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Abstract

Recent multimodal embedding approaches leveraging multimodal large language
models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising
results, yet the underlying reasons behind their superiority remain underexplored.
This work argues that a crucial advantage of MLLM-based approaches stems from
implicit cross-modal alignment achieved during generative pretraining, where the
language decoder learns to exploit multimodal signals within a shared representa-
tion space for generating unimodal outputs. Through analysis of anisotropy and ker-
nel similarity structure, we empirically confirm that latent alignment emerges within
MLLM representations, allowing CL to serve as a lightweight refinement stage.
Leveraging this insight, we propose a Language-Centric Omnimodal Embedding
framework, termed LCO-EMB. Extensive experiments across diverse backbones
and benchmarks demonstrate its effectiveness, achieving state-of-the-art perfor-
mance across modalities. Furthermore, we identify a Generation-Representation
Scaling Law (GRSL), showing that the representational capabilities gained through
contrastive refinement scale positively with the MLLM’s generative capabilities.
This suggests that improving generative abilities evolves as an effective paradigm
for enhancing representation quality. We provide a theoretical explanation of
GRSL, which formally links the MLLM’s generative quality to the upper bound
on its representation performance, and validate it on a challenging, low-resource
visual-document retrieval task, showing that continual generative pretraining before
CL can further enhance the potential of a model’s embedding capabilities.1

1 Introduction

Cross-modal representation alignment, such as vision-language alignment, has traditionally relied
on massive-scale contrastive learning (CL) over paired cross-modal data, as seen in CLIP-style
models [37, 50, 83]. Prior work primarily focuses on scaling model size, dataset volume, and batch
size during training [9, 25, 50, 58, 83]. While these strategies demonstrate benefits in tasks like linear
probing [9, 25, 50] and zero-shot classification [50, 83], performance tends to plateau on complex
tasks requiring deeper cross-modal comprehension, e.g., multilingual image retrieval [57, 60], visual
text representations [11, 19, 74], and tasks involving interleaved multimodal encodings [69].

Recent approaches utilize autoregressive multimodal large language models (MLLMs) as the back-
bone models, followed by CL fine-tuning, to enhance representational capabilities, leading to im-
proved performance on these complicated tasks [8, 39, 84]. However, the underlying reasons for the
performance advantages of MLLM-based embedding approaches over traditional CLIP-based ones
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remain underexplored. This represents a critical research gap in understanding the limitations of
CLIP-style models and the specific strengths MLLMs bring to these challenging scenarios.

To address this research gap, we conduct a systematic study of MLLM-based embedding models
across modalities. First, we empirically investigate the embedding space patterns of MLLM repre-
sentations before and after lightweight CL fine-tuning using only textual data, via anisotropy and
kernel-level similarity. Our results show that text-only fine-tuning not only improves the discrim-
inability of text embeddings but also generalizes to enhance the discriminability of embeddings in
non-textual modalities. This finding reveals that MLLMs achieve implicit cross-modal alignment
during generative pretraining, such that representation activation for one modality generalizes to
others. We posit that the generative objective of MLLMs enables them to leverage multimodal
information in the same semantic space by learning to generate textual outputs during pretraining.
Thus, we argue that the knowledge foundation and intrinsic multimodal alignment established during
generative pretraining grant MLLM-based embedding models the fundamental advantages.

Building on the observations, we propose a Language-Centric Omnimodal Embedding framework,
termed LCO-EMB, that employs language-centric paired data for efficient CL refinement. We
highlight that CL can function as a lightweight, post-hoc refinement step for mapping pre-aligned
generative embeddings into a similarity-matching space in MLLMs, which differs sharply from the
computationally intensive CL required by CLIPs for alignment. Accordingly, this emerging paradigm
shifts emphasis towards preserving the cross-modal alignment structure established during MLLM
pretraining. In line with recent work [24, 86], LCO-EMB adopts LoRA [27] for representation
activation of MLLM, aiming to enhance its representation capability with minimal disruption to the
pretrained generative capabilities and latent multimodal alignment.

Extensive experiments across diverse backbones and benchmarks show that LCO-EMB outperforms
state-of-the-art multimodal embedding models trained with much larger multimodal training sets,
with text-only training sets. Combining minimal additional multimodal paired data in diverse formats
further calibrates the embedding space of LCO-EMB for downstream tasks, setting a new state-of-
the-art on MIEB [76], while also providing competitive performance on audio and videos. Further
analysis reveals that LoRA with language-centric contrastive learning yields superior results compared
to alternative fine-tuning strategies, suggesting the importance of preserving the latent alignment
structure during CL through minimal modification to the MLLM’s pretrained knowledge. CL acts
less as a means of introducing new knowledge and more as a lightweight activation mechanism,
serving primarily to project the embedding space into a similarity-matching subspace.

As LCO-EMB relies on the inherent multimodal alignment capability of MLLMs, we further inves-
tigate the relationship between potentials of representation quality and the underlying generative
ability of MLLMs. Through experiments with backbones of various sizes and generation strengths,
we identify a Generation-Representation Scaling Law (GRSL), indicating that multimodal rep-
resentational capabilities gained through contrastive refinement scales positively with the MLLM’s
generative capabilities before CL. GRSL suggests that improving the MLLM’s initial generative
capability—via continued generative pretraining or supervised fine-tuning—is an effective strategy
for enhancing its potential in multimodal representations. We offer a theoretical explanation for
GRSL through a PAC-Bayesian generalization bound, showing that an MLLM’s generative capability
determines an upper bound for its representational potential. To empirically validate this, we introduce
SeaDoc, the most difficult visual document retrieval task to date in low-resource Southeast Asian
languages. Through continual OCR-intense pretraining in low-resource languages, we show that
retrieval performance enhances after the same amount of text-only contrastive learning.

Our contributions are threefold: (1) We propose a language-centric omnimodal representation learning
framework, achieving promising performance across various MLLM backbones and embedding
benchmarks. (2) We identify a Generation-Representation Scaling Law (GRSL), that representational
capabilities after CL scales positively with the MLLM’s generative capabilities. (3) We provide a
theoretical justification for GRSL, followed by comprehensive empirical studies, demonstrating that
generative capability sets a fundamental upper bound on representational quality in MLLMs.

2 Latent Cross-Modal Alignment in MLLMs

In this section, we conduct an in-depth empirical analysis of multimodal large language models
(MLLMs) to investigate whether their internal representations exhibit latent cross-modal alignment
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Figure 1: The anisotropy estimates of Qwen2.5-Omni-3B embeddings across text, image, audio, and
video modalities. The vanilla model exhibits typical representation degeneration (anisotropy) for
all modalities. After applying text-only contrastive learning, embeddings across modalities become
more isotropic, indicating latent language-centric cross-modal alignment within the model.

through two geometric properties, i.e., degree of anisotropy [23] and kernel-level similarity [29].
Specifically, starting with an MLLM, we directly take out its text decoder [30], i.e., the LLM, and
fine-tune it using text-only contrastive learning with LoRA on anchor-entailment text pairs from NLI
datasets. Then, we merge the trained LoRA weights into the LLM and re-plug it into the original
MLLM architecture. The detailed experimental settings are summarized in Section 4.1.

2.1 Analysis of Anisotropy Degrees

Language models trained on self-supervised objectives are known to suffer from anisotropy [17,
21], an embedding degeneration issue characterized by hidden representations collapsing into a
confined region of representation space, resulting in high expected cosine similarity between random
inputs. Contrastive learning is known to have the uniformity promise [68, 73] through enhancing
discriminability across random negative pairs. Here, we employ contrastive learning to fine-tune
multimodal large language models (MLLMs) exclusively with paired text data. We then compare the
behaviors of models before and after fine-tuning to assess whether text-only training can effectively
mitigate anisotropy for non-textual modalities, even in the absence of explicit multimodal training.
The successful transfer of improvements across modalities would provide empirical evidence that
MLLMs inherently preserve geometrically aligned latent spaces among different modalities.

