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Abstract

To enable parameter-efficient fine-tuning of large language models (LLMs), Low-Rank
Adaptation (LoRA) reduces parameters by freezing pretrained weights Wy and approxi-
mating updates via low-rank matrices AW = BA. However, standard LoRA neglects the
differential impact of low-rank matrix components on model performance and suffers from
slow convergence due to random initialization. To address this, we propose a dual-module
architecture: The shared module inherits pretrained weights’ core semantic representations
through principal component initialization, retaining residuals in the original model.The
expert module incorporates a selection mechanism guided by importance screening, with
orthogonality constraints imposed through loss regularization to ensure independence in pa-
rameter update directions. The shared module accelerates convergence by updating world
knowledge, while the expert module dynamically screens domain knowledge to achieve effi-
cient allocation of updated budgets. Extensive experiments under identical configurations
show our method achieves 76.8% average accuracy on Commonsense 170k (Llama 2-7B),
surpassing LoRA by 2.1%. On GSMS8K and HumanEval, it outperforms LoRA by 2.3%
and 9.7%, respectively.

Keywords: LoRA; fine-tuning; singular value decomposition; pre-trained models

1. Introduction

Pre-trained language models have advanced significantly, scaling from millions to hundreds
of billions of parameters while demonstrating remarkable pattern recognition and knowledge
emergence capabilities (Achiam et al. (2023)). Although these models exhibit strong cross-
domain generalization, substantial distributional shifts between pre-training corpora and
domain-specific data challenge specialized applications (Parthasarathy et al. (2024)). This
has established parameter-efficient fine-tuning (PEFT) as a vital research frontier (Han et al.
(2024)). PEFT methods substantially reduce the computational, memory, and storage costs
of full-parameter tuning while maintaining comparable downstream task performance.

As a parameter-efficient fine-tuning method, Low-Rank Adaptation (LoRA) freezes the
original pre-trained weights Wy and introduces trainable low-rank matrices to approximate
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parameter updates (Hu et al. (2021)). It parameterizes the incremental matrix AW using
the product of two low-rank matrices A and B:

W =Wy + AW = Wy + BA. (1)

where AW € RT1*42 A ¢ R™*9%2 B € RM*" and r < {dy,d>}. Remarkably, LoRA achieves
performance comparable to full fine-tuning while utilizing merely 2% of the pre-trained
model’s trainable parameters.

Building on LoRA’s high parameter efficiency and flexible adaptability, recent innova-
tions include adaptive dimension adjustment via singular value thresholding (Zhang et al.
(2023)) and optimized low-rank matrix initialization strategies that accelerate knowledge
updates (Meng et al. (2024)). However, critical challenges remain. First, during domain
adaptation tasks—characterized by narrow data distributions, strong task specificity and
limited annotated samples—LoRA outputs exhibit high concentration, causing dimensional
redundancy in latent representations (Zhou et al. (2024)). But hasty pruning of redundant
components may hinder the low-rank matrix’s capacity to update world knowledge, while
abrupt compression of the parameter space exacerbates gradient competition phenomena.
Second, Gaussian and zero initialization of matrices A and B induces slow convergence
during complex fine-tuning due to local optima trapping (Meng et al. (2024)). Although
biased initialization strategies enhance stability and convergence speed, they may disrupt
parameter isotropy, causing premature convergence in pretrained feature subspaces.

To address these limitations, we draw inspiration from prior LoRA studies and Mixture-
of-Experts (MoE) architectures. MoE employs dynamic sparse activation for efficient scal-
ing: decomposing neural networks into specialized expert subnets and routing tasks via
gating networks, enabling computation with partial parameter activation (Shazeer et al.
(2017)). Notably, the recently proposed MoE architecture in DeepSeek-V3, incorporat-
ing a shared-and-routed expert design with auxiliary-loss-free load balancing, significantly
enhances model performance and generalization capability (Liu et al. (2024)).

We propose a novel dual-module collaborative architecture for pretrained model fine-
tuning. Our key contributions are:

e We design a dual-module framework. The shared module, initialized via SVD, pro-
cesses all inputs to capture universal patterns, providing stable foundational repre-
sentations that accelerate convergence.The expert module filters specialized matri-
ces through importance evaluation, masking low-importance components for efficient
domain-specific adaptation.

e We validated the effectiveness of our fine-tuning approach across multiple datasets.
Through ablation studies, matrix freezing experiments and training overhead analy-
sis, we demonstrate the functional roles and computational costs of individual mod-
ules during fine-tuning.

