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Effective Influence Maximization with Priority
Anonymous Author(s)

Abstract

Influence maximization (IM) aims to identify a small set of influen-

tial users to maximize the information spread. It has been widely

applied in the context of viral marketing, where a company dis-

tributes incentives to a few influencers to promote the product.

However, in practical scenarios, not all users hold equal importance

and certain users need to be prioritized for the specific requirements.

Motivated by this, recently, a variant problem of IM, called influence
maximization with priority (IMP), has been proposed. Given a graph

𝐺 = (𝑉 , 𝐸), a priority set 𝑃 ⊆ 𝑉 and a threshold 𝑇 ∈ [0, |𝑃 |], IMP

aims to identify a set of 𝑘 nodes (termed seeds) to maximize the

expected number of activated nodes in 𝐺 while satisfying that the

expected number of activated nodes in 𝑃 is no less than the given

threshold. Nevertheless, we show that existing solutions for IMP are

inferior in maximizing the influence spread in𝐺 , and can only offer

poor approximation ratios in many cases. To address these limita-

tions, in this paper, we first propose a novel framework named SAR
with both superior empirical effectiveness and strong theoretical

guarantees. In addition, to obtain more practical results, we study

the IMP problem under the adaptive setting, where the seed users

are iteratively selected after observing the diffusion result of the

previous seeds. We design a scalable and effective algorithm AAS
that achieves expected approximation guarantees. Comprehensive

experiments on 5 real-world datasets are conducted to validate

the performance of the proposed techniques. Compared with the

state-of-the-art method, SAR achieves up to 22.3% larger spread

and AAS achieves up to 42.6% larger spread, with both exhibiting a

higher empirical approximation ratio.
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1 Introduction

Given a graph 𝐺 = (𝑉 , 𝐸) and a positive integer 𝑘 , the influence

maximization (IM) problem aims to identify a set of 𝑘 nodes in 𝐺
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that can influence as many users as possible [2, 4–6, 18, 28–30, 34].

This problem finds important applications in various fields, such as

viral marketing [9, 25], network monitoring [20] and rumor control-

ling [3, 32]. Among these, viral marketing is the most representative

scenario from which IM originates. In this context, the company

promotes a product by distributing incentives (e.g., free samples)

to a set of influential users, in hopes of creating a large cascade of

product adoptions via the word-of-mouth effect.

However, IM neglects the priority of individuals, hindering its

applicability in real-world marketing scenarios. Specifically, not

all users are of equal importance, and certain users need to be pri-

oritized for specific requirements. For example, when promoting

gaming equipment, the company typically prioritizes potential cus-

tomers (e.g., avid gamers or technology enthusiasts) who frequently

engage in gaming activities and are well-suited for the product.

Motivated by this, Pham et al. [24] formulate the influence maxi-
mization with priority (IMP) problem. Given a graph 𝐺 = (𝑉 , 𝐸),
a priority set 𝑃 ⊆ 𝑉 , a threshold 𝑇 ∈ [0, |𝑃 |] and a budget 𝑘 ≥ 𝑇 ,

the IMP problem aims to identify a seed set 𝑆 of 𝑘 nodes that maxi-

mizes E[𝐼 (𝑆)] while satisfying E[𝐼𝑃 (𝑆)] ≥ 𝑇 (termed as threshold
condition), where E[𝐼 (𝑆)] (resp. E[𝐼𝑃 (𝑆)]) is the expected number

of nodes activated by 𝑆 in 𝐺 (resp. 𝑃 ). Note that, the assumption

𝑘 ≥ 𝑇 is to ensure the threshold condition can always be satisfied.

The IMP problem is NP-hard and it cannot be approximated

within a ratio of 1 − 1/𝑒 + 𝜖 for any 𝜖 > 0 unless P = NP. The

state-of-the-art approach for IMP provides a data-dependent ap-

proximation and consists of two stages generally [24]. In the first

stage, it iteratively selects the node that maximizes the influence

spread in 𝑃 until the threshold condition is satisfied. In the second

stage, in a similar manner to the state-of-the-art solution for IM [28],

it iteratively selects the seed node that maximizes the influence

spread in 𝐺 until the budget is exhausted. Nevertheless, we show

that IGS is suboptimal in maximizing the influence spread in𝐺 and

can only yield a poor approximation ratio theoretically. The reason

is that, due to the possibility that the seeds selected in the second

phase could influence the prioritized nodes, it may not be necessary

for the first stage to fully satisfy the threshold condition. Therefore,

we can allocate a smaller budget to the first stage, reserving more

for the second stage, which can result in a larger influence spread

in 𝐺 . However, in the practical implementation, determining the

ideal budget for the first stage in advance is challenging.

To tackle these limitations, in this paper, we propose a novel

framework called Select-And-Replace (SAR) with superior empiri-

cal effectiveness for the IMP problem. In general, SAR consists of

two stages, i.e., select stage and replace stage. In the select stage,

SAR identifies a size-𝑘 seed set 𝑆 that maximizes the influence

spread in 𝐺 by applying the greedy strategy. Note that, to provide

tight theoretical guarantees for the final result, different from the

conventional IM problem, we need to ensure that the set returned

in each iteration (within the greedy strategy) can all provide the-

oretical guarantees. In the replace stage, SAR processes the seeds

in 𝑆 according to the reverse order of their insertion order in the

1
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select stage. For each seed in 𝑆 , SAR first removes it from 𝑆 , and

then selects the node that maximizes the influence spread in 𝑃

and adds it to 𝑆 . This replacement process stops until the thresh-

old condition is satisfied. Theoretically, SAR can offer a provable

(1 − (1 − 1/𝑘)𝑘𝑏1 − 𝜖)-approximate solution, where 𝑘𝑏
1
is the actual

budget within the solution of SAR that maximizes the influence

spread in𝐺 , i.e., 𝑘𝑏
1
equals 𝑘 minus the number of nodes replaced in

the second phase. Compared to IGS, SAR achieves larger influence

spread and offers a higher empirical approximation ratio.

As introduced above, IGS and SAR both focus on the non-adaptive
setting, which requires all seeds to be selected in one batch without

making any observation on the actual influence spread. However,

such a setting fails to take advantage of the previous spreading

results when selecting the next seed node, which may result in

the activation of the same node multiple times, ultimately leading

to the inferior influence spread. The adaptive strategy, where the
seeds are iteratively selected after observing the diffusion result

of the previous seeds, has been shown to be more effective in real-

world cases [1, 7, 8]. Motivated by this, to obtain more practical

results, we further study the IMP problem under the adaptive set-

ting. For this purpose, an intuitive idea is to directly extend SAR to

the adaptive setting. However, it is infeasible for us to implement

the replacement procedure in an adaptive manner, since under the

adaptive setting, before we select the next seed, the propagation of

the previously selected seeds has been finalized. Therefore, we can-

not regret the selection of a node and then choose another one. To

address this issue, we design a novel framework named Adaptive-

Alternation-Selection (AAS) with a (1 − e(𝜖−1) ·𝑘𝑐/𝑘 )-expected ap-

proximation, where 𝑘𝑐 is the actual budget within the solution of

AAS that maximizes the influence spread in𝐺 . Specifically, for each

node selection, based on a judgment condition, AAS adopts one

of two proposed procedures, each aiming to identify a seed that

maximizes the influence spread in either 𝐺 or 𝑃 . Afterwards, it

observes the newly activated nodes and updates the corresponding

information, to prevent these nodes from being repeatedly activated

in subsequent processes. Note that, due to the novel alternating

selection mechanism, the theoretical results of existing adaptive

solutions (e.g., adaptive IM [12–14]) cannot be applied to AAS, ren-
dering the derivation of its approximation guarantee particularly

challenging. Finally, experiments over 5 real-world datasets are

conducted to verify the performance of proposed algorithms. The

main contributions of the paper are summarized as follows.

• We propose a novel framework SAR that returns a (1 − (1 −
1/𝑘)𝑘𝑏1 −𝜖)-approximate solution for the IMP problem, where 𝑘𝑏

1

is the actual budget within the solution of SAR that maximizes

the influence spread in 𝐺 . (Section 3)

• We conduct the first research to study the IMP problem under

the adaptive setting, and design an effective framework AAS
that returns a (1 − e(𝜖−1) ·𝑘𝑐/𝑘 )-expected approximate solution,

where 𝑘𝑐 is the actual budget within the solution of AAS that

maximizes the influence spread in 𝐺 . (Section 4)

• We conduct extensive experiments on 5 real-world graphs to

verify the performance of proposed techniques. Compared with

the state-of-the-art method, SAR and AAS both demonstrate

better performance in terms of influence spread, and offer a

higher empirical approximation ratio. (Section 5)

Note that, due to the limited space, all proofs are omitted and can
be found in the Appendix A.

2 Preliminaries

In this section, we first formally define the influence maximization
with priority (IMP) problem and analyze its hardness. Then, we

present an overview of the existing solutions for IMP.

