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Abstract

Integrating multi-modal data to promote medical image analysis has recently gained great
attention. This paper presents a novel scheme to learn the mutual benefits of different
modalities to achieve better segmentation results for unpaired multi-modal medical images.
Our approach tackles two critical issues of this task from a practical perspective: (1) how to
effectively learn the semantic consistencies of various modalities (e.g., CT and MRI), and (2)
how to leverage the above consistencies to regularize the network learning while preserving
its simplicity. To address (1), we leverage a carefully designed External Attention Module
(EAM) to align semantic class representations and their correlations of different modalities.
To solve (2), the proposed EAM is designed as an external plug-and-play one, which can
be discarded once the model is optimized. We have demonstrated the effectiveness of
the proposed method on two medical image segmentation scenarios: (1) cardiac structure
segmentation, and (2) abdominal multi-organ segmentation. Extensive results show that
the proposed method outperforms its counterparts by a wide margin.

Keywords: Unpaired multi-modal learning, Structured semantic consistency learning,
Medical image segmentation

1. Introduction

Assessing specific diseases often involves using different imaging modalities, such as CT
and MRI, which provide distinct information on tissue structure. In clinical practice, these
modalities are combined to achieve a comprehensive understanding of organs for disease
assessment and treatment planning (Karim et al., 2018; Cao et al., 2017). Despite the
differences in appearance between CT and MRI data, similar techniques like quantitative
segmentation are crucial for diagnosis (Dou et al., 2020). Previous research primarily fo-
cused on developing robust segmentation models for single-modality applications (Cao et al.,
2021; Gao et al., 2021). However, due to domain shifts between modalities, models trained
on one modality often fail when applied to another, posing challenges for real-world clinical
analysis (Chen et al., 2020).

In the literature, some recent studies (Wang et al., 2021b; Cheng et al., 2022) have
been presented to address the aforementioned issue via joint representation learning from
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multi-modalities. However, this joint representation learning principally necessitates spa-
tial alignment and co-registered sequences within multi-modalities, e.g., multi-sequence
MRI (T1, T1c, T2, FLAIR). For the unpaired multi-modal data, e.g., CT and MRI, such a
scheme is infeasible because of the spatial misalignment. Recently, Valindria et al. (Valin-
dria et al., 2018) proposed four kinds of dual-steam CNNs to alleviate the negative domain
shift between unpaired CT and MRI, where assigning modalities with their specific feature
extractors greatly affects the model’s parameter efficiency and limits the model’s ability
to handle more modalities. Dou et al. (Dou et al., 2020) further designed both modality-
specific and modality-shared modules to accommodate the appearance variance of different
modalities. Despite significant efforts to pursue multi-modal medical image segmentation,
it still poses some challenges for real-world applications due to the following issues. First,
discovering how to fully explore the semantic associations of multiple modalities is critical
but very difficult because there is no pixel-to-pixel correspondence in the unpaired input
images in practice. Second, how to discard complex model design and leverage the above
semantic associations to regularize the network learning while preserving its simplicity re-
mains intractable nowadays.

To address the above issues, this paper presents a novel method for performing un-
paired multi-modal medical image segmentation based on a single Transformer by learning
the structured semantic consistency between modalities, i.e. the consistencies of semantic
class representations and their correlations. Specifically, the unpaired multi-modal medi-
cal images, e.g., CT and MRI, are firstly fed into a shared Transformer backbone to ex-
tract multi-scale feature representations. For each modality, we further introduce a set of
modality-specific class embeddings, each of which indicates a global representation of one
semantic class. It is updated during the training phase to learn the specific class represen-
tation across the entire dataset. In practice, these modality-specific class embeddings are
learnable and fed into an elaborate External Attention Module (EAM) to interact with the
feature maps of the corresponding modal images. By doing this, the image-specific class
embeddings and their correlations of a certain image can be further extracted. Furthermore,
structured semantic consistency across modalities can be achieved gradually by implement-
ing consistency regularizations at the modality-level and image-level respectively. During
the testing phase, we discard all EAMs and only hold a single Transformer for predicting
the segmentation results of various modalities.

In summary, the main contributions of this paper are as follows: (1) We propose a novel
method to learn to segment multi-modal medical images by using a single Transformer back-
bone. (2) We introduce a plug-and-play External Attention Module to assist the backbone
in discovering the semantic association and learning the structured semantic consistency by
using unpaired multi-modal medical images. (3) We evaluate our method on two different
multi-class segmentation tasks with 2D and 3D configurations, showing the effectiveness of
our method in various settings.

2. Methodology

2.1. Problem Setting and Framework Overview.

Considering two unpaired medical images {XM1 ,XM2} extracted from different modalities
and their corresponding label maps {YM1 ,YM2}, the overall framework of the proposed
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Figure 1: Overview of our proposed unpaired multi-modal medical image segmentation
framework via single Transformer architecture and the proposed EAMs. All parts linked
by dotted lines can be removed during the inference phase.

method is depicted in Fig. 1. For simplicity, we use the 2D model as an illustration which
can be easily extended to the 3D model. We first feed three consecutive slices as the in-
puts {XM1 ,XM2} ∈ R3×H×W into the modality-specific image embedding module, which
is simply implemented by two consecutive 1 × 1 convolutional layers, making the resolu-
tion and dimension of the inputs unchanged. The embedded feature maps from the two
modalities are then fed into a single Unet-shaped Transformer-based segmentation network
that includes encoder and decoder subnetworks for pixel-wise dense prediction. Specifically,
the decoders could generate multi-scale features that are combined with the encoders’ fea-
tures, i.e. 2C × H

P × W
P at Stage 1, 2C × H

2P × W
2P at Stage 2, 4C × H

4P × W
4P Stage 3, and

8C × H
8P × W

8P at Stage 4, where P is the patch size in Transformer and is 4 by default.

To align the modalities during the training phase, we explore two kinds of semantic in-
formation, termed modality-specific class embeddings and image-specific semantic
correlations. The former is a set of learnable vectors for each modality, each of which
presents one semantic class, e.g., Liver or Spleen. It aims to learn the global class represen-
tations of each modality. The latter is used to present the inter-class relationships within
a specific image. In practice, a newly designed External Attention Module (EAM)
is introduced to update the above learnable class embeddings from modality-specific to
image-specific, and extract the semantic correlations of a specific image at multiple scales,
as shown in Fig. 1.

We explicitly facilitate the consistency of the two modalities’ representations. 1) We
firstly introduce the global consistency regularization Lmcr to minimize the representation
distance between modality-specific class embeddings. It aims to globally align the semantic
class representations of two modalities. Such consistency will also implicitly affect the pixel-
level representation learning of each sample since these modality-specific class embeddings
also interact with corresponding images of each modality through the training process. 2)
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We further align semantic correlations between two modalities at image-level by minimizing
Licr (i.e. symmetrical Kullback-Leibler divergence). Such a scheme allows generating many
sample pairs to drive semantic correlation alignment, which makes the optimized model
more robust to sample variation.

