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ABSTRACT

Multimodal large language models (MLLMs) have shown promising capabilities
but struggle under distribution shifts, where evaluation data differ from instruction
tuning distributions. Although previous works have provided empirical evaluations,
we argue that establishing a formal framework that can characterize and quantify the
risk of MLLMs is necessary to ensure the safe and reliable application of MLLMs
in the real world. By taking an information-theoretic perspective, we propose the
first theoretical framework that enables the quantification of the maximum risk of
MLLMs under distribution shifts. Central to our framework is the introduction
of Effective Mutual Information (EMI), a principled metric that quantifies the
relevance between input queries and model responses. We derive an upper bound
for the EMI difference between in-distribution (ID) and out-of-distribution (OOD)
data, connecting it to visual and textual distributional discrepancies. Extensive
experiments on real benchmark datasets, spanning 61 shift scenarios empirically
validate our theoretical insights.

1 INTRODUCTION

Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in handling
complex tasks that require reasoning over both visual and textual modalities. By leveraging visual
instruction tuning Liu et al. (2023); Dai et al. (2023); Zhu et al. (2024), MLLMs have shown promise
in answering open-ended questions and generating contextually relevant captions. As a critical aspect
for real-world deployment, MLLMs are expected to operate robustly in the wild, where distribution
shifts occur—that is, when the evaluation data deviates from the instruction tuning data, whether due
to changes in visual inputs (e.g, domain-specific images), textual inputs (e.g., linguistic variations),
or the combination thereof. However, negative reports on MLLM failures under edge cases have
steadily emerged, raising concerns about their reliability.

For example, MLLMs struggle with queries in specialized domains such as medical and chem-
istry Zhang et al. (2024a); Han et al. (2024), perform poorly on simple classification tasks compared
with open-ended question answering Zhang et al. (2024b); Zhai et al. (2024), and frequently exhibit
hallucination Li et al. (2023b); Ye-Bin et al. (2025). Given the increasing impact of MLLMs, it
is crucial to understand their failure modes under distribution shifts. Despite the significance of
the problem, existing works often lack a fine-grained diagnosis for various factors of shifts. More
importantly, the absence of a formal framework to explain the underlying principle further hinders
the systematic understanding of MLLMs’ behavior. This motivates us to raise the research question:

Can we derive a theoretical framework to characterize MLLM’s behavior under distribution shifts?

To address this, we propose an information-theoretic framework that characterizes MLLM perfor-
mance under distribution shifts with theoretical rigor and practical interpretability. Our framework is
well-suited for analyzing instruction-tuned models, which effectively maximizes the lower bound of
mutual information between input query and response. Under this framework, we introduce effective
mutual information (EMI) as a principled measurement for evaluating the relevance between an input
query and model response. Intuitively, EMI is expected to be higher when a test input query originates
from the in-distribution (ID) data similar to those used during instruction tuning, compared to when
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the input comes from out-of-distribution (OOD). To quantify this performance gap, we compute the
difference in EMI between ID and OOD and derive an upper bound for this difference, expressed
in terms of distributional discrepancies in input and output spaces (see Theorem 4.3 and 4.4). By
grounding the measure in information theory, we provide the first theoretical framework to analyze
and understand the impact of distribution shifts on MLLM performance.

Beyond the theoretical rigor, we further show that our framework holds practical value. In particular,
we demonstrate that EMI is closely related to the widely used empirical evaluation metric for MLLMs,
win rate Ouyang et al. (2022) with an LLM judge Zheng et al. (2023). The win rate commonly
relies on external judge models such as GPT-4, thus it lacks mathematical guarantees due to the
black-box nature of these evaluators. In contrast, EMI provides an theory-grounded measurement of
the relevance between input queries and the output responses of the MLLM being evaluated, offering
a principled metric for assessing performance under distribution shifts.

Finally, we conduct empirical validation for the theoretical framework and show that our theorems
empirically hold in real-world benchmarks. Our experiments comprehensively examine 34 synthetic
and 27 natural distribution shift scenarios, resulting in a total number of 61 ID-OOD evaluations for
each MLLM. Results confirm strong correlations between EMI and win rate, as well as between
EMI difference and its upper bounds, demonstrating the effectiveness of our framework in capturing
performance gaps under diverse shifts. Our contributions can be summarized as follows:

• We propose a new framework, effective mutual information (EMI), to analyze MLLM under
distribution shift, and justify the use of EMI by showing the theoretical connection between
EMI and win rate.

• We derive a theoretical upper bound of MLLM’s performance gap which can be characterized
by shifts over multimodal input queries and output discrepancies.

• We empirically verify our theoretical statements on 61 real-world distribution shift scenarios
of open-ended question-answering benchmarks with four MLLMs.

2 PRELIMINARY

Random variable and distribution. Let X = Xv × Xt denote the input space, where Xv and Xt
correspond to the visual and textual feature spaces, respectively. Similarly, let Y denote the response
space. We define X = (Xv, Xt) ∈ X and Y ∈ Y , where X is the sequence of tokens that combine
visual and text queries, and Y represents the associated response tokens. The joint population is
denoted by PXY , with marginals PX, PY , and the conditional distribution PY |X. For subsequent
sections, PXY refers to the instruction tuning distribution which we consider as in-distribution (ID).

MLLM and visual instruction tuning. MLLM usually consists of three components: (1) a visual
encoder, (2) a vision-to-language projector, and (3) an LLM that processes a multimodal input
sequence to generate a valid textual output y in response to an input query x. An MLLM can
be regarded as modeling a conditional distribution Pθ(y|x), where θ is the model parameters. To
attain the multimodal conversation capability, MLLMs commonly undergo a phase so-called visual
instruction tuning Liu et al. (2023); Dai et al. (2023) with an autoregressive objective as follows:

min
θ∈Θ

Ex,y∼PXY
[

L∑
l=0

− logPθ(yl|x, y<l)], (1)

where L is a sequence length and y = (y0, ..., yL). After being trained by Eq. 1, MLLM produces a
response given a query of any possible tasks represented by text.

Evaluation of open-ended generations. (M)LLM-as-a-judge method Zheng et al. (2023) is com-
monly adopted to evaluate open-ended generation. In this setup, a judge model produces preference
scores or rankings for the responses given a query, model responses, and a scoring rubric. Among the
evaluation metrics, the win rate (Eq. 2) is one of the most widely used and representative.

Definition 2.1 (Win Rate) Given a parametric reward function r : X × Y → R, the win rate (WR)
of model Pθ w.r.t. PXY are defined as follows:

WR(PXY ; θ) := Ex,y∼PXY

ŷ∼Pθ(·|x)
[I(r(x, ŷ) > r(x, y))], (2)

where I(·) is the indicator function, and r(·, ·), can be any possible (multimodal) LLMs.
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Figure 2: Performance variation against varying distribution shifts. We evaluated LLaVA v1.5
(top) and LLaVA NeXT (bottom) models on 27 out-of-distribution (OOD) variants of the LLaVA-
Bench COCO (ID). Here, the x-axis is sorted by the severity of shifts between ID and OOD. There is
a consistent trend, increased degrees of distribution shifts result in performance degradations.

3 MOTIVATION

Figure 1: Types of distribution shifts be-
tween train and evaluation of MLLMs. We
simulate visual, text, and joint shifts by con-
trolling the shift of each input modality.

A systematic understanding of MLLM under
distributional shifts. While instruction-following
MLLMs are designed to handle a diverse range of
tasks, they often struggle with specialized domains
Zhang et al. (2024a); Zhou et al. (2024), perform
poorly on simple image classification tasks Zhai et al.
(2024); Zhang et al. (2024b), and exhibit hallucina-
tions Li et al. (2023b); Ye-Bin et al. (2025). We argue
that the fundamental cause of these failure modes in
MLLMs can be traced back to distribution shifts.
Specifically, the poor performance on classification tasks and specialized distributions can be at-
tributed to shifts between instruction tuning distribution PXY and evaluation distribution QXY . We
comprehensively analyze three types of distributional shifts that can arise in MLLM:

1. Visual shift: the marginal distribution of visual query undergoes shift D(PXv
∥QXv

) ≫ 0,
while that of text query remains largely unchanged D(PXt∥QXt) ≈ 0.

2. Text shift: the marginal distribution of text query undergoes shift D(PXt
∥QXt

) ≫ 0, while
that of visual query remains largely unchanged D(PXv

∥QXv
) ≈ 0.

3. Joint shift: both visual and text queries suffer shifts simultaneously, and the relationship
between visual and text queries may also shift D(PX∥QX) ≫ 0,

where D denotes a divergence that measures the discrepancy between distributions P and Q. For
M = (P +Q)/2, one can measure the Kullback-Leibler (KL) divergence and Jensen-Shannon (JS)
divergence as below:

DKL(P∥Q) = Ez∼P [logP (z)/Q(z)], DJS(P∥Q) = [DKL(P∥M) +DKL(Q∥M)]/2.

Pilot study. We hypothesize that: (1) performance degradation in MLLMs becomes more severe as
QXY deviates further from the PXY ; (2) the amount of total performance degradation can be factored
into visual query shift and text query shift. To verify these, we design three types of shifts—visual
shift, text shift, and joint shift—illustrated in Figure 1, and evaluate MLLMs under these shifts.