2. Related Works

Parameter-Efficient Fine-Tuning (PEFT) aims to reduce the number of parameters requiring
updates during adaptation, thereby lowering computational and costs (Zhang et al. (2025)).
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Mainstream PEFT approaches can be broadly categorized into four classes (Han et al.
(2024)): additive PEFT, selective PEFT, reparameterized PEFT and hybrid PEFT.

Low-Rank Adaptation (LoRA), as a reparameterized PEFT method, leverages the low-
rank property of matrices to reduce the number of parameters updated during adaptation
(Hu et al. (2021)). By introducing two low-rank matrices A, B, it substitutes weight updates
with the low-rank product AW = BA. Compared to full fine-tuning, LoRA demonstrates
advantages including parameter efficiency, zero inference overhead, modular adaptation and
knowledge preservation. Building on LoRA’s framework, researchers have advanced studies
in parameter efficiency enhancement (Zhang et al. (2023)), parameter quantization (Hubara
et al. (2018)), and rank adaptation strategies (Ren et al. (2024)). Our method represents an
improvement upon LoRA, retaining most structural advantages of the original framework
while enhancing its performance through enhanced parameter efficiency.

Building upon the foundational LoRA architecture, researchers have sought to enhance
LoRA to more effectively capture task-specific features. A significant branch of this effort
involves integrating LoRA with Mixture-of-Experts (MoE) architectures. MoE architecture
comprises expert networks and a gating network within each MoE layer (Shazeer et al.
(2017)). By routing inputs to the most suitable expert via the gating mechanism, MoE en-
ables efficient processing of domain-specific tasks by activating only a subset of parameters,
thereby achieving parameter efficiency.

Integrating LoRA with MoE allows models to learn multiple expert low-rank matrix
pairs, with a gating network selecting experts based on input content. This enhances
knowledge retention during fine-tuning and enables effective multi-task handling (Luo et al.
(2024)). While our method differs philosophically from MoE, its dual-module architecture
and expert module design draw inspiration from MoE’s structure to enhance fine-tuning
performance.

3. Proposed Method

We innovatively constructs a dual-module collaborative architecture that decomposes the
incremental matrix AW of LoRA into a shared module incremental matrix AWgp.re and an
expert module incremental matrix AWeyxpert, While adjusting the pretrained matrix. The
schematic diagram of the proposed method is illustrated in Figure 1. The forward pass is
formulated as:

Y = Wies® + AWgpare® + AWexpertx = Whres® + Bshare Ashare + BexpertE Aexpertx ) (2)

where Agare € Rdinxrshare’ Bihare € RrshareXdout’ Aexpert c Rdinx"'expert’ Bexpert € R7expert Xdout
and diagonal matrix £ € RexertXTexpert  The configuration satisfies d > Texpert > Tshare-
During fine-tuning, the adjusted pretrained weight matrix Wi..s remains frozen, while normal
gradient updates are applied to low-rank matrices in both modules. For the diagonal matrix
E, to leverage its expert screening function, additional specialized updates are applied at
periodic intervals.

3.1. Shared Module Based On SVD

The shared module, serving as the fundamental feature processor that receives all inputs,
should possess the capability for universal feature extraction and maintain a feature space
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Figure 1: Overall Methodology

characterized by the prior knowledge representation of the pre-trained model. Therefore,
we have made certain adjustments to both its initialization and training processes.

3.1.1. INITIALIZATION METHOD

The pre-trained weight matrix Wy € R%»*dout yndergoes economy-sized singular value de-
composition:

Wo=USVT (3)

where U € Réinxmin(din,dout) and V' e Rmm(dimd“t)wout are the matrices of singular vectors,
VT is the transpose of matrix V; § € R™in(din.dout)xmin(din.dout) i g diagonal matrix, with
its diagonal elements being the singular values {0 }1«i<min(din,dow) atTanged in descending
order.

