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Abstract

Assessing the severity of new pathogenic variants requires an understanding of
which mutations will escape the human immune response. Even single point
mutations to an antigen can cause immune escape and infection via abrogation of
antibody binding. Recent work has modeled the effect of single point mutations on
proteins by leveraging the information contained in large-scale, pretrained protein
language models (PLMs). PLMs are often applied in a zero-shot setting, where the
effect of each mutation is predicted based on the output of the language model with
no additional training. However, this approach cannot appropriately model immune
escape, which involves the interaction of two proteins—antibody and antigen—
instead of one protein and requires making different predictions for the same
antigenic mutation in response to different antibodies. Here, we explore several
methods for predicting immune escape by building models on top of embeddings
from PLMs. We evaluate our methods on a SARS-CoV-2 deep mutational scanning
dataset and show that our embedding-based methods significantly outperform zero-
shot methods, which have almost no predictive power. We also highlight insights
gained into how best to use embeddings from PLMs to predict escape. Despite these
promising results, simple statistical and machine learning baseline models that do
not use pretraining perform comparably, showing that computationally expensive
pretraining approaches may not be beneficial for escape prediction. Furthermore,
all models perform relatively poorly, indicating that future work is necessary to
improve escape prediction with or without pretrained embeddings1.

1 Introduction

Pathogens are constantly evolving in their search to evade the immune system and infect host
organisms [1]. In many organisms, including humans, this evolutionary battle occurs in the context
of antibody-antigen interactions [2]. Antibodies are proteins produced by the immune system that
are designed to bind to antigens, which are pathogenic proteins that induce an immune response.
Antibodies that effectively bind to an antigen and neutralize the pathogen put evolutionary pressure

1Our code is available at https://github.com/swansonk14/escape_embeddings and all
data, embeddings, and results are available at https://drive.google.com/drive/folders/
18heVMWK46ExHkSeixyrNiJLovnIbZ4jg?usp=share_link

NeurIPS 2022 AI for Science Workshop.

https://github.com/swansonk14/escape_embeddings
https://drive.google.com/drive/folders/18heVMWK46ExHkSeixyrNiJLovnIbZ4jg?usp=share_link
https://drive.google.com/drive/folders/18heVMWK46ExHkSeixyrNiJLovnIbZ4jg?usp=share_link


on the pathogen to mutate its antigen in a process known as immune escape [3]. Predicting which
mutations cause escape is crucial to identifying dangerous pathogenic variants that can cause infection
and disease even in the presence of antibodies from prior infection, vaccination, or therapies [3–5].

Machine learning models have been developed that can predict the effect of protein mutations on
various protein functions [4, 6–9]. Recent approaches to mutation effect prediction have leveraged
large protein language models (PLMs) that have been trained in an unsupervised manner on huge
databases with hundreds of millions to billions of protein sequences [10, 11]. PLMs learn the
underlying statistics of naturally occurring protein sequences and can predict the likelihood that a
given amino acid appears at a position in a protein. These likelihoods can be used to predict the effect
of a mutation in a zero-shot manner (i.e., without additional training) by comparing the likelihood of
the mutated amino acid to that of the wildtype amino acid at a given position [6, 7, 12, 13].

However, a major limitation of the zero-shot likelihood approach is that it predicts the same likelihood
for a mutation regardless of the protein function in question [7]. Since proteins can have multiple
functions that are affected differently by the same mutation, one likelihood cannot model the effect of
a mutation on all of these functions simultaneously. Additionally, the likelihood only accounts for the
protein that is mutated, which means that it ignores any interacting proteins such as antibodies.

We propose to overcome these limitations by modeling immune escape using antibody and antigen
embeddings produced by a PLM. These embeddings encode information about the protein, including
aspects of 3D structure, that can inform the effect of protein mutations [14]. We build a lightweight
neural model that learns to extract information from the embeddings to predict escape in an antibody-
dependent manner. We develop several variants of this embedding-based approach and evaluate them
on a SARS-CoV-2 deep mutational scanning dataset from Cao et al. [5]. We show that embeddings
significantly outperform zero-shot likelihoods, which have almost no predictive power. We discuss
insights gained from our experiments about how best to use embeddings from PLMs to predict escape.
We also develop two statistical baseline models and a machine learning model that do not rely on
the pretrained models. These models perform comparably to the embedding models, indicating that
pretrained embeddings may not be beneficial for predicting escape. Furthermore, the relatively poor
performance of all models demonstrates that future work is necessary to improve escape prediction
with or without pretrained embeddings.

