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Abstract

Current computational models have not been able to account for the effect of
reward in confidence reports among humans. Here we propose a mathematical
framework of confidence that is able to generalize across various decision making
tasks involving varying prior and reward distributions. This framework proposes a
formal definition of “decision confidence” through the concept of soft optimality.
We further show that the objective function in this framework is jointly maximising
the reward and information entropy of the policy. We confirm the validity of our
framework by testing it on data gathered under various task conditions.

1 Introduction

Self-assessment of one’s choices, i.e. decision confidence, plays a key role in long-term decision
making and learning [1]. This assessment helps the decision maker improve their model of the outside
world and consequently gain higher utility in the future [2, 3]. Therefore, it is important to come to
an understanding of how these confidence approximations are internally calculated and especially
how given information about a decision making scenario is incorporated into these approximations.

Despite our general understanding of the word “confidence” in day-to-day life, posing a formal
definition of confidence is very challenging. Specifically, confidence is only mathematically defined
for scenarios where different choices have exactly the same amount of (potential) reward. In these
situations the goal is to find and pick the “correct” choice as opposed to all other equally “incorrect”
ones. Consequently, confidence is defined as the probability of choosing the correct option, which is
basically the posterior probability of the most probable choice given the received sensory/cognitive
information and the decision maker’s prior knowledge of the environment [4, 1, 5, 6]. This definition,
sometimes referred to as the “Bayesian confidence hypothesis”, does not consider the utility of
different choices, which is not required given the equality of these values.

In many real life situations, however, different actions lead to different utilities. This difference often
plays a key role in the decision making process. A rustling sound is more likely to be because of
the wind rather than a predator approaching, but everyone becomes more vigilant when hearing that
sound as one of the possibilities is potentially life threatening despite being unlikely. Moreover,
everyone would be certain about the rationality of this decision. The current definition of confidence
is incapable of modeling this certainty/confidence.

Here we present a mathematical framework to formally define and assess confidence in a general
decision making scenario involving uncertainty about the outside world, prior knowledge of the
decision maker about the world, and different utility functions for available choices. In order to
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incorporate the utility function into the confidence calculation, we model confidence as “probability
of making the best decision”. Formally, confidence is defined as probability of being optimal over a
sequence of states and actions given the policy.

We further show that our approach to modelling subjects’ confidence in their decision equals to a
planning as inference framework [7, 8]. This framework maps to a reinforcement learning agent
whose objective function is to jointly maximize the reward and the information entropy of the policy
(also called maximum entropy reinforcement learning) [9, 10]. We validated our normative approach
by testing it on an open data set with various task conditions involving asymmetries in the task prior
and choice rewards.

2 Background

A Partially Observable Markov Decision Process (POMDP) is a mathematical framework for
planning and decision making under uncertainty in the field of Artificial Intelligence [11]. It is
formally defined as a tuple (S,A,Z, P,O,R) where S is the set of states, A is the set of actions, Z
is the set of observations, P = p(s′|a, s) is the transition function between states, O = p(z|s, a) is
the observation function, and R = r(s, a) is the reward function expressing the reward/utility of the
agent given the state and action. A POMDP agent does not know the current state of the environment.
Therefore, starting from a prior, called the initial belief state b0, it updates the posterior probability
distribution over the states with each observation and action:

bt(s) ∝ p(zt|s, at−1)
∑
s′∈S

p(s|s′, at−1)bt−1(s
′) (1)

The goal of the POMDP agent is to gain maximum accumulated reward within the horizon H . The
recipe for action selection, called policy π, can be represented as a mapping from belief states to
actions with the optimal policy π∗ being the mapping that maximize the expected total reward:

π∗ = argmax
π

E(bt,at)

[
H∑
t=0

∑
s∈S

bt(s)r(s, at)

]
= argmax

π
E(bt,at)

[
H∑
t=0

r(bt, at)

]
. (2)

Models of decision making in Cognitive Neuroscience: POMDPs and similar Bayesian approaches
have been shown to be extremely successful in modelling behaviour of subjects across various
decision making tasks and species [5, 12, 13]. One of the main applications of POMDPs is modelling
“perceptual decision making” where the subject should select the “correct” choice based on some
sensory observations to get reward [14]. As the term “correct” suggests, the reward function is
symmetrical among different choices. In other words, all choices have the same “value”. In these
studies, the subject’s confidence closely matches the probability of choosing the correct option, i.e.
the posterior probability of the most probable choice [1, 6].

