of all optimal actions for
both partially-observable and fully-observable agents—a clearly impractical assumption. To approximate
COOR in practice, we propose a measure of the overlap between a well-trained partially-observable policy
and an expert fully-observable policy.
Definition 4.2 (Cross-Observability Approximation Ratio (COAR)). Let π and µ be well-trained partially-
observable and fully-observable policies respectively, and q ∈ [0, 1] be a freely chosen probability threshold.
Then, ρ̂(h, s) ∈ [0, 1] is the ratio of q-likely fully-observable actions that are also q-likely according to the
partially-observable policy,

ρ̂(h, s) =
∑

a I [π(a | h) ≥ q] · I [µ(a | s) ≥ q]∑
a I [µ(a | s) ≥ q] . (6)

In practice, each indicator is an estimate of the optimal subsets A∗
PO(h) and A∗

FO(s). Examining the
performance of a trained partially-observable policy in conjunction with the corresponding COAR, we can
estimate the task cross-observability. We will perform such an analysis in our evaluation.

On the role of COOR. COOR is not used directly in our algorithm, and we do not derive bounds
based on it. Instead, it serves a motivational and analytical role: it formalizes the intuition that some
partially-observable control problems share significant overlap with their fully-observable counterparts, and
that leveraging fully-observable guidance can be beneficial. We show empirically in Section 5.2.5 that COAR
correlates strongly with the effectiveness of behavior cloning from fully-observable experts. This validates
both COOR and COAR as useful tools for interpreting the success of asymmetric offline learning.

4.2 Cross-Observability Conservative Q-Learning for Partially-Observable Offline RL

CO-CQL makes several extensions to CQL and COSIL: (a) To adequately handle the partially-observable
data, state-based models are replaced with history-based models (e.g., π(s) becomes π(h), Q(s, a) becomes
Q(h, a)), using recurrent networks to process sequential data; (b) To exploit the fully-observable expert, we
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add a BC auxiliary loss to the policy objective; and (c) To handle discrete control problems, we employ the
specialized discrete implementation of SAC (Christodoulou, 2019).

We adapt conservative regularization R(Q) = Eh∼D [maxa Q(h, a)]−E(h,a)∼D [Q(h, a)] to partially-observable
control. As in SAC, we use this in a value objective adapted to offline partially-observable control,

y = r + γEa′∼π(hao) [Q(hao, a′) − α log π(a′ | hao)] , (7)

JQ
CO-CQL = 1

2 Eh,a,r,o∼D

[
(y − Q(h, a))2

]
+ λR(Q) . (8)

where hao denotes the extended observation history: the current history h, followed by action a, and the
resulting new observation o.

The entropy temperature objective of SAC is likewise adapted to offline RL via

Jα
CO-CQL = αEh∼D,a∼π(h) [− log π(a | h)] − H , (9)

where H is the target entropy value. Lastly, the policy objective of SAC is adapted to the offline partially-
observable control and combined with an auxiliary BC term based on imitating the fully-observable expert,

Jπ
CO-CQL = Eh,s∼D

[
Ea∼π(h) [α log π(a | h) − Q(h, a)] + βD (µ(s) || π(h))

]
, (10)

where β is a BC scaling coefficient and D is a divergence measure between fully-observable and partially-
observable policies whose form depends on the action space.

We interpret this behavior cloning term as imitation learning that tries to project fully-observable behavior
into partially-observable behavior space. In an online setting such as that of COSIL (Nguyen et al., 2022),
the behavior cloning term is useful to reduce exploration time, as the fully-observable expert has already
done some amount of exploration during its own training. Because this notion of exploration does not exist
in the offline setting, CO-CQL focuses on exploiting the recommendations of the expert policy to resolve
blind spots that would result from a partially-observable policy being trained exclusively on the dataset.

Continuous Control. When the action space is continuous, we approximate the expectations over actions
in Equations (7), (9) and (10) via Monte Carlo (MC) estimation. Further, we employ an expected mean
squared difference error D(µ(s) || π(h)) = Eu∼µ(s),a∼π(h)

[
∥u − a∥2

2
]

as the divergence measure between
fully-observable and partially-observable policies (again estimated via MC).

Discrete Control. When the action space is discrete, the expectations over actions in Equations (7), (9)
and (10) are computed exactly via full enumeration, i.e.,

Ea′∼π(hao) [Q(hao, a′) − α log π(a′ | hao)] =
∑
a′

π(a′ | hao) (Q(hao, a′) − α log π(a′ | hao)) , (11)

Ea∼π(h) [− log π(a | h)] = −
∑

a

π(a | h) log π(a | h) . (12)

Further, we employ cross-entropy D(µ(s) || π(h)) = −
∑

a µ(a | s) log π(a | h) as a divergence measure.