2.2. External Attention Module

For simplicity, we illustrate the proposed EAM using feature maps F ∈ R
H
4P

× W
4P

×4C at Scale-
1 and such mechanism can be applied to other scales as well, as shown in Appendix 2.
Class Embeddings. In practice, the learnable modality-specific class embeddings are used
to learn the class representations of a specific modality across the entire dataset, while each
image should have its own class representations that differ from the global ones due to their
appearance variance. Thus, we employ the Cross-Attention Mechanism (CA) for updating
class embeddings by interacting with multi-scale feature maps of a certain image to generate
its image-specific class embeddings. Specifically, we utilize F to calculate the key and value
of CA by linear projection, while the query of CA is calculated employing modality-specific
class embeddings Q ∈ RZ×4C as follows:

q = QWQ, k = FWK , v = FWV , (1)

CA(Q,F) = softmax(
qkT

√
d
)v, (2)

where WK , WV , WQ ∈ R4C×4C′
are the parameter matrices for linear projection. d is

the channel dimension of q ∈ RZ×4C′
and k ∈ R( H

4P
× W

4P
)×4C′

. The softmax(·) denotes

the softmax function along the spatial dimension. The qkT ∈ RZ× H
4P

× W
4P indicates the

Semantic-aware Feature Maps extracted from a single CA head at Scale-1, where Z denotes
the total numbers of classes. The Multi-head Cross Attention (MCA) is the extension with
N independent CAs and project their concatenated outputs as follows:

MCA(Q,F) = C( CA1(Q,F), ...,CAN (Q,F) ) WO, (3)

where C denotes the concatenation operation. WO ∈ R4C′×4C is the learnable parameter
matrix, and we have 4C ′ = 4C/N . Here the Semantic-aware Feature Maps extracted from

multiple attention heads at Scale-1 can be presented as A1 ∈ RZ×N× H
4P

× W
4P , which can be

further adopted to derive image-specific semantic correlations. In this way, the Q can be
updated by:

Q̂ = MCA( Norm(Q), Norm(F) ) +Q, (4)

Q̃ = MLP( Norm(Q̂) ) + Q̂, (5)

where Q̃ ∈ RZ×4C reflects image-specific class representations by collecting image-specific
semantic information from feature maps of a particular modal image. In practice, the 1× 1
convolution operation is further used to reduce the dimension of the above Q̃ to Z × 2C and
obtain image-specific class embeddings Q1 for the next scale of updates. The operations at
the other scales are identical to those described above, and the only difference is that we
adopt image-specific class embeddings (e.g. Q1 or Q2) to replace Q in the above equations.
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Semantic Correlations. The semantic correlations reflect the inter-class representation
similarities. In practice, we propose a three-step process to extract the semantic correlation
matrix in a specific image. Again, we explain the corresponding operations at Scale-1 as
an illustration. Given the modality-specific class embeddings Q and multi-head semantic-
aware feature mapsA1, the semantic correlations E1 can be calculated via semantic filtering,
semantic re-weighting, and semantic aggregation, respectively. The operations at the other
scales are the same, the only difference is that we replace Q with image-specific class
embeddings Q1 and Q2 to calculate E2 and E3.

1) Semantic Filtering. Given a particular semantic class embeddings in Q, the
purpose of such a step is to calculate its relevance to all semantic classes at the token level.

Since A1 ∈ RZ×N×( H
4P

× W
4P

), the dimension of tokens is Z ×N . We can divide the features
of tokens into Z groups, each of which is corresponding to a particular semantic class. Thus

we have A1 = {Aj
1}Zj=1 and Aj

1 ∈ RN× H
4P

× W
4P . Similarly, we can rewrite Q as {Qi}Zi=1

and Qi ∈ R4C . For i-th class, we generate the semantic kernel as Ki = QiWi, where
Wi ∈ R4C×N is the parameter matrix that is corresponding to the i-th class. To calculate
the similarity between i-th and j-th classes at token level, we can directly reshape Ki into
RN×1×1 to perform filtering on Aj

1 as follows,

Sij
1 = F(Ki,Aj

1), (6)

where the function F(·, ·) denotes the convolutional operation, and Sij
1 ∈ R

H
4P

× W
4P is a simi-

larity map of i-th class for the j-th class, where tokens with higher response scores indicate
the higher correlation to i-th class representation in Q. That is reasonable in practice.
For example, the left kidneys and right kidneys should have similar structural repre-
sentations due to their similar appearance, shape, and size. Thus, the class filter of left
kidneys should also have the highest response to the region of the right kidneys.

2) Semantic Re-weighting. Given similarity maps between i-th class representa-
tion in Q and all groups’ feature maps of A1, then we have Si

1 = {Si1
1 , ...,S

ij
1 , ...,S

iZ
1 } ∈

RZ×( H
4P

× W
4P

). By conducting the softmax operation on each spatial position of Si
1, each

element in A1 is weighted by the gating function as follows,

Bi
1 = A1 ⊙ B(σ(Si

1)), (7)

where σ(·) is softmax operation, B is the broadcast operation to extend the dimension of
input to Z × N × H

4P × W
4P , and ⊙ denotes the element-wise multiplication. In this way,

we obtain Bi
1 = {Bi1

1 , ...,B
ij
1 , ...,B

iZ
1 } ∈ RZ×N×( H

4P
× W

4P
), where Bij

1 denotes the correlation
map between i-th class representation in Q and j-th class feature maps.

3) Semantic Aggregation. To generate the final correlation map, we conduct the
normalized summation on Bi

1 along the last three dimensions to realize semantic aggrega-
tion,

Ei
1 =

∑
(N, H

4P
, W
4P

)B
i
1∑

( H
4P

, W
4P

) σ(S
i
1)

(8)

where Ei
1 ∈ RZ is the normalized correlation vector, and each element in Ei

1 presents the
relevance between the i-th class representation in Q and one specific class representation of
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the input image. Finally, image-specific semantic correlations at Scale-1 can be presented
as E1 = {E1

1, ...,E
i
1, ...,E

Z
1 } ∈ RZ×Z . The operations of EAM at other scales are the same

as Scale-1’s, but with different input feature dimensions. In our scheme, the proposed
EAM outputs the above semantic correlations at Scale-1 for each modality, i.e. denoted by
E1:M1 and E1:M2 for CT and MRI, which can be continuously updated during the training
process. We motivate to dynamically align the semantic correlations of images from different
modalities in the training phase since we intuitively assume that the inter-class relationships
shown in CT are still valid in MRI.

2.3. Objective Functions

Auxiliary Prediction Loss. We introduce an auxiliary loss to supervise the semantic
prediction of each pixel on multi-scale semantic-aware feature maps by using cross-entropy
(CE) and Dice loss (DSC),

Laux =
∑
λ

[
CE(F1×1(Aλ),Yλ) + DSC(F1×1(Aλ),Yλ)

]
, (9)

where λ ∈ {1, 2, 3} represents three scales, and F1×1(·) denotes the function with a 1 × 1
convolution operation to reduce the dimension of multi-head.
Modality-level Consistency Regularization. We introduce consistency regularization
to globally align the class representations of two modalities. Let QM1 and QM2 ∈ RZ×4C

denote modality-specific class embeddings of two modalities. Then the modality-level con-
sistency regularization can be presented as follows:

Lmcr =

Z∑
i=1

(1−
Qi T

M1
Qi

M2

∥Qi
M1

∥ · ∥Qi
M2

∥
), (10)

where Z denotes the total number of semantic classes.
Image-level Consistency Regularization. We further utilize the symmetrical Kullback-
Leibler (KL) divergence to locally align image-specific semantic correlations of each modal-
ity. For two modalities M1 and M2, let Ei

λ:M1
and Ei

λ:M2
denote correlation vectors cor-

responding to class i-th at Scale-λ. The image-level consistency regularization can be pre-
sented as follows:

Licr =
∑
λ

Z∑
i=1

[
DKL(σ(E

i
λ:M1

/τ) || σ(Ei
λ:M2

/τ))

+DKL(σ(E
i
λ:M2

/τ) || σ(Ei
λ:M1

/τ))
]
,

(11)

where DKL(·||·) denotes the relative entropy. The σ(·) denotes the softmax operation along
the class dimension. τ is a temperature hyper-parameter to control the softness.
Overall Objective Function. The overall objective function of the proposed method can
be presented as follows:

L = LM1
seg + LM2

seg + α(LM1
aux + LM2

aux) + βLmcr + γLicr, (12)

where LM1
seg and LM2

seg denote the segmentation losses for modality M1 and M2 respectively.