2.1 Problem Definition

We consider a social network as a directed graph 𝐺 = (𝑉 , 𝐸) with
|𝑉 | = 𝑛 and |𝐸 | = 𝑚, where 𝑉 and 𝐸 represent the set of nodes

and edges, respectively. Given an edge ⟨𝑢, 𝑣⟩ ∈ 𝐸, we refer to 𝑢

as an incoming neighbor of 𝑣 and 𝑣 as an outgoing neighbor of

𝑢. Each edge ⟨𝑢, 𝑣⟩ is associated with a propagation probability

𝑝 (𝑢, 𝑣) ∈ [0, 1], representing the probability that 𝑢 influences 𝑣 .

Diffusion model. In this paper, we adopt the widely used inde-
pendent cascade (IC) model [18] to simulate the propagation. Note

that, the proposed techniques can be easily extended to support

the linear threshold model. Given a seed set 𝑆 ⊆ 𝑉 , the diffusion

process of 𝑆 under the IC model progresses in discrete timestamps,

with the specifics described below.

• At timestamp 0, the nodes in the seed set 𝑆 are activated, while

all other nodes remain inactive. Once a node is activated, it stays

active in all subsequent timestamps.

• If a node 𝑢 becomes active at timestamp 𝑡 , for each of its inactive

outgoing neighbors 𝑣 , 𝑢 has a single opportunity to activate 𝑣

with probability 𝑝 (𝑢, 𝑣) at timestamp 𝑡 + 1.
• The propagation process ends when no further nodes can be

activated in the graph 𝐺 .

Let 𝐼𝐺 (𝑆) be the number of active nodes in 𝐺 at the end of the

propagation process. On this basis, we use E[𝐼𝐺 (𝑆)] to denote the

influence spread of 𝑆 in 𝐺 , where the expectation is taken over the

randomness of propagation. For presentation simplicity, 𝐺 will be

dropped when the context is clear. In [18], Kempe et al. propose the

live edge procedure to characterize the diffusion process. Specifically,
by removing each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 with 1 − 𝑝 (𝑢, 𝑣) probability, the
remaining graph is referred to as a realization (denoted as 𝜙), based

on which, the influence spread E[𝐼 (𝑆)] of 𝑆 can be calculated below.

E[𝐼 (𝑆)] = EΦ [𝐼Φ (𝑆)] =
∑︁
𝜙∈Ω

𝐼𝜙 (𝑆) · 𝑝 (𝜙),

where Ω is the set of all possible realizations of 𝐺 , Φ is a random

realization sampled from Ω, 𝑝 (𝜙) is the probability for realization

𝜙 to occur, and 𝐼𝜙 (𝑆) is the number of nodes reachable from 𝑆 in 𝜙 .

Problem statement. Given a graph 𝐺 = (𝑉 , 𝐸), a priority set

𝑃 ⊆ 𝑉 , a threshold 𝑇 ∈ [0, |𝑃 |] and a budget 𝑘 ≥ 𝑇 , the IMP

problem aims to identify a size-𝑘 seed set 𝑆∗ with the maximum

influence spread E[𝐼 (𝑆∗)] while satisfying E[𝐼𝑃 (𝑆∗)] ≥ 𝑇 , i.e.,

𝑆∗ = argmax

𝑆⊆𝑉 , |𝑆 | ≤𝑘
E[𝐼 (𝑆)] s.t. E[𝐼𝑃 (𝑆)] ≥ 𝑇 ,

where E[𝐼𝑃 (𝑆)] is the expected number of nodes in 𝑃 activated by

𝑆 and we can say that E[𝐼𝑃 (𝑆)] is the influence spread of 𝑆 in 𝑃 .

It is clear that IMPwill degenerate to the IM problemwhen 𝑃 = ∅.
As a consequence, the following lemmas hold trivially, illustrating

the inherent complexity of the problem.

2
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Lemma 2.1. The IMP problem is NP-hard and it cannot be approx-
imated within a ratio of 1 − 1/𝑒 + 𝜖 for any 𝜖 > 0 unless P = NP.

2.2 Existing Solutions Revisited

Here we revisit the state-of-the-art approaches for addressing the

IMP problem and analyze their limitations. In the following, we first

present the basic technique used for influence spread estimation.

RIS method. Given a seed set 𝑆 ⊆ 𝑉 , its influence spread cannot

be computed within polynomial time [4]. To overcome this hurdle,

Borgs et al. [2] propose the advanced Reverse Influence Sampling
(RIS) method, which is based on the concept of Reverse Reachable
(RR) set (denoted by 𝑅), and its generation is followed by two steps:

𝑖) sample a node 𝑣 uniformly at random from 𝑉 .

𝑖𝑖) perform a stochastic BFS from 𝑣 in the reverse directions of

edges and store the visited node into 𝑅.

The randomly sampled node 𝑣 is referred to as the source node of 𝑅.
Then, an unbiased estimator for E[𝐼 (𝑆)] is derived with a set R of

sufficient RR sets [2], i.e.,

E[𝐼 (𝑆)] = E[𝑛 · 𝐶𝑜𝑣R (𝑆)|R| ], (1)

where 𝐶𝑜𝑣R (𝑆) =
∑
𝑅∈R min{|𝑆 ∩ 𝑅 |, 1}. The rationale behind this

estimator is that the intersection between 𝑆 and an RR set indicates

the potential influence of 𝑆 on the source node of the RR set. On the

basis of RIS, we further introduce the concept of Priority Reachable
Reverse (PRR) set. The only difference between the PRR set and

RR set is that the source node of PRR set is uniformly at random

selected from 𝑃 . Given a priority set 𝑃 and a set R𝑃 of PRR sets, an

unbiased estimator for E[𝐼𝑃 (𝑆)] can be derived similarly.

E[𝐼𝑃 (𝑆)] = E[|𝑃 | ·
𝐶𝑜𝑣R𝑃 (𝑆)
|R𝑃 |

] . (2)

The state-of-the-art approaches. Pham et al. [24] propose two

approximation algorithms for the IMP problem, named IG and IGS.
In particular, IG can only be applied under the value oracle model,

where the value of E[𝐼 (𝑆)] and E[𝐼𝑃 (𝑆)] is pre-given. This method

is practically infeasible since these two functions are both #P-hard

to compute. IGS is the scalable version for IG, which shares the

same framework with IG, and the difference is that IGS employs

the RIS method to approximate E[𝐼 (𝑆)] and E[𝐼𝑃 (𝑆)]. Therefore,
in the following, we only focus on IGS for presentation simplicity.

Let 𝐼 (·) (resp. 𝐼𝑃 (·)) be the estimated value of E[𝐼 (𝑆)] (resp.
E[𝐼𝑃 (𝑆)]) via R (resp. R𝑃 ), and 𝐼 (𝑢 |𝑆) = 𝐼 (𝑢 ∪ 𝑆) − 𝐼 (𝑆) (resp.
𝐼𝑃 (𝑢 |𝑆) = 𝐼𝑃 (𝑢 ∪𝑆) − 𝐼𝑃 (𝑆)) be the marginal gain of adding 𝑢 to the

set 𝑆 w.r.t. 𝐼 (·) (resp. 𝐼𝑃 (·)). Generally, IGS consists of two stages

and starts with an empty set 𝑆 . In the first stage, it iteratively selects

the seed 𝑢 that leads to the largest 𝐼𝑃 (𝑢 |𝑆) and adds it to 𝑆 , until

the threshold condition is satisfied, i.e., 𝐼𝑃 (𝑆) ≥ (1 + 𝛼)𝑇 , where 𝛼
is a user-defined parameter to guarantee that E[𝐼𝑃 (𝑆)] ≥ 𝑇 holds

with high probability. In the second stage, in a similar manner to

the existing solution for IM [28], it iteratively selects the seed 𝑢

that leads to the largest 𝐼 (𝑢 |𝑆) until the budget is exhausted.
Let 𝑆𝑜 be the size-𝑘 optimal solution for the IMP problem. In

other words, 𝑆𝑜 is the size-𝑘 seed set with the largest influence

spread in𝐺 while satisfying E[𝐼𝑃 (𝑆𝑜 )] ≥ 𝑇 . On the theoretical side,

Algorithm 1: Select-And-Replace
Input : The graph𝐺 , the priority set 𝑃 , the threshold𝑇 , the budget 𝑘 and

the parameters 𝛾, 𝛿, 𝜖 .

Output : The size-𝑘 seed set 𝑆

𝑆 ← SeedSelection(𝐺, 𝑃,𝑇 , 𝑘, 𝛿, 𝜖 ) ; /* Select Stage */;1

⟨𝑆, 𝑘𝑏
1
⟩ ← GreedyReplace(𝐺, 𝑃,𝑇 , 𝑆, 𝑘,𝛾, 𝛿, 𝜖 ) ; /* Replace Stage */;2

return ⟨𝑆, 𝑘𝑏
1
⟩3

IGS has the following theoretical result.

Pr

[
E[𝐼 (𝑆)] ≥ (1 − (1 − 1/𝑘)𝑘

𝑎
2 − 𝜖)E[𝐼 (𝑆𝑜 )]

]
≥ 1 − 𝛿 , (3)

where 𝑘𝑎
2
is the actual budget within the solution of IGS for max-

imizing the influence spread in 𝐺 , i.e., 𝑘𝑎
2
is the number of seeds

identified in the second stage of IGS. Clearly, the empirical approx-

imation ratio of IGS is determined by 𝑘𝑎
2
.