Caveats on Context-Independent Behavior Cloning. It is clear that different history-state contexts
imply varying degrees of cross-observability, as reflected by COOR ρ∗(h, a). Ideally, we would want to
regulate the amount β of behavior cloning in a context-dependent fashion, e.g., based on COOR values.
Unfortunately, COOR is currently a theoretical construct that is not available in practice, and even the
corresponding COAR ρ̂(h, a) is only computable post-training. Though more sophisticated methods are
likely desirable, we are currently limited to applying a single scalar factor β chosen on the properties of the
control problem as a whole. Finding better ways to regulate β represents an important focus for future work.

5 Evaluation

In this section we provide an overview of our experimental setup. We perform two types of evaluations:
an analysis of learning performance comparing CO-CQL to other baselines, and an analysis on how robust
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CO-CQL is to the quality of the training dataset. The Appendix contains more detailed discussions on
control problems, datasets, architectures, and hyperparameters.

Baselines. We implement direct behavior cloning of the fully-observable expert (BC), discrete and con-
tinuous variants of recurrent CQL and IQL, and a continuous variant of recurrent TD3+BC.

Evaluation Metrics. Each method is evaluated over 5 independent learning runs. Each run is periodically
evaluated by computing an average performance over 10 sample episodes. For each method, we report the
mean and standard error of these average performances, over the 5 runs.

5.1 Control Problems

We identify 4 prototypical challenges concerning partial observability. Each challenge is evaluated on a
corresponding dataset as described in Appendix A.4:

Noisy Observations The agent observes a noisy version of the state corrupted by Gaussian noise. We
employ modified versions of HalfCheetah and LunarLander (Brockman et al., 2016).

Latent State Dimensions The agent consistently observes some but not all state dimensions. We employ
modified versions of HalfCheetah and LunarLander (Brockman et al., 2016) with observations that
maintain position information but lack velocity information.

Information-Gathering The agent must first obtain key information, and then rely on long-term mem-
orization to remember it and complete the task. We employ a hard variant of HeavenHell (Blai &
Geffner, 1998) and MemoryFourRooms (Baisero et al., 2021).

Field of View The agent observes its environment via a limited field of view. This is similar to latent state
dimensions, with the difference that the dimensions that remain latent change based on the agent’s
behavior. We employ DynamicObstacles and KeyDoor (Baisero et al., 2021).

In addition to the above, we perform an analysis on dataset robustness for CO-CQL based on modified
versions of CartPole (Brockman et al., 2016) and simplified HeavenHell (Blai & Geffner, 1998).

5.2 Results

Sections 5.2.1 to 5.2.4 contains a performance analysis of evaluated methods on the 4 partially-observable
challenges. Section 5.2.5 contains an analysis on the behavior cloning coefficient β of CO-CQL and its
relationship to COOR. Section 5.2.6 contains an analysis of robustness to dataset quality for CO-CQL.

5.2.1 Noisy Observation Analysis

Noisy observations require the agent to learn to filter the noise over multiple observations in order to recover
a better estimation of the underlying state. The usefulness of behavior cloning form a fully-observable expert
likely depends on the amount of noise injected relative to the complexity of the underlying state dynamics,
with less noise and simpler dynamics making behavior cloning more directly useful, whereas more noise and
more complex dynamics make behavior cloning less useful.

Noisy HalfCheetah. This task requires precise control of tightly coupled joints, and we expect the addition
of noise to have a major effect on optimal control. Consequently, we expect BC to struggle. CO-CQL performs
the best, followed closely by TD3+BC and CQL. We hypothesize that (unlike IQL and naive BC), CO-CQL,
TD3+BC, and CQL are helped in the partially-observable setting by the use of conservative regularization.
Additionally for CO-CQL, the behavior cloning regularizer provides a stabilizing signal while learning on
noisy observations. This indicates the usefulness of our behavior cloning regularizer in its ability to exploit
even lower amounts of overlap. In Figure 2a, we see that indeed BC performs the worst.
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Figure 2: Performance mean and standard error (5 runs).
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Figure 3: Hard HeavenHell visitation densities for the fully-observable expert (left), CQL (center), and
CO-CQL (right), calculated across 100 episodes where the good exit is left. The fully-observable expert
ignores the oracle altogether, introducing issues in a pure BC-based learning. CQL succeeds in visiting the
priest but then fails to exploit the information gained. CO-CQL succeeds at balancing both sub-goals.