We follow Ethayarajh [17] and Xiao et al. [73] to approximate the degree of anisotropy using the
expected mean of cosine similarity between random data points. Let hi,hj ∼ D be the embedding
vectors sampled independently and identically distributed (i.i.d.) from the empirical distribution D of
the representation space. Then, the degree of anisotropy is calculated as:

Anisotropy := Ehi,hj∼D [cos(θij)] = Ehi,hj∼D

[
h⊤
i hj

∥hi∥ ∥hj∥

]
. (1)

In practice, we approximate it empirically using a finite sample of N embeddings {h1, . . . ,hN} as:

Ê [cos(θ)] =
2

N(N − 1)

∑
1≤i<j≤N

h⊤
i hj

∥hi∥ ∥hj∥
. (2)

Specifically, we use Qwen2.5-Omni-3B [77] as the backbone model and fine-tune it with text-only
contrastive learning. To ensure objective and fair semantic comparison between text and other
modalities, we utilize paired datasets, i.e., Pixmo Cap [13] for image-text, AudioCaps [32] for audio-
text, and MSR-VTT [79] for video-text, for anisotropy comparison. The changes in the embedding
spaces of different modalities after the text-only contrastive learning are depicted in Figure 1. As
anticipated, the embedding space produced by Qwen2.5-Omni-3B initially exhibits a collapsed
structure and poorly separated distribution across modalities. After text-only contrastive learning,
embedding spaces of non-text modalities surprisingly generalize to become more isotropic, dispersing
more uniformly across the respective subspaces. The generalized reduction in anisotropy for
image, audio, and video embeddings reflects an underlying latent semantic alignment with
textual representations within the base model.

2.2 Analysis of Kernel-level Similarity

Building on the latent cross-modal alignment in MLLMs, we further employ kernel-level similarity
to analyze the improvement in similarity structure alignment across modalities after fine-tuning.
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Given a function f : X → Rn that maps inputs to high-dimensional representations, the associated
kernel K : X ×X → R characterizes the induced similarity structure via inner product K(xi, xj) =
⟨f(xi), f(xj)⟩, where xi, xj ∈ X and K ∈ K. Then, a kernel alignment metric m : K ×K → R is
adopted to quantify the similarity between two kernels, i.e., the “similarity of similarity structures”,
by assessing how closely the distance metric induced by one representation space aligns with that of
another. Prior work [29] examines these structures across independently trained models and finds
convergence in their representations. For instance, despite being trained separately, LLaMA [64] and
DINOv2 [49] exhibit comparable similarity perception of captions and images from paired datasets.

Similar to Huh et al. [29], we adopt mutual kNN to quantify the overlap in the top-k nearest neighbors
of each data point shared across the similarity structures induced by two models, f and g. The data
samples (xi, yi) are drawn in mini-batches of size b from a distribution X . Taking the image-text
alignment as an example, each (xi, yi) pair, i.e., an image and its corresponding caption, is assumed to
share the same semantic content, denoted as xi ≜ yi. These paired samples serve as semantic anchors
for evaluating the representations across modalities. Given the models f and g,2 the corresponding
embeddings of each paired sample are attained as ϕi = f(xi) and ψi = g(yi). For a mini-batch of
b data samples, we can derive the feature sets Φ = {ϕ1, . . . , ϕb} and Ψ = {ψ1, . . . , ψb}. For each
feature ϕi ∈ Φ (and similarly ψi ∈ Ψ), the kNN set S(ϕi) (or S(ψi)) comprises the indices of its k
nearest neighbors within its feature collection, excluding itself, which is determined by dknn as:

S(ϕi) = dknn(ϕi,Φ \ {ϕi}), S(ψi) = dknn(ψi,Ψ \ {ψi}). (3)
The kernel-level similarity score mNN for a specific feature pair (ϕi, ψi) is the normalized cardinality
of the intersection of their kNN sets:

mNN(ϕi, ψi) =
1

k
|S(ϕi) ∩ S(ψi)|, (4)

which indicates the proportion of shared nearest neighbors, where k denotes the number of nearest
neighbors. The overall mNN metric is computed as the average of the individual mNN(ϕi, ψi) scores
across the mini-batch.
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Figure 2: Layer-wise vision-language kernel align-
ment before and after text-only contrastive learn-
ing, evaluated on Qwen-VL models with 7B (28
layers) and 3B (36 layers) parameters. Note the 3B
model has more layers than the 7B model.

Different from Huh et al. [29], we utilize ker-
nel alignment metrics to inspect cross-modal
alignment within the same model. Specifically,
we attain hidden representations at all layers
from the 3B and 7B variants of Qwen2.5-VL-
Instruct, and assess the self-similarity between
the vision and language kernels using Equa-
tion 4. The text-only contrastive learning is
applied to the language decoder, and alignment
scores are compared before and after fine-tuning.
As illustrated in Figure 2, two notable findings
emerge: (1) cross-modal kernel alignment im-
proves after text-only contrastive learning, in-
dicating the presence of inherent latent align-
ment across modalities; and (2) the 7B variant
exhibits consistently stronger cross-modal ker-
nel alignment than the 3B variant, both before
and after fine-tuning. This advantage may be at-
tributed to the expanded parameter space of the
larger model, yielding better expressivity and
a superior ability to capture latent cross-modal
relationships during pre-training. Collectively, these findings suggest that inherent cross-modal
binding enables the optimization of representation in one modality to induce corresponding
improvements in other modalities.

3 Language-centric Omnimodal Representation Learning

The preliminary experiments reveal that MLLMs implicitly acquire cross-modal alignment dur-
ing pretraining. Although initial embeddings are suboptimal for similarity matching, latent align-

2In this example, we use the same model to encode the image xi and its caption yi, i.e., f = g.
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Figure 3: The power of language-centric omnimodal representation learning: Before text-only
contrastive learning (CL), representations across modalities in multimodal large language models
(MLLMs) exhibit anisotropy, collapsing into a confined subspace. Text-only CL disperses textual
representations by increasing their separation, effectively reducing anisotropy. Notably, this process
generalizes to alleviate anisotropy in non-textual modalities, despite the absence of direct supervision.

ment emerges in intermediate layers. This inherent alignment can be efficiently unlocked through
lightweight text-only contrastive fine-tuning, enhancing representation quality across both textual and
non-textual modalities. Building on this insight, we introduce Language-Centric Omnimodal repre-
sentation learning (LCO-EMB), a framework that leverages language-centric data and lightweight
contrastive learning to boost MLLM representation capabilities across modalities.

The contemporary architectures of MLLM are composed of modality-specific encoders, a projector,
and a language decoder (i.e., an LLM), with the projector aligning modality-specific representations
to the decoder’s embedding space [2, 40, 59, 77]. For text-only variants of LCO-EMB, we isolate and
fine-tune only the language decoder via text-only contrastive learning, while freezing the parameters
of modality encoders and the projector. After training, the updated decoder is re-plugged into the
original model. We further incorporate minimal multimodal paired data to calibrate the embedding
space for downstream tasks, resulting in multimodal variants of LCO-EMB.

Central to our method is the preservation of the latent cross-modal alignment established during
generative pretraining. This alignment, wherein multimodal embeddings are integrated into a shared
latent subspace by the language decoder, is fundamental to the model’s multimodal representation
capability. We employ LoRA [27], which introduces low-rank trainable parameters into select layers
while freezing the original model. While LoRA is widely recognized for enabling parameter-efficient
fine-tuning, its primary advantage in our context is its ability to minimally perturb the original model.
This approach yields two critical benefits: (1) it preserves the model’s generative capabilities through
minimal weight modifications [4]; and (2) it maintains the latent cross-modal alignment, especially in
the language decoder’s embedding layer, which is unaffected by the adaptation.