Specifically, we adopt LLaVA-1.5 Liu et al. (2023) and LLaVA-NeXT Liu et al. (2024a) in 7B and
13B sizes as our target MLLM, with LLaVA-Bench COCO Liu et al. (2023) serving as the ID dataset
which is distributionally similar to the instruction tuning data. We adopt LLaVA-Bench Wild Liu et al.
(2023) to vary the visual input, whereas applied language translation with GPT-4, e.g., from English
to {Chinese, German, Chinese, Korean, Hindi, Arabic, and Greek}, to realize a shift in text query.
We vary the severity of shifts by controlling the magnitude of perturbations in synthetic shift setup
and partitioning a dataset based on mean embedding distance from ID samples in natural shift setup.
Following Liu et al. (2023), we evaluate the performance using win rate (Eq. 2) with GPT-4 judge.
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Figure 2 shows the performance variations of MLLMs under different types and magnitudes of
distribution shifts, where the x-axis is sorted by the severity of shifts (more results from different
types of shifts can be founded in Appendix D). Across all models, a consistent trend emerges: as the
severity of the shift increases, the performance degradation becomes more significant. This trend
robustly holds for both visual and text shifts. Joint shifts result in greater performance degradation,
suggesting a complementary effect of shifts across modalities. These consistent observations suggest
that there might exist an underlying principle explaining the relationship between performance
variation and distributional discrepancy, which motivates us to investigate the theoretical model
behind these empirical results.
Our position. Although there have been similar observations of performance degradation of MLLM
under distribution shifts Achiam et al. (2023); Zhang et al. (2024a); Zhou et al. (2024); Zhang et al.
(2024b), all of them present only the coarse empirical evaluation results without finer analysis on
the underlying factor of those performance degradations. To the best of our knowledge, there is no
formal framework to explain the performance variations of MLLMs in terms of distribution shifts—
despite its crucial importance for ensuring reliable applications of MLLMs. To bridge this gap, we
propose the first theoretical framework that characterizes MLLM performance variations under
distribution shifts from an information-theoretic perspective.

4 INFORMATION-THEORETIC ANALYSIS ON MLLM PERFORMANCE GAP

In this section, we start with introducing the mutual information (MI) and its limitation as a metric in
Sec. 4.1, and present a new metric on MLLM evaluation (Sec. 4.2). Then, we derive theorems based
on it to characterize the MLLM performance gap under distribution shifts (Sec. 4.3).

4.1 MUTUAL INFORMATION FOR MLLM

A fundamental capability of MLLMs is their instruction-following property Ouyang et al. (2022)—a
direct outcome of instruction-tuning, where the model is trained to generate responses that are aligned
with the intent of a given input query or instruction. To evaluate instruction-following, we first
consider the mutual information Shannon (1948) to measure the shared information between the
query and the corresponding model response. Formally, for a joint distribution PXY over X × Y ,
the mutual information with respect to PXY is defined as, I(PXY ) := Ex,y∼PXY

[log PXY (x,y)
PX(x)PY (y) ].

MI is deeply related to the entropy, which is defined as H(PX) := −Ex∼PX
[logPX(x)]. It is easy

to check that I(PXY ) = H(PY ) − Ex∼PX
[H(PY |X=x)]. Intuitively, MI captures how much the

response tells us about the query. One reason for considering MI is that the autoregressive objective
in Eq. 1 effectively estimates MI (see Eq. 3).

Visual instruction tuning effectively maximizes a lower bound of MI. In Eq. 3, we show that the
autoregressive objective for instruction tuning (Eq. 1) effectively estimates the lower bound of MI
when the model’s representation capacity is sufficiently high, i.e., when δ becomes small. Therefore,
instruction tuning with autoregressive objective effectively maximizes a lower bound of MI between
the input query and desired response as below, where δ = Ex∼PX

[DKL(PY |X=x∥Pθ(·|x))].
I(PXY ) =Ex,y∼PXY

[logPθ(y|x)] +H(PY ) + δ ≥ Ex,y∼PXY
[logPθ(y|x)]. (3)

Going from instruction tuning to test-time MI. While I(PXY ) measures the MI between the
input query and ground truth response from PXY , one can measure MI between the input query and
model response on the evaluation-time distribution. In particular, we use a tensor product PX ⊗ Pθ
to present this joint distribution between the input distribution PX and generated output distribution
Pθ(y|x): PX ⊗ Pθ := PX(x)Pθ(y|x), ∀(x, y) ∈ X × Y . Accordingly, the mutual information w.r.t.
the joint distribution PX ⊗ Pθ can be written as:

I(PX ⊗ Pθ) = H(Ex∼PX
[Pθ(·|x)])− Ex∼PX

[H(Pθ(·|x))]. (4)

Limitation of test-time MI under distribution shifts. Although one could directly use I(PX⊗Pθ),
the mutual information between the input query and the model response, as a metric, the vanilla MI
may not be suitable for scenarios involving distribution shifts. For example, consider the distribution
PX (e.g., general domain), and the distribution QX (e.g., medical domain). Suppose the MI w.r.t.
model Pθ on PX, i.e., I(PX ⊗ Pθ) is 2.0, while on the QX, it is I(QX ⊗ Pθ) = 1.0. Does this imply
that model Pθ performs twice as poorly on QX? The answer is unclear.
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The challenge lies in the inherent variability of MI scales across data domains. Recall the formulation
of I(PX ⊗ Pθ) in Eq. 4, the first term H(Ex∼PX

[Pθ(·|x)]) represents the upper bound of MI and
varies with the data domain; and the second term Ex∼PX

[H(Pθ(·|x))] reflects the input-output
dependency and depends on the true data-generating process. For instance, given a fixed vocabu-
lary, the responses from MLLM could contain more diverse words in a general domain whereas
a narrower subset of words could be expected in the specialized domains such as medical. Then,
H(Ex∼PX

[Pθ(·|x)]) and Ex∼PX
[H(Pθ(·|x))] would be larger in a general domain. Therefore, we

argue that a desired evaluation metric should disentangle the pure input-response relevance from the
intrinsic characteristics of dataset.

4.2 EFFECTIVE MUTUAL INFORMATION FOR RELIABLE MLLM EVALUATION

To remove the influence of the domain-dependent scale, we propose effective mutual information
(EMI) as a remedy.

Definition 4.1 (Effective Mutual Information (EMI)) Given the joint distribution PXY and
MLLM Pθ parameterized with θ, the effective mutual information between the input and model
response is defined as below,

EMI(PXY ; θ) := I(PX ⊗ Pθ)− I(PXY ). (5)

Compared to the standard MI, EMI(PXY ; θ) measures the “effective” relevance between the query
x and the model response ŷ by subtracting a ground truth MI I(PXY ) from I(PX ⊗ Pθ). Refer to
Figure 4 in Appendix B, for an intuitive example: by accounting for a baseline level of MI, EMI
quantifies the extent to which the model captures the effective relevance between the input and output.
The use of EMI as an evaluation metric for MLLMs can be further supported by (1) its analogy to the
excess risk and effective robustness; and (2) its connection to win rate.

Analogy to the excess risk and effective robustness. The minimum achievable error varies de-
pending on the data-generating process. To enable reliable model selection that is agnostic to data
distributions, excess risk—defined as the difference between a model’s risk and the minimum possible
risk—has been extensively studied Castro & Nowak (2008); Koltchinskii (2010); Mohri (2018).
More recently, Taori et al. (2020) introduced the concept of effective robustness to quantify the
“effective” OOD generalization accuracy of classification models by subtracting their ID accuracy.
The motivation behind EMI aligns with these concepts, i.e., mitigating the influence of external
confounding effects that hinder the accurate measure of model performance. EMI ensures that the
metric focuses on the model’s effective ability to capture input-output relevance, independent of
confounding effects from the data domain.

Connection to win rate. We also show that EMI is closely related to win rate (i.e., Eq. 2), a common
metric used for evaluating MLLM generations. Conceptually, EMI quantifies the effective relevance
between the input query and the model’s response by accounting for the baseline information,
while win rate measures the preference of the model’s responses over a reference response. More
formally, their connection can be mathematically established through the lens of a logit Bradley-Terry
preference model (PM) formulation Bradley & Terry (1952); Hunter (2004), logitP (ŷ ≻ y|x), a
smooth and differentiable proxy for the discrete win rate function. To be specific, we commonly use
logP (ŷ ≻ y|x) to train a reward model (RM) which is adopted to compute the win rate (Eq. 2). We
compare both terms as below.

PM(PXY ; θ) : = Ex,y∼PXY
ŷ∼Pθ(·|x)

[logit P (ŷ ≻ y|x)] = Ex,y∼PXY
ŷ∼Pθ(·|x)

[r(x, ŷ)− r(x, y)],

RM(PXY ; θ) : = Ex,y∼PXY
ŷ∼Pθ(·|x)

[log P (ŷ ≻ y|x)] = Ex,y∼PXY
ŷ∼Pθ(·|x)

[log σ(r(x, ŷ)− r(x, y))],
(6)

where r(·, ·) is the latent score function so-called reward model that generates preference for (x, y).
It is clear that

PM(PXY ; θ) = RM(PXY ; θ)− log(1− eRM(PXY ;θ)),

RM(PXY ; θ) = PM(PXY ; θ)− log(1 + ePM(PXY ;θ)).

Therefore, PM(PXY ; θ) and RM(PXY ; θ) exhibit a mutual equivalence, i.e., increase in PM(PXY ; θ)
corresponds to the increase in RM(PXY ; θ), and vice versa. In Theorem 4.2, we establish an
upper bound for the absolute difference between EMI and PM(PXY ; θ), thereby demonstrating their
closeness while ultimately highlighting the connection between EMI and win rate.
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Theorem 4.2 Given a distribution PXY and an MLLM Pθ, if Ex∼PX
[DKL(Pθ(·|x)∥PY |X=x)] ≤ δ,

and let the reward function r(x, y) be logPY |X=x(y), then

|EMI(PXY ; θ)− PM(PXY ; θ)| ≤ δ + 4.4δ
1
8 .

Intuitively, Theorem 4.2 shows that if MLLM Pθ can approximate the given distribution PXY with
approximate error δ, the difference between EMI and PM can be bounded by a small term w.r.t.
the approximate error δ. Furthermore, assuming that the model class {Pθ : ∀θ ∈ Θ} has sufficient
expressive power (i.e., Eq. 11), we can derive an additional bound for the case of the optimal solution
of autoregressive objective (i.e., Eq. 1), as shown in Theorem E.2

4.3 CHARACTERIZING MLLM PERFORMANCE GAP VIA EMI DIFFERENCE

Now, based on EMI, we are ready to establish formal guarantees on the performance gap of MLLM
via effective mutual information difference (EMID). EMID is defined as the difference between the
EMI on the ID distribution PXY and the OOD distribution QXY , as follows:

EMID(PXY , QXY ; θ) := EMI(PXY ; θ)− EMI(QXY ; θ). (7)

To elucidate the key insight and provide a clear foundation, we begin by analyzing a simple scenario
where the conditional variables remain consistent across both ID and OOD distributions. In this case,
we can derive an upper bound for EMID, as stated in Theorem 4.3. This bound enables us to quantify
the maximum performance gap of MLLM over two distributions by measuring the severity of the
marginal distribution shift over visual and language modalities.