Noisy LunarLander. In contrast to the above, the dynamics of this task are likely simple enough where
we expect BC to perform well despite the introduction of observation noise. In Figure 2e, we see that
indeed BC performs almost the best (behind CO-CQL). CO-CQL is able to exploit its BC component in this
environment, leading to the best performance. Other baselines struggle to learn from the noisy experiences
alone, demonstrating the benefits of exploiting existing cross-observability overlaps.

5.2.2 Latent State Dimensions Analysis

In principle, the latent state fields of these tasks are inferrable by integrating historic observations, e.g., a joint
angular velocity can be estimated well by extrapolating observed angular positions. Instead of observing
this information directly, it is the history model that is now burdened with the additional task to learn
to perform this inference. Consequently, we expect high COOR and good performance by BC. However,
Figures 2b and 2f show that this is not the case, indicating that the history models fail to appropriately
estimate the missing state dimensions when guided by BC alone.

Latent HalfCheetah. Although BC performs poorly, we find that CO-CQL is still able to exploit the fully-
observable guidance and perform better than other baselines. This plausibly indicates that the RL objective
is useful to learn useful history representations, given which fully-observable guidance can be exploited.

Latent LunarLander. Again, we note that CO-CQL performs much better than BC, indicating that the
fully-observable guidance is not sufficient to learn an appropriate history model. In this task with simpler
dynamics, we note that CO-CQL and CQL perform similarly, with CO-CQL taking a small lead.
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Figure 4: Performance mean and standard error (5 runs).

5.2.3 Information-Gathering Analysis

In problems that require information gathering and memorization, purely cloning the fully-observable expert
results in suboptimal partially-observable behaviors that are unable to gather information. In partially-
observable navigation tasks, this means that the partially-observable policy trained on BC alone can at
best guess the correct navigation goal with a 50 % chance of success. Figure 3 shows HeavenHell visitation
densities for the fully-observable expert, CQL, and CO-CQL, demonstrating that a fully-observable expert
cannot demonstrate information gathering experience, but can still be used by CO-CQL to learn how to
exploit the information after it has been gathered.

Hard HeavenHell. Information-gathering plays a fundamental role in this task, and we expect to see a
stark difference in performance, depending on whether fully-observable guidance is used and whether it is
used adequately. In Figure 2c, we see that most methods fail to perform well. BC fails because it has no
guidance on how to visit the oracle, whereas CQL and IQL fail to solve the task as a whole—from Figure 3,
we see that CQL learns to visit the oracle, but not to follow through to the good exit. In contrast, CO-CQL
is able to exploit the fully-observable guidance of how to reach the good exit, while also learning to gain the
key piece of information by visiting the oracle.

MemoryFourRooms. In this task, BC goes back to outperforming IQL and CQL. This is likely because
it is possible that the agent observes the beacon (the key piece of information) on its way to the good exit,
which was not possible in HeavenHell. Hence, the guidance of BC is at least sometimes more suitable even
for partially-observable control. CO-CQL is able to exploit this guidance to perform significantly better than
either IQL and CQL, and slightly better than BC.

5.2.4 Field of View Analysis

Both tasks are goal-reaching tasks performed from the agent’s first-person point of view. In such tasks,
the partial observability limits the agent’s view, meaning that the agent may have to explore the layout to
figure out the location of goals and subgoals; however, the information-gathering component of these tasks
is comparatively low, as the agent is typically able to gain a broader view of the environment by moving
or turning slightly. Consequently, we expect these environments to have high COOR, and fully-observable
expert guidance to play an important role.

DynamicObstacles. This task contains stochastically moving obstacles that need to be avoided while
reaching a goal. Figure 2d confirms that indeed BC performs very well, better than methods like CQL that
do not exploit fully-observable expert guidance. Nonetheless, CO-CQL is able to exploit this guidance and
combine it with the main RL objective to achieve the best learning performance.

KeyDoor. This task contains navigation subgoals (the key and the door) that must be reached before
the final exit. Once again, Figure 2h confirms that BC performs very well, demonstrating the benefit of
exploiting fully-observable expert guidance in environments with high COOR. Once again, CO-CQL is able
to exploit this guidance to achieve the best learning performance.
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(f) Easy HeavenHell, 0 % expert.

Figure 5: Performance mean and standard error (5 runs).

5.2.5 Cross-Optimality Ratio Analysis

Table 1: Average COAR (5 runs).