2 Methods

Our goal is to design a model that can predict the effect of antigenic mutations on the neutralization
ability of antibodies. Below, we first outline notation used throughout this section. Then, we describe
several models to predict this escape effect either using simple statistics, a machine learning model
trained from scratch, or machine learning models built on top of PLMs.

2.1 Notation

An antigen is a sequence of amino acids A = {A1, A2, . . . , An} with each Ai ∈ P where P
is the set of 20 naturally occurring amino acids. The antigen is the subsequence of a protein
in a pathogen that antibodies bind to. Each location s ∈ {1, 2, . . . , n} in the antigen is called
a site. The original, unmutated sequence of antigen amino acids is referred to as the wildtype
sequence. Here, we consider single point mutations, where a single site s in the antigen has its
amino acid mutated from the wildtype amino acid As to the mutant amino acid M ∈ P \ As,
which is one of the other 19 possible amino acids. The mutated antigen sequence then becomes
As,M = {A1, . . . , As−1,M,As+1, . . . , An}. In this paper, we consider a single antigen A and all
possible n× 19 single point mutations across the n antigen sites.

An antibody B is a protein that consists of four chains, where each chain is a sequence of amino
acids. Among the four chains, two are identical chains called the heavy chain with the sequence
BH = {BH

1 , BH
2 , . . . , BH

h } and two are identical chains called the light chain with the sequence
BL = {BL

1 , B
L
2 , . . . , B

L
l }. The antibody as a whole is represented by the pair of unique chains,

B = (BH , BL). Here, we consider many different antibodies B ∈ B where B is a set of antibodies,
all of which bind to the same antigen A.

When the antibody comes into contact with the antigen, and interactions between the antibody and
antigen amino acids can lead to binding and subsequent neutralization of the pathogen. Mutations
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to the antigen may inhibit antibody binding. The degree to which antibody binding is reduced is
represented by a value called the escape score. For antigen A with amino acid M at site s in the
presence of antibody B, the experimentally determined escape score is E(A, s,M,B) ∈ [0, 1], with
larger numbers indicating more escape (less antibody binding after the mutation). If M is the wildtype
amino acid at site s, i.e., M = As, then the escape score is zero since the antigen is unchanged. If
there is a mutation so that M ̸= As, then the escape score may be zero or non-zero depending on
whether and to what degree the mutation affects antibody binding.

Given a set of training data points T = {(A, s,M,B)}s∈[1,n],M∈P,B∈B consisting of one fixed
antigen with many site, mutation, and antibody combinations, along with their known escape scores
given by E, our goal is to build a model that can predict the escape score for a site, mutation, and
antibody combination not in the training set.

2.2 Mutation Model

The mutation model MM models escape as a function of the change in amino acid from the wildtype to
the mutant. This assumes that amino acid changes have consistent escape effects regardless of the
site and antibody. The model is fitted by computing the average escape score in the training set for
each pair of wildtype (wt) and mutant (mut) amino acids across all sites and antibodies, i.e.,

MM(Mwt,Mmut) =
1

Z

n∑
s=1

∑
B∈B

E(A, s,Mmut, B) · 1As=Mwt · 1(A,s,Mmut,B)∈T (1)

where n is the number of antigen sites, 1 is an indicator variable, and

Z =

n∑
s=1

∑
B∈B

1As=Mwt · 1(A,s,Mmut,B)∈T (2)

is the total number of data points in the training set where site s is mutated from Mwt to Mmut.
To make a prediction for a new site s, mutation M , and antibody B, the model simply outputs
MM(A, s,M,B) = MM(As,M), thereby ignoring the site, the rest of the antigen sequence, and the
antibody sequences. Since there are 20 amino acids, this model has 20× 20 = 400 parameters.