Currently, there is no normative model of confidence for situations where the reward value of options
differs, which in fact, happens more frequently in real life compared to symmetric reward situations.
There are some confidence experiments with asymmetries in the reward function. Models and
methods of these studies, however, are all descriptive/statistical, e.g., positive correlation between
confidence report and reward value [15, 16, 17]. Here we present a unifying framework about the
“decision confidence” which models the confidence of the subject in their decision. In other words,
we present the mathematical model for the following question the subject might ask themselves:
“What is the probability that I made the best decision?”

3 Model

To formally model “the best decision”, we include the idea of optimality to the POMDP framework,
where optimality is a binary variable that is reflective of receiving the maximum reward. The
probability of optimality is used to describe a subject’s confidence (or their internal sense of whether
the decision they made was optimal). Importantly, the decision making process might involve
multiple actions. Therefore, what we refer to as a “decision” is in fact a sequence of actions, given an
observation after each action (which updates the belief), shown by τ = b0, a0, b1, a1, . . . , aH and
called a trajectory. Consequently, the probability of being optimal is p(O = 1|τ). This probability
should be maximal for a trajectory that is generated by the optimal policy π∗.
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Figure 1: Left: Graphical model of the framework that measures the probability of making the
optimal decision as confidence. Right: Experimental setup of a perceptual decision making task with
varying prior and reward distribution (picture from [17]).

Given the fact that the system is Markovian and each policy is a mapping from belief states to
actions, the probability of optimality can be expressed for each action given the belief state, i.e.
p(ot = 1|at, bt) (Fig. 1, left plot). With this representation the probability of optimality for the whole
trajectory can be expressed as p(o1:H = 1|τ). Consequently, the probability of a trajectory being
optimal is:

p(o0:H = 1|τ = b0, a0, . . . , aH) =

H∏
t=0

p(ot = 1|bt, at) (3)

The above distribution should reflect the expected accumulated reward, i.e. higher total reward should
mean a higher probability of optimality. One straightforward way to satisfy this, is to set probability
of optimality for each single action as following:

p(ot = 1|bt, at) ∝ er(bt,at) (4)

Since many functions other than exponentiation might reflect the accumulation of reward (at least in
specific cases), it is important to examine the driven policy from maximizing p(τ |o0:H) when we
define the probability of being optimal with Eq. 4:

p(τ |o0:H) ∝ p(τ, o0:H) = p(b0)

H∏
t=0

p(bt+1|bt, at)p(ot|bt, at) = p(b0)

H∏
t=0

p(bt+1|bt, at)er(bt,at).

(5)

One way to derive such a policy is to approximate p(τ |o0:H). If the approximation of the optimal
policy p(at|ot = 1, bt) is expressed with π(at|bt), the approximation of optimal trajectory will be:

p̂(τ) = p(b0)

H∏
t=0

p(bt+1|bt, at)π(at|bt). (6)

and the desired policy π(at|bt) is obtained by minimizing the KL-divergence between the approximate
(Eq. 6) and the true distribution (Eq. 5):

DKL(p̂(τ)||p(τ |o0:H)) = −Eτ∼p̂(τ)

[
H∑
t=0

p(bt+1|bt, at) + r(bt, at)− p(bt+1|bt, at)− log π(at|bt)

]