Based on the magnitude of the singular values, the singular triplet 6 = {U,S,V}
is partitioned. The first rqpae primary singular values and their corresponding singular
vectors constitute the primary triplet Omain = {U[,rshare] Slirenaresenare]? V[ rshare]} This
triplet retains the principal information of the pre-trained weights, satisfying Y . o2 ~
anuf(dm’dout) 2 The remaining triplet, containing the residual singular values and vectors,
is denoted as the residual triplet dpes = {U [rsharei]s Olrenaret Fehare] V[:,rshare:]}' The objective
of the shared module is to assign the primary triplet dman to two low-rank matrices such
that Aghare Bshare = U[37:Tshare]S[:Tshare::rshare]‘/[:T,:rshare] , thereby efficiently approximating the
principal components of the original matrix via low-rank adapters.

We evenly decompose S, . and combine its components with U,

'Tshare} »*T'share

] respectively, assigning the results to the adapter matrices of the shared module.

] and
T
[: ;Tshare

NI

— din X,
Ashare B U[:’:rShare]S[:Tsharey:rshare] € R Share7 (4)
1

Bshare =57

v
[:rshare::"'share] [:7:Tshare}

c Rrshare X dout . (5)

The remaining residual triplet d.es is combined and assigned to the pre-trained weight
to correct the approximation error, thereby preventing the original world knowledge from
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adversely affecting the updated world knowledge fine-tuned for the target domain:
Wres = U[:v"”share:]S[T‘sharel,rshare:]‘/[:—l:rshare:] (S RdinXdOUC, (6)

The shared module, initialized with principal components of pre-trained weights, cap-
tures the model’s fundamental knowledge extraction capability despite minimal parameters.
As singular values quantify dimensional information content, and dominant singular values
retain most model information (Golub and Van Loan (2013)), initializing with the primary
triplet dpain minimizes Frobenius norm approximation error. This enables direct fine-tuning
of the most critical weights, accelerating convergence and enhancing stability. The initial-
ization incurs negligible overhead through the Fast SVD technique (Halko et al. (2011)),
with detailed cost analysis in Subsection 4.4.

3.1.2. TRAINING ADJUSTMENTS

The shared module encodes the representational capacity of the pre-trained model’s prior
knowledge upon parameter initialization. Functioning as the core component during fine-
tuning, this module performs critical functions, including extracting foundational semantic
features from inputs, establishing semantic associations and updating world knowledge sys-
tems.Given these essential characteristics, we implement a gradient protection scheme: The
dropout rate for the shared module is permanently fixed at zero.

This design is motivated by two principles. First, large language models pre-trained
on massive corpora converge in knowledge-dense parameter spaces, where weights already
possess optimized generalization capabilities. Introducing random dropout to the shared
module—initialized via principal components of these pre-trained weights—could disrupt
well-established semantic feature representations, thereby degrading world knowledge mod-
eling. Second, while the shared module disables dropout, the proposed method retains
randomized dropout in expert modules. This dual-channel design effectively mitigates task-
specific overfitting during fine-tuning. Through this adjustment, the method preserves the
pre-trained model’s fundamental representational capacity within the shared module, pro-
viding stable initialization for downstream task optimization.

3.2. Expert Module Based On Importance Screening

During LoRA for domain-specific tasks, the output distributions of LoRA increments across
layers are relatively concentrated, with each low-rank matrix containing a significant portion
of components with minimal impact (Zhou et al. (2024)). Therefore, the purpose of the
expert module is to identify and retain high-contribution components within each low-rank
matrix, thereby achieving efficient parameter budget allocation for specific fine-tuning task.

We construct a diagonal matrix E to perform expert selection, adjusting the influence of
the triplet ¢ = {Bexpert, £, Aexpert } 00 the model’s output by controlling the values within
E. For the incremental matrix AWeypert of the expert module, its structure follows from
matrix properties:

Texpert

AV[/vexpert = BexpertEAexpert = E BexpertiEiAexpertia (7)
=1
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where Aexpert; € R%n*1 denotes the i-th column of matrix Acxperts; Bexpert; € R1xdout de-
notes the i-th row of matrix Bexpert, and Ej is the i-th element of the diagonal matrix F.
Each AWexpert; = Bexpert; FiAexpert; € Réinxdout for § € [1, Texpert), can be regarded as an
individual expert matrix. Thus, the incremental matrix AWeypers of the expert module can
be viewed as being composed by concatenating a series of these smaller expert matrices,
and the number of experts approximately equals the low-rank dimension rexpers of the ex-
pert module. The expert module evaluates the contribution of each expert matrix to the
incremental output and performs screening accordingly.

