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ABSTRACT

We present a novel framework for online learning in Stackelberg general-sum
games, where two agents, the leader and follower, engage in sequential turn-based
interactions. At the core of this approach is a learned diffeomorphism that maps
the joint action space to a smooth Riemannian manifold, referred to as the Stack-
elberg manifold. This mapping, facilitated by neural normalizing flows, ensures
the formation of tractable isoplanar subspaces, enabling efficient techniques for
online learning. By assuming linearity between the agents’ reward functions on
the Stackelberg manifold, our construct allows the application of standard bandit
algorithms. We then provide a rigorous theoretical basis for regret minimization
on convex manifolds and establish finite-time bounds on simple regret for learn-
ing Stackelberg equilibria. This integration of manifold learning into game the-
ory uncovers a previously unrecognized potential for neural normalizing flows as
an effective tool for multi-agent learning. We present empirical results demon-
strating the effectiveness of our approach compared to standard baselines, with
applications spanning domains such as cybersecurity and economic supply chain
optimization.

1 INTRODUCTION

A Stackelberg game consists of a sequential decision-making process involving two agents, a leader
and a follower. This framework, introduced in Stackelberg 1934 models hierarchical strategic inter-
actions where the leader moves first, anticipating the follower’s best response, and then the follower
reacts accordingly. These games have become central to understanding interactions in various fields,
from economics to societal security, providing a formal method for analyzing situations where one
party commits to a strategy before the other, affecting the subsequent decision-making process and
reward outcomes. Over time, Stackelberg games have evolved to address more complex environ-
ments, incorporating factors like imperfect information and no-regret learning of system parameters.
The solution to such a game typically revolves around finding a Stackelberg equilibrium, where the
leader optimizes his strategy assuming or knowing the follower type, which affects how she opti-
mizes her utility based on the leader’s action. (Kar et al. 2015; Korzhyk, Conitzer, and Parr 2010).
Several challenges arise in the practical applications of Stackelberg games. One key issue is the
uncertainty regarding the follower’s type or rationality (or sub-rationality). In many real-world sce-
narios, the follower might not be fully rational or the leader might have incomplete knowledge of the
follower’s preferences, leading to uncertainty in the leader’s decision-making process. Additionally,
imperfect information regarding reward outcomes adds another layer of complexity, as the leader
may not have accurate knowledge of the payoffs associated with various strategies. These uncer-
tainties have been addressed in domains such as security, where randomized strategies and robust
optimization approaches are deployed to mitigate risks arising from incomplete information and un-
predictable follower behaviour (Jiang et al. 2013; Kar et al. 2015; Debarun Kar et al. 2017). For
instance, in deployed systems like ARMOR at LAX or PROTECT at U.S. ports, leaders must make
security decisions under uncertainty, balancing multiple risks (Jain et al. 2011; Shieh et al. 2012).
Stackelberg games also feature prominently in supply chain optimization settings, where there exist
areas of uncertainty, such as demand manifestation (L. Liu and Rong 2024) (Cesa-Bianchi et al.
2023). Stackelberg game models have also found applications in novel areas like conversational
agents using large language models (LLMs), where one agent (the model) anticipates the user’s
behaviour and adjusts its responses accordingly (Nguyen et al. 2014).
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For non-cooperative multi-agent games that exhibit additive noise, sublinear regret can be achieved
via gradient based optimization methods, such as AdaGrad (Duchi, Hazan, and Singer 2011), in the
face of Gaussian noise but this is often subject to constraints on the magnitude of the noise (Hsieh
et al. 2023). Nevertheless, in these games, the problem settings are extended to an unlimited number
of players - with regret performance degrading as the number of players increases. We investigate
the problem setting of a two-player Stackelberg game, with a tractable best response function -
commonplace in economics and adversarial machine learning in general (Wang et al. 2024; Zhou
and Kantarcioglu 2016).
Problem Setting: We consider a two-player Stackelberg game where player A leads and player B
responds. Stackelberg games are sequential, meaning that the players take turns and, the follower can
best respond to the leader’s action, given information available to him. The best response of player
B lies on a manifold within a subspace of the joint action space A× B. We define this Stackelberg
game setting in the framework of optimal transport, where the structure of the best response function
B(·) gleans simplifications to the solution methodology to obtain Stackelberg regret. This research
focuses on applying multi-armed bandit (MAB) methods, particularly in Stackelberg equilibrium
settings, to achieve sublinear regret. It explores the game theory, utilizing geometric topologies to
better understand agent behaviour and simplify computations.
Key Contributions: We introduce a novel algorithm that significantly advances the understanding
of Stackelberg learning under imperfect information, akin to the problem settings covered in Balcan
et al. 2015 and Haghtalab et al. 2022, presenting a systematic framework for how equilibrium can be
efficiently solved in this problem setting. Central to our contribution is the construction of a feature
map using neural normalizing flows, which transforms the ambient joint action space into a more
tractable embedding, we define as the Stackelberg manifold. By leveraging the geodesic proper-
ties of this manifold, our approach allows for more efficient computation of Stackelberg equilibria
with respect to no-regret learning, particularly in the presence of parameter uncertainty. In addition
to this, we offer a rigorous theoretical foundation for optimizing Stackelberg games on spherical
manifolds. This framework is validated via empirical simulations, stemming from applications in
supply chain management and cybersecurity, demonstrating that our method outperforms standard
baselines, offering improvements in both computational efficiency and regret minimization.