4 Experiments

4.1 Experimental Settings

Backbones and hyperparameters. We use LLaVA-Next [41], Qwen2.5-VL [2], and Qwen2.5-
Omni [77] as backbones, all conforming to the standard architecture of modality-specific encoders, a
projector, and a language decoder. LLaVA-Next and Qwen2.5-VL focus on image/video-text, while
Qwen2.5-Omni supports omnimodal inputs, covering text, image, video, and audio. We utilize the
8B variant of LLaVA-Next, the 3B and 7B variants for both Qwen2.5-VL and Qwen2.5-Omni. We
adopt AdamW optimizer with a cosine learning rate schedule, a peak learning rate of 4× 10−4, and a
batch size of 768,3 to train the model for 2 epochs. The LoRA rank (r) and α are set as 64 and 16 for
text-only variants and 64 and 128 for multimodal variants, respectively. For multimodal variants of
Qwen2.5-Omni-7B, we use a reduced learning rate of 3× 10−4 due to the loss spike.

Datasets. (1) Text-only Setting. We consider two data settings: all-NLI and Scale-1M. The all-NLI
combines MNLI [70] and SNLI [5], both frequently used for sentence representation learning. Each

3For multimodal variants with additional image-text and interleaved data, we scale batch size by the ratio of
total to text-only data size. Thus, for our 370k data (276k text-only), the batch size is 1, 052 ( 1.37× 768).
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Table 1: MIEB-Lite (51 tasks) results broken down by task categories. We provide averages of
both English and multilingual tasks. Models are ranked by the Mean (m) column. Shortcuts are
x=“Crosslingual”, m=“Multilingual”, en=“English”, and task categories from MIEB [76]. We refer
to the latest MIEB leaderboard to obtain scores for the compared baselines.

MIEB-Lite (51 Tasks)

Model Name (↓) Dataset Rtrv. Clus. ZS. LP. Cmp. VC. Doc. vSTS Rtrv. vSTS Mean Mean

Size (en) (m) (x&m) (en) (m)
(11) (2) (7) (8) (6) (5) (6) (2) (2 (44)) (2 (19)) (47) (51)

Encoder baselines
CLIP-ViT-bigG [34] 2B 34.2 80.8 72.4 77.8 35.0 43.0 35.5 73.4 26.2 34.5 56.5 51.3
SigLIP-so400m [83] 9B 32.4 75.9 73.8 78.8 32.8 48.0 46.9 69.6 35.4 41.4 57.3 53.5

MLLM baselines
VLM2Vec-LoRA [31] 662k 21.0 66.4 32.1 64.8 29.4 65.3 42.7 70.9 24.8 42.2 49.1 46.0
E5-V [30] 276k 26.9 51.7 36.2 70.6 39.4 52.6 56.0 81.2 58.3 46.3 51.8 51.9
Voyage Multimodal 3 [65] - 33.2 76.6 48.6 69.3 35.8 50.0 63.5 84.2 49.0 70.4 57.7 58.1
mmE5 (11B) [8] 2.1M 34.2 77.0 59.8 71.1 27.8 59.2 53.9 78.8 66.6 54.6 57.7 61.8
GME (7B) [84] 8.0M 37.9 69.6 55.5 68.7 52.2 55.4 86.1 81.8 62.4 75.4 63.4 64.5

Our Text-only Variants
LCO-EMB-VL (3B) 276k 32.6 61.8 45.0 67.4 38.5 57.7 62.2 86.1 52.4 76.5 56.4 58.0
LCO-EMB-VL (7B) 276k 31.8 52.7 49.1 68.5 40.4 63.1 66.0 88.4 59.8 84.3 57.5 60.4
Our Multimodal Variants
LCO-EMB-VL (3B) 370k 34.0 71.6 58.1 68.3 46.1 57.8 73.0 83.8 54.6 76.1 61.6 62.3
LCO-EMB-VL (7B) 370k 36.4 76.0 66.8 72.5 51.0 65.2 75.6 86.6 63.1 83.3 66.2 67.6
LCO-EMB-Omni (3B) 370k 34.5 78.3 66.1 72.8 48.2 59.2 73.4 85.7 54.5 80.4 64.8 65.3
LCO-EMB-Omni (7B) 370k 36.4 80.0 68.5 74.1 50.1 70.5 75.4 86.2 64.3 82.4 67.6 68.8

instance includes a premise with three hypotheses (entailment, neutral, contradiction). We use ∼276k
triplets from all-NLI with entailments as positives and contradictions as hard negatives. We further
construct Scale-1M, a curated collection of 1M sentence pairs sampled from 20M multilingual
parallel corpora, including Global Voice [48], MUSE [53], News Commentary [62], Tatoeba [1],
Talks [52], WikiMatrix [55], and other Sentence Transformers sources [51]. This design leverages
diverse descriptive text to simulate image captions, activating image representations without direct
image supervision, and integrates multilingual pairs to enhance cross-lingual alignment, which
may in turn enhance multimodal alignment across languages. (2) Multimodal Setting. Building on
all-NLI, we further add ∼94k synthetic multimodal pairs (Appendix B) to enhance alignment in the
downstream task format space, yielding a final dataset of ∼370k triplets.

Benchmarks. For image-text embedding tasks, we adopt MIEB-Lite (51 tasks), the official
lightweight version of MIEB (130 tasks; [76]), which covers eight categories (Appendix C), including
Linear Probing, Retrieval (English and Multilingual), Zero-shot Classification, Compositionality
Evaluation, Vision-centric QA, Document Understanding, Clustering, and Visual STS (English and
Cross-lingual). For rapid iteration and ablation, we employ a compact subset of 18 overlapping tasks,
termed MIEB-Sub18 (Appendix D). For audio-text embedding tasks, we evaluate on AudioCaps [32]
and Clotho [16] datasets. For video-text embedding tasks, we utilize MSR-VTT [79] and Activi-
tyNet [26] datasets. The performance on these tasks provides complementary evidence supporting the
universality and effectiveness of LCO-EMB, extending beyond the vision and language modalities.
For both audio-text and video-text embedding tasks, we utilize the Recall@1 as the evaluation metric.

4.2 Performance Comparison on the MIEB Benchmark

To better understand the results, we brief the goal and metric of each MIEB-Lite category: (1) Visual
STS reformulates semantic textual similarity as a vision task by rendering text as images to test
models’ semantic understanding, evaluated by Spearman correlation; (2) Document Understand-
ing/Visual Document Retrieval measures a model’s ability to capture layout-aware textual semantics
in visual documents and image-text alignment, evaluated by nDCG@5; (3) Image Linear Probing
assesses the discriminative and transferable quality of frozen visual representations using accuracy;
(4) Compositionality Evaluation tests fine-grained image-text alignment with accuracy; (5) Vision-
centric QA evaluates visual reasoning and understanding through accuracy; (6) Retrieval measures
modality-specific and joint encoding performance with nDCG@10; (7) Zero-shot Classification
evaluates similarity-based classification using accuracy; and (8) Clustering examines the structural
coherence of embeddings using the NMI metric. Detailed task descriptions are in Appendix C.

We evaluate LCO-EMB on the 51 tasks of the MIEB-Lite benchmark. As reported in Table 1,
LCO-EMB consistently outperforms strong baselines, including E5-V [30], VLM2Vec [31], Voyage-
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Table 2: Performance and efficiency comparisons of different training strategies using 3B and 7B
variants of Qwen2.5-VL backbones. GPU hours are benchmarked by hours × number of H20 GPUs.