To this end, the expert module must address two critical issues: How to evaluate the
importance scores I for each of the 7expert experts within every low-rank module across
each layer, enabling their importance ranking; How to ensure that controlling the diagonal
matrix F effectively facilitates the screening of expert knowledge.

3.2.1. IMPORTANCE ASSESSMENT

For the first issue, we adapts sensitivity-based importance screening (Molchanov et al.
(2019); Sanh et al. (2020); Liang et al. (2021); Zhang et al. (2022, 2023)). Sensitivity-based
importance screening posits that during model training, the importance score I of element
w;; at row ¢ and column j in weight matrix W is determined by its sensitivity score S and
uncertainty score U. The sensitivity score S is defined as the absolute value of the product
between the parameter weight and its gradient:

S(wij) = [wij - Vi, L]. (8)

However, since sensitivity scores S are estimated on minibatches, stochastic sampling
variability introduces substantial uncertainty when applying Formula 8. Therefore, dur-
ing training step t, the proposed method employs linear moving averaging on sensitivity
scores S to mitigate evaluation errors from individual batch samples, yielding the updated
sensitivity score S’. Here 0 < 31 < 1 represents the smoothing sensitivity factor for the
exponential moving average:

S'(wiz) = BrS" M wij) + (1 + B1) S (wij). 9)

The uncertainty score U is defined as the absolute difference between the original sen-
sitivity score S and its linearly averaged counterpart S

U(wiz) = |S(wiz) = S(wi)]- (10)

Similarly, during training step ¢, linear moving averaging is applied to uncertainty scores U?,
producing the updated uncertainty score U’. The smoothing sensitivity factor 0 < 2 < 1
governs the exponential moving average for uncertainty:

U (wij) = BoU"H(wig) + (14 B2)U* (wyy). (11)

By multiplying the sensitivity score S* and the uncertainty score U?, the importance
score I*(w;j) for each parameter is obtained:

IMwij) = S (wig) U (wij). (12)
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For the expert module approach, to achieve expert screening, it is essential to determine

the importance of each expert matrix triplet ¢! = {Bexpert , B, Aexpert H <i<rexpers during
the t-th training iteration. Aexpert = {Aéxpertl h<j<d, € Rd"‘X1 denotes the i-th column
of A} and E!

represents the i-th element of the diagonal matrix E?. Following Formula 12, the importance
score for each expert triplet in the ¢-th update is derived as:

expert?

t _ t 1><d
Bexperti = {Bexpertji}lgjédout € R**%ut denotes the i-th row of Bexpert,

dout dout

(Cz) - ¢ Z It expert Z It expert” (13)
dou din =1

3.2.2. EXPERT SCREENING

Regarding the second issue, by ensuring that the Bexpert and Aexpers matrices in the triplet
are approximately orthogonal, each expert can independently influence the model’s output
while guaranteeing information uniqueness along each parameter direction. This enables
effective screening of experts across different knowledge directions through a single diagonal
matrix F. To maintain orthogonality of the Beypert and Aexpers matrices during training,
we introduce a loss constraint term Lorinog:

Lorthog = R( expert Aexpert) —H BexpertBexpert I ||F + H AexpertAexpert 1 ”F . (14)

The constraint term Lgrihog, multiplied by an orthogonality penalty coefficient v, is
added to the original forward propagation loss Leyrward to form the total loss for backprop-
agation:

Ltotal = Lforward + 7Lort110g- (15)

Through the method in 3.2.1, each expert matrix’s importance score I*(¢!) is computed
post-backpropagation per training iteration. During expert selection, matrices are ranked by
these scores, with the top-k® experts selected (k' denoting the selection scope). Given total
total training iterations with transition points t; and to, the selection scope k! undergoes
three distinct phases: it maintains an initial value ki,;; until £1, square decay between t; and
ta, and finally stabilizes at kgna until the end. This dynamic selection strategy is formally
expressed in Formula 16. Given the concentrated output distribution of LoRA experts, we
set Kinit = Texpert and Kgna) slightly smaller than rexpert.-

Kinit 0<t<ty
2
k' =< kpinal + (Finit — Kfinal) <1 - %> t1 <t < tiotal — t2 - (16)

ttotal—t1—12
kﬁnal O.W.