Limitations. Although IGS can return results efficiently, in some

cases, it cannot provide any non-trivial approximation guarantee.

For example, when 𝑘 = 𝑇 = 100 on the dataset Orkut with more

than 100 million edges, IGS can only offer an approximation ratio

of 0.034 (more details can be found in Section 5). This is because,

when 𝑇 is large, IGS requires a significant portion of the budget to

satisfy the threshold condition, leaving only a few budgets for the

second stage, which results in a low empirical approximation ratio.

Moreover, IGS is inferior in maximizing the influence spread

in 𝐺 . In the IMP problem, to maximize the influence spread in 𝐺 ,

it is optimal to maintain E[𝐼𝑃 (𝑆)] as close to 𝑇 as possible, while

ensuring the threshold condition is satisfied. Under such a setting,

a larger fraction of the budget can remain available to maximize the

total influence in 𝐺 . However, IGS may deviate from this setting

(i.e., E[𝐼𝑃 (𝑆)] may far surpass 𝑇 ) due to the potential for the seeds

selected in the second phase to influence the prioritized nodes.

3 Select-And-Replace Approach

In this section, we propose a novel framework, called Select-And-

Replace (SAR), for the IMP problem, which consists of two stages.

In Section 3.1, we first present an overview of SAR. Then, in Sec-

tion 3.2 and Section 3.3, we introduce each stage within SAR in

detail. Finally, we provide a theoretical analysis to demonstrate the

correctness and expected time complexity of SAR in Section 3.4.

3.1 Framework Overview

The pseudocode of the SAR framework is shown in Algorithm 1. In

general, SAR consists of two stages: 𝑖) select stage; 𝑖𝑖) replace stage.
In the first stage, our objective is to identify a size-𝑘 seed set 𝑆 that

maximizes the influence spread in 𝐺 . This task is similar to the

conventional IM problem but imposes a more stringent theoretical

requirement to provide (data-dependent) approximation guarantees

for the final solution of SAR. Specifically, in addition to ensuring

that the returned solution 𝑆 provides (1 − 1/𝑒 − 𝜖)-approximation,

we further ensure that its subset 𝑆 𝑗 (1 ≤ 𝑗 < 𝑘), which consists of

the seed nodes selected in the first 𝑗 iterations (under the greedy

strategy), offers (1 − (1 − 1/𝑘) 𝑗 − 𝜖)-approximation. Note that, the

approximation guarantees for 𝑆 and 𝑆𝑖 are all established w.r.t. 𝑆𝑜
IM
,

which is the size-𝑘 optimal solution that maximizes the influence

spread in 𝐺 . In the second stage, we iteratively replace the seed in

𝑆 until satisfying the threshold condition, i.e., E[𝐼𝑃 (𝑆)] ≥ 𝑇 .
3
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Algorithm 2: SeedSelection
Input : The graph𝐺 , the priority set 𝑃 , the threshold𝑇 , the budget 𝑘 and

the parameters 𝛿, 𝜖 .

Output : The size-𝑘 seed set 𝑆

𝜃max ←
2𝑛

(
(1−(1−1/𝑘 )𝑘 )

√︃
ln

6

𝛿
+
√︃
(1−(1−1/𝑘 )𝑘 ) (ln ( 𝑛

⌊𝑛/2⌋)+ln 6

𝛿
)
)
2

𝜖2𝑘
;1

𝜃0 ← 𝜃max · 𝜖2𝑘/𝑛;2

𝑖max ← ⌈log2
𝜃max

𝜃
0

⌉, 𝑎1 ← ln
3𝑖𝑚𝑎𝑥

𝛿
, 𝑎2 ← ln

3𝑖𝑚𝑎𝑥
𝛿

;
3

generate two sets R1 , R2 of 𝜃0 random RR sets, respectively;4

for 𝑖 ← 1 to 𝑖max do5

identify a size-𝑘 seed set 𝑆 ⊆ 𝑉 using greedy strategy on R1 , and record6

its all subsets 𝑆 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 ;

compute an upper bound 𝜎𝑈 (𝑆𝑜
IM
) of E[𝐼 (𝑆𝑜

IM
) ] based on R1 ;7

Flag← 1;8

for 𝑗 ← 1 to 𝑘 do9

compute a lower bound 𝜎𝐿 (𝑆 𝑗 ) of E[𝐼 (𝑆 𝑗 ) ] based on R2 ;10

if 𝜎𝐿 (𝑆 𝑗 )/𝜎𝑈 (𝑆𝑜IM ) < 1 − (1 − 1/𝑘 ) 𝑗 − 𝜖 then11

Flag← 0;12

break;13

if Flag = 1 or 𝑖 = 𝑖max then14

return 𝑆 ;15

double the sizes of R1 and R2 with new random RR sets;16

Theoretically, SAR offers a (1 − (1 − 1/𝑘)𝑘𝑏1 − 𝜖)-approximation

w.r.t. 𝑆𝑜 (Theorem 3.2), where 𝑘𝑏
1
is the actual budget within the

solution of SAR that maximizes the influence spread in 𝐺 .

3.2 Select Stage

To achieve the theoretical requirements stated above, we design a

novel method by extending the state-of-the-art algorithm for IM

(i.e., OPIM-C [28]), which only ensures the returned solution offers

(1 − 1/𝑒 − 𝜖)-approximation ratio. As outlined in Algorithm 2, our

method runs in an iterative manner. In each iteration, it initially

generates two independent collections of RR sets,R1 andR2 (Line 4).
The algorithm then employs a greedy approach on R1 to generate

a solution 𝑆 , that is, finding a set of 𝑘 nodes such that 𝑆 intersects

with as many RR sets as possible in R1. Meanwhile, it records all

the subsets 𝑆 𝑗 of 𝑆 for 1 ≤ 𝑗 ≤ 𝑘 (Line 6). Subsequently, for any 𝑗 ∈
[1, 𝑘], 𝜎𝐿 (𝑆 𝑗 ) and 𝜎𝑈 (𝑆𝑜

IM
) are derived based on two concentration

bounds (see Appendix A.1). In particular, 𝜎𝐿 (𝑆 𝑗 ) is the lower bound
of E[𝐼 (𝑆 𝑗 )] and 𝜎𝑈 (𝑆𝑜

IM
) is the upper bound of E[𝐼 (𝑆𝑜

IM
)], whose

derivation can refer to the Theorem 4.2 and Theorem 4.3 in [28],

and their expressions are shown below.

𝜎𝐿 (𝑆 𝑗 ) =
(
(
√︂
𝐶𝑜𝑣R2 (𝑆 𝑗 ) +

2𝑎1

9

−
√︂

𝑎1

2

)2 − 𝑎1

18

)
· 𝑛

|R2 |
, (4)

𝜎𝑈 (𝑆𝑜
IM
) =

(√︄
𝐶𝑜𝑣R1 (𝑆)

1 − (1 − 1/𝑘)𝑘
+ 𝑎2

2

+
√︂

𝑎2

2

)2
· 𝑛

|R1 |
. (5)

Then, based on the stopping condition in Line 11, the algorithm

evaluates the quality of the generated solution 𝑆 and all of its subsets.

If all the stopping conditions are satisfied (i.e., 𝜎𝐿 (𝑆 𝑗 )/𝜎𝑈 (𝑆𝑜
IM
) ≥

1− (1− 1/𝑘) 𝑗 −𝜖,∀𝑗 ∈ [1, 𝑘]) or 𝑖 = 𝑖max, the solution 𝑆 is returned;

otherwise, the sample size is doubled and aforementioned steps are

repeated until the algorithm terminates.

Algorithm 3: GreedyReplace
Input : The graph𝐺 , the priority set 𝑃 , the threshold𝑇 , the seed set

returned in the first stage 𝑆 , the budget 𝑘 and the parameters 𝛾, 𝛿, 𝜖 .

Output : The size-𝑘 seed set 𝑆 and the integer 𝑘𝑏
1

𝑘𝑏
1
← 𝑘, R𝑃

1
← ∅, R𝑃

2
← ∅;1

T2 ← 2 (1 + 𝛾 )
(
1 + 1

3
𝛾
)
ln

(
2⌈(1+𝛾 )𝑇 ⌉

𝛿

)
1

𝛾2
;

2

generate random PRR sets and store them into R𝑃
2
, until𝐶𝑜𝑣R𝑃

2

(𝑆 ) ≥ T2 ;
3

if |𝑃 | · 𝐶𝑜𝑣R𝑃
2

(𝑆 )/|R𝑃
2
| ≥ (1 + 𝛾 ) · 𝑇 then

4

return ⟨𝑆, 𝑘 ⟩;5

generate | R𝑃
2
| random PRR sets and store them into R𝑃

1
;6

for each 𝑢 ∈ 𝑆 with the reversing order of insertion do7

𝑆 ← 𝑆 \ {𝑢};8

𝑥 ← argmax𝑣∈𝑉 𝐶𝑜𝑣R𝑃
1

(𝑣 |𝑆 ) ;
9

𝑆 ← 𝑆 ∪ {𝑥 };10

𝑘𝑏
1
← 𝑘𝑏

1
− 1;11

while𝐶𝑜𝑣R𝑃
2

(𝑆 ) < T2 do
12

generate one random PRR set and store them into R𝑃
2
;13

if |𝑃 | · 𝐶𝑜𝑣R𝑃
2

(𝑆 )/|R𝑃
2
| ≥ (1 + 𝛾 ) · 𝑇 then

14

break;15

return ⟨𝑆, 𝑘𝑏
1
⟩;16

3.3 Replace Stage

The first stage focuses solely on maximizing influence spread in 𝐺 ,

without considering the threshold condition. To proceed, in the

second stage, we replace some nodes in 𝑆 (the seed set returned

in the first stage) to satisfy the threshold condition. Under this

setting, we can ensure that E[𝐼𝑃 (𝑆)] closely approximates𝑇 , which

circumvents the limitation of IGS (i.e., it allocates an excessive

budget to meet the threshold condition as discussed in Section 2.2),

resulting in the improved influence spread.