2 FORMAL DEFINITIONS

In a Stackelberg game, two players take turns executing their actions. Player A is the leader, she
acts first with action a selected from her action space A. Player B is the follower, he acts second
with action b ∈ B. The follower acts in response to the leader’s action, and both players earn a joint
payoff as function of their actions.

2.1 REPEATED STACKELBERG GAMES

In a repeated Stackelberg game, the leader chooses actions at ∈ A, and the follower reacts with
actions bt ∈ B at each round t = 1, 2, . . . , T . The leader’s strategy πA(·|Ht) is a probability
distribution over the action space A which selects at based on past joint actions up to time t, i.e.,
Ht := {(aτ ,bτ )|τ < t}. Similarly, the follower’s strategy πB(·|Ht) is a conditional probability
distribution over B which determines bt given the full history, i.e.,Ht := Ht ∪ {at}.
Best Response Strategy of the Follower: To be specific, the follower selects his best response
strategy at round t by maximizing his expected reward function µB(a,b) : A×B → R given that the
leader has played action at. Since, we assume that the reward function solely depends on the most
recent pairs of actions, the follower’s best strategy is first order Markov, i.e., πB(·|Ht) = πB(·|at).
Formally, the follower’s best response at round t is given by,

π∗B(b|at) := argmax
πB∈ΠB

EπB
[µB(a,b)|a = at], (2.1) B(at) := {b ∈ B|π∗B(b|at) > 0}. (2.2)

where ΠB is the space of probability distributions over the action spaceB and the expectation is taken
with respecter to the strategy of the follower. In this case, we can define the set of follower’s best
responses in Eq. (2.2). Analogously, the leader aims at maximizing the expected utility µA(a

t,bt) :
A× B → R that is a deterministic function solely driven by her action at followed by the reaction
of the follower bt.
Stackelberg Equilibrium: Consider a follower whose best response is optimal. We denote this
scenario as Stackelberg Oracle (SOC) learning. From the leader’s perspective, the uncertainty is not
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necessarily over the system, but rather the strategy of the follower πB(·). Stackelberg equilibrium
(π∗A, π

∗
B) is achieved when the follower is best responding, according to Eq. (2.2), and the leader

acts with an optimal policy given the best response of the follower,

π∗A := arg max
πA∈ΠA

EπA,π∗
B
[µA], (2.3) EπA,π∗

B
[µA] =

∫
A
πA(a)

∫
B
µA(a,b)πB(b|a) db da.