This phased strategy enables comprehensive expert importance exploration during ini-
tial training, prevents premature rank collapse through gradual mid-phase reduction, and
leverages stabilized expert importance distributions during late-stage training to optimize
expert system performance.

Consequently, during training timesteps ¢ € [0,¢1), since the selection scope kiniz =
Texpert, the method does not require expert selection and proceeds with normal gradient
updates. During training timesteps ¢ € [0, t2), at AT step intervals, the method computes
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the current importance score I*(¢!) for each expert matrix and implements expert selection
by retaining diagonal elements in E corresponding to the top-k! experts, while zeroing out
others. The specific formulation is as follows:

B = (Et It(CZ)) ,when t = nAT,

(Et It(CZ)) _ {E‘f, if It(Cf) is in top-k? of {It(C;)}léjgrexpert . (17)

0, 0.W.

Where n € N*. Ei(® denotes the i-th element of the diagonal matrix E updated via
backpropagation of the loss during the ¢-th training round:

E =FE'— nVeLl ( E* Aéxpert) (18)

expert?

During ¢ € [to, tiotal), the method discontinues importance evaluation and instead fixes
the selection scores to %2 (CEQ), maintaining the selection formula in Formula 17. This design
leverages stabilized expert importance distributions while preventing training instability
that could arise from stochastic gradient-induced erroneous masking of critical matrices,
particularly given the constant selection scope k* for t € [ta, tiota1) as defined in Formula 16.

The proposed method implements masking in diagonal matrix F rather than direct ma-
trix pruning, primarily to mitigate irrecoverable loss from erroneously pruned critical ex-
perts. When element E; is incorrectly zeroed, its impact on the importance score I¢(¢ti) in
Formula 13 remains negligible, preserving reactivation potential. Conversely, direct prun-
ing of low-importance components necessitates discarding corresponding triplet elements
¢ti, which permanently precludes reactivation and causes irreversible information loss. Fur-
thermore, since the Bexpert and Aexpert matrices are not strictly orthogonal, direct pruning
could also adversely affect the utility of other experts.

4. Experiments

All experiments in this chapter utilized a single NVIDIA A100-PCIE (80GB) GPU. Training
employed cosine-annealed AdamW optimization with LoRA adapters applied across all base
model linear layers. For our method, LoRA dropout rate was set to 0.05 for expert module
and 0 for shared module. Complete hyperparameters are tabulated in Table 1. BFloat16
computation was utilized for both base models and adapters to conserve resources. Unless
specified, reported losses exclusively reflect forward propagation loss (Ltorward), e€xcluding
orthogonal regularization (Lorthog) for cross-method comparability.

4.1. Natural Language Generation Experiments

All experiments employed the Llama 2-7B model (Touvron et al. (2023)), sequentially fine-
tuned and evaluated across three specialized domains: commonsense reasoning was assessed
by fine-tuning on the Commonsense 170K dataset (Hu et al. (2023)) with an 8:2 train-
test split and evaluating across eight sub-datasets; mathematical capability was validated
through MetaMathQA (Yu et al. (2023)) fine-tuning and GSM8K (Cobbe et al. (2021))
evaluation; coding proficiency was tested via CodeFeedback (Zheng et al. (2024)) fine-
tuning followed by evaluation on HumanEval (Chen et al. (2021)) and MBPP (Austin et al.
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Table 1: Training hyperparameters for natural language generation tasks
Hyperparameter Commonsense 170k MetaMathQA  CodeFeedback

Learning Rate 2e-5 le-5 le-5
Batchsize 64 64 64
Epochs 1 1 1

LoRA Rank 8 128 128

LoRA Alpha 32 128 128
Tshare 4 64 32
Texpert 4 64 96

t1 Ratio 0.2 0.15 0.15

to Ratio 0.5 0.5 0.5

b1 0.85 0.85 0.85

B2 0.85 0.85 0.85

AT 10 10 10

vy 0.3 0.1 0.1

kfinal 3 48 80

(2021)). Hyperparameters for each dataset correspond to columns in Table 1, respectively.
Only 100k-sample subsets of both training datasets were used to reduce computational
costs.