As outlined in Algorithm 3, we first keep generating a set R𝑃
2
of

random PRR sets until the coverage 𝐶𝑜𝑣R𝑃
2

(𝑆) of 𝑆 in R𝑃
2
exceeds

T2 (Lines 2-3), which ensures E[𝐼𝑃 (𝑆)] can be estimated accurately

via R𝑃
2
on the theoretical side. If |𝑃 | · 𝐶𝑜𝑣R𝑃

2

(𝑆)/|R𝑃
2
| is not less

than (1 +𝛾) ·𝑇 , which means that the threshold condition has been

satisfied currently, we directly return 𝑆 (Lines 4-5); otherwise, we

come into the node replacement procedure (Lines 6-14). Generally,

we consider processing the seeds in 𝑆 according to the reverse order

of the insertion order. For each seed in 𝑆 , it is first removed from

𝑆 , and then we employ the greedy method on a newly generated

set R𝑃
1
of RR sets to identify the current best node and add it to

𝑆 . Note that, we cannot directly identify the node based on R𝑃
2
,

since using the same set of RR sets to both generate a seed set and

estimate its influence spread will lead to biased estimation [16].

Since 𝐶𝑜𝑣R𝑃
2

(𝑆) may decrease after each replacement, it is neces-

sary to check whether the estimated value for E[𝐼𝑃 (𝑆)] remains

sufficiently accurate (Lines 12-13). Subsequently, if the updated

seed set satisfies the threshold condition, we return 𝑆 as the final

solution; otherwise, the replacement process continues.

3.4 Theoretical Analysis

In this section, we present a theoretical analysis for SAR. Specifi-
cally, we first show that the solution returned by the select stage,

as well as its subsets, all provide reasonable approximation ratios

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Effective Influence Maximization with Priority Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(Theorem 3.1). On this basis, we then show that SAR can provide

a data-dependent theoretical guarantee, where the empirical ap-

proximation ratio is determined by the number of nodes replaced

in the second stage (Theorem 3.2). Furthermore, we derive the ex-

pected time complexity for SAR (Theorem 3.3). Due to the limited

space, the proofs for these theorems are omitted and can be found

in Appendix A.3.

Theorem 3.1. Given 0 ≤ 𝜖, 𝛿 ≤ 1, 𝑆𝑜IM is the size-𝑘 optimal
solution that maximizes the influence spread in𝐺 , SeedSelection (the
first stage of SAR) returns 𝑆 𝑗 (1 ≤ 𝑗 ≤ 𝑘) satisfies:

Pr

[
E[𝐼 (𝑆 𝑗 )] ≥ (1 − (1 − 1/𝑘) 𝑗 − 𝜖)E[𝐼 (𝑆𝑜IM)]

]
≥ 1 − 𝛿. (6)

Theorem 3.2. Given 0 ≤ 𝜖, 𝛿 ≤ 1, 𝑆𝑜 is the size-𝑘 optimal solution
for IMP, SAR returns 𝑘𝑏

1
, 𝑆 satisfies Pr [E[𝐼𝑃 (𝑆)] ≥ 𝑇 ] ≥ 1 − 𝛿 and

Pr

[
E[𝐼 (𝑆)] ≥ (1 − (1 − 1/𝑘)𝑘

𝑏
1 − 𝜖)E[𝐼 (𝑆𝑜 )]

]
≥ 1 − 𝛿. (7)

Theorem 3.3. The expected time complexity of SAR is

O( ( ⌊𝑛/2⌋ ln𝑛+ln(1/𝛿 ) ) (𝑚+𝑛)
𝜖2

+ E[𝐼𝑃 (𝑣∗ ) ] ·ln(𝑇 /𝛿 ) ·𝑚
E[𝐼𝑃 (𝑆 ) ] ·𝛾2

),

where 𝑣∗ is selected randomly from those in 𝐺 with probabilities
proportional to their in-degrees.

4 Adaptive-Alternation-Selection Approach

Compared to IGS, SAR demonstrates superior performance in terms

of influence spread. In addition, the positive integer 𝑘𝑏
1
returned by

SAR is always larger than 𝑘𝑎
2
returned by IGS, which implies that

SAR consistently provides stronger approximation guarantees than

IGS. More details can be found in Section 5.

Recall that IGS and SAR both employ the non-adaptive strategy,
where the seeds are selected all at once, without any knowledge

of the realization that would occur in the actual influence propaga-

tion process. Such a setting fails to take advantage of the previous

spreading results when selecting the next seed node, which may

lead to unsatisfactory results. Moreover, the selected 𝑆 may influ-

ence fewer than 𝑇 prioritized nodes for some realizations or much

more than 𝑇 prioritized nodes for some other realizations, both

of which are undesirable scenarios. For example, SAR may return

𝑆 that fails to influence 𝑇 prioritized nodes, since the guarantee

E[𝐼𝑃 (𝑆)] ≥ 𝑇 is subject to 𝛿 probability of failure (Theorem 3.2).

To obtain more practical results, in this section, we further study

the IMP problem in the adaptive setting, which has been shown

to be more effective than the non-adaptive strategy in many real-

world applications [1, 7, 8]. In a nutshell, the general idea of the

adaptive strategy is to iteratively select seed nodes based on the

observed diffusion results of the previously chosen seeds. Under

such a setting, we design an effective algorithm named AAS with

an expected approximation. To facilitate understanding, we first

introduce some frequently used notations in Section 4.1. Subse-

quently, in Section 4.2 and Section 4.3, we thoroughly present the

framework and the theoretical guarantees it provides, respectively.

4.1 Useful Notations

Partial realization. Given a realization𝜙 , let𝜙 (𝑣) be the activation
state of 𝑣 under 𝜙 , i.e., the statuses (either live or blocked) of all

edges that would be explored after activating 𝑣 . Next, we introduce

the concept of partial realization𝜓 , which presents the observation

that we havemade so far. Let dom(𝜓 ) be the domain of𝜓 , i.e., the set

of nodes that have been observed. Similarly,𝜓 (𝑣) is the activation
state of 𝑣 under𝜓 . We say𝜓 is consistent with𝜙 , denoted to𝜙 ∼ 𝜓 , if
for every 𝑣 ∈ dom(𝜓 ),𝜓 (𝑣) = 𝜙 (𝑣). Furthermore, we introduce the

concept of residual graph. Given a partial realization𝜓 , a residual

graph is the subgraph of 𝐺 constructed by removing all activated

nodes in𝜓 and their incident edges from 𝐺 .

Policy. Under the adaptive setting, a policy 𝜋 is the strategy for

selecting the next node based on current partial realization𝜓 . Given

a fixed𝜓 , if 𝜋 always selects the same seed node, we say this policy

is deterministic; otherwise, it is randomized. We use 𝜔 to denote all

possible randomness brought by the randomized policy and 𝜋 (𝜔)
be a policy w.r.t. 𝜔 . Let 𝜋 (𝜔,𝜓 ) be the selected node by 𝜋 (𝜔) under
𝜓 , and E(𝜋 (𝜔), 𝜙) be the set of selected nodes by 𝜋 (𝜔) under 𝜙 .
Accordingly, the influence spread of policy 𝜋 (𝜔) is defined below.

𝜎 (𝜋 (𝜔)) = E[𝐼 (𝜋 (𝜔))] = EΦ [𝐼Φ (E(𝜋 (𝜔),Φ))] .

Additionally, for any𝜓 , let Δ(𝑣 |𝜓 ) and Δ(𝜋 (𝜔) |𝜓 ) denote the condi-
tional marginal benefit of the node 𝑣 and a policy 𝜋 (𝜔) conditioned
on𝜓 , respectively. The formal definitions are shown below.

Δ(𝑣 |𝜓 ) = EΦ∼𝜓 [𝐼Φ (dom(𝜓 ) ∪ {𝑣}) − 𝐼Φ (dom(𝜓 ))],
Δ(𝜋 (𝜔) |𝜓 ) = EΦ∼𝜓 [𝐼Φ (dom(𝜓 ) ∪ E(𝜋 (𝜔),Φ)) − 𝐼Φ (dom(𝜓 ))] .