Similarly, the LM1
aux and LM2

aux indicate auxiliary prediction losses for two modalities.
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Methods
Cardiac CT Cardiac MRI

Overall Mean
LVM LAC LVC AA Mean LVM LAC LVC AA Mean

Dice Coefficient (avg.± std., %) ↑
Payer et al. [MMWHS18] 87.2±3.9 92.4±3.6 92.4±3.3 91.1±18.4 90.8 75.2±12.1 81.1±13.8 87.7±7.7 76.6±13.8 80.2 85.5
UMMKD [TMI20] 88.5±3.1 91.5±3.1 93.1±2.1 93.6±4.3 91.7 80.8±3.0 86.5±6.5 93.6±1.8 83.1±5.8 86.0 88.8

Backbone 90.0±3.2 92.5±2.9 92.6±3.0 87.4±3.8 90.6 79.9±4.6 85.3±3.9 92.0±2.7 84.9±2.9 85.5 88.1
Baseline 90.6±2.8 92.6±2.8 93.2±2.5 88.9±3.4 91.3 80.9±4.0 86.3±3.8 92.9±2.3 85.8±3.5 86.5 88.9

Joint Training 89.1±2.8 93.0±2.7 92.8±3.3 91.2±2.6 91.5 (+0.2) 80.2±3.9 86.5±4.5 92.0±3.0 86.1±3.8 86.2 (-0.3) 88.9 (+0.0)
Our(w/o CR) 90.0±2.3 93.8±2.1 93.4±2.4 94.0±2.0 92.8 (+1.5) 81.0±3.1 87.4±3.6 93.5±2.1 87.8±3.0 87.4 (+0.9) 90.1 (+1.2)
Ours(w/ CR) 90.9±2.0 94.8±1.6 94.5±2.1 95.9±1.4 94.0 (+2.7) 81.6±2.5 89.6±3.3 94.4±1.3 89.2±2.8 88.7 (+2.2) 91.4 (+2.5)

Average Symmetric Surface Distance (avg.± std., mm) ↓
Payer et al. [MMWHS18] - - - - - - - - - -
UMMKD [TMI20] - - - - - - - - - -

Backbone 1.67±0.46 1.95±0.54 1.43±0.47 1.51±0.41 1.64 2.12±1.57 1.74±0.85 1.41±0.81 3.74±1.68 2.25 1.95
Baseline 1.49±0.33 1.84±0.44 1.38±0.35 1.46±0.28 1.54 1.71±1.43 1.37±0.64 1.46±0.89 2.69±1.27 1.86 1.70

Joint Training 1.58±0.35 1.70±0.44 1.39±0.35 1.33±0.38 1.50 (-0.04) 1.87±0.92 1.47±0.40 1.42±0.55 3.13±1.41 1.97 (+0.11) 1.74 (+0.04)
Our(w/o CR) 1.34±0.31 1.63±0.46 1.32±0.27 1.10±0.29 1.35 (-0.19) 1.84±0.81 1.22±0.53 1.39±0.58 2.05±1.10 1.63 (-0.23) 1.49 (-0.21)
Ours(w/ CR) 1.31±0.27 1.49±0.38 1.22±0.27 1.00±0.24 1.26 (-0.28) 1.55±0.78 1.24±0.34 1.27±0.32 2.01±0.95 1.52 (-0.34) 1.39 (-0.31)

Table 1: The performance of cardiac substructure segmentation by using 2D Transformer.

3. Experiments

We evaluate the performance of our method on the two multi-modality segmentation tasks,
i.e. Cardiac Substructure Segmentation and Abdominal Multi-organ Segmentation, under
2D and 3D model configurations respectively. For fairness, we provide four experimental
settings: (1) Backbone that is separately trained with single modality; (2) Baseline that adds
auxiliary prediction loss Laux based on Backbone; (3) Joint Training that shares the entire
backbone model to jointly train multiple modalities; (4) Ours (w/o CR) that introduces
the modality-aware channel-wise multiplication mechanism in each transformer block of the
shared encoder and decoder, as illustrated in Appendix B.1; (5) Ours (w/ CR) that is our
full cross-modal learning strategy by adding two types of consistency terms Lmcr, Licr. We
assess segmentation performance using the Volume Dice Coefficient (Dice, %) and Average
Symmetric Surface Distance (ASD, mm) metrics.

3.1. Cardiac Substructure Segmentation

2D Configuration. We employ the Multi-Modality Whole Heart Segmentation Challenge
2017 dataset (Zhuang et al., 2019) to perform multi-class cardiac structure segmentation.
We adopt a 2D U-shaped Transformer named Swin-Unet (Cao et al., 2021) as the backbone.
Please refer to the Appendix C for more details about the dataset and network.

Main Results. Based on the 2D Backbone, we extend our Baseline model by the
auxiliary prediction loss Laux in Eqn. 9, which achieves average segmentation Dice of 91.3%
on CT and 86.5% on MRI and outperforms the Backbone model, as well as the MICCAI-
MMWHS challenge winner Payer et al. (Payer et al., 2017) that also deploys single modality
training. This demonstrates that similar to a form of deep supervision, calibrating multi-
scale semantic-aware feature maps improves final segmentation performance noticeably.

For multi-modality training, we share the entire backbone model (i.e., encoder, de-
coder, and prediction head) for multi-modality training, denoted as Joint Training. How-
ever, there is a decrease in segmentation results, i.e. Dice of 91.5% on CT and 86.2%
on MRI. This suggests that in such a situation, modality discrepancy has a significant
impact on learned feature representations. We then introduce a modality-aware channel-
wise multiplication mechanism into each Transformer block of shared encoder and de-
coder based on the Joint Training model, as in Appendix B.1. This training scheme
denoted as Ours (w/o CR) further improves segmentation results to 92.8% on CT and
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Methods
Abdominal CT Abdominal MRI

Overall Mean
Liver Spleen R-kdy L-kdy Mean Liver Spleen R-kdy L-kdy Mean

Dice Coefficient (avg.± std., %) ↑
UMMKD [TMI20] 92.7±1.8 93.7±1.7 94.0±0.7 89.5±3.9 92.4 90.3±2.8 87.4±1.1 91.0±1.5 88.3±1.7 89.3 90.8

Backbone 93.2±2.8 90.9±2.4 86.9±2.7 87.5±3.8 89.5 91.7±4.0 87.2±3.2 90.9±2.7 90.6±3.3 90.1 89.9
Baseline 93.6±2.2 92.1±2.6 87.9±1.8 87.7±3.6 90.3 92.9±3.3 87.8±2.9 92.0±2.5 91.4±3.1 91.0 90.7

Joint Training 94.0±2.6 92.5±2.2 87.8±2.9 87.9±3.4 90.6 (+0.3) 92.6±3.4 87.3±3.1 91.2±1.9 90.8±3.7 90.5 (-0.5) 90.5 (-0.2)
Ours(w/o CR) 94.6±2.2 93.3±1.8 88.9±2.3 88.7±3.5 91.4 (+1.1) 93.8±2.3 88.5±2.7 92.7±1.5 91.5±3.1 91.6 (+0.6) 91.5 (+0.8)
Ours(w CR) 95.8±1.4 94.9±1.3 92.3±0.9 91.8±2.2 93.7 (+3.4) 94.7±1.5 89.9±1.2 93.6±0.8 93.0±1.4 92.8 (+1.8) 93.3 (+2.6)

Average Symmetric Surface Distance (avg.± std., mm) ↓
UMMKD [TMI20] - - - - - - - - - - -

Backbone 1.19±0.91 1.18±0.82 1.84±1.06 1.10±0.78 1.33 1.20±0.68 1.27±0.79 1.36±0.94 1.37±0.71 1.30 1.31
Baseline 1.12±0.75 0.98±0.68 1.60±0.93 1.05±0.65 1.19 1.07±0.52 1.19±0.76 1.22±0.80 1.23±0.64 1.18 1.18

Joint Training 1.03±0.62 0.85±0.51 1.87±0.84 0.96±0.58 1.18 (-0.01) 1.19±0.56 1.32±0.73 1.27±0.85 1.34±0.67 1.28 (+0.10) 1.23 (+0.05)
Ours(w/o CR) 0.94±0.58 0.75±0.37 1.37±0.61 0.82±0.43 0.97 (-0.22) 1.01±0.49 1.18±0.64 1.03±0.69 1.15±0.53 1.09 (-0.09) 1.03 (-0.15)
Ours(w CR) 0.87±0.29 0.58±0.17 0.84±0.32 0.72±0.24 0.75 (-0.44) 0.83±0.36 0.56±0.23 0.85±0.39 0.83±0.37 0.77 (-0.41) 0.76 (-0.42)

Table 2: The results of abdominal multi-organ segmentation by using 3D Transformer.