2.3 Site Model

The site model SM models escape as a function of the antigen site. This assumes that sites have
consistent escape effects regardless of the wildtype and mutant amino acids and the antibody. The
model is fitted by computing the average escape score in the training set for each antigen site across
all mutant amino acids and across all antibodies, i.e.,

SM(s) =
1

Z

∑
M∈P

∑
B∈B

E(A, s,M,B) · 1(A,s,M,B)∈T (3)

where 1 is an indicator variable and

Z =
∑
M∈P

∑
B∈B

1(A,s,M,B)∈T (4)

is the total number of data points in the training set for site s. To make a prediction for a new site s,
mutation M , and antibody B, the model simply outputs SM(A, s,M,B) = SM(s), thereby ignoring
the entire antigen sequence, including wildtype and mutant amino acids, and the antibody sequences.
The model has one parameter for each antigen site for a total of n parameters.

2.4 RNN

As a non-pretrained baseline embedding model, we train a recurrent neural network (RNN) from
scratch. Given antigen A, site s, and mutated amino acid M at that site, we construct the mutated
antigen sequence As,M and embed it using a bidirectional LSTM [15]. We then extract an embedding
in one of two ways and pass that embedding through a small multilayer perceptron to predict escape.
In the model we call RNN Seq, this embedding is the average of the hidden embeddings for the n
amino acids in the antigen. In the model we call RNN Res, this embedding is the output embedding
corresponding to the mutated site s. Since the RNN model ignores the antibody sequences, it
computes RNN(A, s,M,B) = RNN(A, s,M).
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2.5 Likelihood Model

For our likelihood model L, we adopt the zero-shot mutation prediction framework of Meier et al. [7].
In this framework, a PLM is applied to the antigen sequence As,<mask>, where the amino acid at
site s has been replaced with a <mask> token. The escape score is predicted as the model’s log odds
ratio of the mutated amino acid M versus the wildtype amino acid As at that site s. Specifically, the
model computes

L(A, s,M) = log(p(M |As,<mask>))− log(p(As|As,<mask>)) (5)
where p(·|·) is the probability the model assigns to an amino acid at a specific site within a given
sequence. The likelihood model does not require any additional training, and it does not incorporate
the antibody sequences so L(A, s,M,B) = L(A, s,M).

2.6 Embedding Models

Models that use PLM embeddings instead of likelihoods provide a more flexible way of predicting
mutation effect. In these models, we train a small multilayer perceptron to use some form of protein
embedding as input to predict the escape score. All of the models use an embedding of the mutated
antigen sequence As,M , and some additionally use an embedding of the wildtype antigen sequence
A and/or embeddings of the antibody heavy and light chains, BH and BL. The embedding variants
are described below.

Antigen Mutant Sequence. The PLM is given the mutated antigen sequence As,M and computes
the embedding matrix R = PLM(As,M ) with R ∈ Rn×d, which contains a d-dimensional embedding
for each amino acid in the antigen sequence. The embedding of each site encodes the identity of
the amino acid at that site as well as its role in the context of the antigen sequence. The amino
acid embeddings are averaged to form a single embedding for the full antigen sequence, Rseq =
1
n

∑n
s=1 Rs with Rseq ∈ Rd. We refer to this embedding as Antigen Mut Seq.

Antigen Mutant Residue. As above, the PLM computes the embedding matrix for the mutated
antigen sequence As,M . Here, the embedding Rres = Rs of the mutated residue at site s is used
instead of the sequence average. We refer to this embedding as Antigen Mut Res.

Antigen Difference. Antigen embeddings for both the mutated antigen sequence As,M and the
wildtype antigen sequence A are computed, either both at the sequence level or both at the residue
level. The difference between the embeddings (mutant minus wildtype) is computed. We refer
to these embeddings as Antigen Seq Diff for the difference of sequence embeddings and Antigen
Res Diff for the difference of residue embeddings. We also concatenate the mutant and difference
embeddings to form what we call Antigen Seq MutDiff and Antigen Res MutDiff embeddings.