4.2 General Framework

To solve adaptive IMP, a straightforward idea is to extend the SAR
to the adaptive setting. However, it is infeasible for us to implement

the replacement procedure of SAR in an adaptive manner. This is

because, in the adaptive setting, selecting the next seed is based

on the actual propagation information. In other words, before we

select the next seed, the propagation of the previously selected

seeds has been finished. Therefore, we cannot regret the selection

of a node and then choose another one with the adaptive strategy.

AAS approach. To design an effective method with the adaptive

strategy, the key lies in appropriately allocating the budgets for max-

imizing the influence spread in𝐺 and in 𝑃 . For this purpose, an ideal

approach is to first select 𝑘1 nodes to maximize E[𝐼 (·)], followed by
utilizing the remaining 𝑘−𝑘1 nodes to meet the threshold condition,

ensuring that the condition is satisfied just when the budget is fully

expended. However, this approach is impractical, as the value of 𝑘1
cannot be known in advance. To address this issue, we propose a

general framework named Adaptive-Alternation-Selection (AAS),
which could automatically allocate the budgets for the two tasks.

The rationale behind the automation mechanism is: in the 𝑖-th itera-

tion, AAS will select a seed that maximizes E[𝐼 (·)] if the remaining

budget (i.e., 𝑘 − 𝑖) is still sufficient to meet the threshold condition.

Otherwise, it will select the seed that maximizes E[𝐼𝑃 (·)].
The detailed pseudocode of AAS is shown in Algorithm 4. In a

nutshell, AAS consists of 𝑘 iterations. In each iteration, there are

two procedures that have the potential to be implemented. One is

shown in Lines 4-6, whose objective is to identify a node 𝑢𝑖 from𝐺𝑖

such that in expectation (w.r.t 𝜔) 𝑢𝑖 has an influence spread at least

𝛼 times that of the optimal node on the basis of the 𝜓𝑖−1, which
is the partial realization after selecting the first 𝑖 − 1 nodes. For

this purpose, we could directly invoke the algorithm EptAIM [14]

5
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Algorithm 4: Adaptive-Alternation-Selection
Input : The graph𝐺 , the priority set 𝑃 , the threshold𝑇 , the budget 𝑘 , the

sample size for PRR set 𝜃𝑝 and the parameter 𝛼 .

Output : The size-𝑘 seed set 𝑆 and the integer 𝑘𝑐

𝐺1 ← 𝐺,𝑆 ← ∅, 𝐼𝑃 (𝑆 ) ← 0, 𝑘𝑐 ← 0;1

for 𝑖 ← 1 to 𝑘 do2

if 𝑇 − 𝐼𝑃 (𝑆 ) ≤ 𝑘 − |𝑆 | − 1 then3

select 𝑢𝑖 from𝐺𝑖 that E𝜔 [Δ(𝑢𝑖 |𝜓𝑖−1 ) ] ≥ 𝛼 · max𝑢∈𝑉 Δ(𝑢 |𝜓𝑖−1 ) ;4

𝑆 ← 𝑆 ∪ {𝑢𝑖 };5

𝑘𝑐 ← 𝑘𝑐 + 1;6

else7

clear all the PRR sets in R𝑃
, generate 𝜃𝑝 PRR sets based on𝐺𝑖 and8

store them into R𝑃
;

𝑢𝑃
𝑖
← argmax𝑣∈𝑉 𝐶𝑜𝑣R𝑃 (𝑣 |𝑆 ) ;9

𝑆 ← 𝑆 ∪ {𝑢𝑃
𝑖
};10

Observe the influence of 𝑢𝑖 (or 𝑢
𝑃
𝑖
) in𝐺𝑖 and increase 𝐼𝑃 (𝑆 ) accordingly;11

Remove the activated nodes from𝐺𝑖 and obtain the residual graph𝐺𝑖+1 ;12

return ⟨𝑆, 𝑘𝑐 ⟩13

(with the setting 𝑘 = 1), which is the state-of-the-art method for

adaptive IM and offers an expected approximation ratio. The other

procedure is presented in Lines 8-10, with the goal of selecting a

node 𝑢𝑃
𝑖
that maximizes the influence spread in 𝑃 . Here we employ

a heuristic to accelerate the process, i.e., by fixing the sample size

of R𝑃 to a constant and applying a greedy method on R𝑃 . Despite
this, AAS still provides the non-trivial approximation guarantee

(Theorem 4.2).

Based on a judgment condition (Line 3),AAS smartly chooses one

procedure to execute in each iteration. Subsequently, it observes the

newly activated nodes and updates the corresponding information

(Lines 11-12). Note that, 𝐼𝑃 (𝑆) is the actual influence spread of 𝑆 (i.e.,
the number of activated nodes) in 𝑃 based on the observation we

have made so far. The process stops until the budget is exhausted.

4.3 Theoretical Analysis

Next, we will provide a detailed theoretical analysis for AAS. In
particular, we first introduce a critical lemma that establishes a

relationship between 𝜋 and 𝜋 𝐼 (Lemma 4.1), where 𝜋 𝐼 is a ran-

domized policy with 𝑘𝑐 iterations for the task of maximizing the

influence spread in𝐺 and 𝑘𝑐 is the actual budget within the solution

of AAS that maximizes the influence spread in 𝐺 . On the basis of

this lemma, we show that AAS offers a (1 − e(𝜖−1) ·𝑘𝑐/𝑘 )-expected
approximation (Theorem 4.2). Then, we demonstrate that AAS en-

sures 𝐼𝑃 (𝑆) ≥ 𝑇 holds in all instances (Theorem 4.3), making it

more effective than SAR. Finally, the expected time complexity of

AAS is derived (Theorem 4.4). Due to space constraints, we omit all

the proofs here, which are available in the Appendix A.4.

Lemma 4.1. For any realization 𝜙 , we have

𝐼𝜙 (E(𝜋 (𝜔), 𝜙) ≥ 𝐼𝜙 (E(𝜋 𝐼 (𝜔), 𝜙) . (8)

Theorem 4.2. 𝜋 (𝜔) be the policy employed by AAS. For any policy
𝜋∗ (𝜔) that satisfies the threshold requirement, we have

E𝜔 [𝜎 (𝜋 (𝜔))] ≥ (1 − e
(𝜖−1) ·𝑘𝑐

𝑘 ) · E𝜔 [𝜎 (𝜋∗ (𝜔))] . (9)

Theorem 4.3. AAS returns a solution 𝑆 such that 𝐼𝑃 (𝑆) ≥ 𝑇 holds
in all instances.

Table 1: Statistics of datasets

Dataset Type |𝑉 | |𝐸 | Avg. deg

NetHEPT undirected 15,229 31,376 4.18

DBLP undirected 317,080 1,049,866 6.60

Twitter directed 81,306 1,768,149 59.5

Youtube undirected 1,134,890 2,987,624 5.30

Orkut undirected 3,072,441 117,185,083 76.3

Theorem 4.4. The expected time complexity of AAS is

O
(
𝑘 ·max{(log𝑛 + log 1

𝜖
) (𝑚 + 𝑛)/𝜖2, E[𝐼𝑃 (𝑣

∗)]
|𝑃 | 𝑚𝜃𝑝 }

)
,

where 𝑣∗ is selected randomly from those in 𝐺 with probabilities
proportional to their in-degrees.

5 Experiments

In this section, we conduct extensive experiments on 5 real-world

datasets to evaluate the performance of our methods.

5.1 Experimental Settings

Algorithms. In the experiment, we implement the following three

algorithms. 𝑖) IGS: the state-of-the-art algorithm for the IMP prob-

lem proposed in [24] (details can be found in Section 2.2); 𝑖𝑖) SAR:
the algorithm proposed in Section 3; 𝑖𝑖𝑖) AAS: the algorithm pro-

posed in Section 4. In addition, we incorporate the incremental

update technique [12] into AAS to further accelerate the algorithm.

Datasets. We use 5 real datasets which are available on SNAP
1

in our experiments. The details of the datasets are presented in

Table 1. For each dataset, we select the top-200 nodes with the

highest in-degrees and store them into the priority set.

Parameter settings. Following the convention [28–30], we set the

propagation probability 𝑝 (𝑢, 𝑣) of each edge ⟨𝑢, 𝑣⟩ as the inverse of
𝑣 ’s in-degree. By default, for the non-adaptive algorithms IGS and

SAR, we set 𝜖 = 𝛾 = 0.1, 𝛿 = 1/𝑛, and we repeat each algorithm 20

times to report the average value. For the adaptive method AAS,
we set 𝜃𝑝 = 10000, and following [12, 14], we adopt a more relaxed

deviation parameter, i.e., 𝜖 = 0.5, as a tighter approximation guar-

antee would incur the much higher computational cost. In addition,

we generate 20 random realizations to report the average influence

spread. We evaluate the performance of our algorithms according to

the 𝑘-setting and 𝑇 -setting. Under the 𝑘-setting, we fix 𝑇 = 100 and

vary 𝑘 such that 𝑘 ∈ {100, 120, 140, 160, 180}. Under the 𝑇 -setting,
we fix 𝑘 = 200 and vary 𝑇 such that 𝑇 ∈ {100, 120, 140, 160, 180}.
All the programs are implemented in C++ and performed on a PC

with an Intel Xeon 2.10GHz CPU and 256GB memory.