= −
H∑
t=0

E(bt,at)∼p̂(bt,at) [r(bt, at)−H(π(at|bt))]

(7)
This means that an agent with this definition of optimality jointly maximizes (minimizes the negative
of) the total reward and the information entropy of the policy, which is also soft Q-learning on the
belief state [9, 10]. This derivation is known as “planning as inference” in the literature [7, 8]. The
policy derived through this process is “soft optimal”.
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Table 1: AIC values by subject for different confidence prediction models

Model 1 2 3 4 5 6 7 8 9 10

Observation 1359 1670 1793 1293 1439 1368 1710 1737 1654 2413
Posterior 1418 1677 1751 1293 1439 1394 1676 2032 1791 1369
Expected Value 1414 1675 1687 1289 1439 1385 1680 1943 1730 2409
Decision 1199 1806 1676 2111 2347 1779 1924 1666 1652 1357

4 Results

We tested our model on a perceptual decision making experiment measuring confidence in different
conditions including asymmetric priors and reward [17]. In this experiment, 10 subjects were shown
a Gabor filter tilted left or right and asked to maximize their score by reporting the direction of the
Gabor filter (left or right) and their confidence (low or high). Each subject completed 7 session of this
task where the prior probability distribution and the reward (score) distribution for correction choices
across the two direction was varied (prior probability was either 3:1, 1:1, or 1:3; rewarded score were
either 2:4, 3:3, or 4:2). The subjects were told the exact prior and reward distribution before each
session and every 50 trials during the session. Importantly, while subjects wanted to maximize their
score, they were explicitly asked to report their perceptual confidence. This means that the reward
was not supposed to be included in confidence report. Despite this explicit direction, confidence of
many subjects were affected in sessions with asymmetric reward function as reported in the original
paper of this study[17].

To approximate the generative function for perception of each subject, we fit a mixture of 2 Gaussian
distributions, N (1, σz) and N (−1, σz) (1 free parameter), to their performance in the fully symmetric
session. Then we fit another mixture, N (1, σsz) and N (−1, σsz) where σ2

sz represented sensory
observation variance according to the subject’s internal model, to the subject’s performance in the
session with asymmetric priors. Moreover, the confidence criterion, the threshold at which confidence
is binarized into “low” or “high”, was fit to the subjects’ confidence reports in both fully symmetric
and asymmetric prior sessions by using grid search and a maximum likelihood estimation with a
Bernoulli likelihood function.

We compared the fit of our model, labelled “Decision” in Table 1, to subjects’ behavioural data to the
fit of 3 other baseline models in the Bayesian framework. These baseline models were the observation
model, which predicts confidence as proportional to the likelihood of a subject’s observation (p(z|s));
the posterior model, which predicts confidence as proportional to the posterior probability (p(s|z));
and the expected value model, which predicts confidence as proportional to the expected value
(Ep(s|z)[r(s)]). Since this experiment includes only one action the confidence measured by our
framework was basically the ratio of exponentiation of the expected reward. The parameters related
to the performance, i.e. σz and σsz , were the same in all of the 4 models. On the other hand, the
threshold that binarized the confidence were fitted separately for each confidence model.

Table 1 shows the AIC values of each model tested on the session with asymmetric reward. These
values show that 5 out of 10 subjects reported their decision confidence. This is especially interesting
since the subjects were explicitly asked to report the posterior belief (perception confidence) and
ignore the reward in their confidence report. This phenomena suggests that in the self-assessment
mechanism of the brain, prior and reward are not easily separable. Such inseparability itself is a
signature of the planning as inference framework where all aspects of the environment are put together
in the probability of being optimal.

5 Conclusion

Here we presented a generalizable framework that measures “decision confidence”. This confidence
is basically the probability of a trajectory being optimal, considering the probability distribution of
the current state, and reward of each action. Our framework suggests that decision confidence reflects
“soft optimality” which includes maximizing both reward and information entropy of the policy, also
called maximum entropy reinforcement learning. We validated our framework by testing it on an
experiment with varying prior and reward distributions.