Antibody. We experiment with three different methods of incorporating antibody information into
the antigen embedding models. First, we concatenate the antigen embedding (of any form) with a
one-hot encoding of the antibody to provide the model with the antibody identity but without any
embedding information (Antigen + Antibody OH model). Second, we use the PLM to embed the
heavy and light chains of the antibody, BH and BL, and we concatenate those two embeddings with
the antigen embedding (of any form) to obtain a 3d-dimensional embedding (Antigen + Antibody
Emb model). Finally, we create embeddings of combined antibody-antigen sequences. For each
antibody, we create one sequence with the heavy chain BH and mutated antigen As,M and another
sequence with the light chain BL and mutated antigen As,M . In both cases, the antibody and antigen
sequences are joined by seven repeats of a glycine-glycine-serine linker. Both combined sequences
are embedded by the PLM, sequence averaged, and then concatenated to form a single 2d-dimensional
embedding for the antibody and mutated antigen. (Antigen Linker Antibody model). This linker
design is inspired by the use of linkers to enable protein complex prediction from single chain protein
structure prediction models like AlphaFold2 [16].

3 Experiments

Here, we describe the data we use to train and evaluate our model as well as the data splits, tasks,
metrics, and models that we use.
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B38
BD-236
BD-254
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Figure 1: The average escape score across all amino acid mutations for each antibody and each
antigen site in the receptor binding domain (RBD) in the SARS-CoV-2 deep mutational scanning
data from Cao et al. [5]. Note: The 74 escape scores greater than 1 (max 3.6) are truncated to 1.

3.1 Data

We use SARS-CoV-2 deep mutational scanning data from Cao et al. [5]. This data consists of 247
antibodies that are known to neutralize the original strain of SARS-CoV-2 by binding to the receptor
binding domain (RBD) of the spike protein. The neutralization ability of each antibody is measured
for the wildtype RBD antigen as well as for all 3,819 single point mutations to the antigen (201 sites in
the RBD with 19 amino acid substitutions at each site). For each antibody and each antigen mutation,
an escape score is computed as a normalized measure of the reduction in antibody neutralization
compared to the wildtype antigen (see Figures 1 and S.2). Of the 943,293 escape scores in the dataset,
30,658 (3.2%) are non-zero, usually in the range [0, 1] with 74 outliers above 1 with a max of 3.6
(see Figure S.1). Cao et al. [5] clustered the 247 antibodies into six groups based on their escape
scores (see Figure S.3).

3.2 Data Splits

The practical usefulness of an escape prediction model, as well as the difficulty of learning such a
model, depends heavily on how the data is split. Below we describe and motivate our data splits.

Mutation. Mutations are randomly split between train and test. This assumes that for a new
antibody, we already know escape scores for some but not all mutations across all antigen sites. This
split corresponds to a scenario in which we have a significant amount of escape data, either from
laboratory mutation experiments or real-world infections by mutated pathogens, across antigen sites
for a particular antibody. However, we do not have escape data for the complete set of mutations, so
a model trained in this setting would be able to fill in the escape effect of any missing mutations.
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Site. Antigen sites are randomly split between train and test. This assumes that for a new antibody,
we already know escape scores for some but not all antigen sites. In this split, we are more conservative
and assume that we only have escape data for some antigen sites and need to make predictions for
other antigen sites. This still requires knowing some escape scores for the antibody, but we no longer
need to know escape scores across all sites, making it possible to use any available escape data.

Antibody. Antibodies are randomly split between train and test. This assumes that we do not know
any escape scores for a new antibody. This split models a situation in which some antibodies have
already been experimentally evaluated and have escape data, and we want to make predictions for a
new antibody for which we do not yet have any escape data.

Antibody group. Antibody groups, as defined by a clustering of escape scores, are randomly split
between train and test. This assumes that we do not know any escape scores for a new antibody, and
furthermore, no antibody in the train set has a similar pattern of escape to this antibody. This split is
especially relevant since new groups of antibodies may continue to bind the antigen and eliminate the
pathogen even in the presence of antigenic mutations that abrogate binding to other antibody groups.