5.2 Experimental Performance

Influence spread. We first evaluate the performance of influence

spread for each algorithm. The experimental results under the 𝑘-

setting and 𝑇 -setting are reported in Figure 1. As shown, SAR and

AAS consistently outperform IGS in terms of influence spread on all

1
http://snap.stanford.edu
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Figure 1: Influence spread evaluation by varying 𝑘 and 𝑇
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Figure 2: Approximation ratio evaluation by varying 𝑘 and 𝑇

the datasets. In particular, compared to IGS, SAR achieves around

22.3% larger spread, andAAS achieves around 42.6% larger spread on

NetHEPT. The main reason for this observation is that compared to

SAR and AAS, IGS requires a larger portion of the budget to satisfy

the threshold condition, thereby leaving less budget available for

maximizing influence spread in𝐺 . In addition, AAS always provides
better performance compared to SAR. This is because AAS takes

advantage of the previous spreading results when selecting the next

seed node, thereby preventing a node from being activated multiple

times and ultimately enhancing the influence spread.

Moreover, as can be seen in Figures 1(a)-1(e), the influence of all

algorithms increases as 𝑘 increases, which is not surprising given

the larger budget available for initiating influence propagation.

Besides, as shown in Figures 1(f)-1(j), the influence spread of three

algorithms generally exhibits a declining trend as 𝑇 increases. The

primary reason is that with the increase of 𝑇 , a larger budget is

required to satisfy the threshold condition, consequently leading to

a reduction in the budget for maximizing the influence spread in𝐺 .

Approximation ratio. Then, we calculate and report the empirical

approximation ratios for all three algorithms based on Eq. (3), Eq. (7)

and Eq. (9), respectively. As can be seen in Figure 2, SAR consistently

outperforms IGS in terms of approximation ratio on all the datasets.

In particular, on Orkut with the setting 𝑘 = 𝑇 = 100, IGS almost

cannot provide any theoretical guarantee while SAR can provide

strong theoretical guarantee, achieving a ratio of approximately 40%.

This is because SAR first identifies the most influential nodes in

graph𝐺 . These nodes also have the potential to activate nodes in 𝑃 .

In some cases, the threshold condition is met after completing the

first phase of SAR, which allows it to directly return the seed nodes

and leads to strong theoretical guarantee. In contrast, IGS initially

attempts to meet the threshold condition, which may consume

a significant portion of the budget when 𝑇 is large. This leaves

fewer budgets for selecting nodes in the second phase, resulting

in a lower approximation ratio. Additionally, in most cases, AAS
achieves a higher approximation ratio than IGS, and in a few cases,

AAS outperforms SAR. The reason that AAS occasionally provides

inferior performance than IGS and SAR is that we set the deviation

parameter 𝜖 of AAS as 0.5. More specifically, there is a trade-off

between the approximation ratio and efficiency. If we set 𝜖 = 0.1 as

done with IGS and SAR, the empirical approximation ratio of AAS
can be significantly improved, however, the side effect is that AAS
will encounter scalability issues.
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Figure 3: Running time evaluation by varying 𝑘 and 𝑇

Furthermore, as 𝑘 and 𝑇 increase, the trend of the approxima-

tion ratio mirrors that of the influence spread. This is because the

approximation ratios of the three methods are all primarily driven

by the budget for maximizing the total influence in 𝐺 .

Running time. Further, we evaluate the running time for each

algorithm, and the results are demonstrated in Figure 3. As can

be seen, the time cost of IGS and SAR is quite similar, and both

exhibit high efficiency. In contrast, AAS takes much more time than

IGS and SAR. It can be explained that AAS requires generating a

significantly larger number of samples, which naturally results in

increased running time. Nevertheless, AAS can still easily scale

to the large graphs. For example, AAS only requires around 500

seconds to complete when handling Orkut with more than one

hundred million edges.

6 Related Work

Non-adaptive IM. Kempe et al. [18] first formulate the influence

maximization (IM) problem, which aims to identify a set of seeds

with the largest influence spread. They accordingly introduce two

basic propagation models, i.e., independent cascade (IC) and lin-
ear threshold (LT) models. To address the problem, they utilize

a polynomial-time greedy algorithm that returns (1 − 1/𝑒 − 𝜖)-
approximate solution. More specifically, a Monte-Carlo based ap-

proach is leveraged for estimating the influence spread of any

seed set 𝑆 . Afterwards, a large number of work focuses on de-

veloping heuristic algorithms to reduce computational overhead [4–

6, 11, 17, 23, 34]. However, as a side effect, these solutions yield

results without theoretical guarantees. Brogs et al. [2] make a

theoretical breakthrough by proposing the elegant Reverse Influ-
ence Sampling (RIS) technique, which reduces the time complex-

ity to almost linear to the graph size. Subsequently, many RIS-

based algorithms [16, 22, 28–30] have been proposed, which ensure

(1 − 1/𝑒 − 𝜖)-approximations while reducing computational over-

head. Besides, a plethora of research work focuses on more practical

scenarios rather than the classic IM, such as incorporating the time

aspect [19, 21] and location aspect [33]. Furthermore, inspired by

real marketing scenarios in social networks, priority-aware IM is

proposed [24], which is the focus of this paper. However, existing

methods have notable limitations in terms of effectiveness, moti-

vating us to develop novel and improved approaches.

Adaptive IM. Golovin et al. [10] first introduce the concept of

adaptive submodularity, where the seed selection is based on the

observation of previous diffusion results, and prove that the adap-

tive greedy policy can provide a (1 − 1/𝑒)-approximate solution.

Subsequently, Han et al. [13] and Sun et al. [26] propose two algo-

rithms for adaptive IM, and their algorithms are claimed to provide

the same worst-case approximation guarantee of 1 − 𝑒 (1−1/𝑒 ) (𝜖−1)
with high probability. However, Huang et al. [14] point out defi-

ciencies in their proofs. To tackle this issue, they design a novel

framework for adaptive IM with (1− 𝑒 (1−(1−1/𝑏 )𝑏 ) (𝜖−1) )-expected
approximation. Recently, Guo et al. [12] study the budgeted adaptive

IM problem, which is the adaptive IM problem under the skewed

cost model (i.e., the cost of each node may not be equal). They

propose a practical algorithm that provides the expected approxi-

mation guarantee. In addition, they devise an incremental update

approach, which can be easily extended to the adaptive IM problem

to improve efficiency. Furthermore, several variants of the adaptive

IM problem [15, 27, 35] are studied, all of which are based on the

adaptive framework that utilizes feedback from previous selections

to enable more accurate node selection.

7 Conclusion

In this paper, we study the influence maximization with priority

problem. To begin with, we revisit the state-of-the-art methods for

IMP and point out their limitations. To fill the gap, we propose a

novel algorithm SAR with both superior empirical effectiveness

and strong theoretical guarantees. Besides, to obtain more practical

results, we conduct the first research to study IMP under the adap-

tive setting, where the seeds are iteratively selected after observing

the diffusion result of the previous seeds. We design a scalable

and effective algorithm AAS that achieves expected approximation

guarantees. Finally, comprehensive experiments on 5 real-world

datasets are conducted to validate the performance of SAR and AAS.
The experimental results show that SAR and AAS can demonstrate

better effectiveness and offer a higher empirical approximation

ratio compared to the state-of-the-art method.
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A Appendix

A.1 Concentration Bounds

Lemma A.1 ([29]). Given a seed set 𝑆 and a fixed number of 𝜃
random RR sets R. For any 𝜆 > 0,

Pr

[
𝐶𝑜𝑣R (𝑆) − 𝜃 ·

E[𝐼 (𝑆)]
𝑛

≥ 𝜆

]
≤ exp

(
−𝜆2

2𝜆
3
+ 2E[𝐼 (𝑆 ) ]𝜃

𝑛

)
, (10)

Pr

[
𝐶𝑜𝑣R (𝑆) − 𝜃 ·

E[𝐼 (𝑆)]
𝑛

≤ −𝜆
]
≤ exp

(
−𝜆2

2𝜃 · E[𝐼 (𝑆 ) ]𝑛

)
. (11)

A.2 Proofs for Results in Section 2

Proof of Lemma 2.1. According to [18], the IM problem is

proved to be NP-hard and cannot be approximated within a ratio of

1 − 1/𝑒 + 𝜖 for any 𝜖 > 0 unless P = NP. Since IMP will degenerate

to the IM problem when 𝑃 = ∅, the lemma follows. □

A.3 Proofs for Results in Section 3

Proof of Theorem 3.1. SeedSelection returns the solution

in two scenarios: 𝑖 = 𝑖max or 𝑖 < 𝑖max. We first consider the case

of 𝑖 = 𝑖max, where satisfies |R1 | = |R2 | = 𝜃 ≥ 𝜃max. Let 𝜃1 =
2𝑛 ln(6/𝛿 )

𝜖2
1
·E[𝐼 (𝑆𝑜

IM
) ] and 𝜖1 < 𝜖 . When 𝜃 ≥ 𝜃1, we have:

Pr

[
𝑛 ·

𝐶𝑜𝑣R1 (𝑆𝑜IM)
𝜃

≤ (1 − 𝜖1)E[𝐼 (𝑆𝑜
IM
)]