87.4% on MRI, demonstrating the efficiency of modality-specific activation calibration. Fi-
nally, Ours (w/o CR) with Lmcr and Licr marked as Ours (w/ CR) in Table 5 achieves an
overall Dice of 91.4% (i.e. the average of 94.0% on CT and 88.7% on MRI). When com-
pared to the current state-of-the-art multi-modal approach UMMKD (Dou et al., 2020), our
segmentation result has a 2.6% promotion on overall mean Dice. In addition, our method
achieves the lowest overall mean ASD (i.e. 1.39mm) among all compared approaches. We
also present a visual representation of the segmentation results for quantitative comparison
in Appendix 4.

3.2. Abdominal Multi-organ Segmentation

3D Configuration. We adopt public CT data from (Landman et al., 2015) with 30
patients, and the T2-SPIR MRI data from the ISBI 2019 CHAOS Challenge (Kavur et al.,
2021). We employ a 3D U-shaped Transformer named nnFormer (Zhou et al., 2021) as the
backbone. The detailed dataset and network descriptions are in Appendix C

Main Results. Here, the Baseline model is the Backbone with Laux, which is the same
as the procedure in the 2D case. The Dice values raise to 90.3% on CT and 91.0% on MRI,
which is shown in Table 6. Likewise, sharing the entire Backbone model in Joint Training
causes a slight segmentation performance drop, i.e. Dice of 90.6% on CT and 90.5% on
MRI. By integrating modality-specific activation, Ours (w/o CR) improves the Dice values
to 91.4% on CT and 91.6% on MRI, outperforming Backbone, Baseline, and Joint Training
by a large margin. Furthermore, by using the Lmcr and Licr, our full multi-modality learning
scheme marked as Ours (w/ CR) achieves the best segmentation results of 93.3% overall
mean Dice and 0.76mm overall mean ASD. Compared with the counterpart, our scheme also
outperform UMMKD by a significant margin, i.e. the Dice value of 1.3% on CT and 3.5%
on MRI. The visual segmentation results for quantitative comparison are in Appendix 4.

4. Conclusion

This paper studies how to train the single segmentation model to conduct unpaired multi-
modal medical image predictions. A novel plug-and-play External Attention Module (EAM)
is introduced to regulate the backbone network to obey the structured semantic consistency
for different modalities, i.e. modality-specific class representations and image-specific inter-
class correlations. In the test phase, the EAMs can be removed, maintaining the simplicity
of the network. Extensive experimental results show the effectiveness of our method.
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Appendix A. Related Work

A.1. Domain adaptation.

In medical image analysis, severe domain shift has been a long-standing obstacle to knowl-
edge transfer between unpaired modalities obtained by different physical principles of imag-
ing. To address this problem, research works on domain adaptation of models either in
a semi-supervised (Zhu et al., 2021) or unsupervised (Chen et al., 2020; Huo et al., 2018)
manner, aiming to effectively improve cross-modality representation learning. To use data
more effectively, some works also focus on full-supervised multi-modality learning, transfer-
ring the knowledge that can promote each other between different modalities. In (Valindria
et al., 2018), Valindria et al. discussed the effectiveness of various dual-stream architec-
tures, demonstrating that the domain shift between two unpaired modalities limits mutual
information sharing. Following this, Dou et al. (Dou et al., 2020) proposed a multi-modal
learning approach by employing modality-specific internal normalization layers to compute
respective statistics of each modality, and conduct cross-modality knowledge distilling to
reduce the gap of prediction distributions between modalities. Instead of carefully con-
structing multi-modal networks with different feature fusion strategies, our work aims to
design the external plug-and-play module to help a single model to establish the structured
semantic consistency of different modalities, realizing multi-modal predictions.

A.2. Vision Transformer.

Currently, the studies about vision Transformer (Dosovitskiy et al., 2020) also achieve great
progress in image analysis and understanding. ViT is a convolution-free network architec-
ture, which directly employs the attention mechanism to capture the long-range dependence
of a sequence of non-overlapping image patches, Followed by ViT, Touvron et al. (Touvron
et al., 2021a) proposed DeiT that introduced a distillation strategy for Transformer to help
with ViT training. And many other ViT variants are also proposed (Chen et al., 2021;
Wang et al., 2021a; Rao et al., 2021; Zheng et al., 2021; Liu et al., 2021) which achieve
promising performance compared with its counterpart CNNs on various vision tasks, such
as image classification and semantic segmentation. Inspired by SwinTransformer, Cao et al.
(Cao et al., 2021) proposed a pure U-shaped transformer named Swin-Unet, where the ar-
chitecture utilizes SwinTransformer block as the basic unit to improve its capacity of feature
representation for 2D medical image segmentation. Furthermore, to explore Transformer’s
ability to learn volumetric representations from 3D medical volumes, Zhou et al. (Zhou
et al., 2021) proposed nnFormer to interleave convolution and self-attention for medical
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volumetric segmentation, achieving tremendous progress over previous transformer-based
medical segmentation methods.

Appendix B. Methodology Details

B.1. Transformer Block

Motivated by the LayerScale (Touvron et al., 2021b), we introduce modality-aware channel-
wise multiplication on the output of each residual operation in the Transformer block, with
the goal of calibrating modality-specific activation in the channel dimension to narrow the
discrepancy between representations from different modalities. Given the modality-specific
class embeddings Q ∈ RZ×4C of a certain modality, where Z is the total number of classes
and is constant across all modalities, and 4C denotes the channel dimension, we aggregate
its semantic information by using linear projection to produce modality-specific channel
weight Ω ∈ R4C . We then project Ω to the corresponding feature dimensions (e.g., from
4C to D for the specific scale), and the diag(·) operation is adopted to generate diagonal
matrix to calibrate modality-specific activation as,

Ω = w1Q, Φ1 = diag(ΩW2), Φ2 = diag(ΩW3), (13)

X′
l = Xl +Φ1 ⊛MSA( Norm(Xl) ), (14)

Xl+1 = X′
l +Φ2 ⊛ FFN( Norm(X′

l) ), (15)

where w1 ∈ RZ , W2 ∈ R4C×D, W3 ∈ R4C×D, MSA(·) and FFN(·) denote the multi-head
attention layer and the feed-forward layer respectively. Norm(·) indicates the LayerNorm
operation, and ⊛ is the channel-wise multiplication. Xl and Xl+1 denote the input and
output of (l + 1)-th transformer block. As shown in Fig. 1, we feed the modality-specific
class embeddings into the Transformer decoder, and we implement the above scheme in
all Transformer blocks to improve accuracy even further. It is worth noting that such
modality-aware channel-wise recalibration is an optional operation if we require to drop the
modality-aware query as well in inference.

B.2. External Attention Module

In the main article, we design the External Attention Module (EAM) to update the learn-
able class embeddings from modality-specific to image-specific, and extract the semantic
correlations of a specific image at multiple scales. Fig. 2 shows the details of EAM for the
Stage-1 of Transformer Decoder, which adopts modality-specific class embeddings and fea-
ture maps at scale-1 as the input. In practice, we replace modality-specific class embeddings
with image-specific class embeddings for Stage-2 and Stage-3, which is illustrated in Fig. 1.