In general, the antibody and antibody group splits are more practically useful because they demon-
strate the effectiveness of escape prediction for antibodies that have not undergone any experimental
escape measurements. This means that new antibodies can be evaluated entirely in silico. Escape
prediction models that are effective under these data splits could thus be used to guide the selection
or design of antibodies that are robust to antigenic mutations that escape other antibodies, providing
an avenue for designing effective new antibody treatments against mutating pathogens.

For all four splits, we train and test the models across all antibodies (cross-antibody setting) using
five-fold cross-validation. For the mutation and site splits where each antibody can appear in both the
train and test sets, we also build separate models for each of the 247 antibodies (per-antibody setting).
This makes it possible to compare the ability of a single model learned across antibodies to separate
models learned for each antibody individually.

3.3 Tasks and Metrics

For all of the models except for the likelihood model, which doesn’t require training, we train the
model either for a regression task, where escape scores are real values, or for a classification task,
where escape scores are binarized into zero or non-zero escape. All models are evaluated with the
metrics ROC-AUC (area under the receiver operating characteristic curve) and PRC-AUC (area under
the precision recall curve), and regression models are additionally evaluated with the metrics MSE
(mean squared error) and R2 (coefficient of determination).

3.4 Models

Below we describe the implementation details of the models we developed. All models were built
using PyTorch version 1.12.1 [17].

3.4.1 RNN

The RNN is a bidirectional LSTM [15] with a hidden dimensionality of 100. The input to the
RNN is the mutated antigen sequence with amino acids encoded using trainable embeddings with
a dimensionality of 100. The output of the RNN is an embedding for each amino acid with a
dimensionality of 200 (100 for each direction of the RNN). Either the sequence average hidden
embedding (RNN Seq) or the output embedding of the mutated amino acid (RNN Res) is used as
input to a small multilayer perceptron (see below), which makes escape predictions. The amino acid
embeddings, RNN, and multilayer perceptron are trained end-to-end.

3.4.2 Protein Language Model

For the likelihood and embedding models, we use the pretrained protein language model ESM2 [14].
We specifically use the esm2_t33_650M_UR50D version of the model consisting of 33 layers and
650M parameters that was trained on the UniRef50 database [18]. The embeddings produced by this
model have a dimensionality of 1,280 and are used as fixed input to a small multilayer perceptron.
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Figure 2: Classification model results with the PRC-AUC metric across data splits (x-axis) and
models (color-coded bars). Error bars indicate the standard deviation across 247 antibodies for
per-antibody splits and across five-fold cross-validation for cross-antibody splits.

3.4.3 Multilayer Perceptron

The multilayer perceptron (MLP) model that we use with the RNN and with all of the pretrained
embeddings has two hidden layers with 100 neurons in each layer and ReLU activation followed by a
single output. For classification tasks, we apply a sigmoid activation to the output.

3.4.4 Training

The RNN and the embedding models were trained with mean squared error loss for regression and
binary cross entropy loss for classification using the Adam optimizer [19]. Per-antibody models were
trained for 50 epochs while cross-antibody models were trained for one epoch. The RNN model was
trained on a single GPU, with training taking about 3 minutes for a cross-antibody model (one fold)
and about 30 seconds for each per-antibody model. The embedding models were trained on a single
CPU, with training taking about 1 minute for a cross-antibody model (one fold) and about 15 seconds
for each per-antibody model.

4 Results

In this section, we highlight some of the key results from our experiments (see Figure 2). We only
show classification model results since the regression models performed poorly. Additionally, since
the relative ranking of models was similar between ROC-AUC and PRC-AUC but the differences in
PRC-AUC scores were more noticeable, we only present PRC-AUC results. We show results for all
data splits and for a subset of the models, leaving out embedding models whose performance was not
insightful for space. The complete set of results across all 162 experiments is in Appendix C.

7



4.1 Mutation Model

The mutation model is a very weak model. On the mutation and site splits in the per-antibody setting,
the model has essentially no predictive power, and on all four splits in the cross-antibody setting, the
model performs poorly. This is to be expected since the model ignores the mutation site even though
the mutation site is very informative of immune escape due to the consistent interaction of key sites
with neutralizing antibodies.