Training Strategy Training Time Multiling. V-STS V-STS V-STS Doc. Linear Average(GPU Hours) Img. Rtr (Eng.) (cross) (multi) Und. Probe

Qwen2.5-VL-3B n/a 31.73 73.82 59.03 68.57 28.82 46.96 51.49
w/ CLIP-style CL (multimodal) ∼453.0 Hours 25.15 72.51 67.45 65.22 48.91 41.05 53.38
w/ Linear Proj. (text-only) ∼4.5 Hours 31.31 75.25 62.95 69.32 28.12 49.19 52.69
w/ Full-Finetune (text-only) ∼8.5 Hours 44.61 81.65 68.67 77.75 49.71 50.21 62.10
w/ LoRA (text-only) ∼4.7 Hours 51.61 81.88 74.97 78.30 57.90 53.05 66.28
Qwen2.5-VL-7B n/a 40.31 73.82 59.03 68.56 28.82 46.96 52.92
w/ CLIP-style CL (multimodal) ∼550.0 Hours 18.24 73.92 68.70 65.41 44.89 38.93 50.02
w/ Linear Proj. (text-only) ∼8.8 Hours 40.29 72.05 65.46 70.88 35.69 52.96 56.22
w/ Full-Finetune (text-only) ∼17.3 Hours 44.05 83.15 79.09 81.28 58.02 53.34 66.49
w/ LoRA (text-only) ∼9.3 Hours 56.64 85.05 85.30 83.48 67.49 53.91 71.98

Multimodal-3 [65], mmE5 [8], and GME [84]. Remarkably, despite using only ∼0.37M training
pairs—about 21× less data than GME (∼8M)—our multimodal variants set a new state-of-the-art on
MIEB. Consistent with findings from Xiao et al. [76], MLLM-based embedding models excel at tasks
leveraging MLLM backbones’ reasoning and cross-modal understanding abilities, such as multilingual
alignment, compositionality, and document understanding. Beyond these strengths, LCO-EMB also
attains competitive results on clustering, linear probing, and zero-shot classification—areas where
MLLM-based representations typically lag behind CLIP-style models. Notably, even our text-only
variants, trained with minimal text-only contrastive data, surpass advanced proprietary model Voyage-
Multimodal-3. Incorporating only ∼94k additional multimodal samples (image–text and interleaved
data; Appendix B) further calibrates the representation space for downstream task formats, resulting
in a compact yet highly effective dataset of ∼370k triplets.

4.3 Analysis of Representational Capability of LCO-EMB

To better analyze the representational capability of LCO-EMB, we use the text-only variants, i.e.,
without utilizing the synthetic multimodal pairs, as evaluation targets and conduct extensive validation
and ablation studies on MIEB-Sub18 benchmark.

Main results. We assess text-only variants of LCO-EMB against the advanced embedding methods
on the MIEB-Sub18. As illustrated in Figure 6 (Appendix D), LCO-EMB, trained on the 3B and
7B variants of Qwen2.5-VL-Instruct (VL) and Qwen2.5-Omni (Omni), consistently outperforms the
leading embedding models across a variety of multimodal downstream tasks. On average across
all evaluation categories, the text-only variants of LCO-EMB have outperformed E5-V [30] and
Voyage-Multimodal-3 [65] by 21.69 and 13.00 points, where E5-V and Voyage-M3 are advanced
open-source and proprietary MLLM embedding models, respectively. Notably, LCO-EMB delivers
significant improvements on the Linear Probing, Cross-lingual Visual STS, and Multilingual Image
Retrieval tasks, outperforming prior advanced methods by margins of 21.02, 10.26, and 15.35 points,
respectively. The results highlight the effectiveness and generalizability of LCO-EMB. It is also
noteworthy that while Voyage-M3 is a commercial model explicitly optimized on PDF–text pairs for
document understanding tasks, LCO-EMB, trained solely on textual data, still achieve comparable
results.

Comparison of different training strategies. We apply LoRA to enhance representational capacity
while preserving latent cross-modal alignment. To assess this design, we experiment with Qwen2.5-
VL 3B and 7B backbones, comparing LoRA against three baselines: (1) standard CLIP-style
contrastive fine-tuning on 800K PixmoCaps image-caption pairs, (2) full fine-tuning, and (3) a
shallow projection that adds a linear layer after the output. Reported in Table 2, the CLIP-style
baseline underperforms text-only LoRA, requires 50× more training time, and the shallow projection
increases parameters but does not effectively leverage pretrained cross-modal structure, yielding only
marginal gains over native embeddings. Full fine-tuning achieves reasonable results but remains
notably inferior to LoRA. We attribute this gap to an objective mismatch: contrastive loss deviates
from the model’s pretraining objective, and full fine-tuning consequently induces larger perturbations
to the pretrained parameters, which are more likely to disrupt the established cross-modal alignment.
Detailed analysis of LoRA hyperparameters4 is presented in Appendix E. We further analyze the
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Figure 4: Scaling relationship between generation benchmark performance (X-axis) and representa-
tion benchmark performance after language-centric contrastive learning (Y-axis).

impact of different training datasets and model merging technique in Appendix F.

5 Generation-Representation Scaling Law

The superior performance of LCO-EMB is primarily attributed to the intrinsic multimodal alignment
capabilities of the backbone MLLMs, which we activate through lightweight contrastive fine-tuning.
This observation prompts a fundamental question: What is the relationship between the inherent mul-
timodal generative ability of MLLMs and their representation potential? Through empirical analysis,
we reveal a positive scaling correlation between these two aspects. Furthermore, we substantiate our
empirical findings with a theoretical analysis with a PAC-Bayesian generalization bound, linking
models’ generative capabilities with the upper bound of their representation performance.

5.1 The Relationship between Generative and Representational Capabilities

We conduct an empirical analysis to investigate the relationship between improving multimodal
representation capabilities via text-only contrastive learning and the intrinsic generative capacity of
MLLMs. Our analysis spans three different types of modality pairs, i.e., OCR-based image-text tasks,
video-text tasks, and audio-text tasks. The experimental setup is detailed below:

• OCR-Based Image-Text Tasks: We evaluate OCR-dependent capabilities through paired repre-
sentation and generative tasks. For representation tasks, we average scores from Visual Semantic
Textual Similarity (V-STS-English) and Document Understanding. Generative performance is mea-
sured by averaging results from TextVQA [56], DocVQA [45], OCRBench [42], and ChartQA [44].

• Video-Text Tasks: Representation capabilities are assessed using video-text Recall@1 scores
averaged across MSR-VTT [78] and ActivityNet [6]. Generative performance combines results
from Video-MMEw/ sub [20] and MVBench [38].

• Audio-Text Tasks: We compute Recall@1 scores using Clotho [16] and AudioCaps [32]. For gen-
erative evaluation, we average performance on MMAU [54] and VoiceBench [10], comprehensive
benchmarks encompassing multiple sub-tasks.

Results. As depicted in Figure 4, we observe a consistently positive correlation between baseline
generative performance before CL and the post-CL representational performance across different
MLLM backbones on all task categories. This observation leads to the discovery of Generation-
Representation Scaling Law (GRSL), where the representational abilities of MLLMs, enhanced
through contrastive refinement, scale positively with the model’s original generative capability. This
insight suggests an alternative pathway for advancing multimodal models by harnessing the scaling
effects of generative capacity. Next, we provide a theoretical analysis of GRSL, which formally links
the MLLM’s generative quality to the upper bound on its final embedding performance.

4There is a slight difference in the evaluation resolution between Table 4 and Table 2 due to different codebase
versions used for the experiments.
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5.2 Theoretical Analysis of Generation-Representation Scaling Law

We aim to prove that a stronger generative prior of MLLMs leads to better representations after
contrastive fine-tuning. We formalize this intuition using the PAC-Bayesian framework. We begin by
defining our central hypothesis, deferring formal definitions of population/empirical risk (Lpop

c , L̂emp
c )

and the generative quality of the prior (IP (X;Y )) to Appendix G.