Theorem 4.3 (Simplified Scenario) Given an MLLM Pθ and distributions PXY , QXY which have
consistent conditional distributions over variables Xv|Xt, Xt|Xv, and Y |X, if there exist some
constants δP and δQ such that DJS(PYθ

∥PY ) ≤ δP , and DJS(QYθ
∥QY ) ≤ δQ, and denote PYθ

=
EPX

[Pθ(·|x)] and QYθ
= EQX

[Pθ(·|x)], then EMID(PXY , QXY ; θ) is upper bounded by

Ĥ
(
D

1
2

JS(PXv∥QXv ) +D
1
2

JS(PXt∥QXt)
)
+ 8∆

1
4 , (8)

where Ĥ = maxx∈X [H(QY |X=x) +H(Pθ(·|x))] and ∆ = δP + δQ.

Implication. Theorem 4.3 implies that in the simplified scenario, EMID depends on two
main factors: (1) the divergence between the marginal distributions of the visual and textual
inputs; (2) the divergence between the model’s predictions and the true output distributions,
encapsulated by δP and δQ.

Theorem 4.3 naturally captures special cases such as visual-only or text-only input shifts. For a
visual-only input shift, where DJS(PXt∥QXt) = 0, the EMID upper bound primarily depends on the
divergence between the visual input distributions. Similarly, for a text-only input shift, the bound
reflects the divergence in the textual input distributions. The two cases not only underscore the
flexibility of Theorem 4.3 in isolating and quantifying the impact of modality-specific distribution
shifts on model performance but also highlight the importance of visual and text input shifts on
it. In Appendix E, we further provide a looser yet better interpretable version of this upper bound
(Corollary E.12) by replacing the ∆ into the discrepancy terms between model output and ground
truth conditional distributions.

General scenario. Moving beyond the simplified scenario, we now consider the general scenario
where no assumptions are made about the consistency of conditional distributions across ID and OOD
settings. This more realistic scenario accommodates shifts not only in the marginal distributions of vi-
sual and textual inputs but also in their conditional dependencies and the relationships between inputs
and outputs. By relaxing these constraints, we aim to capture the full complexity of distributional
shifts encountered in practice and analyze how such shifts collectively influence the performance gap
of MLLMs. The formal upper bound is provided in Theorem 4.4.

Theorem 4.4 (General Scenario) Given PXY and QXY distributions and an MLLM Pθ, if there
exist some constants δP and δQ such that DJS(PYθ

∥PY ) ≤ δP , and DJS(QYθ
∥QY ) ≤ δQ, and
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denote PYθ
= EPX

[Pθ(·|x)] andQYθ
= EQX

[Pθ(·|x)], then EMID(PXY , QXY ; θ) is upper bounded
by

Ĥ
(
D

1
2

JS(PXv
||QXv

) +D
1
2

JS(PXt
||QXt

)
)
+ Ĥ

(
D̄

1
2

JS(PXt|Xv
∥QXt|Xv

) + D̄
1
2

JS(PXv|Xt
∥QXv|Xt

)
)

+4Ex∼PX
D

1
4

JS(PY |X=x∥QY |X=x) + 8∆
1
4 ,

where Ĥ = maxx∈X [H(QY |X=x) + H(Pθ(·|x))], ∆ = δP + δQ, and D̄JS(PX|X′ ||QX|X′) :=
Ex∼PX′ [DJS(PX|X′=x∥QX|X′=x)] + Ex∼QX′ [DJS(PX|X′=x∥QX|X′=x)].

Implication. Compared to Theorem 4.3, Theorem 4.4 indicates that, in the general case,
EMID is also influenced by divergences in conditional distributions. Specifically, EMID
is upper bounded by marginal distribution shifts in visual and textual inputs (Xv and Xt);
divergence between marginal output and model response distributions; shifts in conditional
dependencies (Xv|Xt and Xt|Xv); and a shift between conditional distributions for Y |X.

Although Theorem 4.4 holds for broader cases, Theorem 4.3 is much simpler to analyze. Thus, we
focus on the validation of Theorem 4.3 in the following section. If we have some knowledge of the
data-generating process of PXY and QXY , we can choose the one that is suitable for a given setup.
In summary, both Theorem 4.3 and 4.4 provide an analytic tool to characterize the performance gap
of MLLM, representing the first formal framework for evaluating MLLM under distribution shifts.

Figure 3: Scatter plot with regression line between empirical estimates of EMID and its upper
bound. Over the 34 synthetic and 27 natural distribution shift scenarios, we evaluate four MLLMs
and get 136 cases and 108 cases of synthetic shifts and natural shifts, respectively, for visualizing
EMID and upper bound estimates. The two panels on the left show results for all four models,
whereas the right ones distinguish them per model with fitter linear regression coefficients (Slope).

5 EMPIRICAL VALIDATION ON REAL BENCHMARK

Setup. As done in the pilot experiments (Figure 2 and 5), we used LLaVA v1.5 Liu et al. (2024a)
and LLaVA NeXT Liu et al. (2024b) in 7B and 13B sizes and evaluated them on the LLaVA-Bench
COCO and LLaVA-Bench Wild Liu et al. (2023) datasets for assessing open-ended generation.

Table 1: Summary of shift scenarios.
Type Strategy (# of category)

Synthetic visual shift
(COCO Images)

Perturbation (2): Defocus blur, frost
Severity (3): Weak, Normal, Strong

Synthetic text shift Perturbation (2): Typo, Word Replacement
Severity (2): Weak, Strong

Natural visual shift
(in-the-wild Images)

LLaVA-Bench in-the-wild
Split (3): Easy, Normal, Hard

Natural text shift Translation (6): GE, CH, KO, EL, AR, HI

To comprehensively examine diverse types of shifts,
we further simulate synthetic distribution shifts as well
as natural distribution shifts. For synthetic shifts, we
consider 7 visual scenarios (1 ID case + 2 synthetic
perturbation types at 3 severity levels), and 5 text sce-
narios (1 ID case + 2 synthetic perturbation types at
2 severity levels), resulting in 7 × 5 = 35 synthetic
scenarios, where 1 scenario is ID and the other 34 are
OOD cases. For natural shifts, we use 4 visual scenarios
(1 ID + 3 OOD difficulty levels) and 7 text scenarios (1
ID-English + 6 languages), yielding 4 × 7 = 28 natural scenarios. This comprehensive design
covers a total of 34 synthetic and 27 natural shifts. See Table 1 for the description.

Estimation of MI and JSD. For the empirical realization of our theoretical statements, we adopt a
popular neural estimator for MI, CLUB Cheng et al. (2020) to compute empirical EMID, and a JS
divergence estimator, RJSD Hoyos-Osorio & Sanchez-Giraldo (2023), to compute empirical EMID
and its upper-bound (see Appendix C for details). Experiments with 23 alternative implementations
derived consistent conclusions (Please refer to Table 4 and 5).
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Correlation between win rate and EMI. We first conduct the Spearman correlation analysis
and Kendall’s tau analysis between the win rate and our empirical estimates of EMI. In Table
2, we can see that EMI estimates exhibit a strong correlation with win rate, both in terms of
absolute coefficient and p-value, across all models. This empirical evidence validates the theoretical
connection between EMI and win rate discussed in Theorem 4.2. Therefore, our EMI can be used as
a reliable and cost-efficient alternative to win rate for MLLM evaluation with theoretical guarantees.
Table 2: Spearman rank correlation and
Kendall’s tau between win rate and EMI.
We conduct correlation analysis between the
win rate (Eq. 2) and EMI (Eq. 5).

Spearman Kendall
Model ρ p-val τ p-val

LLaVA v1.5 7B 0.794 <0.001 0.604 <0.001
LLaVA v1.5 13B 0.652 <0.001 0.483 <0.001
LLaVA NeXT 7B 0.738 <0.001 0.564 <0.001

Sy
nt

he
tic

LLaVA NeXT 13B 0.726 <0.001 0.527 <0.001

LLaVA v1.5 7B 0.610 0.001 0.450 0.001
LLaVA v1.5 13B 0.720 <0.001 0.575 <0.001
LLaVA NeXT 7B 0.593 0.001 0.435 0.001

N
at

ur
al

LLaVA NeXT 13B 0.457 0.014 0.321 0.017

Table 3: Pearson correlation analysis be-
tween EMID and its upper bound. We pro-
vide Pearson r and p-value between the empir-
ical estimates of EMID (Eq. 7) and its upper
bound (Eq. 8).

Synthetic Natural
Model Pearson r p-val Pearson r p-val

LLaVA v1.5 7B 0.755 <0.001 0.553 0.003
LLaVA v1.5 13B 0.785 <0.001 0.638 <0.001
LLaVA v1.5 7B 0.742 <0.001 0.594 0.001
LLaVA v1.5 13B 0.807 <0.001 0.550 0.003

All models 0.746 <0.001 0.565 <0.001

Verification of bound. We now validate our main Theorem. Figure 3 (left two) shows the scatter
plots comparing EMID with its upper bound across four models, each evaluated over 34 and 27
synthetic and natural distribution shifts. We see a clear trend between EMID and its upper bound in
the synthetic shift where we could directly control the severity of shifts. While the natural shift setup
is noisier, a similar overall trend is observed. Meanwhile, our bounds depend on the distributional
discrepancy between the model’s response ŷ and the ground truth response y. Thus, they naturally
induce different bounds for each MLLM. The right panel of Figure 3 presents model-wise plots with
linear regression coefficients, where we observe that each model has a different degree of performance
sensitivity against shifts. Pearson correlation analysis results in Table 3 further confirm statistically
significant correlations between EMID and its upper bound, supporting the validity of the theorem.

6 DISCUSSION

We urged the development of a formal framework to understand MLLMs under distribution shifts
which is unexplored yet crucial for reliable AI in the wild. As a first step for this, we devised EMI as
a metric for MLLM evaluation and showed its theoretical connection to an existing standard metric,
win rate. Then, we provide a theoretical upper bound for an MLLM’s EMI difference between
ID and OOD that consists of JS divergence terms for marginal and conditional distributions of
input/output variables. Through experiments on a benchmark spanning 61 distribution shifts, we show
the correlation between win rate and EMI, and further show the correlation between EMI difference
and its upper bound thereby empirically verifying our theoretical upper bound.