4.2 Site Model

The site model is strong across most splits, with the exception of the site split where the model has
no information about unseen sites. The site model is frequently competitive with the best embedding
models despite containing only 201 parameters instead of 650M parameters. The site model is
significantly more effective in the per-antibody mutation split than in any of the cross-antibody splits
since escape is highly consistent at a given antigen site for an antibody across amino acid mutations.
Even so, the fact that the model retains some predictive power across antibodies and antibody groups
indicates that patterns of escape at specific sites are conserved.

4.3 RNN

The RNN Res model performs comparatively well across all splits. It is only outperformed by the
embedding models that include antibody embeddings, which is reasonable given that the RNN only
processes the antigen sequence and has no knowledge of the antibody. Notably, the model performs
on par with or better than most of the embedding models, even on the site split, despite training in
just a couple of minutes with no expensive pretraining needed. This shows that existing pretraining
methods and models may not be particularly beneficial for escape prediction, at least for this dataset.
Interestingly, the RNN Seq model performs very poorly (see Appendix C), which may indicate
that sequence averaging obscures the relevant information from the mutated amino acid. A similar
phenomenon occurs in the Antigen Seq versus Antigen Res embeddings, meaning that it may be
preferable to use residue rather than sequence averaged embeddings across model types.

4.4 Likelihood Model

The likelihood model has virtually no predictive power across all data splits. This is in contrast to ex-
amples in the literature where likelihoods achieve reasonable mutation effect prediction performance
[7]. This finding demonstrates a fundamental limitation of the zero-shot prediction framework since
likelihoods derived from models trained to recreate naturally occurring proteins may not be calibrated
to predict the probability of antigen escape.

4.5 Embedding Models

The embedding models significantly outperform the likelihood model across all data splits. This
indicates that PLMs do contain information that is useful for mutation effect prediction but require
that their representations are adapted to the task rather than used in a zero-shot manner. However,
the strength of the RNN model indicates that pretrained embeddings are not necessary for escape
prediction. Even so, the embedding model results still provide several interesting takeaways regarding
how best to use pretrained embeddings to predict escape in cases where they may be useful.

Mutant vs Difference. The Antigen Seq Diff embedding consistently outperforms the Antigen
Seq Mut embedding, which indicates that the change in embedding from wildtype to mutant is more
informative than the mutant embedding in isolation. The concatenation of the mutant and difference
embeddings (MutDiff) does not improve performance further, indicating that the mutant embeddings
do not contribute information beyond that contained in the difference embeddings.

Sequence vs Residue. The Antigen Res Mut embedding outperforms the Antigen Seq embeddings,
perhaps because the sequence embeddings contain largely irrelevant information from the non-
mutated residues. Interestingly, using embedding differences instead of mutant embeddings does not
improve performance at the residue level (see Appendix C).
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Antibody. Including antibody information alongside the antigen embeddings generally provides a
benefit in all cross-antibody splits, where each model sees more than one antibody. The Antibody Res
Mut + Antibody OH (one-hot) encodings provide a particularly large benefit in the mutation and site
cross-antibody splits, where the same antibody can appear in train and test and the one-hot encoding
makes it easy for the model to associate patterns of escape with particular antibodies. Interestingly,
in the mutation splits, the one-hot antibody encoding does not allow the cross-antibody model to
recover the performance of the per-antibody models, which may suggest a benefit to training separate
models for each antibody, even though each model will be trained on less data.

Although the antibody embedding in the Antibody Res Mut + Antibody Emb model should also
indicate the antibody identity, the model is not able to use this information as well as the one-hot
embedding in the mutation and site cross-antibody splits. However, in the antibody and antibody
group splits, no antibodies are shared between train and test and the one-hot encoding confers no
benefit while the antibody embedding provides a small performance boost. Even so, this effect
disappears in the harder antibody group split where no similar antibodies are present in the test set
and the model does not learn how to extract useful information from the antibody embeddings.

The Antigen Linker Antibody embeddings do provide some benefit over antibody-agnostic models
in the site cross-antibody split, but otherwise they do not help and sometimes hurt performance, as
in the antibody split. This is likely because the PLM was not designed to use linkers and may not
provide particularly useful embeddings for such artificially linked sequences.