(a) HeavenHell

β COAR

0 42.2 %
1e−5 69.2 %
1e−4 62.6 %
1e−3 59.2 %
1e−2 76.7 %
1e−1 85.8 %

(b) LunarLander

β COAR

0.0 62.2 %
0.1 69.9 %
0.5 83.4 %
0.9 87.6 %
1.0 90.6 %

10.0 75.9 %

We analyze how the behavior cloning coefficient β influences
the COAR estimate, and how both relate to learning perfor-
mance. Figure 4 shows the performance of CO-CQL on Hard
HeavenHell and Noisy LunarLander for different values of β,
while Table 1 contains the corresponding COAR estimates. In
Hard HeavenHell, the distance to the oracle and the good exit
are similar, resulting in a known COOR of about 66 %. In con-
trast, the COOR of Noisy LunarLander is not known exactly,
but we can make an informed guess that it is higher, as the
task does not require much information-gathering. r

Overall, the results in Figures 4a and 4b confirm that low
COOR requires lower β.

Hard HeavenHell. In this task, we see that both high behavior cloning (β = 1e−1) and low behavior
cloning (β = 0) result in poor performance. This is expected for tasks where guidance is useful up to some
amount, but too much guidance is detrimental to information-gathering. Cross-referencing Figure 4a with
Table 1a, we note that high performing CO-CQL policies (β ∈ {1e−5, 1e−4, 1e−3}) are associated with a
COAR of about 66 %, broadly matching the true COOR. This confirms that the overlap between the learned
policy and the fully-observable expert matches the overlap between the optimal partially-observable policy
and the fully-observable expert.

Noisy LunarLander. In Figure 4b, we notice that the higher COOR of this environment translates into
higher values of β performing better. Even in such high overlap scenarios, there is often benefit in avoiding
too high values of β, which allows CO-CQL to learn from the fully-observable expert, but also adapt to the
remaining partial observability. Nonetheless, CO-CQL demonstrates robustness towards β, as even extremely
high values (β = 10.0) performs quite similar to the best value (β = 1.0).

5.2.6 Robustness to Dataset Quality Analysis

We evaluate the robustness of CO-CQL and baselines to dataset quality on Latent CartPole and Easy
HeavenHell. For each control problem, we create datasets made up from partially-observable expert and
random demonstrations in relative ratios of 100 %, 50 %, and 0 % respectively. Results are shown in Figure 5.
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Latent CartPole. In this task, we expect partial observability to have minimal impact on the resulting
optimal policy, and a high cross-optimality ratio. As expected, BC performs very well regardless of dataset
quality. CO-CQL is able to exploit the high cross-optimality and achieve similar robustness across dataset
qualities. In contrast, CQL and IQL are more susceptible to the dataset quality.

Easy HeavenHell. In this task, partial observability has a much bigger impact on the resulting optimality,
and the cross-optimality is much more limited. As expected, BC fails regardless of the dataset quality,
whereas the other more data-driven methods perform better. IQL performs well with high quality data,
but is strongly affected by the quality as well. In contrast, CQL and CO-CQL perform well across all
types of datasets. Of these two, CO-CQL exhibits the better performance due to its ability to exploit the
fully-observable expert guidance when useful and ignore it when not.

6 Conclusion

In this work, we demonstrated that fully-observable experts can be used to aid the training of partially-
observable agents in offline RL. We provide two novel measures of cross-observability: COOR, which is
grounded by relevant theoretical insights, and COAR, which is a practical approximation useful to analyze
the cross-observability properties associated with trained policies. Our algorithmic contribution, CO-CQL,
combines a standard RL objective with an auxiliary behavior cloning objective, so as to effectively exploit
both sources. Our empirical evaluation demonstrates that CO-CQL succeeds in exploiting fully-observable
guidance in a diverse variety of partially-observable tasks and, critically, CO-CQL is able to learn well even
when the task cross-observability is relatively low. Most importantly, CO-CQL is able to learn to solve
sub-tasks that cannot be learned by the fully-observable expert alone.
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A.1 Environments

This section contains detailed descriptions of the environments used in our evaluation.
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(a) CartPole. (b) LunarLander.

(c) HalfCheetah. (d) HeavenHell.

Figure 6: Environments.

A.1.1 CartPole

CartPole (Barto et al., 1983) is a classic fully-observable control problem where the agent must learn to
balance a pole on a moving cart. The agent receives a positive reward of 1 for each timestep that the pole
does not fall. Its state space is continuous with dim(S) = 4 dimensions representing the position and velocity
of the cart, and the angular position and velocity of the pole. Its action space is discrete with 2 actions,
indicating whether the agent moves left or right. Figure 6a shows a rendering of CartPole.

Latent CartPole. This variant generates observations by removing velocity information from the state,
reducing the observation dimensions dim(O) from 4 to 2.