5.2.1 Central Hypothesis

The core of our argument is that a good generative prior provides a “warm start” for contrastive
fine-tuning. We formalize this as follows.
Hypothesis 1 (Generative Warm Start). Let P be a generative prior and Q the posterior after
contrastive fine-tuning. The expected empirical loss under Q is bounded by:

Eθ∼Q

[
L̂emp
c (θ)

]
≤ logN − IP (X;Y ) + ϵP , (1)

where ϵP ≥ 0 captures the gap between the information-theoretic optimum and the loss achieved
after finite-step contrastive fine-tuning. A better prior (higher IP ) leads to a smaller ϵP .

A detailed justification for this hypothesis, linking IP (X;Y ) to the pre-existing alignment of repre-
sentations, is provided in Appendix G.2.

5.2.2 Main Theoretical Result

Theorem 1 (Generative-Contrastive PAC-Bayes Bound). Let P be a generative prior and Q the
posterior after contrastive fine-tuning on n samples. Under Hypothesis 1, with probability at least
1− δ, the expected population contrastive risk is bounded by:

Eθ∼Q [Lpop
c (θ)] ≤ logN − IP (X;Y )︸ ︷︷ ︸

Generative Bottleneck

+ ϵP︸︷︷︸
Inefficiency Gap

+

√
KL(Q∥P ) + log(1/δ)

2n︸ ︷︷ ︸
PAC-Bayes Complexity Penalty

. (2)

The proof is provided in Appendix H.
Corollary 1 (Generative Performance Governs Representation Bound). Using the approximation
IP (X;Y ) ≈ H(Y ) − Lg(P ) (see Appendix G), the bound is directly governed by the prior’s
generative loss:

Eθ∼Q [Lpop
c (θ)] ≲ Lg(P ) + (logN −H(Y )) + ϵP +

√
KL(Q∥P ) + log(1/δ)

2n
. (3)

This result formalizes our central claim: a lower generative loss Lg(P ) directly tightens the upper
bound on the final contrastive performance.
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Figure 5: Retrieval performance of Qwen2.5-VL-
3B fine-tuned on various continual generative fine-
tuning strategies before CL on SeaDoc benchmark.
PC denotes PixmoCaps. H denotes training with
high resolution.

Interpretation of the Bound. The theorem
and its corollary reveal three distinct factors that
govern the final representation quality:

1. The Generative Bottleneck (logN −
IP (X;Y )): The final quality is limited by
the mutual information, IP (X;Y ), captured
by the generative prior. A stronger generative
model (higher IP ) lowers this performance
floor.

2. The Optimization Inefficiency (ϵP ): A bet-
ter prior creates a more favorable optimiza-
tion landscape, resulting in a smaller "ineffi-
ciency gap" ϵP .

3. The Fine-tuning Cost (√. . .): The PAC-
Bayes complexity penalty justifies using
parameter-efficient methods (like LoRA) to
keep KL(Q∥P ) small, thus retaining the ben-
efits of the strong generative prior.
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We further empirically investigate whether improving generative capabilities before contrastive learn-
ing raises the representational upper bound, which is the key aspect of GRSL. We construct a difficult
Visual Document Retrieval (VDR) task: SeaDoc, a VDR task in low-resource SouthEast Asian lan-
guages. Figure 5 summarizes the results for Qwen2.5-VL-3B with four continual pre-training settings:
SeaDoc-train, SeaDoc-train + PixmoCaps (PC) to preserve general image perception capabilities, and
training both settings at high resolution (H). The trend confirms that representation performance after
CL improves as generative capability strengthens. Full details of SeaDoc construction, experimental
settings, and analyses are provided in Appendix J.

6 Related Work

Omnimodal Representation Learning. Existing approaches to omnimodal representation learn-
ing [22, 67] typically rely on large-scale cross-modal pairs to train modality-specific encoders. Recent
progress [8, 39, 84] highlights the potential of MLLMs for image–text alignment. However, the effec-
tiveness of exploiting the latent alignment inherent in MLLMs’ generative capabilities for omnimodal
representation learning—and its underlying theoretical basis—remains unexplored.

Modality-centric Representation Learning. Prior work explores representation learning for
a single modality. For instance, ImageBind [22] leverages the image modality as the anchor for
contrastive learning to align with all other modalities. Web-SSL [18] explores language-free (thus
“vision-centric”) visual representation learning, which scales data volume to be on par with CLIPs to
train DINOv2. By scaling up data volume, the vision-centric self-supervised learning can achieve
OCR performance on par with CLIP, which is typically thought to attain through textual supervi-
sion [63]. E5-V [30] leverages text-only learning to generalize to images and composed retrieval
tasks. We extensively study the language-centric view to train omnimodal representation models.

Representation Capabilities. Through investigating 50 models across 130 tasks in 39 languages,
Xiao et al. [76] report that CLIP’s performance gains from scaling data, batch size, and model size
have largely plateaued on advanced representation benchmarks, including interleaved encodings [69,
85], compositionality [61], textual visual representations [19, 74], and image–multilingual text
alignment [57]. They further highlight MLLM-based embedding models as a promising alternative,
motivating our exploration of the relationship between representational and generative capabilities in
MLLMs. Prior work has explored this connection: Cambrian-1 [63] combines a shared language
decoder with various vision encoders for training MLLMs and demonstrates that the downstream
performance of MLLMs scales with the representation capabilities of the vision encoders, while
Yang et al. [80] formalizes the law between visual representation and MLLM generative capabilities.
In contrast, we explore a fundamentally different concept: the “Generation-Representation Scaling
law” between generation and representation capabilities of the MLLM itself. We see above as the
“Representation-Generation Scaling Law” where the MLLM’s generation performance scales with the
strength of modality-specific encoders. In this work, we explore a fundamentally different concept:
the “Generation-Representation Scaling law” where the MLLM’s representation abilities scale with
its own generation capabilities. Our findings align closely with Xiao et al. [75], who demonstrate that
LLM-based embeddings excel at instruction following and reasoning-oriented retrieval.

7 Conclusion

In this work, we reveal that the superior performance of MLLM-based embedding approaches
originates from implicit cross-modal alignment established during generative pretraining, wherein the
language decoder learns to integrate multimodal information within a unified representation space.
Leveraging this insight, we develop LCO-EMB, a language-centric omnimodal embedding framework
that treats contrastive learning as a lightweight refinement stage, enhancing representation quality
while preserving the model’s generative capabilities. Building on this formulation, we introduce the
Generation-Representation Scaling Law (GRSL), which establishes a positive correlation between a
model’s generative capacity and the representation upper bound. Our theoretical analysis, through
a PAC-Bayesian generalization bound, together with extensive empirical validation on diverse and
challenging benchmarks, confirms both the efficacy of LCO-EMB and the generality of GRSL.
Collectively, these findings re-conceptualize the role of contrastive learning and position generative
pretraining—not merely the expansion of cross-modal data—as the central driver of scalable, efficient,
and robust multimodal representation learning. We discuss the limitations of this work in Appendix A.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction clearly state claims and conclusion made in
our paper. Specifically, we propose a language-centric omnimodal representation learning
framework, discover the Generation-Representation Scaling Law (GRSL), and provide a
theoretical justification for the GRSL.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the Limitation section of the Ap-
pendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the full set of assumptions and a complete proof in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results in the experiment settings sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide source code in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We disclose all the detail that is necessary to appreciate the results in the
experiment settings sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Results of embedding evaluation are not affected by random seed. And due
to the large scale of trained models and compute requirements for MLLM training and
evaluation, we were not able to perform each of our 20+ training configurations multiple
times and evaluate their checkpoints’ performance across random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the experiments compute resources in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conform the NeurIPS Code of Ethics in every repsect. We preserve
anonymity and the datasets that we used are open-sourced datasets that do not have privacy
issues.