Table 2 comprehensively compare our method with original LoRA across commonsense
reasoning and specialized domains in natural language generation. In commonsense tasks,
our approach outperforms LoRA on most datasets such as social QA (BoolQ +0.6%, SIQA
+0.7%, HellaSwag 40.9%) and scientific and physical QA (PIQA +0.8%, ARC-easy +7.1%,
ARC-challenge +5.9%, OpenBookQA +2.5%), with the sole exception being Winogrande
where it marginally underperforms. For specialized domains, our method achieves +2.3% ac-
curacy on GSM8K mathematical problems and +9.7% on HumanEval coding tasks, though
slightly underperforming on simpler MBPP coding tasks. These results evidence superior
commonsense reasoning capabilities alongside marked gains in mathematical and coding
proficiency versus original LoRA.

Across commonsense reasoning , mathematical reasoning , and code generation tasks
(Figure 2), our method(blue curve) consistently demonstrates three convergent advantages
than LoRA (orange curve): (1) accelerated initial convergence despite higher starting loss
(evidenced by 15% faster descent in early commonsense training, rapid reduction below
baseline within 50 code epochs); (2) superior steady-state performance with final loss re-
ductions of 10.9% (Commonsense), 2.3% (MetaMathQA) and 4.3% (CodeFeedback) versus
original LoRA; (3) enhanced gradient efficiency where lower gradient norms achieve bet-
ter performance—attributed to expert selection mechanisms. These behavior stems from
dual mechanisms: the expert module initially allocates gradient budget to orthogonalization
constraints, elevating early loss but subsequently enabling superior resource allocation via
constraint-driven expert selection, maintaining performance with reduced gradient norms;
the shared module’s direct optimization on principal components of pretrained weights fa-
cilitates rapid loss reduction.
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Table 2: The accuracy of different methods in different dataset. The best results are denoted

in bold.
Training Dataset Trainable Parameter Validation dataset LoRA  Test
BoolQ 68.9 69.5
PIQA 80.7 81.5
SIQA 774 78.1
HellaSwag 781 79.0
Commonsense 20m(0.29%) WinoGrande 78.8 T7.1
ARC-e 77.8  84.9
ARC-c 61.3 67.2
OBQA 74.8 T7.3
Average ACC 4.7  76.8
MetaMathQA 320m(4.53%) GSM8K 36.5 38.8
HumanEval 104  20.1
CodeFeedback 320m(4.53%) MBPP 344 333

Math Training Loss

g Loss

ning Loss

Training Steps : Training Steps

—Test —LoRA —Test —LoRA —Test —LoRA
(a) (b) (c)
Commonsense Training Grad Norm Math Training Grad Norm Code Training Grad Norm

g Grad Norm
raining Grad Norm

Training Grad Norn
T

Training Steps Training Steps Training Steps
—Test —LoRA —Test —LoRA —Test —LoRA

(d) (e) (f)

Figure 2: (a), (b) and (c) present the training loss curves for different methods on the
Commonsense, MetaMathQA and CodeFeedback dataset, respectively. (d), (e)
and (f) present the radient norm curves on corresponding dataset.

4.2. Low-rank Matrix Freezing Experiment

Prior studies suggest that constraining the learning rate for matrix A in low-rank adapta-
tion may enhance fine-tuning performance (Hayou et al. (2024)). We therefore investigate
the impact of weight freezing strategies on our method through four configurations: (1)
origin_ test: freezing only original weight matrices; (2) freeze_ As_test: freezing original
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weights and initialized Agpare; (3) freeze Ae test: freezing original weights and Acxpert; (4)
freeze_A_ test: freezing original weights and all A matrices.

Initial experiments were conducted on a simplified dataset. Using a 15k random subset
from Commonsense 170k, we yield the training and test loss curves in Figure 3. To fur-
ther validate low-rank matrix freezing effects at scale, we fine-tuned Llama 2-7B on 100k
subsets of MetaMathQA and CodeFeedback using baseline (origin__test, blue curve) and op-
timal configuration in simplified dataset (freeze_ As_ test, orange curve). Hyperparameters
correspond to columns in Table 1, respectively. Subsequent evaluation covered GSMS8K,
HumanEval, and MBPP.