A.1.2 LunarLander

LunarLander (Brockman et al., 2016) is a classic fully-observable control problem where the agent must
learn to pilot and land a spacecraft without crashing. The agent receives a mixture of sparse and dense
rewards depending whether the agent landed safely or crashed, and how close it gets to the landing spot.
Its state space is continuous with dim(S) = 8 dimensions denoting the 2D position, 2D velocity, 1D angular
position, 1D angular velocity, and 2 binary dimensions representing whether either leg of the spacecraft is
touching the ground. Its action space is discrete with 4 actions denoting any combination of left and right
engine being on or off. Figure 6b shows a rendering of LunarLander.

Noisy LunarLander. This variant generates observations by adding Gaussian noise N (µ = 0, σ2 = 0.04)
to the state.

Latent LunarLander. This variant generates observations by removing velocity information from the
state, reducing the observation dimensions dim(O) from 8 to 5.

A.1.3 HalfCheetah

HalfCheetah (Brockman et al., 2016) is a classic fully-observable control problem where the agent must learn
to apply joint torques to make a cross-sectional robot run. The agent receives positive dense rewards for
moving forward, and negative dense rewards for using large actions torques (to promote efficient movement).
Its state space is continuous with dim(S) = 17 dimensions denoting the 6D angular positions of the controlled
joints, the 6D angular velocities of the controlled joints, the 1D angular position of the uncontrolled head
joint, the 1D angular velocity of the uncontrolled head joint, the 1D position of the head tip (only horizontal),
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(a) DynamicObstacles state. (b) KeyDoor state. (c) MemoryFourRooms state.

(d) DynamicObstacles obs. (e) KeyDoor obs. (f) MemoryFourRooms obs.

Figure 7: GridVerse environments.

and the 2D velocities of the head tip (horizontal and vertical). Its action space is continuous with dim(A) = 6
representing the 6D torques applied to the controlled joints. Figure 6c shows a rendering of HalfCheetah.

Noisy HalfCheetah: This variant generates observations by adding Gaussian noise N (µ = 0, σ2 = 0.04)
to the state.

Latent HalfCheetah: This variant generates observations by removing velocity information from the state,
reducing the observation dimensions dim(O) from 17 to 8.

A.1.4 HeavenHell

HeavenHell (Blai & Geffner, 1998) is a classic partially-observable control problem where the agent must
identify which of two exits is good and reach it. The agent receives a positive sparse reward of +1 only upon
reaching the good exit, and a negative sparse reward of −1 only upon reaching the bad exit, regardless of
whether it has acquired the appropriate information. Its state space is discrete, with a number of states
that depends on the environment size, denoting the agent’s position in the grid, and the location of the good
exit. Its observation space is discrete, with a number of observations that depends on the environment size,
denoting the agent’s position, except when the agent is at the oracle, in which case the observation denotes
the location of the good exit. Its action space is discrete with dim(A) = 4 representing the four directions
where the agent can move (north, south, east, west).

Easy HeavenHell: This variant has 10 locations for the agent, and 2 possible locations for the good exit,
adding up to dim(S) = 10 · 2 = 20 states and dim(O) = 10 − 1 + 2 = 11 observations.

Hard HeavenHell: This variant has 14 locations for the agent, and 2 possible locations for the good exit,
adding up to dim(S) = 14 · 2 = 28 states and dim(O) = 14 − 1 + 2 = 15 observations.

A.1.5 GridVerse

GridVerse (Baisero et al., 2021) is a framework for customizable 2D grid world control problems that allows
for both full state observability and partial observability. In our evaluation, we use three predefined tasks:
DynamicObstacles, KeyDoor, and MemoryFourRooms. For each of these tasks, we employ 7 × 7 states and
2 × 3 first-person POV observations.

The states of GridVerse environments are represented by the following components:
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Grid. The grid field is a 7 × 7 × 3 tensor of categorical data representing three channels of information for
each of the 7 × 7 grid tiles. The first channel contains a categorical index representing the tile type,
e.g., wall, empty, exit, door, key, etc. The second channel contains (when relevant) information on
the state of the tile, e.g., whether a door tile is open, closed, or locked. The third channel contains
(when relevant) color information on the object, which may be relevant for the dynamics of the
environment, e.g., a yellow door may only be opened by a yellow key but not a red key.

Agent ID Grid. The agent ID grid field is a 7 × 7 binary matrix representing the agent’s location.

Agent The agent field is a 6D array containing the pose of the agent, with 2 dimensions representing the
agent coordinates, and 4 dimensions representing a one-hot encoding of agent orientation.

Item The item field is a 3D array representing the item (if any) that is being carried by the agent. The
item’s encoding is the same as in the grid field, i.e., object type, object status, and object color. In
the three environments we employ, this component is not strictly necessary (not even for KeyDoor),
so we ignore this field.