Practical implication. As shown in Table 2, EMI strongly correlates with win rate. Compared to
the win rate, the MI estimator can be computed more efficiently without relying on computationally
expensive judge LLM Achiam et al. (2023) (see Appendix D.5 for details). Therefore, EMI can be
leveraged as a cost-efficient and theoretically grounded evaluation metric that measures effective
relevance between multimodal queries and open-ended responses. Besides, the upper bound of EMID
can be adopted as a regularizer during post-training or test-time adaptation of MLLM to improve its
robustness to distribution shifts Li et al. (2023a).

Limitation and future work. Although input-output relevance measured by EMI is one of the
most important properties for instruction-following assistant models, other crucial quality attributes
are not captured by the form of relevance term. Extending the theory to support evaluation across
multiple facets of MLLM will be promising future work direction. Besides, we have simulated some
intuitive types of distribution shifts with the simplified assumption for data structure, while leaving
some complex shifts driven by spurious correlation Simon (1954) that may be covered by Theorem
4.4. Validation of theorems on such non-trivial distribution shifts could be an important extension.
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A RELATED WORKS

Foundation models under distribution shifts. Recent findings imply that fine-tuning on a rela-
tively small amount of ID datasets hurts the OOD generalization capability of foundation models
Kumar et al. (2022); Wortsman et al. (2022). Although lots of follow-up studies Goyal et al. (2023);
Tian et al. (2023); Oh et al. (2025b) including theory-inspired methods Kumar et al. (2022); Ju et al.
(2022); Oh et al. (2025a) have been proposed, almost all of them focused on a discriminative model
such as CLIP Radford et al. (2021) for the image classification task. Given the rapidly growing
popularity of MLLMs, it is necessary to investigate the reliability of MLLMs under distribution shifts
with a tangible formulation. We lay a cornerstone for this.

Performance analysis of MLLM. There have been numerous reports on MLLMs’ corner-case
behaviors. Zhang et al. (2024a), Zhou et al. (2024), and Verma et al. (2024) observed that MLLMs
poorly perform under specialized domains or synthetic perturbation, while Zhai et al. (2024) and
Zhang et al. (2024b) showed that MLLMs are bad at some simple image classification tasks. Besides,
Li et al. (2023b) and Ye-Bin et al. (2025) focused on the object hallucination of MLLM under
spurious correlation. However, they all lacked a formal framework to explain such degradation of
MLLMs. We recast the degeneration of MLLMs via robustness under distribution shifts between
instruction-tuning and evaluation data Liang et al. (2025), and devise the first theoretical framework
to analyze MLLMs.

Information-theoretic approach for model evaluation. As well as learning objectives Alemi
et al. (2016); Chen et al. (2016); Tschannen et al. (2020); Kong et al. (2020); Wang et al. (2021),
information-theoretic view has been steadily adopted to establish evaluation criteria for language
model probing Hewitt et al. (2021), prompt engineering Sorensen et al. (2022), and rationale evalua-
tion Chen et al. (2023), but relatively unexplored for MLLM yet. We also note some works adopting
information-theoretic approaches to analyze models under distribution shifts Federici et al. (2021);
Shui et al. (2022). Although they focused on classification tasks with discriminative models, we
established new theorems for MLLM analysis based on our new metric, EMI.

14



1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier
in Reliable AI” at ICLR’25

Figure 4: Information diagram and motivation of effective mutual information. The difference
between vanilla MI terms does not consider the domain-dependent intrinsic scale and mutual infor-
mation, thereby failing to fairly measure the relevance between input query x and model prediction
ŷ. Meanwhile, EMI ablates the domain-dependent characteristic to focus on measuring effective
relevance between x and ŷ.

B ADDITIONAL DESCRIPTION FOR EFFECTIVE MUTUAL INFORMATION

We propose effective mutual information (EMI) as an alternative to vanilla mutual information (MI)
to evaluate a model-generated output response given an input query. As explained in Section 4.2,
MI (e.g., I(PX ⊗ Pθ)) can not take into account the intrinsic characteristics of data distribution.
See Figure 4 for an intuitive example. The amount of information represented by entropy H(·) and
conditional entropy H(·|·) can vary depending on the data-generating process of each dataset. For
example, if the task we are interested in is closer to solving a narrow problem in some specific domain
(e.g., OOD1: LLaVA-Med; Li et al. (2024)), the cardinality of the desired output response space
may be significantly smaller than that of a general problem-solving task in a general domain (e.g.,
OOD2: LLaVA-Bench Wild; Liu et al. (2023)), and the ground truth MI can differ depending on the
domain. By considering these baseline amounts of information, EMI can measure how much our
model captures effective relevance between input and output.

In Section 4.2, we provide some justifications for using EMI as an evaluation metric of MLLMs by
revealing analogies to excess risk and effective robustness and presenting its theoretical connection
to win rate. While LLM-as-a-Judge enables flexible evaluation for open-ended generation tasks
with multiple user-defined criteria, EMI confines the facet of evaluation to query-response relevance.
However, compromise in the flexibility of evaluation endows us to build solid theoretical statements
that are necessary for understanding MLLMs and improving them in a principled way.

Meanwhile, as we adopt neural network models for empirical estimation of EMI, it is somewhat
similar to the model-based heuristic metrics, such as BERTscore Zhang et al. (2020), BARTscore
Yuan et al. (2021), and CLIPscore Hessel et al. (2021), that map input(s) to a scalar score through
a single forward evaluation of the model. However, we take a step further beyond the simple
working-heuristic method and lay a theoretical foundation with EMI.

C IMPLEMENTATION DETAILS

In this paper, we proposed EMI for a reliable evaluation of multimodal large language models
(MLLMs) with a theoretical ground. Based on EMI, to analyze the MLLM performance gap under
distribution shift, we provided the upper bound for EMI difference between ID and OOD data. In this
section, we describe the procedures for estimating EMI and its upper bound in detail.

Overview. To estimate EMI and its upper bound, we first need to define estimators for MI and
Jensen-Shannon divergence (JSD). Those estimators commonly adopt neural network encoders to
project the raw data such as text and image into embedding space of neural networks to reduce
problem complexity Oord et al. (2018); Liu et al. (2020), and then, MI estimator commonly optimizes
a simple critic function Poole et al. (2019) on top of the embeddings of data. After training of MI
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estimator, we evaluate empirical MI over different data distributions. For JSD estimation, given
the embedding spaces of pre-trained models, additional training is not necessary. Therefore, the
procedures can be divided into two phases: (1) neural MI estimator training, and (2) inference of MI
and JSD.

MI estimation. Estimating MI with finite samples from unknown population distribution is a non-
trivial problem, and has been actively studied Fraser & Swinney (1986); Paninski (2003); Kraskov
et al. (2004); Nguyen et al. (2010); Shwartz-Ziv & Tishby (2017); Belghazi et al. (2018); Poole et al.
(2019); Cheng et al. (2020). We adopted the contrastive log-ratio upper bound (CLUB; Cheng et al.
(2020)) as our default MI estimator similar to Cheng et al. (2021). We first extract embeddings for
visual input query Zv = encv(Xv) and text input query Zt = enct(Xt) from visual and text encoder
models and take the mean of them to provide input query embedding ZX = Zv+Zt

2 . Specifically, we
adopt the most representative embedding models for each modality, i.e., CLIP pre-trained1 ViT-B/32
and XLM-RoBERTa-Base2 Conneau (2019) as visual and text encoders, respectively by default. We
also obtain the embedding vectors for the model response ZŶ = enct(Ŷ ) and reference response
ZY = enct(Y ) with text encoder model. Then, we train the MI estimator Îψ(·, ·) with parameter ψ
via gradient descent. To be specific, CLUB formulates the unbiased estimation for MI as below,

ÎCLUB(PZXZY
) =

1

N

N∑
i=1

log qψ(zyi |zxi
)− 1

N2

N∑
i=1

N∑
j=1

log qψ(zyj |zxi
), (9)

where qψ(·|·) denotes variational approximation of ground truth probability density function p(·|·).
Following Cheng et al. (2020; 2021), we parameterize the qψ as a multi-variate Gaussian distribution
and estimate the mean and variance parameters of Gaussian with separated two-layer MLPs with 250
hidden dimension size. During mini-batch training, those MLPs consume the concatenated input and
response embeddings {[zxi

, zyi ]}Ni=1 to produce a scalar estimate of MI, and they are simultaneously
optimized by AdamW optimizer with learning rate 0.001 and batch size 1,024 for 5,000 iterations.
However, if we have to train an estimator for every ID-OOD data pair, it may not be practical when
the number of data pairs to be evaluated is large. Therefore, we constructed a dataset that integrates
all ID-OOD data subsets for MI training (integration of all variants of LLaVA-Bench datasets reach
roughly 5,000 samples for natural shift, and 9,000 samples for synthetic shift), trains it only once,
and then infers all ID-OOD scenarios (27 for natural shift, 34 for synthetic shift) using this common
MI estimator. This not only significantly reduces the time required to evaluate the model’s robustness
against multiple distribution shift scenarios, but also stabilizes the training process by increasing the
size of the data set used in the training process.

JS divergence estimation. Estimation of distribution divergences from finite samples has been also
a central topic of research Yang & Barron (1999); Sriperumbudur et al. (2012); Li & Turner (2016);
Bu et al. (2018); Sinn & Rawat (2018); Sreekumar & Goldfeld (2022); Hoyos-Osorio & Sanchez-
Giraldo (2023). We adopt the most recent one, representation Jensen-Shannon divergence (RJSD;
Hoyos-Osorio & Sanchez-Giraldo (2023); Hoyos & Giraldo (2024)), which proves its effectiveness
on real benchmark datasets as our JSD estimator. The formula is as follows:

D̂RJSD(P,Q) = S(
CP + CQ

2
)− 1

2
(S(CP ) + S(CQ)), (10)

where CP = EX∼P [ϕ(X)⊗ ϕ(X)] and S(CP ) = −Trace(CP logCP ). Similar to MI, we compute
D̂RJSD(P,Q) in the embedding space of the same frozen pre-trained models, i.e., leverage neural
network embedding space as a kernel < ϕ(x), ϕ(x′) >. In contrast to the case of MI, RJSD with
a frozen neural embedding model does not require additional training. Still, one might consider
learning the embedding model from scratch if necessary.