4



References
[1] Alexandre Pouget, Jan Drugowitsch, and Adam Kepecs. Confidence and certainty: distinct

probabilistic quantities for different goals. Nature Neuroscience, 19(3):366–374, March 2016.
Number: 3 Publisher: Nature Publishing Group.

[2] Roozbeh Kiani and Michael N. Shadlen. Representation of Confidence Associated with a
Decision by Neurons in the Parietal Cortex. Science, 324(5928):759–764, May 2009. Publisher:
American Association for the Advancement of Science.

[3] Jan Drugowitsch, André G Mendonça, Zachary F Mainen, and Alexandre Pouget. Learn-
ing optimal decisions with confidence. Proceedings of the National Academy of Sciences,
116(49):24872–24880, 2019. Publisher: National Acad Sciences.

[4] Rubén Moreno-Bote. Decision Confidence and Uncertainty in Diffusion Models with Partially
Correlated Neuronal Integrators. Neural Computation, 22(7):1786–1811, July 2010.

[5] Koosha Khalvati and Rajesh PN Rao. A Bayesian Framework for Modeling Confidence in
Perceptual Decision Making. In Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

[6] Koosha Khalvati, Roozbeh Kiani, and Rajesh P. N. Rao. Bayesian inference with incomplete
knowledge explains perceptual confidence and its deviations from accuracy. Nature Communi-
cations, 12(1):5704, September 2021. Number: 1 Publisher: Nature Publishing Group.

[7] Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous
state Markov Decision Processes. In Proceedings of the 23rd international conference on
Machine learning - ICML ’06, pages 945–952, Pittsburgh, Pennsylvania, 2006. ACM Press.

[8] Matthew Botvinick and Marc Toussaint. Planning as inference. Trends in Cognitive Sciences,
16(10):485–488, October 2012.

[9] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the 23rd national conference on Artificial
intelligence - Volume 3, AAAI’08, pages 1433–1438, Chicago, Illinois, July 2008. AAAI Press.

[10] Sergey Levine. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and
Review, May 2018. arXiv:1805.00909 [cs, stat].

[11] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally
in partially observable stochastic domains. In Proceedings of the Twelfth AAAI National
Conference on Artificial Intelligence, AAAI’94, pages 1023–1028, Seattle, Washington, August
1994. AAAI Press.

[12] Rajesh P. N. Rao. Decision Making Under Uncertainty: A Neural Model Based on Partially
Observable Markov Decision Processes. Frontiers in Computational Neuroscience, 4:146,
November 2010.

[13] Koosha Khalvati, Saghar Mirbagheri, Seongmin A. Park, Jean-Claude Dreher, and Rajesh PN
Rao. A Bayesian Theory of Conformity in Collective Decision Making. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[14] Joshua I. Gold and Michael N. Shadlen. The Neural Basis of Decision
Making. Annual Review of Neuroscience, 30(1):535–574, 2007. _eprint:
https://doi.org/10.1146/annurev.neuro.29.051605.113038.

[15] Benedetto De Martino, Stephen M. Fleming, Neil Garrett, and Raymond J. Dolan. Confidence in
value-based choice. Nature Neuroscience, 16(1):105–110, January 2013. Number: 1 Publisher:
Nature Publishing Group.

[16] Annika Boldt, Charles Blundell, and Benedetto De Martino. Confidence modulates exploration
and exploitation in value-based learning. Neuroscience of Consciousness, 2019(1):niz004,
January 2019.

[17] Shannon M. Locke, Elon Gaffin-Cahn, Nadia Hosseinizaveh, Pascal Mamassian, and Michael S.
Landy. Priors and payoffs in confidence judgments. Attention, Perception, & Psychophysics,
82(6):3158–3175, August 2020.

5


	Introduction
	Background
	Model
	Results
	Conclusion