Freeze Experiment Training Loss Freeze Experiment Code Training Loss

Freeze Experiment Math Training Loss

Training Loss
Training Loss

Training Steps Training Steps

Training Steps >
—origin_test —frecze_As_test —origin_test —freeze_As_test
(a) (b) ()
Freeze Experiment Test Loss Freeze Experiment Math Grad Norm Freeze Experiment Code Grad Norm

Test Loss

Training Grad Norm
Training Grad Norm

11 1 MY 1 7o A W AN o

Training Steps Training Steps
—origin_test —freeze_As._test

(d) (f)

Figure 3: (a) and (d) illustrate the training loss curves and test loss curves under different
weight freezing methods in the Commonsense 15k dataset. (b) and (e) present
the training loss curves and gradient norm curves for different methods on the
MetaMathQA dataset. (c) and (f) present the corresponding curves on the Code-
Feedback dataset.

Experimental analysis reveals critical impacts of parameter matrix freezing strategies
on model performance. Freezing the shared matrix Agnare in simple scenarios causes only
marginal validation loss increase (< 3%), confirming its efficacy as the core carrier of pre-
trained knowledge—its parameter space inherently contains principal feature directions,
and freezing essentially constrains optimization within fixed low-rank subspaces. However,
expert modules prove indispensable for dynamic adaptation: freezing Aexpert triggers sig-
nificant validation loss surge (32.5%), with degradation comparable to full low-rank matrix
A freezing (37.6%). Table 3 further quantifies task performance differences across freez-
ing strategies. The "freeze_As_test” row shows two entries in the "Trainable Parameter”
column because distinct hyperparameter configurations were used for MetaMathQA (247M
parameters) and CodeFeedback (283M parameters). Notably, complex tasks (e.g., GSM8K,
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HumanEval) exhibit substantial performance degradation when freezing Aghare (accuracy
drops of 6.1% and 9.7%), while simpler tasks (e.g., MBPP) show minimal or slightly pos-
itive effects. Update trajectory visualizations (Figure 3) mechanistically explain this phe-
nomenon: freezing Aghare reduces gradient norms while elevating training loss, indicating
constrained parameter update capacity that impedes effective knowledge adaptation.

Table 3: Experimental results of low-rank matrix freezing experiments on large datasets.
The best results are denoted in bold

Method Trainable Parameters GSM8K HumanEval MBPP
freeze  As_ test 247m(3.50%) / 283m(4.01%)  32.7 10.4 34.1
origin__ test 320m (4.53%) 38.8 20.1 33.3

4.3. Module Ablation Experiments

To investigate module contributions during fine-tuning, ablation experiments were con-
ducted on 100k subsets of MetaMathQA and CodeFeedback datasets (hyperparameters is
shown Table 1), evaluating via GSM8K, HumanEval, and MBPP. Four method variants
were tested: (1) Test-Base(blue curve): core structure only (retaining diagonal matrix F
vs. original LoRA), disabling shared initialization and dropout modification, expert as-
sessment and selection; (2) Test-Share(orange curve): enabling shared initialization and
dropout modification, disabling expert mechanisms; (3) Test-Expert(gray curve): enabling
expert assessment and selection, disabling shared mechanisms; (4) Test-All(yellow curve):
full module activation. Results are quantified in Table 4 and visualized in Figure 4.

Table 4: The ablation experiments’ results. The best results are denoted in bold.
Method  Trainable Parameters GSM8K HumanEval MBPP

Test-Base 320m (4.53%) 36.4 10.3 33.6
Test-Share 320m (4.53%) 35.6 16.5 32.3
Test-Expert 320m (4.53%) 37.1 104 34.6
Test-All 320m (4.53%) 38.8 20.1 33.3