MLLM judge and win rate. For the open-ended generation tasks, (M)LLM-as-a-Judge has been
adopted as a current de facto standard. Following Liu et al. (2023; 2024a), we use GPT-43 with

1https://github.com/openai/CLIP.
2https://huggingface.co/FacebookAI/xlm-roberta-base
3gpt-4-turbo with 2024-08-01-preview API version was adopted
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Figure 5: Performance variation against varying degrees of distribution shifts. We evaluated
LLaVA v1.5 and LLaVA NeXT models on 34 out-of-distribution (OOD) variants induced by image
and text perturbations of the LLaVA-Bench COCO dataset (ID). Here, the x-axis is sorted by the
severity of shifts between ID and OOD. There is a consistent trend – increased degrees of distribution
shifts result in performance degradations of MLLM.

text-only inference mode (with plain-text form visual cue such as ground truth caption for image) as
a judge model and also use the output of the same model as a reference answer for each query. We
leverage the prompts provided by the source code of LLaVA4, and compute the win rate of a model
of interest by comparing its output with that of GPT-4.

D EXTENDED EMPIRICAL VALIDATION AND DISCUSSION

D.1 ADDITIONAL RESULT FROM PILOT STUDY

In Section 3, we conduct an experiment to validate our hypotheses on the relation between MLLM
performance degradation and the severity of natural distribution shift. In Figure 5, we provide
additional results from another type of distribution shift that occurred by image and text perturbations.
For image perturbation, we consider defocus blur and frost with three different magnitudes, and for
text perturbation, we consider keyboard typo error and word synonym replacement with two different
magnitudes. We observe the consistent trend in the relation between MLLM performance degradation
and the severity of distribution shifts for the case of visual-only, text-only, and joint shift, likewise the
case of natural shifts in Figure 2. That is, the increased magnitude of distribution shifts induces more
severe MLLM performance degradation, and the degree of performance degradation can attribute to
shifts in two modalities.

D.2 PARTIAL BOUND ANALYSIS.

It is common that we can not access the ground truth response Y from our evaluation dataset in
advance. Then, one may want to use the EMID upper bound as an estimator of the maximum risk of
MLLM given two datasets, i.e., maxEMID(PXY , QXY ; θ), by neglecting the output-related term ∆.
In Figure 6, we investigate whether the summation of two JS divergence terms can still be predictive
for EMID. Although the trends become loose compared to the full bound due to the non-optimality
of MLLM parameters, the partial upper bound still has moderate correlations (denoted by Pearson r)
with EMID.

D.3 DIFFERENT DESIGN CHOICES OF MI AND JSD ESTIMATION

Note that the results of all theorem (Lemma 4.2, Theorem ??, Theorem 4.3, and Theorem 4.4) are not
limited to a specific class of MI and JSD estimators. To investigate whether our empirical verification
of theorems robustly holds in an estimator-agnostic manner (if the estimator is valid), we provide an
ablation study for the MI estimator, JSD estimator, and embedding space that the estimators are built
on.

4https://github.com/haotian-liu/LLaVA
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Figure 6: Scatter plot with regression line between empirical estimates of EMID and partial
components of its upper bound. We remove the ∆ term of bound (Eq. equation 8) and only use the
estimates of JSD terms over visual and text inputs.

Specifically, we consider four MI estimators {NWJ Nguyen et al. (2010), MINE Belghazi et al.
(2018), InfoNCE Oord et al. (2018), CLUB Cheng et al. (2020)}, three embedding spaces {individual
models (CLIP ViT and XLM-RoBERTa), E5-V joint Jiang et al. (2024), E5-V disjoint Jiang et al.
(2024)}, and two JSD estimators {MMD Liu et al. (2020), RJSDHoyos-Osorio & Sanchez-Giraldo
(2023)}. E5-V Jiang et al. (2024) is a recently proposed embedding extraction method that leverages
an MLLM with a carefully designed prompt. We used the default prompt “Summary above
sentence/image in one word: ” to separately extract embeddings (E5-V disjoint) for
images and sentences, and design an ensemble of four custom prompts,

1. “Summary of the image <image>, and sentence <sent> in one
word: ”

2. “Summary of the visual content "<image>" with an associated
text query "<sent>" in one word: ”

3. “Given <image>, Summary of the sentence "<sent>" in one word:
”

4. “Given visual content "<image>", Summary of the text query
"<sent>" in one word: ”,

to extract multimodal joint query embedding (E5-V joint) by averaging four embedding vectors per
(image, sentence) pair.

In Table 4, we conduct Spearman correlation analysis over the 12 (4 × 3) cases of MI estimator
and embedding space ablation. We can clearly see that EMI is consistently correlated with the win
rate which demonstrates the robust effectiveness of our theorem in practice. Meanwhile, among
the candidate MI estimators and embedding space, CLUB and two E5-V joint embeddings show
outstanding results. However, E5-V embedding extraction require a forward pass of MLLM in contrast
to the case of leveraging relatively small individual models (ViT base and BERT-base). To strike the
balance between effectiveness and efficiency, we adopt CLIP ViT-B/32 and XLM-RoBERTa-Base
embedding spaces by default.

Next, we present the Pearson correlation analysis result in Table 5 by ablating the JSD estimator
with the MI estimator and embedding space choices. Although there are some variations in the exact
values, we also observe consistently significant correlations between EMID and its upper bound (that
of Theorem 8). Therefore, the upper bound of EMID we derived robustly holds in practice across
diverse estimator configurations.
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Table 4: Ablation study for MI estimator and embedding space. We evaluate four MI estimators
with three different embedding space choices in terms of Spearman correlation coefficient ρ between
win rate and EMI. We can see that EMI and win rate are robustly correlated to variations in the
embedding space and the MI estimator, but CLUB shows the most stable correlation.

Configuration LLaVA v1.5 7B LLaVA v1.5 13B LLaVA NeXT 7B LLaVA NeXT 13B

MI estimator Embedding ρ p-val ρ p-val ρ p-val ρ p-val

CLUB E5-V disjoint 0.695 0.000 0.726 0.000 0.581 0.001 0.579 0.001
CLUB E5-V joint 0.910 0.000 0.846 0.000 0.817 0.000 0.902 0.000
CLUB Individual models 0.606 0.001 0.720 0.000 0.594 0.001 0.457 0.014
InfoNCE E5-V disjoint 0.670 0.000 0.708 0.000 0.638 0.000 0.590 0.001
InfoNCE E5-V joint 0.800 0.000 0.717 0.000 0.636 0.000 0.609 0.001
InfoNCE Individual models 0.519 0.005 0.421 0.026 0.410 0.030 0.275 0.157
MINE E5-V disjoint 0.664 0.000 0.605 0.001 0.269 0.167 0.278 0.153
MINE E5-V joint 0.632 0.000 0.559 0.002 0.610 0.001 0.308 0.111
MINE Individual models 0.632 0.000 0.562 0.002 0.632 0.000 0.613 0.001
NWJ E5-V disjoint 0.583 0.001 0.552 0.002 0.513 0.005 0.429 0.023
NWJ E5-V joint 0.502 0.005 0.519 0.005 0.492 0.008 0.480 0.010
NWJ Individual models 0.510 0.006 0.717 0.000 0.488 0.008 0.322 0.095

Table 5: Ablation study for MI estimator, JSD estimator, and embedding space. We evaluate
four MI estimator and two JSD estimator candidates, with three different embedding space choices in
terms of Pearson correlation coefficient between EMID and its upper bound. In all the considered
variations, EMID and the upper bound of EMID (i.e., the simplified version in Theorem 4.3) show
strong correlations, implying that our theorem empirical robustly holds in practice.

Configuration Pearson

JSD estimator MI estimator Embedding r p-val

RJSD CLUB E5-V disjoint 0.618 0.000
RJSD CLUB E5-V joint 0.659 0.000
RJSD CLUB Individual models 0.565 0.000
RJSD InfoNCE E5-V disjoint 0.618 0.000
RJSD InfoNCE E5-V joint 0.617 0.000
RJSD InfoNCE Individual models 0.295 0.002
RJSD MINE E5-V disjoint 0.602 0.000
RJSD MINE E5-V joint 0.534 0.000
RJSD MINE Individual models 0.630 0.000
RJSD NWJ E5-V disjoint 0.611 0.000
RJSD NWJ E5-V joint 0.413 0.000
RJSD NWJ Individual models 0.468 0.000

MMD CLUB E5-V disjoint 0.618 0.000
MMD CLUB E5-V joint 0.659 0.000
MMD CLUB Individual models 0.478 0.000
MMD InfoNCE E5-V disjoint 0.432 0.000
MMD InfoNCE E5-V joint 0.617 0.000
MMD InfoNCE Individual models 0.295 0.002
MMD MINE E5-V disjoint 0.602 0.000
MMD MINE E5-V joint 0.623 0.000
MMD MINE Individual models 0.630 0.000
MMD NWJ E5-V disjoint 0.611 0.000
MMD NWJ E5-V joint 0.273 0.004
MMD NWJ Individual models 0.468 0.000

D.4 HYPERPARAMETER SENSITIVITY

We provide the hyperparameter configuration for MI estimator training (Table 6) and further provide
sensitivity analysis for varying hyperparameters (Figure 7). We see that the CLUB estimator is quite
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robust to varying hyperparameters, i.e., batch size, learning rate, and hidden dimension, which implies
the effectiveness of EMI estimation without intensive hyperparameter tuning.

Table 6: Hyperparameter tuning grid and selected value for MI estimator training. The
hyperparameters are selected based on the variance of last 10 iterations during training.