Appendix C. Implementation Details

C.1. Datasets

Cardiac Substructure Segmentation. We employ the Multi-Modality Whole Heart Seg-
mentation Challenge 2017 dataset (Zhuang et al., 2019) to perform multi-class cardiac struc-
ture segmentation. The dataset is composed of unpaired 20 CT and 20 MRI scans collected
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Figure 2: External Attention Module (EAM)

from various patients and sites. We intend to train the segmentation network to recognize
four organs for each modality: left ventricle myocardium (LVM), left atrium blood

cavity (LAC), left ventricle blood cavity (LVC), and ascending aorta (AA). Since
the UMMKD approach (Dou et al., 2020) achieves state-of-the-art performance, we take the
same partitioning (i.e. training, validation, and test) and pre-processing of the dataset as
the UMMKD reported for a fair comparison. Specifically, we align with them to split each
modality into 70% for training, 10% for validation, and 20% for testing. Before feeding into
the network, we first resample both modalities to isotropic 1mm3 and crop their central
heart region by a 3D bounding box which has a fixed coronal plane size of 256 × 256. For
each 3D cropped image, we remove the top 2% of its intensity histogram to reduce artifacts,
which is then normalized to zero mean and unit variance.

Abdominal Multi-organ Segmentation. We adopt public CT data from (Landman
et al., 2015) with 30 patients, and the T2-SPIR MRI data from the ISBI 2019 CHAOS
Challenge (Kavur et al., 2021) with 20 volumes. We focus on adapting the segmentation
network to delineate four abdominal organs: liver, right kidney (R-kdy), left kidney

(L-kdy), and spleen. Since the UMMKD method does not report the detailed partitioning
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Layer 2D Transformer (Cao et al., 2021) 3D Transformer (Zhou et al., 2021)

Transformer Block Swin Transformer Block (Liu et al., 2021) Volume-based Self-attention
Down-sampling Patch Merging Strided Convolution
Up-sampling Patch Expanding Strided Convolution

[G1, G2, G3, G4] [2, 2, 2, 2] [2, 2, 2, 2]
[L1, L2, L3, L4] [2, 2, 2, 2] [2, 2, 2, 2]
Patch Size 4× 4 4× 4× 2

Table 3: Detailed configurations of 2D Transformer and 3D Transformer architectures cor-
responding to Fig. 1, where {Gi}4i=1 and {Li}4i=1 denote the basic number of Transformer
blocks for the Encoder and Decoder respectively.

of these two datasets, we attempt to align their practices for a more fair comparison. The
UMMKD method (Dou et al., 2020), in particular, employs only 9 MRI scans from the MRI
dataset and removes a low-quality CT scan from the CT dataset. As a result, we randomly
select 9 MRI cases from all 20 MRI scans five times and use the entire CT images from the
CT dataset to demonstrate the robustness of our method and then average the results of the
five randomized experiments to compare with their method. In accordance with UMMKD,
we randomly divided each data modality into 70% for training, 10% for validation, and
20% for testing. Following UMMKD’s pre-processing methods, we first resample them into
around 1.5×1.5×8.0 mm3 with a size of 256×256 in the coronal plane to eliminate the huge
difference in voxel-spacing between two datasets, and then perform intensity normalization
to zero mean and unit variance for each modality.

C.2. Evaluation Metrics

We assess segmentation performance using the Volume Dice Coefficient (Dice, %) and Aver-
age Symmetric Surface Distance (ASD, mm) metrics, calculating the average and standard
deviation of segmentation results for each class (Dou et al., 2020). Note that the final seg-
mentation results (mean and standard variance) in the abdominal multi-organ segmentation
task are calculated from the results of all the test samples in the five random tests.

C.3. Model Configuration

As in the main article, we implement 2D and 3D Transformers with various network archi-
tectures as the backbone to demonstrate the flexibility and general efficacy of our method.
Specifically, we adopt a 2D Transformer-based U-shaped Encoder-Decoder architecture
named Swin-Unet (Cao et al., 2021) for the multi-class cardiac structure segmentation.
For the abdominal multi-organ segmentation, we employ a 3D U-shaped Transformer with
a volume-based self-attention mechanism and strided convolution named nnFormer (Zhou
et al., 2021). We report the detailed network architecture in Table. 3.
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Figure 3: Three versions of Joint architecture: (a) Using modality-specific Encoder and
EAMs while sharing Decoder; (b) Sharing both Encoder and Decoder while keeping
EAMs as modality-specific; (c) Incorporating the modality-aware channel-wise multipli-
cation mechanism into each transformer block of shared Encoder and Decoder in the ar-
chitecture (b). Note that the input hexagons and rectangles denote modality-specific class
embeddings and patch tokens, respectively.

Appendix D. Few-shot Domain Adaptation

D.1. Experiment Setting

To assess the effectiveness of our method when training with limited samples of one modality,
we randomly select 1 or 3 samples from one modality’s (CT or MRI) training set while
training the model with all training data from another modality. We conduct all of the
few-shot domain adaptation experiments on MICCAI-MMWHS dataset.

D.2. Main Results

As shown in Table 4, when our multi-modal learning framework is trained with only 1 anno-
tated MRI image and all CT images, the value of mean Dice for MRI is only slightly lower
than Baseline (i.e. 0.4%), which is trained with all MRI images alone. This demonstrates
that when using complete CT training data, the proposed method can eliminate the impact
of insufficient MRI training samples. In such a case, the mean Dice of CT improves to
92.7% and the mean ASD decreases to 1.41mm, evidencing that the feature representation
of CT could also be enhanced by using only 1 MRI image. Moreover, when the number of
MRI training samples increases to 3, the mean Dice values improve to 93.3% on CT and
86.9% on MRI, surpassing the Baseline model.

When training with only 1 CT image and all of MRI images using our scheme, the
mean Dice of CT drops by 0.7% compared with Baseline model which is only trained with
all of CT images. Also, giving 1 annotated CT image improves the mean Dice of MRI by
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Methods
Cardiac CT Cardiac MRI

Overall Mean
LVM LAC LVC AA Mean LVM LAC LVC AA Mean

Dice Coefficient (avg.± std., %) ↑
Baseline 90.6±2.8 92.6±2.8 93.2±2.5 88.9±3.4 91.3 80.9±4.0 86.3±3.8 92.9±2.3 85.8±3.5 86.5 88.9
Ours (w/ CR) 90.9±2.0 94.8±1.6 94.5±2.1 95.9±1.4 94.0 81.6±2.5 89.6±3.3 94.4±1.3 89.2±2.8 88.7 91.4

One annotated MRI 90.7±2.7 93.1±2.5 93.3±2.8 93.7±2.4 92.7 (+1.4) 78.8±5.8 85.2±4.6 92.5±3.2 87.9±4.1 86.1 (-0.4) 89.4 (+0.5)
Three annotated MRI 90.4±2.3 93.7±2.0 93.9±2.7 95.0±1.9 93.3 (+1.2) 80.6±4.7 86.0±4.1 92.6±2.9 88.2±3.3 86.9 (+0.4) 90.1 (+1.4)

One annotated CT 88.2±3.4 91.2±3.5 91.4±2.2 91.6±3.3 90.6 (-0.7) 80.8±4.2 87.9±4.3 93.1±2.1 88.6±2.9 87.6 (+1.1) 89.1 (+0.2)
Three annotated CT 88.9±3.1 91.7±2.9 92.4±2.3 92.8±2.8 91.5 (+0.2) 81.1±3.7 88.4±3.5 93.5±1.8 88.9±2.7 88.0 (+1.5) 89.7 (+0.8)