Ablation studies reveal distinct module roles: The shared module rapidly adapts pre-
trained world knowledge to target domains, generating larger gradient norms and boosting
accuracy on complex tasks (e.g., HumanEval +6.2%), at the cost of altering original knowl-
edge and biasing updates toward pretrained principal components (GSM8K -0.8%, MBPP
-1.3%). Expert selection enhances fundamental problem-solving (GSM8K +0.7%, optimal
MBPP 34.6%) but offers marginal gains for challenging tasks (HumanEval +0.1%), allo-
cating partial gradient budget to orthogonalization constraints for lower norms yet slower
descent. Critically, joint activation (Test-All) enables synergy: the shared module updates
core world knowledge while experts supplement domain-specific knowledge, achieving ac-
celerated convergence with superior update directions (HumanEval 20.1%, GSM8K 38.8%),
validating complementary world/domain knowledge modeling mechanisms.
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Figure 4: (a) and (b) present the training loss and gradient norm curves of different meth-
ods in the ablation experiments on MetaMathQA dataset. (c) and (d) present
the corresponding curves of respective methods on CodeFeedback dataset. Ex-
perimental results average training loss and gradient norms over 50-step cycles.

4.4. Comparison of Training Costs

As described in the methodology (Section 3) and experiments (Subsection 4.1), our dual-
module architecture enhances original low-rank adaptation, achieving superior fine-tuning
performance across datasets, while introducing computational overhead from shared mod-
ule initialization and expert screening. To quantify trade-offs, we measure training time
and memory consumption versus baseline under identical hyperparameters on Llama 2-7B,
isolating costs via four configurations: Test-Base (no modules), Test-Share (shared mod-
ule only), Test-Expert (expert module only), Test-All (full system). Experiments used
Commonsense 170K, plus 100k subsets of MetaMathQA and CodeFeedback to mitigate
computational demands. Hperparameters for each dataset detailed in Table 1’s respective
dataset column.

As shown in Table 5, which compares training time and GPU memory usage across
methods. Regarding training time, the proposed method introduces negligible overhead
in shared module initialization compared to Test-Base, thanks to the Fast SVD technique
(Halko et al. (2011)). However, the expert filtering mechanism in Test-Expert incurs an 8%
increase due to importance evaluation and screening, resulting in a 9% total overhead for
the full implementation (Test-All). For GPU memory usage, the shared module’s principal
component initialization and dropout adjustment add negligible additional usage overhead,
while the expert module’s importance score computation increases memory consumption
by 5%. Consequently, the complete framework (Test-All) requires 5% more maximum
GPU memory than the baseline. These results indicate that our method does not impose
significant training time or memory overhead. Primarily because: (1) additional computa-



CAO ZHANG ZHANG LI

tions occur exclusively during shared module initialization; (2) expert incremental matrices
AWexpert importance screening executes only during specific training periods; (3) low-rank
parameters remain orders-of-magnitude smaller than pretrained weights. Updating these
matrices’ importance scores entails negligible computational cost compared to full-model
forward-backward propagation.

Table 5: Comparison of training time and memory cost

Dataset Test-Base Test-Share Test-Expert Test-All
Commonsense 222 226 264 267
Time cost(min)  MetaMathQA 247 250 260 261
CodeFeedback 269 271 277 279
Commonsense 32.4 32.4 32.6 32.6
Memory cost(Gib) MetaMathQA 53.4 53.4 56.3 56.2
CodeFeedback 49.6 49.6 52.8 52.8

5. Conclusions and Perspectives

This paper enhances Low-Rank Adaptation (LoRA) through a dual-module architecture.
The shared module initializes with principal components of pretrained weights, allocat-
ing residuals to original matrices. Zero-dropout training in this module prioritizes world
knowledge updates for accelerated convergence. The expert module enforces low-rank ma-
trix orthogonality via loss constraints, computes sensitivity-based importance scores for
AWexpert, and selectively updates important dimensions to optimize budget allocation for
specialized task accuracy. Cross-domain validation (commonsense reasoning, mathematics,
programming) with module freezing and training costs experiments confirms its superiority.

However, several unresolved issues persist: (1) Current application is limited to language
model linear layers. Systematic investigation is still required to determine whether the
method can be adapted to convolutional layers to enhance the performance of visual models.
(2) The expert module’s importance ranking necessitates extensive manual hyperparameter
tuning, whose sensitivity significantly impacts model outputs. Answers to these questions
are currently being actively explored.
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