Parameter Selected Sweep

learning rate 0.001 {0.005, 0.001, 0.0005, 0.0001}
batch size 1024 {64, 128, 256, 512, 1024, 2048}
hidden dimension 100/500 {250, 500, 1000, 2000}
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Figure 7: Sensitivity analysis for batch size, learning rate, and hidden dimension during MI
estimator training. For the considered hyperparameter searching grid, MI estimates derived by the
CLUB estimator robustly achieve high Spearman correlation with win rate (the largest deviation is
less than 0.02 absolute value).

D.5 RUNTIME ANALYSIS

In addition to the advantage of allowing rigorous theoretical statements, EMI also has practical
advantages over the win rate derived by the LLM judge. Specifically, while both win rate and EMI
are model-dependent, the former relies on models with tens to hundreds of billions of parameters,
while the latter enables meaningful evaluation even with relatively small embedding models with
millions of parameters. To quantitatively argue this, we compare the time per instance and the total
inference time for the entire LLaVA-Bench COCO dataset in Table 7. As shown in the table, EMI
can shorten the time by 138 times compared to the win rate. Even including the time required for MI
training, EMI-based evaluation is still 3 times faster than MLLM judgment-based evaluation. Since
MI training is performed only once and then transferred to all ID-OOD scenarios, the efficiency of
EMI-based evaluation over MLLM judgment becomes more evident as the number of datasets to be
evaluated increases. In addition, in the LLM judge paradigm, although open-source LLM judges Kim
et al. (2024) have been actively studied recently, proprietary LLMs are still dominant in practice,
so one must pay per instance query, whereas EMI can make meaningful inferences with publicly
available open-source pre-trained models without paying per query.

Table 7: Runtime comparison on LLaVA-Bench COCO 90 samples. We compare the actual
wall-clock time (second) of EMI estimation and MLLM judgment protocols by evaluating model-
generated response and reference response given input query from the LLaVA-Bench COCO dataset
Liu et al. (2023). EMI estimation protocol on top of CLIP ViT-B/32 and XLM-RoBERTa-Base
embedding achieves 138 times boosting from MLLM judgment protocol with GPT-4o.

LLaVA v1.5 7B LLaVA v1.5 13B LLaVA NeXT 7B LLaVA NeXT 13B Total runtime
per instance dataset per instance dataset per instance dataset per instance dataset

MI estimator training 663.45 663.45

EMI estimation 0.0388 3.5884 0.0392 3.5652 0.0412 3.7107 0.0411 3.7039 14.56 (× 138 boosting)
MLLM judgment (GPT-4o API) 5.49 493.75 5.48 493.59 5.52 496.66 5.83 524.45 2008.45
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E PROOF AND ADDITIONAL THEOREM

In this section, we provide proof of all theorems (Lemma 4.2, Theorem ??, Theorem 4.3, and Theorem
4.4) in our manuscript, and introduce an additional theoretical result (Corollary E.12).

E.1 PROOF FOR THE RELATIONSHIP BETWEEN EMI AND PREFERENCE MODEL

First, we provide proof of the closeness between the effective mutual information (EMI) and the
preference model.

Lemma E.1 (Restatment of Lemma 4.2) Given a distribution PXY and an MLLM Pθ, let the re-
ward model function r(x, y) be logPY |X=x(y). If Ex∼PX

DKL(Pθ(·|x)∥PY |X=x) ≤ δ, then,

|EMI(PXY ; θ)− PM(PXY ; θ)| ≤ δ + 4.4δ
1
8 .

Let PYθ
= Ex∼XPθ(·|x), and note the expression for EMI below,

EMI(PXY ; θ) = I(PX ⊗ Pθ)− I(PXY )

= H(PYθ
)−H(Pθ(·|X))−H(PY ) +H(PY |X)

=
(
H(PYθ

)−H(PY )
)

+ Ex∼PX
[Eŷ∼Pθ(·|x) logPθ(ŷ|x)]− Ex∼PX

[Ey∼PY |X=x
logPY |X=x(y)]

Next, given r(x, y) = logPY |X=x(y), logit Bradley-Terry preference model (PM) Hunter (2004)
can be expressed as,

PM(PXY ; θ) = Ex∼PX
[Eŷ∼Pθ(·|x) logPY |X=x(ŷ)− Ey∼PY |X=x

logPY |X=x(y)]

Therefore,

|EMI(PXY ; θ)− PM(PXY ; θ)| = |H(PYθ
)−H(PY ) + Ex∼PX

[Eŷ∼Pθ(·|x) log
Pθ(ŷ|x)

PY |X=x(ŷ)
]|

≤ |H(PYθ
)−H(PY )|+ Ex∼PX

[DKL(Pθ(·|x)||PY |X=x)]

≤ 4.4δ
1
8 + δ.

Here, we adopted Lemma E.4 to replace |H(PYθ
)−H(PY )| into its upper bound 4D

1
4

JS(PYθ
||PY )

and used Pinsker’s inequality Pinsker (1964).

We provide a proof for the extended theorem from the Lemma E.2 by considering the optimal model
parameter as below.

Theorem E.2 Given a distribution PXY and an MLLM Pθ, and assume PXY > c > 0 for a constant
c, if the ϵ-representation capacity assumption holds, i.e.,

min
θ∈Θ

Ex∼PX
DKL(PY |X=x∥Pθ(·|x)) ≤ ϵ, (11)

and let the reward function r(x, y) be logPY |X=x(y), then

|EMI(PXY ; θ
∗)− PM(PXY ; θ

∗)| ≤ δ + 4.4δ
1
8 ,

where θ∗ is the optimal solution of Eq. 1 over PXY , and δ = 4.4ϵ
1
8 − log c

√
2ϵ.

Theorem E.2 shows that with a sufficiently expressive model class, EMI exhibits a stronger alignment
with PM when the optimal MLLM parameter θ∗ is obtained through the autoregressive objective.
This alignment underscores the validity of using EMI as a reliable metric for evaluating MLLM and
quantifying the relative preference of responses. Recall the formulation of mutual information as
below,

I(PXY ) = H(PY )−H(PY |X)

= Ex,y∼PXY
[logPY |X=x(y)] +H(PY )

= Ex,y∼PXY
[logPθ(y|x)]− Ex,y∼PXY

[logPθ(y|x)] + Ex,y∼PXY
[logPY |X=x(y)] +H(PY )

= Ex,y∼PXY
[logPθ(y|x)] + Ex∼PX

[DKL(PY |X=x||Pθ(·|x))] +H(PY )
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So, I(PXY ) − Ex,y∼PXY
[logPθ(y|x)] − H(PY ) = Ex∼PX

[DKL(PY |X=x(y)||Pθ(·|x))].
Therefore, for the optimally learned parameter θ∗, we know that θ∗ ∈
argminθ∈Θ Ex∼PX

[DKL(PY |X=x||Pθ(·|x))], which implies below,

Ex∼PX
[DKL(PY |X=x||Pθ∗(·|x))] ≤ ϵ.

Meanwhile, we have the below upper bound by leveraging Lemma E.7,

Ex∼PX
[DKL(Pθ(·|x)||PY |X=x)] ≤ 4.4ϵ

1
8 − log c

√
2ϵ

By denoting δ := 4.4ϵ
1
8 − log c

√
2ϵ and plugging the Lemma E.1, we complete the proof.

Note that the assumption PXY > c > 0 is reasonable in practice given the following two statements.
First, we can only observe the samples that PXY (x, y) > 0. Therefore, investigating on the case
x, y such that PXY > 0 solely does not affect the practical implication of our analysis. Second, for
the space X × Y , it is obvious that |X × Y| < +∞. Therefore, X × Y is a compact space, and
PXY (x, y) > 0 over a compact space, there exists a constant c > 0 such that PXY (x, y) > c.

Lemma E.3 Given two distributions PX and QX defined over X , let f : X → [0, c], then we have
the below, ∣∣Ex∼PX

[f(x)]− Ex∼QX
[f(x)]

∣∣ ≤ c ·DTV(PX , QX).

where DTV(PX , QX) :=
∑
x∈X |PX(x) − QX(x)| is the total variation distance between two

distributions.

∣∣Ex∼PX
[f(x)]− Ex∼QX

[f(x)]
∣∣

=
∣∣ ∑
x∈X

PX(x)f(x)
∑
x∈X

QX(x)f(x)
∣∣

=
∣∣ ∑
x∈X

(PX(x)−QX(x))f(x)
∣∣

=
∣∣ ∑
x∈X

(PX(x)−QX(x))(f(x)− c) + c(
∑
x∈X

PX(x)−QX(x))
∣∣

≤
∑
x∈X

|PX(x)−QX(x)| ·
∣∣f(x)− c

∣∣
≤c · ||PX −QX ||1
=c ·DTV(PX , QX)

Lemma E.4 Given random variable X, and two distributions PXY = PY |XPX and QXY =
QY |XQX, we have the bounds for the difference between Entropy H(·) over two distributions as
below:

|H(PX)−H(QX)| ≤ 4D
1
4

JS(PX||QX),

|H(PY )−H(QY )| ≤ 4D
1
4

JS(PY ||QY ),

|H(PY |X=x)−H(QY |X=x)| ≤ 4D
1
4

JS(PY |X=x||QY |X=x).

where DJS(·, ·) is the Jensen-Shannon divergence between two distributions.
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Let MX = (PX + QX)/2, DJS(PX, QX) and DTV(PX, QX) be the Jensen-Shannon divergence
and total variation distance between PX and QX, respectively.∣∣H(PX)−H(QX)

∣∣
=
∣∣Ex∼PX logPX(x)− Ex∼QX logQX(x)

∣∣
=
∣∣Ex∼PX logPX(x)− Ex∼PX logMX(x)− Ex∼QX logQX(x) + Ex∼QX logMX(x) + Ex∼PX logMX(x)− Ex∼QX logMX(x)

∣∣
≤|Ex∼PX log

PX(x)

MX(x)
− Ex∼QX log

QX(x)

MX(x)
|+ |Ex∼PX logMX(x)− Ex∼QX logMX(x)|

≤|Ex∼PX log
PX(x)

MX(x)
+ Ex∼QX log

QX(x)

MX(x)
|+ |Ex∼PX logMX(x)− Ex∼QX logMX(x)|

≤2DJS(PX||QX) + 2
∑
x

|PX(x)

2
− QX(x)

2
| · | logMX(x)|

=2DJS(PX||QX) + 2
∑
x

|PX(x)

2
− QX(x)

2
| ·

∣∣ log |PX(x)

2
+

QX(x)

2
|
∣∣

≤2DJS(PX||QX) + 2
∑
x

|PX(x)

2
− QX(x)

2
| ·

∣∣ log |PX(x)

2
− QX(x)

2
|
∣∣

≤2DJS(PX||QX) + 2
∑
x

√
|PX(x)

2
− QX(x)

2
|

≤2DJS(PX||QX) +

√
2
∑
x

|PX(x)−QX(x)|

=2DJS(PX||QX) +
√

2DTV(PX, QX)

≤2DJS(PX||QX) + 2D
1
4
JS(PX||QX)

≤4D
1
4
JS(PX||QX)

In above inequalities, we have used
√
x + x log x > 0 for x ∈ (0, 1), Holder’s inequality, and

DTV(PX, QX) ≤
√
2DJS(PX∥QX) proved in Lemma 3 of Thekumparampil et al. (2018). We can

prove below with the same strategy,

|H(PY )−H(QY )| ≤ 4D
1
4

JS(PY ||QY ),

|H(PY |X=x)−H(QY |X=x)| ≤ 4D
1
4

JS(PY |X=x||QY |X=x).