Average Symmetric Surface Distance (avg.± std., mm) ↓
Baseline 1.49±0.33 1.84±0.44 1.38±0.35 1.46±0.28 1.54 1.71±1.43 1.37±0.64 1.46±0.89 2.69±1.27 1.86 1.70
Ours (w/ CR) 1.31±0.27 1.49±0.38 1.22±0.27 1.00±0.24 1.26 1.55±0.78 1.24±0.34 1.27±0.32 2.01±0.95 1.52 1.39

One annotated MRI 1.34±0.34 1.68±0.48 1.37±0.36 1.25±0.30 1.41 (-0.13) 1.89±1.59 2.04±0.93 1.63±1.01 2.36±1.18 1.98 (+0.12) 1.70 (+0.00)
Three annotated MRI 1.41±0.37 1.55±0.41 1.34±0.47 1.16±0.26 1.37 (-0.17) 1.73±1.28 1.82±0.87 1.51±0.83 2.24±1.06 1.83 (-0.04) 1.60 (-1.00)

One annotated CT 1.86±0.58 2.13±0.86 1.92±0.92 1.31±0.35 1.81 (+0.27) 1.75±1.31 1.44±0.47 1.42±0.75 2.08±1.02 1.67 (-0.19) 1.74 (+0.04)
Three annotated CT 1.69±0.44 1.95±0.71 1.61±0.59 1.26±0.37 1.63 (+0.09) 1.62±0.94 1.34±0.52 1.36±0.49 2.14±1.12 1.62 (-0.24) 1.62 (-0.08)

Table 4: The results of few-shot domain adaptation on cardiac segmentation by using
2D network.

1.1% and decreases the mean ASD of MRI by 0.17mm, highlighting the mutual promotion
between CT and MRI. Further, using 3 CT images raises the mean Dice to 91.5% on CT
and 88.0% on MRI, defeating UMMKD by 2.0% on MRI while maintaining competitive
performance on CT.

Figure 4: Visualization results on cardiac segmentation task and abdominal multi-organ
task. Left: AA, LAC, LVC and LVM. Right: Spleen, R-kdy, L-kdy and Liver. The
corresponding colormaps are red, green, blue and yellow, respectively.

Appendix E. Ablation Studies

E.1. Three Versions of Joint Architecture

To thoroughly evaluate the effectiveness of the different joint architectures and two con-
sistency regularization terms of our method, we provide three degenerate models of the
proposed method with or without the two consistency regularization losses. The detailed
architectures are shown in Fig. 3. We report the six experimental settings that conduct
the fixed 2D or 3D Transformer and hyper-parameters: (1) Joint V1 that is a joint Trans-
former with modality-specific encoder and EAMs, shared decoder, which is a conventional
multi-modal learning architecture (Nie et al., 2016) as shown in Fig. 3-1; 2) Joint V2 (de-
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noted as Joint Training in the main article) is a joint Transformer with shared encoder
and decoder, and modality-specific EAMs, as shown in Fig. 3-2; 3) Joint V3 (denoted
as Ours (w/o CR) in the main article) is trained based on Joint V2, implementing the
modality-aware channel-wise multiplication mechanism in each transformer block of the
shared encoder and decoder, as shown in Fig. 3-3; 4) Joint V1 (w/ CR) is trained based
on Joint V1 Transformer with two types of consistency terms Lmcr, Licr; 5) Joint V2 (w/
CR) is trained based on Joint V2 Transformer with two types of consistency terms Lmcr,
Licr; 6) Ours (w/ CR) that is our full cross-modal learning strategy by adding two types
of consistency terms Lmcr, Licr.

E.1.1. Cardiac Substructure Segmentation.

As shown in Fig. 3-1, based on the Baseline model, Joint V1 exemplifies a conventional
multi-modal Transformer architecture by using modality-specific encoders and EAMs while
sharing decoders. This model raises the Dice value to 91.9% for CT and 86.8% for MRI.
This clearly illustrates the Transformer’s ability to deal with multi-modal data with large
appearance differences at the same time, as well as the potential for mutual promotion
between different modalities by sharing some modules. In Fig. 3-2, Joint V2 targets to
further share decoder between different modalities to improve the parameter efficiency of
multi-modal Transformer. However, there is a decrease in segmentation results, i.e. Dice of
91.5% on CT and 86.2% on MRI. This suggests that in such a situation, modality discrep-
ancy has a significant impact on learned feature representations without introducing any
semantic consistency constraints. In Fig. 3-3, we introduce a modality-aware channel-wise
multiplication mechanism into each Transformer block of shared encoder and decoder. This
scheme improves segmentation results to 92.8% on CT and 87.4% on MRI, demonstrating
the efficiency of modality-specific activation calibration.

By leveraging proposed two types of consistency regularization terms, i.e. Lmcr and
Licr, the three multi-modal Transformer architectures Joint V1, Joint V2 and Joint V3 are
all boosted. Specifically, The Joint V1 (w/ CR) and Joint V2 (w/ CR) improve the Dice
value by 1.9% and 1.7% on CT respectively. The Joint V3 with Lmcr and Licr is marked as
Ours (w/ CR) in Table 5, and it achieves an overall Dice of 91.4% (i.e. the average of
94.0% on CT and 88.7% on MRI). In Fig. 4 (Left), we also present a visual representation
of the segmentation results for quantitative comparison.

E.1.2. Abdominal Multi-organ Segmentation.

Likewise, the multi-modal Transformer architecture Joint V1 improves the Dice value by
0.4% on CT and 0.2% on MRI when compared to the Baseline model trained from a single
modality. In contrast to Joint V1, sharing decoder in Joint V2 causes a slight segmentation
performance drop when the number of parameters is reduced. By integrating modality-
specific activation, Joint V3 improves the Dice values to 91.4% on CT and 91.6% on MRI,
outperforming both Joint V2 and Joint V1 by a significant margin. Furthermore, by using
the Lmcr and Licr, all three models improve significantly, and our full scheme achieves
the best segmentation results of 93.3% overall mean Dice and 0.76mm overall mean ASD.
Finally, we exhibit the visual segmentation results for quantitative comparison, as shown
in Fig. 4 (Right).
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Methods
Cardiac CT Cardiac MRI

Overall Mean
LVM LAC LVC AA Mean LVM LAC LVC AA Mean

Dice Coefficient (avg.± std., %) ↑
Backbone 90.0±3.2 92.5±2.9 92.6±3.0 87.4±3.8 90.6 79.9±4.6 85.3±3.9 92.0±2.7 84.9±2.9 85.5 88.1
Baseline 90.6±2.8 92.6±2.8 93.2±2.5 88.9±3.4 91.3 80.9±4.0 86.3±3.8 92.9±2.3 85.8±3.5 86.5 88.9

Joint V1 89.4±2.7 93.3±3.0 92.7±2.9 92.2±2.5 91.9 (+0.6) 80.5±4.2 87.3±4.3 92.2±2.4 87.0±3.2 86.8 (+0.3) 89.3 (+0.4)
Joint V2 89.1±2.8 93.0±2.7 92.8±3.3 91.2±2.6 91.5 (+0.2) 80.2±3.9 86.5±4.5 92.0±3.0 86.1±3.8 86.2 (-0.3) 88.9 (+0.0)
Joint V3 90.0±2.3 93.8±2.1 93.4±2.4 94.0±2.0 92.8 (+1.5) 81.0±3.1 87.4±3.6 93.5±2.1 87.8±3.0 87.4 (+0.9) 90.1 (+1.2)
Joint V1 (w/ CR) 90.2±2.0 93.7±1.8 93.6±2.2 95.1±1.6 93.2 (+1.9) 81.8±2.7 88.4±4.0 93.3±1.5 88.6±2.2 88.0 (+1.5) 90.6 (+1.7)
Joint V2 (w/ CR) 90.5±2.1 93.2±2.2 93.8±2.7 94.4±1.7 93.0 (+1.7) 81.5±3.4 88.0±4.2 93.4±1.9 88.1±3.4 87.8 (+1.3) 90.4 (+1.5)
Ours (w/ CR) 90.9±2.0 94.8±1.6 94.5±2.1 95.9±1.4 94.0 (+2.7) 81.6±2.5 89.6±3.3 94.4±1.3 89.2±2.8 88.7 (+2.2) 91.4 (+2.5)