]
≤ exp [−

𝜖2
1

2

· 𝜃 ·
E[𝐼 (𝑆𝑜

IM
)]

𝑛
] ≤ 𝛿

6

, (12)

where the first inequality is due to Eq. (11). Based on the submodu-

larity and monotonicity of 𝐶𝑜𝑣R1 (·), it is easy to deduce

𝑛 ·
𝐶𝑜𝑣R1 (𝑆 𝑗 )

𝜃
≥

(
1 − (1 − 1

𝑘
) 𝑗

)
· 𝑛

𝐶𝑜𝑣R1 (𝑆𝑜IM)
𝜃

. (13)

Combining Eq. (12) and Eq. (13), we have

Pr

[
𝑛 · 𝐶𝑜𝑣R1 (𝑆 𝑗 )

𝜃
≥

(
1 − (1 − 1

𝑘
) 𝑗

)
(1 − 𝜖1)E[𝐼 (𝑆𝑜

IM
)]

]
≥ 1 − 𝛿

6
. (14)

Let 𝜃
𝑗

2
=
(2−2(1− 1

𝑘
) 𝑗 )𝑛 ln((𝑛𝑗 ) ·6/𝛿 )

E[𝐼 (𝑆𝑜
IM
) ]𝜖2

2

and 𝜖2 = 𝜖 − (1 − (1 − 1

𝑘
) 𝑗 ) · 𝜖1,

when 𝜃 ≥ 𝜃
𝑗

2
, assume that E[𝐼 (𝑆 𝑗 )] < (1− (1−1/𝑘) 𝑗 −𝜖)E[𝐼 (𝑆𝑜

IM
)]

holds, we have

Pr[𝑛 ·
𝐶𝑜𝑣R1 (𝑆 𝑗 )

𝜃
− E[𝐼 (𝑆 𝑗 )] ≥ 𝜖2E[𝐼 (𝑆𝑜

IM
)]]

≤ exp(−
𝜖2
2
· E[𝐼 (𝑆𝑜

IM
)]2 · 𝜃

(2E[𝐼 (𝑆 𝑗 )] + 2

3
E[𝐼 (𝑆𝑜

IM
)] · 𝜖2) · 𝑛

)

≤ exp(−
𝜖2
2
· E[𝐼 (𝑆𝑜

IM
)] · 𝜃

(2(1 − (1 − 1

𝑘
) 𝑗 − 𝜖) + 2

3
𝜖2) · 𝑛

) ≤ 𝛿

6 ·
(𝑛
𝑗

) , (15)

where the first inequality is due to Eq. (10). According to Eq. (14), Eq.

(15) and there exists at most

(𝑛
𝑗

)
seed sets, when 𝜃 ≥ max{𝜃1, 𝜃 𝑗

2
},

we have E[𝐼 (𝑆 𝑗 )] ≥ (1 − (1 − 1/𝑘) 𝑗 − 𝜖)E[𝐼 (𝑆𝑜
IM
)] holds with at

least 1 − 𝛿
3
probability, which contradicts the assumption. Then by

setting 𝜃1 = 𝜃
𝑗

2
, we can deduce a sample size threshold 𝜃

𝑗

𝑇
such that

𝜃
𝑗

𝑇
≥ max{𝜃1, 𝜃 𝑗

2
} for each 𝑗 ∈ [1, 𝑘].

𝜃
𝑗

𝑇
=

2𝑛

(
(1−(1−1/𝑘 ) 𝑗 )

√︃
ln

6

𝛿
+
√︃
(1−(1−1/𝑘 ) 𝑗 ) (ln (𝑛𝑗 )+ln 6

𝛿
)
)
2

𝜖2𝑘
.

Recall that 𝜃max is defined in Line 1 of Algorithm 2. It is easy

verify that ∀𝑗 ∈ [1, 𝑘], 𝜃max ≥ 𝜃
𝑗

𝑇
. Therefore, we can conclude that

when 𝜃 ≥ 𝜃max, ∀𝑗 ∈ [1, 𝑘],

Pr[E[𝐼 (𝑆 𝑗 )] ≥ (1 − (1 − 1/𝑘) 𝑗 − 𝜖)E[𝐼 (𝑆𝑜
IM
)]] ≥ 1 − 𝛿

3

. (16)

Next, we consider the case when 𝑖 < 𝑖max. According to [28],

for ∀𝑗 ∈ [1, 𝑘], we have Pr[𝜎𝐿 (𝑆 𝑗 ) ≤ E[𝐼 (𝑆 𝑗 )]] ≥ 1 − 𝛿
3𝑖max

and

Pr[𝜎𝑈 (𝑆𝑜
IM
) ≥ E[𝐼 (𝑆𝑜

IM
)]] ≥ 1 − 𝛿

3𝑖max

in each of the first 𝑖max − 1
iterations. If 𝜎𝐿 (𝑆 𝑗 )/𝜎𝑈 (𝑆𝑜

IM
) ≥ 1−(1−1/𝑘) 𝑗 −𝜖 , then with at least

1 − 2𝛿/3𝑖max probability, E[𝐼 (𝑆 𝑗 )]/E[𝐼 (𝑆𝑜
IM
)] ≥ 1 − (1 − 1/𝑘) 𝑗 − 𝜖

holds. By the union bound, for any 1 ≤ 𝑗 ≤ 𝑘 , 𝑆 𝑗 is a (1 − (1 −
1/𝑘) 𝑗 − 𝜖)-approximate solution with at least 1 − 2𝛿/3 probability
in the first 𝑖max − 1 iterations. Therefore, the theorem holds. □

Proof of Theorem 3.2. Based on the result of Theorem 3.1,

E[𝐼 (𝑆)] ≥ E[𝐼 (𝑆
𝑘𝑏
1

)] and E[𝐼 (𝑆𝑜
IM
)] ≥ E[𝐼 (𝑆𝑜 )], we have

Pr

[
E[𝐼 (𝑆)] ≥ (1 − (1 − 1/𝑘)𝑘

𝑏
1 − 𝜖)E[𝐼 (𝑆𝑜 )]

]
≥ 1 − 𝛿. (17)

Then, according to the result derived by Zhu et al. [36], that is,

when 𝐶𝑜𝑣R𝑃
2

(𝑆) ≥ T2, |𝑃 || R𝑃
2
| ·𝐶𝑜𝑣R𝑃

2

(𝑆) is a (𝛾, 𝛿
⌈ (1+𝛾 )𝑇 ⌉ )-estimate

of E[𝐼𝑃 (𝑆)], i.e.,

Pr

[
(1 − 𝛾)E[𝐼𝑃 (𝑆)] ≤ |𝑃 |

| R𝑃
2
| ·𝐶𝑜𝑣R𝑃

2

(𝑆) ≤ (1 + 𝛾)E[𝐼𝑃 (𝑆)]
]
≥ 1 − 𝛿

⌈ (1+𝛾 )𝑇 ⌉ .

After each replacement, we ensure that the value of 𝐶𝑜𝑣R𝑃
2

(𝑆)
remains greater than T2. In addition, there are at most ⌈(1 + 𝛾)𝑇 ⌉
iterations. Thus, by the union bound, there is at least 1−𝛿 probability
that

|𝑃 |
| R𝑃

2
| ·𝐶𝑜𝑣R𝑃

2

(𝑆) ≤ (1 + 𝛾)E[𝐼𝑃 (𝑆)] holds for all iterations of
GreedyReplace. Based on this observation, it is trivial to verify that

when |𝑃 | ·𝐶𝑜𝑣R𝑃
2

(𝑆)/|R𝑃
2
| ≥ (1 +𝛾) ·𝑇 , Pr[E[𝐼𝑃 (𝑆)] ≥ 𝑇 ] ≥ 1 − 𝛿 .

The theorem holds. □

Proof of Theorem 3.3. We consider the expected time com-

plexity required for the two stages separately. For the first stage,

since the framework is similar to OPIM-C [28], and the sample size

is upper bounded by 𝜃max, thus, it is easy to derive that the time

complexity of the first stage is O( ( ⌊𝑛/2⌋ ln𝑛+ln(1/𝛿 ) ) (𝑚+𝑛)
𝜖2

).
For the second stage, based on the stopping condition for the

PRR set generation (i.e., 𝐶𝑜𝑣R𝑃
2

(𝑆) ≥ T2), we can deduce that the

expected number of PRR sets generated in the second stage is

O(T2 · |𝑃 |
E[𝐼𝑃 (𝑆 ) ] ). The expected time required to generate a PRR set

(denoted by 𝐸𝑇𝑃 ) is
E[𝐼𝑃 (𝑣∗ ) ]
|𝑃 | ·𝑚. To explain, let 𝑝𝜙 be the probability

that a randomly selected edge from 𝐸 ends at a node in 𝑅𝑃
𝜙
, which

is a PRR set determined by 𝜙 . Then we have 𝐸𝑇𝑃 = EΦ∼Ω [𝑝Φ ·𝑚].
Let 𝐼𝐷 be the probability distribution over the nodes in𝐺 , such that

the probability mass for each node is proportional to its in-degree

in 𝐺 . Let 𝑣∗ be a node sampled from 𝐼𝐷 and Pr[𝑣∗ ∼ 𝐼𝐷] be the
corresponding probability. I(𝑣∗, 𝑅𝑃

𝜙
) be a indicator variable that

10
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equals 1 if 𝑣∗ ∈ 𝑅𝑃
𝜙
, and 0 otherwise. Then for any 𝜙 , we have

𝑝𝜙 =
∑

𝑣∗ Pr[𝑣∗ ∼ 𝐼𝐷] · I(𝑣∗, 𝑅𝑃
𝜙
). We have:

𝐸𝑇𝑃

𝑚
= EΦ [𝑝Φ] =

∑︁
𝜙∈Ω

𝑝 (𝜙) · 𝑝𝜙

=
∑︁
𝜙∈Ω

𝑝 (𝜙) ·
∑︁
𝑣∗

Pr[𝑣∗ ∼ 𝐼𝐷] · I(𝑣∗, 𝑅𝑃
𝜙
)

=
∑︁
𝑣∗

Pr[𝑣∗ ∼ 𝐼𝐷] ·
∑︁
𝜙∈Ω

𝑝 (𝜙) · I(𝑣∗, 𝑅𝑃
𝜙
) = E[𝐼𝑃 (𝑣∗)]

|𝑃 | .