The observations of GridVerse environments are represented by similar components:

Grid. The grid field is a 2 × 3 × 3 tensor of categorical data representing three channels of information for
each of the 2 × 3 tiles observable by the agent. The channels encode the same information as in the
corresponding state field.

Agent ID Grid. The agent ID grid field is a 2 × 3 bianry matrix representing the agent’s location within
its observation area.

Item. This is the same field as in the state. As in the case of the state, we ignore this field.

The actions of GridVerse environments vary by environment. All share common movement actions that
allow the agent to step forward, backward, left, and right, as well as to turn left and right. In KeyDoor,
additional actions allow the agent to pick up/drop down the key and activate the door.

A.1.6 DynamicObstacles

In DynamicObstacles, the agent must reach a goal while avoiding moving obstacles. Figures 7a and 7d
respectively show a sample state and observation. Agent and goal positions are fixed on two opposite corners
of the grid, whereas the locations and movements of the obstacles are stochastic. In the fully-observable
version of this task, the agent has full view of the grid and the obstacles, including those behind, and avoiding
the obstacles is easier than in the partially-observable version of this task with limited field of view.

The agent receives a composite reward obtained by adding the following components:

• A dense living reward of −0.05;

• A dense reward of +0.2 for moving closer to the goal;

• A dense reward of −0.2 for moving further away from the goal;

• A sparse reward of −1 for bumping into a wall or an obstacle; and

• A sparse reward of +5 for reaching the goal.

An episode terminates upon bumping into a wall, an observable, or reaching the goal.

15



Under review as submission to TMLR

A.1.7 KeyDoor

In KeyDoor, the agent must reach a goal located behind a locked door; to do so, the agent must first complete
the subtasks of locating and picking up the key and opening the door. Figures 7b and 7e respectively show
a sample state and observation. Positions of key, door, and goal are randomized, as well as the size of both
rooms. In the fully-observable version of this task, the agent has full view of the grid, key, door, and goal.
Since we ignore the item field of both states and observations, the fully-observable agent must infer whether
it is holding the key based on whether it is observable in the grid or not, whereas the partially-observable
agent must remember whether it has picked up the key in the past.

The agent receives a composite reward obtained by adding the following components:

• A dense living reward of −0.05;

• A dense reward of +0.2 for moving closer to the goal;

• A dense reward of −0.2 for moving further away from the goal;

• A sparse reward of +1 for picking up the key;

• A sparse reward of −1 for dropping the key;

• A sparse reward of +1 for opening the door;

• A sparse reward of −1 for closing the door; and

• A sparse reward of +5 for reaching the goal.

An episode terminates upon reaching the goal.

A.1.8 MemoryFourRooms

In MemoryFourRooms, the agent must reach a good exit while avoiding a bad exit; to identify which exit
is which, the agent must first explore the grid until it finds a beacon whose color matches the good exit.
Figures 7c and 7f respectively show a sample state and observation. The layout of the four rooms are
randomized, as well as the positions of agent, beacon, and exits. The colors of the the exits and beacon
are randomly sampled from the set {red, green, blue, yellow}. In the fully-observable version of this task,
the agent has full view of the grid and is able to immediately identify the good exit’s identity and location,
whereas in the partially-observable version, the agent must first find explore the grid to find both beacon
and exit.

The agent receives a composite reward obtained by adding the following components:

• A dense living reward of −0.05;

• A sparse reward of +5 for reaching the good exit; and

• A sparse reward of −5 for reaching the bad exit.

An episode terminates upon reaching either exit.

A.2 Architectures

Each environment provides state and information data in a variety of formats. This requires us to implement
several different model architectures to handle these formats, the specifics of which are detailed below.
Most architectures rely on an overall model that is sequentially composed of a model to learn observation
representations (the nature of which depends on the environment), followed by a single recurrent layer,
followed by two fully-connected (FC) layers. In each case, only observation-histories are considered, and the
action-component of the history is ignored.
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(a) GridVerse Actor Architecture.

(b) GridVerse Critic Architecture.

Figure 8: GridVerse Architectures.

A.2.1 HeavenHell

HeavenHell provides states and observations as categorical scalars. We therefore use an embedding layer to
generate encodings of those values before processing with the rest of the network.

Actor Embedding(256), LSTM(256), FC(256), ReLU, FC(dim(A)), Softmax

Critic Embedding(256), LSTM(256), FC(256), ReLU, FC(dim(A))

A.2.2 CartPole/LunarLander

CartPole and LunarLander provide states and observations as 1D feature vectors. We use a fully-connected
layer to process these vectors.