Guidelines: The paper conform the NeurIPS Code of Ethics in every repsect. We preserve
anonymity and the datasets that we used are open-sourced datasets that do not have privacy
issues.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive societal impacts of our work in the Appendix.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This method proposed in this paper is an embedding model. It will not generate
harmful contents.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited the original paper that produced the code package or
dataset, as well as indicating the dataset version we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We describe our dataset construction methods in Section 3.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes, the usage of LLMs in our method is described in Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

In this work, we have studied the scaling law between generative capabilities of pretrained MLLMs,
their latent multimodal alignment, and their representational capabilities after contrastive learning.
We use MLLMs that have gone through generative pretraining and those that have attained different
levels of generative capabilities, and let them go through lightweight contrastive learning. During
contrastive learning, model weights are minimally adjusted, through low-rank adaptation, to project
the original knowledge space into an embedding space suitable for similarity matching. However,
we do note that one can also jointly train generative loss and contrastive loss [43, 46] to maintain a
model’s knowledge (through continual generative training), and enhance its representational power
(through continual contrastive learning). Due to the high computational cost of this approach, we
leave it as a promising direction for future work in the context of omnimodal representation learning.

B Details of Additional Multimodal Data

On top of the main text-only setting, the all-NLI training corpus—which plays a crucial role in
unlocking the model’s representational capacity—we further construct approximately 94k multi-
modal training samples to align the embedding space with the downstream multimodal task space.
Specifically, we include: (1) Visual Document. Unlike most prior studies, we intentionally construct
only about 23k triplets from Colpali [19] and Docmatix [35], rather than performing exhaustive data
exposure. We found that large-scale visual document data, when not balanced with text and other
task datasets, can degrade overall task generalization. (2) Retrieval and Compositionality. We
include only 3k triplets from MS-COCO, aiming to introduce basic image–text alignment. To enhance
robustness to varying input lengths, we apply augmentation techniques from LA(SER)3 [72]. Interest-
ingly, this not only improves length robustness but also enhances the model’s spatial perception and
image–text compositional reasoning. (3) Multilingual/Diverse Text Data. To enhance linguistic and
contextual diversity, we sample several thousand examples from our Scale-1M dataset introduced in
the main paper. (4) General Synthetic Data. We further construct around 60k synthetic samples in
diverse formats to maintain and reinforce the model’s instruction-following and interleaved alignment
capabilities—which is important for tasks like VQA under the Reasoning-as-Retrieval paradigm.
The diverse synthetic data also benefits classification tasks, improving both probing and zero-shot
performance.

C Details of MIEB-Lite Benchmark

The MIEB-Lite benchmark comprises 51 tasks in 8 categories, where the details of each category are
summarized as follows:

• Visual STS [74]: It conceptualizes traditional semantic textual similarity (STS) as a vision task by
rendering text as images and evaluating the semantic understanding of visual encoders. Similarity
scores are computed from the embeddings of image-text pairs and compared against human
annotations using Spearman correlation. This task comprises three subcategories: English (STS 13
and STS 15), cross-lingual (STS-17, with image pairs in different languages, e.g., Arabic–English),
and multilingual (STS-b, with pairs in the same language, e.g., Italian–Italian). Visual STS naturally
assesses a model’s interleaved encoding ability to capture semantic meaning from text in image
form, with Spearman correlation as the primary evaluation metric.

• Document Understanding/Visual Document Retrieval: MIEB-lite selects 6 tasks from the
Vidore benchmark [19], which is to retrieve visual documents that contain information to solve the
problem in the query. This task assesses a model’s ability to understand the complex layouts and
textual information in visual documents, and the interleaved image-text alignment. Here we use
nDCG@5 as the evaluation metric.

• Image Linear Probing: MIEB-lite selects 8 challenging linear-probing datasets, including Coun-
try211, DTD, EuroSAT, GTSRB, OxfordPets, PatchCamelyon, RESISC45, and SUN397, which
MLLMs typically struggle compared to CLIP-style models, as indicated by the MIEB benchmark
leaderboard. We follow Xiao et al. [76] to adopt 16-shot linear probing, which closely preserves
ranking compared to full-dataset probing, and report accuracy as the metric.

• Compositionality Evaluation: It evaluates fine-grained alignment of image-text features, requiring
retrieving the groundtruth texts corresponding to the correct composition of all elements, e.g., an
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accurate fine-grained caption of an image, and vice versa for images given texts. This category
includes ARO-Benchmark [82] and Winoground [61]. Here we use accuracy as the evaluation
metric.

• Vision-centric QA: Given an interleaved input composed of a question conditioned on an image,
the task requires models to retrieve the correct answer under the reasoning-as-retrieval paradigm
[75]. This task category is mostly made of tasks assessing vision-centric capabilities [63], such as
spatial relation perception, depth estimation, and relative distance. Here we use accuracy as the
evaluation metric.

• Retrieval: MIEB-Lite adopts 11 retrieval tasks, consisting of image-only retrieval, image-text
retrieval, and interleaved retrieval, providing a comprehensive assessment of models’ modality-
specific and composed encoding capabilities. In addition, it also selects WIT datasets [57] and
XM3600 [60], totally covering image retrieval tasks across 38 different languages, i.e., multilingual
image retrieval, to assess a model’s alignment capability between image and multilingual text
embeddings, using nDCG@10 as the primary metric.

• Zero-shot Classification: Zero-shot Classification assesses classification in a similarity-matching
fashion. We use text prompts like “an image of a {label}” following common practices Radford
et al. [50] and Xiao et al. [76]. MIEB-lite selects 7 challenging fine-grained zero-shot classification
tasks, including CIFAR100, Country211, FER2013, FGVCAircraft, Food101, OxfordPets, and
StanfordCars. Here we use accuracy as the evaluation metric.

• Clustering: Clustering provides an extra lens to inspect the clustered structure of embeddings.
MIEB-lite adopts two clustering tasks, including fine-grained tasks such as Imagenet-Dog15 [14],
which MLLM-based embedding models typically fail compared to CLIP-style models [76]. The
Normalized Mutual Information (NMI) is utilized as the main evaluation metric.

D Details of MIEB-Sub18 Benchmark

We further select a smaller-scale subset than MIEB-lite, including 18 tasks from MIEB Xiao et al.
[76] as MIEB-Sub18, which comprises 47 subtasks that are considered most challenging to the
image-text embedding models, particularly in evaluating the capabilities of visual text representation,
multilingual understanding, and interleaved encodings. Specifically, we focus on Visual STS [74],
multilingual image retrieval [57], and document understanding from Vidore [19]. Additionally, we
assess three image linear probing tasks where MLLM embeddings underperform relative to CLIP
and self-supervised vision models, as reported on the MIEB leaderboard [47]. All evaluations are
conducted using the official MIEB codebase [76].

• Visual STS [74]: It conceptualizes traditional semantic textual similarity (STS) as a vision task by
rendering text as images and evaluating the semantic understanding of visual encoders. Similarity
scores are computed from the embeddings of image-text pairs and compared against human
annotations using Spearman correlation. This task comprises three subcategories: English (STS-
12∼16), cross-lingual (STS-17, with image pairs in different languages, e.g., Arabic–English), and
multilingual (STS-b, with pairs in the same language, e.g., Italian–Italian). Visual STS naturally
assesses a model’s interleaved encoding ability to capture semantic meaning from text in image
form, with Spearman correlation as the primary evaluation metric.