Average Symmetric Surface Distance (avg.± std., mm) ↓
Backbone 1.67±0.46 1.95±0.54 1.43±0.47 1.51±0.41 1.64 2.12±1.57 1.74±0.85 1.41±0.81 3.74±1.68 2.25 1.95
Baseline 1.49±0.33 1.84±0.44 1.38±0.35 1.46±0.28 1.54 1.71±1.43 1.37±0.64 1.46±0.89 2.69±1.27 1.86 1.70

Joint V1 1.63±0.38 1.64±0.40 1.47±0.32 1.19±0.27 1.48 (-0.06) 1.99±1.07 1.36±0.57 1.51±0.73 2.89±1.33 1.94 (+0.08) 1.71 (+0.01)
Joint V2 1.58±0.35 1.70±0.44 1.39±0.35 1.33±0.38 1.50 (-0.04) 1.87±0.92 1.47±0.40 1.42±0.55 3.13±1.41 1.97 (+0.11) 1.74 (+0.04)
Joint V3 1.34±0.31 1.63±0.46 1.32±0.27 1.10±0.29 1.35 (-0.19) 1.84±0.81 1.22±0.53 1.39±0.58 2.05±1.10 1.63 (-0.23) 1.49 (-0.21)
Joint V1 (w/ CR) 1.29±0.26 1.65±0.44 1.28±0.30 1.13±0.28 1.34 (-0.20) 1.76±0.87 1.15±0.36 1.48±0.52 1.92±1.18 1.58 (-0.28) 1.46 (-0.24)
Joint V2 (w/ CR) 1.27±0.28 1.73±0.47 1.34±0.32 1.08±0.25 1.36 (-0.18) 1.69±0.85 1.18±0.47 1.50±0.64 1.97±1.26 1.59 (-0.27) 1.47 (-0.23)
Ours (w/ CR) 1.31±0.27 1.49±0.38 1.22±0.27 1.00±0.24 1.26 (-0.28) 1.55±0.78 1.24±0.34 1.27±0.32 2.01±0.95 1.52 (-0.34) 1.39 (-0.31)

Table 5: The performance of cardiac substructure segmentation by using 2D Transformer.

E.2. Effectiveness of Each Key Component

We employ four settings to verify the contribution of various key components: (a) we train
the Joint V3 model without using any consistency regularization terms for both CT and
MRI; (b) we only add the modality-level consistency regularization Lmcr onto Joint V3,
which corresponds to Eqn.10.; (c) we only add the instance-level consistency regulariza-
tion Licr onto Joint V3, which corresponds to Eqn.11.; (d) we add both Lmcr and Licr to
accomplish our multi-modal learning scheme.

Table 7 reports the mean value of Dice and ASD for each class. Adding Lmcr to Joint
V3 improves the average Dice to 92.9% on CT and 92.2% on MRI and decreases the average
ASD to 0.83mm on CT and 0.94mm on MRI. We also observe that the segmentation perfor-
mance of each class improves significantly, regardless of CT or MRI, proving that aligning
the representations of each class across various modalities could narrow the modalities’ dis-
crepancies in data distribution, allowing the network to be more generalized for both types
of data. Furthermore, only adding Licr onto Joint V3 results in a mean Dice improvement of
1.8% on CT and 0.7% on MRI. This demonstrates that facilitating the network to dynam-
ically learn the consistency of inter-class relationships at the image level within different
modalities could also enhance the network’s generalization to different modalities. Finally,
by including both Lmcr and Licr, the Dice value further improves to 93.7% on CT and 92.8%
on MRI, outperforming the variants that only add Lmcr and Licr, verifying that the two
regularization terms can be used jointly to pursue the structured semantic consistency and
effectively improve the segmentation performance.

E.3. Setting of Temperature Hyper-parameters

The hyperparameter τ in Licr is used to control the softness of the inter-class probability
distributions. We vary the value of τ to see how it affects the final segmentation results. As
τ only influences the Licr, we implement the Joint V3 model with only Licr added. Fig. 5
presents the segmentation performance changes (i.e. overall mean Dice). As the tempera-
ture τ increases from 1 to 4, the inter-class relation retains richer semantic information to
guide the cross-modality learning. However, when τ > 4, the more difficult pixel-wise con-
straints are exploited, and segmentation performance begins to deteriorate, possibly due
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Figure 5: The effect of temperature τ . Joint V3 is only used for comparison.

Methods
Abdominal CT Abdominal MRI

Overall Mean
Liver Spleen R-kdy L-kdy Mean Liver Spleen R-kdy L-kdy Mean

Dice Coefficient (avg.± std., %) ↑
Backbone 93.2±2.8 90.9±2.4 86.9±2.7 87.5±3.8 89.5 91.7±4.0 87.2±3.2 90.9±2.7 90.6±3.3 90.1 89.9
Baseline 93.6±2.2 92.1±2.6 87.9±1.8 87.7±3.6 90.3 92.9±3.3 87.8±2.9 92.0±2.5 91.4±3.1 91.0 90.7

Joint V1 93.9±2.5 92.7±2.3 88.2±2.0 88.1±3.2 90.7 (+0.4) 93.2±2.8 88.1±2.5 92.4±2.3 91.1±3.3 91.2 (+0.2) 91.0 (+0.3)
Joint V2 94.0±2.6 92.5±2.2 87.8±2.9 87.9±3.4 90.6 (+0.3) 92.6±3.4 87.3±3.1 91.2±1.9 90.8±3.7 90.5 (-0.5) 90.5 (-0.2)
Joint V3 94.6±2.2 93.3±1.8 88.9±2.3 88.7±3.5 91.4 (+1.1) 93.8±2.3 88.5±2.7 92.7±1.5 91.5±3.1 91.6 (+0.6) 91.5 (+0.8)
Joint V1 (w/ CR) 95.3±1.8 94.3±1.1 91.6±1.0 91.2±2.5 93.1 (+2.8) 94.2±1.7 89.3±2.1 93.3±1.1 92.6±2.3 92.4 (+1.4) 92.7 (+2.0)
Joint V2 (w/ CR) 95.1±1.7 93.9±1.5 91.3±1.4 91.0±2.7 92.8 (+2.5) 94.0±1.9 89.1±1.8 92.8±0.6 92.2±2.0 92.0 (+1.0) 92.4 (+1.7)
Ours (w/ CR) 95.8±1.4 94.9±1.3 92.3±0.9 91.8±2.2 93.7 (+3.4) 94.7±1.5 89.9±1.2 93.6±0.8 93.0±1.4 92.8 (+1.8) 93.3 (+2.6)

Average Symmetric Surface Distance (avg.± std., mm) ↓
Backbone 1.19±0.91 1.18±0.82 1.84±1.06 1.10±0.78 1.33 1.20±0.68 1.27±0.79 1.36±0.94 1.37±0.71 1.30 1.31
Baseline 1.12±0.75 0.98±0.68 1.60±0.93 1.05±0.65 1.19 1.07±0.52 1.19±0.76 1.22±0.80 1.23±0.64 1.18 1.18