Based onWald’s equation [31], the expected time cost of the second

stage is O( E[𝐼𝑃 (𝑣
∗ ) ] ·ln(𝑇 /𝛿 ) ·𝑚

E[𝐼𝑃 (𝑆 ) ] ·𝛾2
). To sum up, the theorem holds. □

A.4 Proofs for Results in Section 4

Proof of Theorem 4.1. Without loss of generality, for any

realization 𝜙 , assume that E(𝜋 𝐼 (𝜔), 𝜙) = {𝑣1
𝑘𝑐
, 𝑣2
𝑘𝑐
, . . . , 𝑣𝑘

𝑐

𝑘𝑐
} and

E(𝜋 (𝜔), 𝜙) = {𝑥1
𝑘𝑏
, 𝑢1

𝑘𝑐
, 𝑥2

𝑘𝑏
, 𝑢2

𝑘𝑐
, . . . , 𝑥

𝑘𝑏
𝑘𝑏
, 𝑢𝑛

𝑘𝑐
, . . . , 𝑢𝑘

𝑐

𝑘𝑐
}, where 𝑘𝑏 =

𝑘 − 𝑘𝑐 and 𝑥𝑖
𝑘𝑏

(resp. 𝑢𝑖
𝑘𝑐
) is the 𝑖-th selected node for maximizing

the influence spread in 𝑃 (resp. 𝐺). Define a new randomized pol-

icy 𝜋 ′, with E(𝜋 ′ (𝜔), 𝜙) = {𝑥1
𝑘𝑏
, 𝑣1
𝑘𝑐
, 𝑥2

𝑘𝑏
, 𝑣2
𝑘𝑐
, . . . , 𝑥

𝑘𝑏
𝑘𝑏
, 𝑣𝑛
𝑘𝑐
, . . . , 𝑣𝑘

𝑐

𝑘𝑐
}.

We have

𝐼𝜙 (E(𝜋 (𝜔), 𝜙)) ≥ 𝐼𝜙 (E(𝜋 ′ (𝜔), 𝜙)), (18)

since 𝑢𝑖
𝑘𝑐

always contributes the largest marginal gain for 𝐼𝜙 (·)
in the current iteration. In addition, based on the monotonicity of

𝐼𝜙 (·) and E(𝜋 𝐼 (𝜔), 𝜙) ⊆ E(𝜋 ′ (𝜔), 𝜙), we have

𝐼𝜙 (E(𝜋 ′ (𝜔), 𝜙)) ≥ 𝐼𝜙 (E(𝜋 𝐼 (𝜔), 𝜙)) . (19)

According to Eq. (18) and Eq. (19), the lemma holds. □

Proof of Theorem 4.2. Based on Lemma 4.1, for any 𝜙 and

𝜔 , we have 𝐼𝜙 (E(𝜋 (𝜔), 𝜙) ≥ 𝐼𝜙 (E(𝜋 𝐼 (𝜔), 𝜙) holds. By taking the

expectation over the randomness of 𝜔 and 𝜙 , we have

E𝜔 [𝜎 (𝜋 (𝜔))] ≥ E𝜔 [𝜎 (𝜋 𝐼 (𝜔))] . (20)

Let 𝜋 ′ be any randomized policy with 𝑘 iterations for influence

maximization, and 𝜋𝑖 be the policy that performs exactly the same

as 𝜋 , except that 𝜋𝑖 only selects the first 𝑖 nodes for any 𝑖 ≤ 𝑘 .

According to [14], the following equation holds.

E𝜔 [𝜎 (𝜋 ′ (𝜔)) − 𝜎 (𝜋 𝐼𝑘𝑐 (𝜔))] ≤ (1 −
𝛼
𝑘
) · E𝜔 [𝜎 (𝜋 ′ (𝜔)) − 𝜎 (𝜋 𝐼𝑘𝑐−1 (𝜔))],

where 𝛼 is the expected approximation ratio of EptAIM [14]. Under

our setting (i.e., in each iteration we only select one node), 𝛼 equals

1 − 𝜖 . Besides, for any 𝑥 such that 0 ≤ 𝑥 ≤ 1, we have 1 − 𝑥 ≤ 𝑒−𝑥 .
Therefore, by the recursive calculation, we have

E𝜔 [𝜎 (𝜋 ′ (𝜔)) − 𝜎 (𝜋 𝐼𝑘𝑐 (𝜔))]

≤e−
1−𝜖
𝑘 · E𝜔 [𝜎 (𝜋 ′ (𝜔)) − 𝜎 (𝜋 𝐼𝑘𝑐−1 (𝜔))]

≤e
(𝜖−1) ·𝑘𝑐

𝑘 · E𝜔 [𝜎 (𝜋 ′ (𝜔)) − 𝜎 (𝜋 𝐼0 (𝜔))]

=e
(𝜖−1) ·𝑘𝑐

𝑘 · E𝜔 [𝜎 (𝜋 ′ (𝜔))] .
By rearranging it, we have

E𝜔 [𝜎 (𝜋 𝐼𝑘𝑐 (𝜔))] ≥ (1 − e
(𝜖−1) ·𝑘𝑐

𝑘 ) · E𝜔 [𝜎 (𝜋 ′ (𝜔))] . (21)

In addition, E𝜔 [𝜎 (𝜋 ′ (𝜔))] ≥ E𝜔 [𝜎 (𝜋∗ (𝜔))] holds, as a certain

number of budgets are necessary for meeting the threshold require-

ment. Combining this with Eq. (21), we have

E𝜔 [𝜎 (𝜋 𝐼𝑘𝑐 (𝜔))] ≥ (1 − e
(𝜖−1) ·𝑘𝑐

𝑘 ) · E𝜔 [𝜎 (𝜋∗ (𝜔))] . (22)

Combining Eq. (22) with Eq. (20), the theorem follows. □

Proof of Theorem 4.3. Recall that in each iteration, AAS se-
lects one of the two greedy-based procedures to execute based on a

specific judgment condition, i.e.,𝑇 − 𝐼𝑃 (𝑆) ≤ 𝑘 − |𝑆 | − 1. To explain
this inequality, 𝑇 − 𝐼𝑃 (𝑆) means the number of prioritized nodes

that still need to be activated currently, and 𝑘 − |𝑆 | indicates the
remaining budget currently. Besides, it is worth noting that execut-

ing the procedure in Lines 8-10 once guarantees a gain of at least 1

for 𝐼𝑃 (𝑆).
When 𝑇 − 𝐼𝑃 (𝑆) ≤ 𝑘 − |𝑆 | − 1 holds (Line 3), the procedure

for maximizing the influence spread in 𝐺 is executed. Then, we

will make an observation for the diffusion results. If there is no

prioritized node activated (in the worst case), that is, 𝐼𝑃 (𝑆) remains

unchanged and |𝑆 | increases by 1, 𝑇 − 𝐼𝑃 (𝑆) ≤ 𝑘 − |𝑆 | holds. In
such a scenario, the threshold condition can still be satisfied by

consistently executing the procedure in Lines 8-10, if necessary.

In contrast, when 𝑇 − 𝐼𝑃 (𝑆) = 𝑘 − |𝑆 | holds (Line 7), it is essential
to implement the procedure for maximizing 𝐼𝑃 (·), otherwise we
may fail to achieve 𝐼𝑃 (𝑆) ≥ 𝑇 . By combining these two cases, the

theorem follows. □

Proof of Theorem 4.4. According to [14], the expected time

complexity of the procedure in Lines 4-6 is O((log𝑛 + log 1

𝜖 ) (𝑚 +
𝑛)/𝜖2). In addition, since the expected time required to generate

a PRR set is
E[𝐼𝑃 (𝑣∗ ) ]
|𝑃 | 𝑚, and the number of generated PRR sets is

𝜃𝑝 , the expected time complexity of the procedure in Lines 8-10 is

E[𝐼𝑃 (𝑣∗ ) ]
|𝑃 | 𝑚𝜃𝑝 . Since there are 𝑘 iterations within AAS, the theorem

holds. □
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