• Multilingual Image Retrieval: We utilize the WIT datasets [57] and select its image retrieval
subtasks across 11 different languages. This task accesses a model’s alignment capability between
image and multilingual text embeddings with nDCG@10 as the main metric.

• Document Understanding: We select 7 tasks from the Vidore benchmark [19], which is to retrieve
visual documents that contain information to solve the problem in the query. This task assesses a
model’s ability to handle the complex layouts in visual documents and the interleaved image-text
alignment. Here we use nDCG@5 as the evaluation metric.

• Image Linear Probing: We evaluate three linear probing tasks—Stanford Cars [33], BirdSnap [3],
and Country211 [50]—which MLLMs struggle the most, as indicated by the MIEB benchmark
leaderboard. We follow Xiao et al. [76] to adopt 16-shot linear probing, which closely preserves
ranking compared to full-dataset probing, and report accuracy as the metric.
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Figure 6: Comparison between the text-only variants of LCO-EMB with advanced open-source
(E5-V [30]) and proprietary (Voyage Multimodal 3 [65]) embedding models on MIEB-Sub18.

Table 3: Comparison of different LoRA ranks and alpha values using Qwen2.5-VL-7B as the
backbone. *r = 256, α = 512 setting experiences unrecoverable loss spikes in training.

Rank (r) Alpha (α) Comp. VC- Multiling. V-STS V-STS V-STS Doc. Linear AverageQA Img. Rtr (eng.) (cross) (multi) Und. Probe

8 16 48.35 58.08 56.64 85.05 85.30 83.48 67.49 53.91 67.29
64 16 55.64 60.62 55.62 84.60 85.16 83.40 65.76 52.44 67.90
64 128 43.40 51.86 58.93 84.98 84.44 83.39 67.66 57.24 66.49

256 16 52.29 57.30 57.49 84.88 85.68 83.61 66.95 53.36 67.70
256 128 43.07 57.56 56.32 85.89 84.82 83.98 67.33 55.51 66.81
256 512 85.52* 39.24* 0.70* 5.90* 12.90* 7.80* 0.90* 1.50* 19.31*

E Impact of LoRA Hyperparameters for LCO-EMB

Our approach, LCO-EMB, employs LoRA fine-tuning for lightweight contrastive learning, which
aims to refine MLLM representations while minimally perturbing the model’s intrinsic knowledge and
abilities, thereby effectively preserving its inherent cross-modal alignment capability. We encapsulate
this benefit as the “learn less, forget less” characteristic of LoRA. Here, we further analyze the impact
of two critical LoRA hyperparameters—rank (r) and α—on the performance of LCO-EMB.

In LoRA, rank (r) and alpha (α) jointly control the capacity for new knowledge integration and
the extent to which it modulates existing knowledge. The rank defines the dimensionality of the
trainable weight matrices used to approximate the original model’s weight updates; a higher rank
thus increases the capacity for injecting new knowledge. Conversely, alpha scales the contribution of
these matrices to the overall model weights, meaning a larger alpha amplifies the extent to which this
new knowledge is infused into the model.

Table 3 presents the results of LCO-EMB under different values of rank and alpha. We observe
distinct patterns for different task categories, and there doesn’t exist a global optimal setting of LoRA
hyperparameters. For instance, LoRA hyperparameters bring minimal variations to tasks optimized
by the training (e.g., V-STS, whose textual counterpart STS is deemed directly optimized by All-NLI
in text embedding literature, is invariant to LoRA hyperparameters). The optimal performance for
multilingual retrieval, document understanding, and image linear probe generally occurs when alpha
α is scaled up appropriately to rank r, such as r = 8, α = 16 and r = 64, α = 128. However,
we notice that for tasks whose capabilities assessed largely differ from those which the training set
optimizes, e.g., compositionality and vision-centric QA, a larger alpha α generally brings significant
performance degradation, showing the importance of the preservation of the base model’s knowledge
for generalization to OOD tasks. We observe that with rank 256 and alpha 512, models experience
unrecoverable loss spikes in training.
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Table 4: Exploring the impact of training dataset utilization and model ensemble on LCO-EMB,
where LCO-EMB-Ens denotes the ensemble model produced by applying the model soup [71]
technique to LCO-EMB variants fine-tuned on all-NLI and Scale-1M.

Model Data Source Linear Prob. v-STS
(Eng.)

v-STS
(cross)

v-STS
(multi)

Doc.
Und.

Multi.
Img. Rtr. Avg.

LCO-EMB all-NLI 51.86 84.69 85.23 83.48 65.36 56.37 71.17
LCO-EMB Scale-1M 58.61 81.27 81.42 78.42 62.12 64.81 71.11

LCO-EMB-Ens - 55.69 83.79 84.88 82.82 63.15 62.67 72.17

We acknowledge that an optimal rank and alpha likely exist for models of each size, striking a balance
between introducing new knowledge and the extent to which it modifies pretrained model weights.
We leave a more comprehensive empirical analysis and theoretical study to quantify this relationship
for future work.

F Impact of Different Training Datasets and Model Merging for LCO-EMB

Recognizing that language models fine-tuned on different datasets often demonstrate distinct strengths,
we independently fine-tune LCO-EMB, using Qwen-2.5-VL-Instruct as the backbone model, on all-
NLI and Scale-1M via contrastive learning, then assess the performance of each variant in isolation.
Subsequently, we investigate the effect of model ensembling by applying the model soup [71]
technique, which merges the parameters of multiple separately fine-tuned models by averaging their
weights. The results, presented in Table 4, provide the following three key insights:

• Performance of all-NLI fine-tuned variant. LCO-EMB trained by all-NLI excels in Visual STS
and Document Understanding, indicating that NLI supervision sharpens not only textual similarity
perception but also generalizes to improve their ability to preserve vision-text semantic similarity.

• Performance of Scale-1M fine-tuned variant. LCO-EMB adapted by Scale-1M leads on Linear
Probing and Multilingual Image Retrieval tasks. Since Scale-1M supplies semantically rich descrip-
tions of real-world scenes, LCO-EMB fine-tuned on this corpus appears to emulate image–caption
pre-training, thereby activating image representations without explicit visual data.

• Performance of model ensemble. The LCO-EMB-Ens, through merging the LCO-EMB variants
trained by all-NLI and Scale-1M, achieves the best overall performance, demonstrating that the
model ensemble strategy effectively integrates the complementary strengths of each checkpoint.

G Preliminaries of Theoretical Analysis

G.1 Definitions

Definition 1 (Population and Empirical Risk). Let D be the data distribution. The population
contrastive risk for a model θ is its true expected InfoNCE loss:

Lpop
c (θ) := E(X,Y )∼D [LInfoNCE(X,Y ; θ)] . (4)

Given a training set S = {(Xi, Yi)}ni=1 of size n, the empirical contrastive risk is defined as:

L̂emp
c (θ) :=

1

n

n∑
i=1

LInfoNCE(Xi, Yi; θ). (5)

Definition 2 (Generative Quality of the Prior). Let P be the prior distribution over the parameters of
a pre-trained autoregressive generative model. In the common case where P = δθ0 is a point mass of
the model parameters at a pretrained checkpoint θ0, we define its generative quality via the mutual
information captured by θ0:

IP (X;Y ) := Iθ0(X;Y ). (6)
Under the standard approximation that the generative cross-entropy loss Lg(P ) estimates the condi-
tional entropy (ref. Appendix I), we have the following approximation:

Lg(P ) ≈ H(Y )− IP (X;Y ) =⇒ IP (X;Y ) ≈ H(Y )− Lg(P ). (7)
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Here, H(Y ) is the Shannon entropy of the target data distribution, which quantifies the inherent
diversity and complexity of the target modality (e.g., text). Thus, for a fixed dataset, a lower generative
loss Lg(P ) corresponds to a higher mutual information and therefore a higher generative quality.