Joint V1 1.07±0.56 0.79±0.45 1.45±0.71 0.93±0.49 1.06 (-0.13) 1.12±0.46 1.06±0.52 1.18±0.62 1.30±0.55 1.17 (-0.01) 1.11 (-0.07)
Joint V2 1.03±0.62 0.85±0.51 1.87±0.84 0.96±0.58 1.18 (-0.01) 1.19±0.56 1.32±0.73 1.27±0.85 1.34±0.67 1.28 (+0.10) 1.23 (+0.05)
Joint V3 0.94±0.58 0.75±0.37 1.37±0.61 0.82±0.43 0.97 (-0.22) 1.01±0.49 1.18±0.64 1.03±0.69 1.15±0.53 1.09 (-0.09) 1.03 (-0.15)
Joint V1 (w/ CR) 0.72±0.25 0.68±0.23 0.95±0.37 0.70±0.18 0.76 (-0.43) 0.91±0.37 0.86±0.48 0.94±0.43 0.88±0.32 0.90 (-0.28) 0.83 (-0.35)
Joint V2 (w/ CR) 0.91±0.41 0.72±0.29 1.06±0.43 0.75±0.22 0.86 (-0.33) 0.89±0.30 0.92±0.57 0.97±0.56 0.94±0.42 0.93 (-0.25) 0.90 (-0.28)
Ours (w/ CR) 0.87±0.29 0.58±0.17 0.84±0.32 0.72±0.24 0.75 (-0.44) 0.83±0.36 0.56±0.23 0.85±0.39 0.83±0.37 0.77 (-0.41) 0.76 (-0.42)

Table 6: The performance of abdominal multi-organ segmentation by using 3D Transformer.

to optimization difficulties. Based on the above results, we use τ = 4 in all subsequent
experiments.

Appendix F. Discussion

This paper aims to address cross-modal medical image segmentation based on the unpaired
training samples, e.g., CT and MRI images. Such multi-modal learning allows a single

Methods
Abdominal CT Abdominal MRI

Overall Mean
Liver Spleen R-kdy L-kdy Mean Liver Spleen R-kdy L-kdy Mean

Dice Coefficient (avg.± std., %) ↑
Joint V3 94.6±2.2 93.3±1.8 88.9±2.3 88.7±3.5 91.4 93.8±2.3 88.5±2.7 92.7±1.5 91.5±3.1 91.6 91.5
Joint V3 + Lmcr 95.3±2.0 94.4±1.9 91.1±1.5 90.8±3.1 92.9 (+1.5) 94.2±1.8 89.0±1.7 93.3±1.2 92.1±1.9 92.2 (+0.6) 92.5 (+1.0)
Joint V3 + Licr 95.1±1.8 94.5±1.6 91.6±1.7 91.6±2.8 93.2 (+1.8) 94.4±1.6 89.3±1.5 93.0±1.6 92.4±2.2 92.3 (+0.7) 92.7 (+1.2)
Joint V3 + Lmcr + Licr 95.8±1.4 94.9±1.3 92.3±0.9 91.8±2.2 93.7 (+2.3) 94.7±1.5 89.9±1.2 93.6±0.8 93.0±1.4 92.8 (+1.2) 93.3 (+1.8)

Average Symmetric Surface Distance (avg.± std., mm) ↓
Joint V3 0.94±0.58 0.75±0.37 1.37±0.61 0.82±0.43 0.97 1.01±0.49 1.18±0.64 1.03±0.69 1.15±0.53 1.09 1.03
Joint V3 + Lmcr 0.91±0.46 0.67±0.31 0.98±0.52 0.77±0.37 0.83 (-0.14) 0.96±0.43 0.79±0.45 0.98±0.66 1.04±0.49 0.94 (-0.15) 0.89 (-0.14)
Joint V3 + Licr 0.88±0.37 0.65±0.28 0.93±0.43 0.74±0.33 0.80 (-0.17) 0.91±0.35 0.74±0.38 0.89±0.51 0.96±0.45 0.88 (-0.21) 0.84 (-0.19)
Joint V3 + Lmcr + Licr 0.87±0.29 0.58±0.17 0.84±0.32 0.72±0.24 0.75 (-0.22) 0.83±0.36 0.56±0.23 0.85±0.39 0.83±0.37 0.77 (-0.32) 0.76 (-0.27)

Table 7: Ablation studies on abdominal multi-organ segmentation with 3D Transformer.
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model to analyze data from multiple imaging devices, which greatly improves the efficiency
of data usage. To better exploit the cross-modality information, we propose a novel method
to accomplish cross-modal segmentation through learning structured semantic consistency
between different modalities. Our model is designed for unpaired multi-modal images and
is stable during the training phase. To learn structured semantic consistency across modal-
ities (i.e. the consistencies of semantic class representations and their correlations.), we
introduce a carefully designed External Attention Module (EAM) to conduct semantic con-
sistency regularizations both at the modality and image levels. Such a module is very simple
and flexible to use. It is only an external module used to embed cross-modal semantic con-
sistency into the backbone network during the training phase, thus can be removed during
the testing phase, ensuring the simplicity of the model. Moreover, the input of EAM is only
the feature maps extracted at the specific scale. Therefore, it can be easily integrated onto
various existing 2D and 3D Transformer architectures.

During the training process, we first construct globally learnable class embeddings for
each modality, with the goal of capturing the representation of each class within each modal-
ity. Given that we use the same label taxonomy for unpaired CT and MRI, one intuitive
strategy for learning consistent semantic information is to directly align class representa-
tions across modalities. However, we find that globally aligned class representations will
not render the network more robust to sample variations. Driven by such a discovery, we
further encourage the network to learn consistent semantic information at the image-level.
The previous approach (Dou et al., 2020) directly align confusion matrices of predicted
results across modalities. In contrast, we highlight semantic propagation at multiple scales
from global to local, by interacting the global class representations across the entire dataset
with the semantic features of each image, so as to learn image-specific class representations.
Then, we derive multi-scale inter-class correlations within each image and dynamically es-
tablish its consistency between different modal data during training.

We conduct extensive evaluations on two medical image segmentation scenarios, outper-
forming the state-of-the-art methods with a large margin, i.e. 2.6% and 2.5% improvements
on overall mean Dice for two tasks respectively. We further utilize few-shot setting to see
how our method performs when one modality has far fewer samples than the other. Surpris-
ingly, we find that a modality with a small number of training samples can boost the training
of another modality with a large number of training samples, and a modality with a large
number of training samples can greatly supplement the problem of another modality with
a small number of training samples. And it is worth noting that since Transformer requires
a large amount of data for training, we still initialize the model pretrained on Image-Net
(Deng et al., 2009) for both datasets due to the limited data availability, otherwise, the
performance will suffer.

A few limitations of the proposed method should be mentioned. Although the proposed
method outperforms the state-of-the-art unpaired multi-modal learning schemes, the seg-
mentation accuracy still has very huge room for improvement since we only use the basic
Transformer architectures. This should be acceptable since we mainly focus on learning
to align the structured semantic information from different modalities but not the detailed
backbone network architecture design for pixel-level predictions. In addition, although the
proposed method allows exploring more modalities (e.g., CT, MRI, and X-ray) to learn
semantic consistencies simultaneously. When the number of modalities increases, how to
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align the semantic consistencies across these modalities is still not well addressed. One of
the most straightforward ways is to group all modalities in pairs and align them one group
by another. However, such a scheme may not the most efficient one when training the
model. We plan to design a simple yet effective strategy to tackle the above issue in our
future work.

Overall, we propose a novel scheme to learn structured semantic consistency between
different modalities from unpaired samples via an attention mechanism. We apply it to the
joint semantic segmentation of CT and MRI, whose appearances have a large discrepancy,
and it achieves significant progress compared with counterparts. Intuitively, such a scheme
can be easily extended to other domain alignment problems. For example, it can also
learn unified abdominal organ representations from multiple datasets with different label
taxonomy. This is common in practice, e.g., some datasets label the left kidney and right

kidneys as the same kind, while others label them as different semantic classes, or some
datasets label the intestines as a single class, while others distinguish it with different
segments. To tackle such an issue, we just need to introduce a learnable transformation
matrix in our proposed EAM module to learn the mapping relationships between different
semantic labels. We will explore these extensions in future work.
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