5 Conclusion

We presented several methods for predicting immune escape using pretrained protein language
model embeddings. We performed a comprehensive set of experiments on a SARS-CoV-2 deep
mutational scanning dataset and showed that embeddings from PLMs are much more effective at
predicting escape than zero-shot likelihoods. The Antigen Res Mut + Antibody Emb embeddings
was particularly powerful among the embedding models, indicating that escape is best modeled at the
residue level with both antigen and antibody embeddings. Although these results are promising, the
relatively strong performance of the site model and the RNN, neither of which rely on computationally
expensive pretraining, show that PLM embeddings may not be particularly beneficial for tasks such
as escape prediction. Furthermore, the overall poor performance of all models across most splits
demonstrates that significant future work is needed to make accurate and useful escape predictions.
Notably, the results here are limited to a single antibody-antigen escape prediction task and dataset.
The comprehensive nature of the data, which includes every possible single point mutation of the
antigen for every antibody, gives our conclusions strength, but further experimentation on additional
datasets is necessary to validate whether the conclusions drawn here generalize to other escape
prediction tasks.
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A Data and Code Availability

The SARS-CoV-2 deep mutational scanning data from Cao et al. [5] is available at https://github.
com/jbloomlab/SARS2_RBD_Ab_escape_maps/tree/main/data/2022_Cao_Omicron. The
file data.csv contains the escape data for each antibody-antigen mutation combination, and the file
antibodies.csv contains the sequences for the heavy and light chains for all the antibodies. The
ESM2 pretrained protein language model [7] that we used is the esm2_t33_650M_UR50D model from
https://github.com/facebookresearch/esm. Our code is available at https://github.
com/swansonk14/escape_embeddings and all data, embeddings, and results are available
at https://drive.google.com/drive/folders/18heVMWK46ExHkSeixyrNiJLovnIbZ4jg?
usp=share_link.

B Data Visualization

Figures S.1, S.2, and S.3 visualize the SARS-CoV-2 deep mutational scanning data from Cao et al.
[5].

C Complete Results

The remaining figures in the appendix section show the complete set of results for all 162
combinations of data splits, models, and tasks that we ran. These results are also available
in tabular form in the results.csv file at https://drive.google.com/drive/folders/
18heVMWK46ExHkSeixyrNiJLovnIbZ4jg?usp=share_link.
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Figure S.1: The distribution of the 30,658 non-zero escape scores in the SARS-CoV-2 deep mutational
scanning data from Cao et al. [5]. Note: The 74 escape scores greater than 1 (max 3.6) are truncated
to 1.
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Figure S.2: The average escape score across all antibodies and all antigen sites for each wildtype to
mutant amino acid change in the SARS-CoV-2 deep mutational scanning data from Cao et al. [5].
Note: The 74 escape scores greater than 1 (max 3.6) are truncated to 1.
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NI TNLCPFGEVFNATRFASVYAWNRKR I SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFV IRGDEVRQIAPGQTGK IADYNYKLPDDFTGCV IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI STE I YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST

BD-739BRII-196C093COVOX-150BD-822BD-715COVA2-04CV30BD-503BD55-1374BD55-1789BD-693BD-694C105C1A-B12C1A-B3C1A-C2C1A-F10LY-CoV016CC12.1CC12.3COV2-2807DH1154DH1179DH1210LY-CoV481LY-CoV488P2B-1A10P4A1P5A-3A1B38BD-236BD-498BD-500BD-508BD-598BD-599BD-605BD-619BD-915BD-930C102C578COV2-2113COV2-2589COV2-2919COVOX-269COVOX-88DH1126DH1140Ehling_mAb-64P5A-2G9BD-504BD-616BD55-1763COV2-2308COV2-2098BD-612WIBP-2B11BD-614COVOX-222BD-618BD55-5293DXP-604BD-369BG4-25An
tib

od
y

Epitope Group A

NI TNLCPFGEVFNATRFASVYAWNRKR I SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFV IRGDEVRQIAPGQTGK IADYNYKLPDDFTGCV IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI STE I YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST

COVOX-253H165LCV07-287C597CA521REGN10933BD-319BD-833COV2-2684CV07-209CV-X2-106BD-92215033BD-417BD55-1508BD-805BG1-24C083COV2-2941BD-623AZD8895COV2-2072BD-836COV2-2381S2E12COVOX-253H55LBD-566

Epitope Group B

NI TNLCPFGEVFNATRFASVYAWNRKR I SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFV IRGDEVRQIAPGQTGK IADYNYKLPDDFTGCV IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI STE I YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST

BG10-19BD55-1274COV2-2353BD55-1694C002P172-15BD-254BD-362BD-368BD-397BD-403DXP-593BD55-1579BD-791BD-870BD55-4382BG7-20C591CM32COV2-2064COV2-2504COV2-2539COVA2-39COVOX-316COVOX-384CV05-163CV07-255DH1173DH1184H4P2B-2F6P2C-1A3S2H13S2M11BD-790C058COV2-2391COV2-2479COV2-2955CV07-200CV07-222CV07-262CV07-283CV07-315DH1041DH1042DH1043DH1111DH1159-2DH1186DH1214LY-CoV555BD-536BD-900C121BD55-1962An
tib

od
y Epitope Group C

NI TNLCPFGEVFNATRFASVYAWNRKR I SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFV IRGDEVRQIAPGQTGK IADYNYKLPDDFTGCV IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI STE I YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST

1-57BD-817BG7-15C119COV2-2499REGN10987COVOX-75COV2-2268Ehling_mAb-50TAU-2230BD55-3457BD-643BD-918COV2-2780DH1160DH1161-2CV07-270BD-864BD-824BD-812BD-804AZD1061LY-CoV1404BD55-1706BD55-387BD55-1104BD-467

Epitope Group D

NI TNLCPFGEVFNATRFASVYAWNRKR I SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFV IRGDEVRQIAPGQTGK IADYNYKLPDDFTGCV IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI STE I YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST

RBD Sequence

DH1151BD55-1403BD55-3149BD55-3433BD55-3440BD55-3451BD55-4281BD55-5382BD55-3546BD55-5195BD55-5228BD55-3637BD55-4285C110BD-748BD55-3152BD-744BD55-5386BD-932BD-914BD-713BD-796BD-923BD-907VIR-7831BD55-5319C576DH1044C581C556DH1193BD-815BD55-4325COV2-2389BD55-3525BD55-1294BD55-1831BD-913BD-692
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NI TNLCPFGEVFNATRFASVYAWNRKR I SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFV IRGDEVRQIAPGQTGK IADYNYKLPDDFTGCV IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI STE I YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST

RBD Sequence
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Figure S.3: The average escape score across all amino acid mutations for each antibody and each
antigen site in the receptor binding domain (RBD), grouped according to the antibody clusters defined
by Cao et al. [5]. Note: The 74 escape scores greater than 1 (max 3.6) are truncated to 1.
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Figure S.4: Classification model results using the PRC-AUC metric.
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Figure S.5: Classification model results using the ROC-AUC metric.
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Figure S.6: Regression model results using the PRC-AUC metric.
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Figure S.7: Regression model results using the ROC-AUC metric.
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Figure S.8: Regression model results using the MSE metric.
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Figure S.9: Regression model results using the R2 metric. Since the per-antibody splits have high
variance, those splits are in separate plots below to make the scales legible in each plot.
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Figure S.10: Regression model results using the R2 metric for the mutation per-antibody split.
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Figure S.11: Regression model results using the R2 metric for the site per-antibody split.

22


	Introduction
	Methods
	Notation
	Mutation Model
	Site Model
	RNN
	Likelihood Model
	Embedding Models

	Experiments
	Data
	Data Splits
	Tasks and Metrics
	Models
	RNN
	Protein Language Model
	Multilayer Perceptron
	Training


	Results
	Mutation Model
	Site Model
	RNN
	Likelihood Model
	Embedding Models

	Conclusion
	Data and Code Availability
	Data Visualization
	Complete Results