Actor FC(64), ReLU, LSTM(64), FC(64), ReLU, FC(dim(A)), Softmax

Critic FC(64), ReLU, LSTM(64), FC(64), ReLU, FC(dim(A))

A.2.3 HalfCheetah

HalfCheetah provides states and observations as 1D feature vectors. We use a fully-connected layer to process
these vectors. The policy network outputs both action means and log standard deviations. The critic network
computes action-values by combining observations and actions in its inputs and mapping them to a scalar
output.

Actor FC(64), ReLU, LSTM(64), FC(64), ReLU, FC(2 · dim(A))

Critic FC(64), ReLU, LSTM(64), FC(64), ReLU, FC(1)

A.2.4 GridVerse

GridVerse provides states and observations as dictionaries containing data in various formats, some categor-
ical, some integral, and some continuous. Due to this additional complexity, we show the architecture used
for GridVerse environments as graphical diagrams in Figure 8.

A.3 Expert Policies

In this section, we briefly explain how we got expert policies used in our methods and evaluations, and to
fill our datasets. A more in depth-discussion into the dataset composition is available in Appendix A.4.
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Table 2: Datasets composition and sizes, and CO-CQL β Coefficients

Environment Dataset Composition Dataset Size β

Hard HeavenHell (Policy) 100 % Random 1 k episodes 0.0001
Easy HeavenHell (Policy) 100 % Expert 100 k timesteps 0.001
Easy HeavenHell (Policy) 50 % Expert, 50 % Random 100 k timesteps 0.01
Easy HeavenHell (Policy) 100 % Random 100 k timesteps 0.0001
Latent CartPole (Policy) 100 % Expert 1 M timesteps 0.02
Latent CartPole (Policy) 50 % Expert, 50 % Random 1 M timesteps 0.02
Latent CartPole (Policy) 100 % Random 1 M timesteps 1.0
Noisy LunarLander (Policy) 100 % Trained 1 k episodes 0.9
Noisy HalfCheetah (Policy) 100 % Trained 1 k episodes 0.5
Latent LunarLander (Policy) 100 % Trained 1 k episodes 0.0001
Latent HalfCheetah (Policy) 100 % Trained 1 k episodes 0.4
MemoryFourRooms (Trajectories) 50 % Success, 50 % Failure 1 k episodes 0.1
KeyDoor (Trajectories) 50 % Success, 50 % Failure 1 k episodes 0.1
DynamicObstacles (Trajectories) 50 % Success, 50 % Failure 1 k episodes 0.1

Fully-Observable Expert Policies. A key factor in our work is that fully-observable policies are usually
significantly easier to train than partially-observable policies, and that we may be able to exploit fully-
observable guidance to help the training of partially-observable policies. In principle, it is possible to train
such fully-observable policies directly using standard offline methods on the same datasets that would be
used for the partially-observable policy. However, in practice, to simplify this component and have stronger
optimality guarantees on the fully-observable expert, we employ online RL methods. To obtain the fully-
observable experts for HeavenHell, CartPole, LunarLander, and HalfCheetah, we employ standard non-
recurrent SAC (Haarnoja et al., 2018). To obtain the fully-observable experts for GridVerse, we employ
standard non-recurrent PPO (Schulman et al., 2017).

It should be additionally noted that fully-observable experts can also be obtained, depending on the setting,
without requiring any training at all, e.g. a coded heuristic could act as an expert policy, or behavior cloning
onto a human expert.

Partially-Observable Expert Policies. To create some of the datasets used in our evaluation, we will
need a way to generate expert partially-observable trajectories. To generate those trajectories, we train
partially-observable policies using recurrent SAC (Haarnoja et al., 2018).

A.4 Datasets

The composition and size of each dataset varies per environment, as shown in Table 2. In the table, we use
the following labels:

(Policy) Random. This label denotes trajectories obtained by running a random policy.

(Policy) Expert. This label denotes trajectories obtained by running a partially-observable policy trained
as described in Appendix A.3. Further, we were able to verify that the task is being solved well,
e.g., by meeting a known return threshold that is considered to be significant for the task.

(Policy) Trained. This label also denotes trajectories obtained by running a partially-observable policy
trained as described in Appendix A.3. However, in this case we were not able to verify that the task
is being solved well, so the policy is still sub-optimal in some regard.

(Trajectory) Success. This label denotes trajectories that are sampled from a random policy, but also
filtered so that the correct goal is reached. The filtering process does not account for whether the
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task was solved efficiently or even in a manner that is congruent to optimal partially-observable
control, e.g., a trajectory is deemed successful even if it reaches a good exit without having made a
corresponding observation necessary to identify it from a bad exit.