G.2 Justification for Hypothesis 1

A high IP (X;Y ) implies that the representation of the generative model before contrastive finetuning,
fP (X), is already predictive of Y . This pre-existing alignment means positive pairs are closer in
representation space, enabling contrastive optimization to reach a lower empirical loss. The term
logN − IP (X;Y ) is the theoretical lower bound on InfoNCE loss under ideal conditions. This
hypothesis aligns with our empirical findings in Section 5.1, which show that stronger pretrained
generative models yield better representations for downstream tasks, and is consistent with recent
literature on decoder-based embedding models (e.g., [86]).

H Proof of Theorem 1

Proof. We begin with the standard PAC-Bayesian generalization bound, which holds with probability
at least 1− δ for any posterior Q:

Eθ∼Q [Lpop
c (θ)] ≤ Eθ∼Q

[
L̂emp
c (θ)

]
+

√
KL(Q∥P ) + log(1/δ)

2n
. (8)

According to Hypothesis 1, the empirical risk is bounded as:

Eθ∼Q

[
L̂emp
c (θ)

]
≤ logN − IP (X;Y ) + ϵP . (9)

Substituting (9) into (8) yields Theorem 1.

I Relationship Between Generative Loss and Conditional Entropy

Definition 3 (Generative Quality of the Prior). Let P be the prior distribution over the parameters of
a pre-trained autoregressive generative model, centered at θ0. We define its generative quality via
the mutual information IP (X;Y ) := Iθ0(X;Y ) that its representations capture between the input X
and the target output Y .

The mutual information is defined as IP (X;Y ) = H(Y ) −H(Y |X). While the true conditional
entropy H(Y |X) is unknown, it can be estimated by the model’s generative cross-entropy loss,
Lg(P ). The formal relationship is:

Lg(P ) = H(Y |X) +DKL(pdata(Y |X) ∥ pθ0(Y |X)), (10)

where pθ0 is the model’s predictive distribution. For a well-trained MLLM, the goal of minimiz-
ing generative loss is to minimize this KL divergence. Thus, for a strong prior, we can use the
approximation H(Y |X) ≈ Lg(P ). Substituting this into the definition of mutual information yields:

IP (X;Y ) ≈ H(Y )− Lg(P ). (11)

Here, H(Y ) is the entropy of the target data, which is constant for a given dataset. Therefore, a
lower generative loss Lg(P ) directly corresponds to higher mutual information and thus a higher
generative quality of the prior.

J Improving Representation Bounds via Enhancing Generative Capability

To further investigate the hypothesis that enhancing an MLLM’s generative ability improves its
representations, a key aspect of the Generation-Representation Scaling Law, we introduce a challeng-
ing cross-lingual multimodal document retrieval task, SeaDoc. This task enables a comprehensive
evaluation of MLLM’s representational capacity. In this task, an English query is used to retrieve a
corresponding multimodal document page in a low-resource target language.
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J.1 Data Curation

SeaDoc is a cross-lingual visual document retrieval benchmark specifically designed for low-resource
SouthEast Asian (SEA) languages. While building upon foundational concepts from existing visual
document understanding benchmarks like ViDoRe [19], SeaDoc uniquely challenges MLLMs’ visual
document understanding capabilities on non-English languages at an unprecedented scale.

Specifically, we utilize Gemini-2.5-Flash [12] to annotate each PDF page by sequentially applying
OCR, translating the content into English, and generating an English query answerable exclusively
from that specific page. This results in 5, 055 annotated {OCR, English translation, English query}
triplets. To construct a high-quality query pool for the retrieval dataset in SeaDoc, we implement a
three-stage quality control process:

1. Qwen2.5-7B-Instruct is first used to filter out functional pages (e.g., title pages, author pages,
tables of contents), which reduces the dataset to 4, 491 content page annotations.

2. The same model then scores these annotations for Quality and Groundedness on a 10-point scale.
Only questions with a quality score of at least 9 and a groundedness score of 10 are retained.
Note that Quality measures the informativeness of the content and relevance of the query, and
Groundedness measures the exclusivity of the answer to the page.

3. Our in-house linguists conduct a final review of the remaining triplets to ensure their quality.

As a result, we derive 1, 001 high-quality queries to be used for retrieval tasks within the 5, 055 page
corpus.

For conducting additional OCR-intensive generative training, we construct a training set leveraging
images that do not correspond to retrieval test set queries, resulting in 4k seed images. We construct 5
SFT tasks per image: 1) OCR the image. 2) OCR the image, then generate a question from the image.
3) Provide the English translation given the OCR’d text. 4) Provide the English translation directly
from the image. 5) Provide the answer to the generated query. Note that compared to the SeaDoc test
set, the training set is separately generated and includes an additional “provide answer to the generated
question” part in the seed prompt. This process leads us to an around 20k training set to enhance
targeted generative capability on low-resource visual documents, which we also explore combining
with the PixmoCap dataset (710k) for general capability preservation in the main experiments.

J.2 Experimental Settings
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Figure 7: Retrieval performance of Qwen2.5-VL-
3B fine-tuned on various continual generative fine-
tuning strategies before CL on SeaDoc benchmark,
where “PC” represents PixmoCaps and “H” de-
notes high-resolution. The results suggest that en-
hancing the generative ability of MLLMs before
CL can enhance their embedding capability.

We use Qwen2.5-VL-3B as the backbone and
establish a baseline with lightweight contrastive
learning. To assess whether enhanced generative
ability benefits embedding quality, we further
train a variant with additional generative pre-
training before lightweight contrastive learning.

We apply supervised fine-tuning to enhance
the model’s image-to-text generative capabil-
ity. This stage utilizes a mixture of image-to-
text training data, comprising OCR data in SEA
languages (derived from the training split of
SeaDoc) and general-domain image caption-
ing data, i.e., PixmoCaps [13]. The OCR data
strengthens its capability in generating SEA lan-
guages from visual documents, while the inclu-
sion of general image captioning data helps pre-
serve its semantic alignment between image and
text modalities in the general domain.

Given that text in multimodal documents can
be small, requiring higher image resolution for
MLLMs to accurately read textual content, we
further employ two settings—high- and low-resolution—to assess the impact of image resolution. For
the low-resolution setting, we follow standard practice by using a maximum of 262, 144 pixels [87].

31



For the high-resolution setting, we use a 10× larger maximum of 2, 621, 440 pixels. Here, we adopt
nDCG@10 as the primary metric.

J.3 Experimental Results

Figure 7 summarizes the retrieval performance of the same backbone model fine-tuned using different
continual SFT strategies before the same CL tuning process on our SeaDoc benchmark.5 We draw
the following key observations:

(1) When SFT training is conducted exclusively on OCR-intensive data, i.e., SeaDoc-train, at
lower resolution, the model experiences a significant capability collapse compared to the baseline
(Qwen2.5-VL-3B after lightweight CL). This SFT-induced degradation aligns with observations
in recent multimodal reasoning research [7, 15, 28, 36, 66, 81]. Since foundation models have
already undergone extensive SFT and RL, continual SFT can lead to overfitting and degrade models’
generalization capability.

(2) Training on SeaDoc with higher resolution partly mitigates this collapse. This is because the text
in visual documents is typically small; training with higher resolution allows for better grounding of
the generated output in the visual text of the source image, as opposed to overfitting to example-level
visual cues.

(3) Incorporating PixmoCaps captions into the training set further boosts visual document retrieval
performance post-CL. This is because general-domain image captioning data helps preserve the latent
image-text alignment learned by MLLMs during pre-training. This preserved alignment is crucial for
its effective exploitation by the subsequent text-only contrastive finetuning process.

5Unless otherwise specified, we evaluate model performance at the maximum resolution used during training.
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