Corollary E.5 For a data distribution PXY = PY |XPX, MLLM Pθ(·|x), and Kullback-Leibler
divergence DKL, if Ex∼PX

DKL(PY |X=x∥Pθ(·|x))) ≤ ϵ for a constant ϵ, then

Ex∼PX
[H(Pθ(·|x))−H(PY |X=x)] ≤ 4.4ϵ

1
8

Ex∼PX
[H(Pθ(·|x))−H(PY |X=x)] ≤ Ex∼PX

[
∣∣H(Pθ(·|x))−H(PY |X=x)

∣∣]
≤ 4Ex∼PX

D
1
4

JS(PY |X=x||Pθ(·|x))

≤ 4 · 2 1
8Ex∼PX

D
1
8

KL(PY |X=x||Pθ(·|x))

≤ 4.4ϵ
1
8 .

We started from Lemma E.4 and use Pinsker’s inequality Pinsker (1964) to leverage DJS(·|·) ≤
DTV(·, ·) ≤

√
2DKL(·|·).

Lemma E.6 For a data distribution PXY = PY |XPX, MLLM Pθ(·|x), let DKL and DTV

be Kullback-Leibler divergence and total variation distance, respectively. Denote PYθ
=

Ex∼PX
[Pθ(·|x)], we have below inequality.

DTV(PY , PYθ
) ≤

√
2Ex∼PX

DKL(Pθ(·|x)||PY |X=x).
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DTV(PY , PYθ
) =

∑
y∈Y

∣∣Ex∼PX
PY |X=x(y)− Ex∼PX

Pθ(y|x)
∣∣

≤
∑
y∈Y

Ex∼PX

∣∣PY |X=x(y)− Pθ(y|x)
∣∣

=Ex∼PX
DTV(PY |X=x, Pθ(·|x))

≤
√

2Ex∼PX
DKL(Pθ(·|x)||PY |X=x)

Lemma E.7 For a data distribution PXY = PY |XPX, MLLM Pθ(·|x), and Kullback-Leibler di-
vergence DKL, if Ex∼PX

DKL(PY |X=x∥Pθ(·|x))) ≤ ϵ and PXY > c > 0 for a constant c and ϵ,
then

Ex∼PX
DKL(Pθ(·|x))∥PY |X=x) ≤ 4.4ϵ

1
8 − log c

√
2ϵ.

Note that
Ex∼PX

[H(Pθ(·|x))−H(PY |X=x)] =Ex∼PX
[Ey∼Pθ(·|x) logPY |X=x(y)− Ey∼PY |X=x

logPY |X=x(y)]

+Ex∼PX
DKL(Pθ(·|x))∥PY |X=x).

Therefore,
Ex∼PX

DKL(Pθ(·|x))∥PY |X=x) ≤
∣∣Ex∼PX

[Ey∼Pθ(·|x) logPY |X=x(y)− Ey∼PY |X=x
logPY |X=x(y)]

∣∣
+ Ex∼PX

[H(Pθ(·|x))−H(PY |X=x)]

Given Lemma E.3, it is easy to check that∣∣Ex∼PX
[Ey∼Pθ(·|x) logPY |X=x(y)− Ey∼PY |X=x

logPY |X=x(y)]
∣∣

≤− log c Ex∼PX
DTV(Pθ(·|x), PY |X=x)

≤− log c
√
2ϵ.

Then, with Corollary E.5, we complete this proof.

E.2 PROOF FOR EMID UPPER BOUND

Now, we give the proof for the upper bound of the EMI Difference (EMID) as below.

Theorem E.8 (General scenario) Given PXY and QXY distributions and an MLLM Pθ, if there
exist some constants δP and δQ such that

DJS(PYθ
∥PY ) ≤ δP , DJS(QYθ

∥QY ) ≤ δQ,

where PYθ
= Ex∼PX

Pθ(·|x) and QYθ
= Ex∼QX

Pθ(·|x), then EMID(PXY , QXY ; θ) is upper
bounded by

Ĥ
(
D

1
2

JS(PXv
||QXv

) +D
1
2

JS(PXt
||QXt

)
)

+Ĥ
(
D̄

1
2

JS(PXt|Xv
∥QXt|Xv

) + D̄
1
2

JS(PXv|Xt
∥QXv|Xt

)
)

+4Ex∼PX
[D

1
4

JS(PY |X=x∥QY |X=x)] + 8∆
1
4 ,

where ∆ = δP + δQ, Ĥ = maxx∈X [H(QY |X=x) +H(Pθ(·|x))] and
D̄JS(PX|X′ ||QX|X′) := Ex∼PX′DJS(PX|X′=x∥QX|X′=x) + Ex∼QX′DJS(PX|X′=x∥QX|X′=x).

Let PYθ
= Ex∼PX

Pθ(·|x) and QYθ
= Ex∼QX

Pθ(·|x), EMID can be expressed with entropy and
conditional entropy terms as below.
EMID(PXY , QXY ; θ)

= EMI(PXY ; θ)− EMI(QXY ; θ)

= (H(PYθ )− Ex∼PX [H(Pθ(·|x))]−H(PY ) +H(PY |X))− ((H(QYθ )− Ex∼QX [H(Pθ(·|x))]−H(QY ) +H(QY |X))

≤ (H(PY |X)−H(QY |X)) +
(
Ex∼QX [H(Pθ(·|x))]− Ex∼PX [H(Pθ(·|x))]

)
+ |H(PYθ )−H(PY ) +H(QY )−H(QYθ )|

≤ (H(PY |X)−H(QY |X)) +
(
Ex∼QX [H(Pθ(·|x))]− Ex∼PX [H(Pθ(·|x))]

)
+ |H(PYθ )−H(PY )|+ |H(QY )−H(QYθ )|

≤ (H(PY |X)−H(QY |X)) +
(
Ex∼QX [H(Pθ(·|x))]− Ex∼PX [H(Pθ(·|x))]

)
+ 4

(
D

1
4
JS(PYθ , PY ) +D

1
4
JS(QYθ , QY )

)
≤ (H(PY |X)−H(QY |X))

(A)
+

(
Ex∼QX [H(Pθ(·|x))]− Ex∼PX [H(Pθ(·|x))]

)
(B)

+ 8∆
1
4 , (12)
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where ∆ := δP +δQ. Now, we will derive the upper-bounds for the terms (A) and (B), independently.
First, by adopting Lemma E.4, we can express the term H(PY |X) as below.

H(PY |X)

= EPX
[H(PY |X=x)−H(QY |X=x)] + EPX

[H(QY |X=x)]

≤ EPX
[
∣∣H(PY |X=x)−H(QY |X=x)

∣∣] + EPX
[H(QY |X=x)]

≤ 4EPX
[D

1
4

JS(PY |X=x||QY |X=x)] + EPX
[H(QY |X=x)]

≤ 4EPX
[D

1
4

JS(PY |X=x||QY |X=x)] + EPX
[H(QY |X=x)]− EQX

[H(QY |X=x)] + EQX
[H(QY |X=x)]

Then, the term (A) of ineq. 12, i.e., H(PY |X)−H(QY |X), is represented as below:

H(PY |X)−H(QY |X) ≤ 4EPX
[D

1
4

JS(PY |X=x||QY |X=x)] + EPX
[H(QY |X=x)]− EQX

[H(QY |X=x)]

To replace EPX
[H(QY |X=x)]−EQX

[H(QY |X=x)] into a more interpretable term, and we start from
the restatement of Lemma 1 of Shui et al. (2022).

Lemma E.9 (restatement of Lemma 1 of Shui et al. (2022)) Let Z ∈ Z be the real-valued in-
tegrable random variable, and denoting two distributions on a common space Z by P and Q
such that Q is absolutely continuous w.r.t. P . If for any function f and λ ∈ R such that
EP [exp(λ(f(z)− EP (f(z))))] <∞, then we have:

λ(EQf(z)− EP f(z)) ≤ DKL(Q||P )
+ logEP [exp(λ(f(z)− EP (f(z))))]

Now, let X and Y denote observable variables from a joint distribution DXY ∈ {PXY , QXY }, and
we denote f(x) := H(QY |X=x) ≥ 0 as a loss function of our interest, e.g., conditional entropy of y
given x. Then, f has a finite value of ED[exp(λ(f(x)−ED(f(x))))], and is bounded within interval
[0, Ĥ(QY |x)] where Ĥ(QY |x) := maxx∈X H(QY |X=x).

We next define a mixture distribution MXY = 1
2 (PXY +QXY ) where the support of MXY covers

that of PXY and QXY . Then, we get the inequality below by setting P =MXY and Q = QXY for
all λ > 0 according to the Lemma E.9:

EQX
[H(QY |X=x)]− EMX

[H(QY |X=x)]

≤ 1

λ
(logEMX

[exp(λ(f(x)− EMX
(f(x)))] +DKL(QX||MX)).