(Trajectory) Failure. This label denotes trajectories that are sampled from a random policy, but also
filtered so that the correct goal is not reached.

All datasets will be made publicly available upon publication.

A.5 Hyperparameters

In this section, we show in details the hyperparameters used to train CO-CQL and the other baselines.

A.5.1 CO-CQL Hyperparameters

The general hyperparameters used for CO-CQL for training across all of our datasets are shown in Table 3.
The specific β coefficient used with each of our datasets is shown in Table 2.

We tune primarily the behavior cloning coefficient β and the CQL alpha threshold value. All other hyperpa-
rameters are carried over un-modified from standard online, non-recurrent SAC as well as non-recurrent CQL
(besides batch size and history length which we choose based on computational capacity). We performed
simple grid-searching to determine our β coefficients.

We find from the COAR analysis in section 5.2.5 that if one has intuition regarding the MDP/POMDP
overlap of an environment, then the search space over the optimal β parameter can be shortened; if the
expected overlap is higher, then one should start with higher values of β and vice versa.

A.5.2 CQL Hyperparameters

The general hyperparameters used for recurrent CQL for training across all of our datasets are shown
in Table 3.

A.5.3 IQL Hyperparameters

The general hyperparameters used for recurrent IQL for training across all of our datasets are shown in Ta-
ble 5.

A.5.4 BC Hyperparameters

The general hyperparameters used for recurrent BC for training across all of our datasets are shown in Table 6.

A.5.5 TD3+BC Hyperparameters

The general hyperparameters used for recurrent TD3+BC for training across all of our datasets are shown
in Table 7.
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Table 3: CO-CQL Hyperparameters

Hyperparameter Environment Value
Discount γ all 0.99
Batch Size all 32

History Length

HeavenHell Full episodesGridVerse
CartPole

4 timestepsLunarLander
HalfCheetah

Actor Learning Rate

HeavenHell 3e−5GridVerse
CartPole

3e−4LunarLander
HalfCheetah

Critic Learning Rate all 3e−4
Actor Update Frequency all 2

Target Network Update Frequency all 1
Target Entropy Scaling all 0.3

CQL τ

Noisy HalfCheetah 2
Latent HalfCheetah

1Latent LunarLander
Noisy LunarLander

HeavenHell
10GridVerse

CartPole
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Table 4: CQL Hyperparameters

Hyperparameter Environment Value
Discount γ all 0.99
Batch Size all 32

History Length

HeavenHell Full episodesGridVerse
CartPole

4 timestepsLunarLander
HalfCheetah

Actor Learning Rate

HeavenHell 3e−5GridVerse
CartPole

3e−4LunarLander
HalfCheetah

Critic Learning Rate all 3e−4
Actor Update Frequency all 2

Target Network Update Frequency all 1
Target Entropy Scaling all 0.3

CQL τ

Noisy HalfCheetah 2
Latent HalfCheetah

1Latent LunarLander
Noisy LunarLander

HeavenHell
10GridVerse

CartPole
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Table 5: IQL Hyperparameters

Hyperparameter Environment Value
Discount γ all 0.99
Batch Size all 32

History Length

HeavenHell Full episodesGridVerse
CartPole

4 timestepsLunarLander
HalfCheetah

Actor Learning Rate all 3e−4
Critic Learning Rate all 3e−4

State-Value Function Learning Rate all 3e−4
Actor Update Frequency all 2

Target Network Update Frequency all 1
IQL τ all 0.7
IQL β all 3.0

Table 6: BC Hyperparameters

Hyperparameter Environment Value
Discount γ all 0.99
Batch Size all 32

History Length

HeavenHell Full episodesGridVerse
CartPole

4 timestepsLunarLander
HalfCheetah

Actor Learning Rate all 3e−4
Actor Update Frequency all 2
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Table 7: TD3+BC Hyperparameters

Hyperparameter Environment Value
Discount γ HalfCheetah, LunarLander 0.99
Batch Size HalfCheetah, LunarLander 32

History Length HalfCheetah, LunarLander 4 timesteps
Actor Learning Rate HalfCheetah, LunarLander 3e−4
Critic Learning Rate HalfCheetah, LunarLander 3e−4

Actor Update Frequency HalfCheetah, LunarLander 2
Target Network Update Frequency HalfCheetah, LunarLander 1

TD3+BC α HalfCheetah, LunarLander 2.5
Exploration noise HalfCheetah, LunarLander 0.1

Policy noise HalfCheetah, LunarLander 0.2
Noise clip HalfCheetah, LunarLander 0.5
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