(13)

Also, we get similar inequality by setting P =MXY and Q = PXY for all λ < 0 according to the
Lemma E.9 as below:

EPX
[H(QY |X=x)]− EMX

[H(QY |X=x)]

≥ 1

λ
(logEMX

[exp(λ(f(x)− EMX
(f(x)))] +DKL(PX||MX)).

(14)

Meanwhile, give that f(x) is bounded within interval Ĥ(QY |x), the f(x)− EMX
f(x) becomes a

sub-Gaussian Wainwright (2019) with the scale parameter σ = Ĥ(QY |x)/2 at most. Then, we can
leverage the property of sub-Gaussian for the log moment generating function,

logEMX
[exp(λ(f(x)− EMX

(f(x)))] ≤ log(exp(
λ2σ2

2
)) ≤

λ2Ĥ(QY |x)
2

8
. (15)

By plugging the ineq. 15 into ineq. 13 and ineq. 14, we can derive the following new inequalities:

EQX
[H(QY |X=x)]− EMX

[H(QY |X=x)] ≤
λ0Ĥ(QY |x)

2

8
+

1

λ0
DKL(QX||MX),

EMX
[H(QY |X=x)]− EPX

[H(QY |X=x)] ≤
λ0Ĥ(QY |x)

2

8
+

1

λ0
DKL(PX||MX).
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where λ0 = λ stands for λ > 0 in the ineq. 13 and λ0 = −λ for λ < 0 in the ineq. 14.

By adding both inequalities above, and setting the λ0 =
2

Ĥ(QY |x)

√
DKL(PX||MX) +DKL(QX||MX) results in:

EQX
[H(QY |X=x)]− EPX

[H(QY |X=x)] ≤ Ĥ(QY |x)
√
2DJS(PX||QX). (16)

Next, a decomposition of KL divergence and the definition of JS divergence leads to the following
inequality,

= 2DJS(PXvXt ||QXvXt )

= DKL(PXvXt ||MXvXt ) +DKL(QXvXt ||MXvXt )

=
1

2

(
DKL(PXv ||MXv ) + EPXv

DKL(PXt|Xv=xv ||MXt|Xv=xv )
)
+

1

2

(
DKL(QXv ||MXv ) + EQXv

DKL(QXt|Xv=xv ||MXt|Xv=xv )
)

+
1

2

(
DKL(PXt ||MXt ) + EPXt

DKL(PXv|Xt=xt
||MXv|Xt=xt

)
)
+

1

2

(
DKL(QXt ||PXt ) + EQXt

DKL(QXv|Xt=xt
||MXv|Xt=xt

)
)

= DJS(PXv ||QXv ) +DJS(PXt ||QXt )

+
1

2

(
EPXv

DKL(PXt|Xv=xv ||MXt|Xv=xv ) + EQXv
DKL(QXt|Xv=xv ||MXt|Xv=xv )

)
+

1

2

(
EPXt

DKL(PXv|Xt=xt
||MXv|Xt=xt

) + EQXt
DKL(QXv|Xt=xt

||MXv|Xt=xt
)
)

≤ DJS(PXv ||QXv ) +DJS(PXt ||QXt ) + D̄JS(PXt|Xv ||QXt|Xv ) + D̄JS(PXv|Xt
||QXv|Xt

)

where D̄JS(PY |X ||QY |X) := Ex∼PX
DJS(PY |X=x||QY |X=x) + Ex∼QX

DJS(PY |X=x||QY |X=x)

Based on the above decomposition, we can modify the bound as below,

EQX
[H(QY |X=x)]− EPX

[H(QY |X=x)]

≤ Ĥ(QY |x)
√

2DJS(PX||QX)

≤ Ĥ(QY |x)
√
DJS(PXv ||QXv ) +DJS(PXt ||QXt) + D̄JS(PXt|Xv

||QXt|Xv
) + D̄JS(PXv|Xt

||QXv|Xt
).

Therefore, we get an upper-bound for the (A) term in ineq. 12 as below,

H(PY |X)−H(QY |X) ≤ H(QY )
√

DJS(PXv ||QXv ) +DJS(PXt ||QXt) + D̄JS(PXt|Xv ||QXt|Xv ) + D̄JS(PXv|Xt ||QXv|Xt)

+ 4EPX [D
1
4
JS(PY |X=x||QY |X=x)]

≤ Ĥ(QY |x)
(
D

1
2
JS(PXv ||QXv ) +D

1
2
JS(PXt ||QXt)

)
+ Ĥ(QY |x)

(
D̄

1
2
JS(PXt|Xv ||QXt|Xv ) + D̄

1
2
JS(PXv|Xt ||QXv|Xt)

)
+ 4EPX [D

1
4
JS(PY |X=x||QY |X=x)].

Then, deriving a bound for the remaining (B) term in ineq. 12, i.e., Ex∼QX
[H(Pθ(·|x))] −

Ex∼PX
[H(Pθ(·|x))], is very similar to the procedure of deriving the upper-bound for the term

(A) by switching QY |X to Pθ(·|X) and set the f for Lemma E.9 as f(x) := H(Pθ(·|x)), thereby
having the interval [0, Ĥ(Pθ)] where Ĥ(Pθ) : maxx∈X H(Pθ(·|x)). This induces an upper-bound
as below,

Ex∼QX
[H(Pθ(·|x))]− Ex∼PX

[H(Pθ(·|x))]

≤ Ĥ(Pθ)
√
2DJS(PX||QX)

≤ Ĥ(Pθ)
(
D

1
2

JS(PXv ||QXv ) +D
1
2

JS(PXt ||QXt) + D̄
1
2

JS(PXt|Xv
||QXt|Xv

) + D̄
1
2

JS(PXv|Xt
||QXv|Xt

)
)
.

(17)

Finally, we complete the proof by adding the ineq. E.2 and ineq. 17 to induces the upper bound of
EMID(PXY , QXY ; θ),
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EMID(PXY , QXY ; θ)

≤ (H(PY |X)−H(QY |X)) +
(
Ex∼QX

[H(Pθ(·|x))]− Ex∼PX
[H(Pθ(·|x))]

)
+ 8∆

1
4

≤ Ĥ
(
D

1
2

JS(PXv
||QXv

) +D
1
2

JS(PXt
||QXt

)
)

+ Ĥ
(
D̄

1
2

JS(PXt|Xv
||QXt|Xv

) + D̄
1
2

JS(PXv|Xt
||QXv|Xt

)
)

+ 4EPX
[D

1
4

JS(PY |X=x||QY |X=x)] + 8∆
1
4

where Ĥ = maxx∈X [H(QY |X=x) +H(Pθ(·|x))] and ∆ = δP + δQ.

Then, we introduce an assumption over the consistency between conditional distributions as below.

Assumption E.10 (Consistency of conditional distributions) For the distributions PXY andQXY

over X ×Y , conditional distributions of Xt given Xv , Xv given Xt, and Y given X = (Xv, Xt) are
consistent between PXY and QXY . That is,

• PXt|Xv
= QXt|Xv

and PXv|Xt
= QXv|Xt

,

• PY |X = QY |X.

Finally, we present the simplified version of EMID upper bound by leveraging the Assumption E.10.

Theorem E.11 (Simplified scenario) Given an MLLM Pθ and distributions PXY , QXY which have
consistent conditional distributions over variables Xv|Xt, Xt|Xv, and Y |X, if there exist some
constants δP and δQ such that

DJS(PYθ
∥PY ) ≤ δP , DJS(QYθ

∥QY ) ≤ δQ,

where PYθ
= Ex∼PX

Pθ(·|x) and QYθ
= Ex∼QX

Pθ(·|x), then EMID(PXY , QXY ; θ) is upper
bounded by

Ĥ
(
D

1
2

JS(PXv∥QXv ) +D
1
2

JS(PXt∥QXt)
)
+ 8∆

1
4 , (18)

where Ĥ = maxx∈X [H(QY |X=x) +H(Pθ(·|x))] and ∆ = δP + δQ.

Given Theorem E.8, Assumption E.10 zeros out the terms(
D̄

1
2

JS(PXt|Xv
∥QXt|Xv

) + D̄
1
2

JS(PXv|Xt
∥QXv|Xt

)
)

and Ex∼PX
[D

1
4

JS(PY |X=x∥QY |X=x)] which
induces Eq. 18, accordingly.

Corollary E.12 Given an MLLM Pθ and distributions PXY , QXY which have consistent conditional
distributions over variables Xv|Xt, Xt|Xv , and Y |X, EMID(PXY , QXY ; θ) is upper bounded by

Ĥ
(
D

1
2

JS(PXv
∥QXv

) +D
1
2

JS(PXt
∥QXt

)
)

+ 8(Ex∼PX
DTV(PY |X=x, Pθ(·|x)) + Ex∼QX

DTV(QY |X=x, Pθ(·|x)))
1
4 ,

(19)

where DTV(·, ·) is the total variation distance, and Ĥ = maxx∈X [H(QY |X=x) +H(Pθ(·|x))].

Let PYθ
= Ex∼PX

Pθ(·|x) and QYθ
= Ex∼QX

Pθ(·|x), then DJS(·|·) ≤ DTV(·, ·) allow us to induce
below,
DJS(PYθ

∥PY ) = Ex∼PX
[DJS(Pθ(·|x)∥PY |X=x)] ≤ Ex∼PX

[DTV(PY |X=x, Pθ(·|x))],
DJS(QYθ

∥QY ) = Ex∼QX
[DJS(Pθ(·|x)∥QY |X=x)] ≤ Ex∼QX

[DTV(QY |X=x, Pθ(·|x))].
(20)

Noting that a
1
4 + b

1
4 ≤ 2(a+ b)

1
4 for a, b ≥ 0, plugging the above inequality into the Theorem E.11

complete the proof. Although this alternative upper bound is looser than Theorem E.11, Corollary
E.12 is more interpretable in the sense that it directly represents the model-specific discrepancy
terms via distance between model output distribution and true conditional distributions, rather than
expresses it through marginal distribution terms in DJS(PYθ

||PY ) and DJS(QYθ
||QY ). Therefore, as

our model becomes more accurate at modeling the ground truth conditional distribution of Y given
X, the EMID mainly depends on the divergence between the marginal distributions of visual and text
inputs.
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