(2.4)

2.2 THE STACKELBERG MANIFOLD

To address the complexity of solving for Stackelberg equilibrium under uncertainty, we propose the
idea of mapping actions from the ambient space onto a manifold Φ leading to several key advan-
tages. Simplifying the problem by mapping to a geometric structure, such as a unit sphere, allows for
significantly faster numerical computation while optimizing directly on an intuitive intrinsic geom-
etry, reducing redundancies and provides ease with respect to enforcing constraints. Additionally,
smoothness on such a structure enables computational advantages through methods like Riemannian
gradient descent (Bonnabel 2013), which exploits differentiability for efficient optimization.
This concept of mapping the data from the ambient space, in our case defined by the joint action
space A× B, onto a latent space Φ has been explored in several prior works. For a well defined
manifold, typically the approach is to learn a diffeomorphism between the ambient data space, and
the objective manifold, which is a subspace of the ambient data space (D. J. Rezende, Papamakarios,
et al. 2020) (Gemici, D. Rezende, and Mohamed 2016). Suppose the manifold is not given, or there
lies flexibility in defining the structure of such a manifold, the certain manifold learning techniques
could be devised (Brehmer and Cranmer 2020). These approaches typically define invertible, or
pesudo-invertible, probability density maps between the ambient data space, the latent space, and
the manifold space.

2.2.1 NORMALIZING FLOWS FOR JOINT ACTION SPACE PROJECTION

We leverage normalizing flows to map a joint action space A × B ⊂ RD onto a manifold, Φ
embedded inRD (Dinh, Sohl-Dickstein, and Bengio 2016; Papamakarios et al. 2021; D. J. Rezende
and Mohamed 2015). Normalizing flows are a class of generative models that transform a high
dimensional simple distribution (i.e., isotropic Gaussian) into a complex one through a series of
invertible bijective mappings using neural networks that are computationally tractable. The joint
action space consists of actions taken by two agents, denoted as a ∈ A and b ∈ B, modelled via
normalizing flows to ensure bijectivity and a tractable density estimate. Let x ∈ A× B, the model
density pX(x) for a data point x ∈ RD is given by,

pX(x) = pZ(f(x))

∣∣∣∣det(∂f(x)

∂x

)∣∣∣∣ . (2.5)

Here Z represents the latent space with a simple distribution, and |det (∂f(x)/∂x)| is the Jaco-
bian determinant of the transformation f : RD → RD. Several open-source methodologies and
codebases have been developed to address this manifold mapping problem via normalizing flows
(Brehmer and Cranmer 2020). We extend the nflows package from Durkan et al. 2020 into our
approach. The key contribution of our application is the isolation of the input heads into two sep-
arate sections, before concatenating the inputs and feeding it through the normalizing flow. This
allows us to control the subspace induced by the leader’s action a ∈ A. (We provide detailed model
specifications in Appendix D.)

2.2.2 SPECIFICATIONS OF THE FEATURE MAP ϕ(a,b)

Feature Map ϕ(·): We propose a function ϕ, which is a feature map (Amani, Alizadeh, and
Thrampoulidis 2019; Moradipari et al. 2022; Zanette et al. 2021). Let |A| and |B| denote the finite
dimension of the action space of the leader and follower respectively, the feature map ϕ : A ×
B 7→ R

D, which effectively maps any A by B combination of vectors to a D dimensional feature
representation.
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Definition Expression
(D1) Φ is measurable and reachable w.r.t.
a σ-algebra over A × B (denoted as
EA×B).

Φ ⊆ A× B ⊆ RD, Φ ∈ EA×B. (2.7)

(D2) Φ is compact and closed.
See Appendix A.1 for detailed definition. (2.8)

(D3) Φ is Lipschitz in the joint A× B. ∣∣∣∥∇aϕ∥p + ∥∇bϕ∥p − C
∣∣∣ ≤ Lc (2.9)

(D4) Φ variational sensitivity in A× B,
with high probability. ||a− a′|| ≤ ϵ =⇒ ||ϕ(a′,b)− ϕ(a,b)|| ≤ δ,∀b (2.10)

||b− b′|| ≤ ϵ =⇒ ||ϕ(a,b′)− ϕ(a,b)|| ≤ δ,∀a (2.11)

(D5) Φ forms a smooth Riemannian man-
ifold. See Appendix A.4 for detailed definition. (2.12)

(D6) Φ has an approximate pullback.
There exists ϕ−1(·) : Φ 7→ A× B such
that,

∥∥ϕ−1(ϕ(a,b))− (a,b)
∥∥ ≤ ϵ, ∀a,b (2.13)

Table 1: Key assumptions of the Stackelberg Embedding Φ.

Further, we introduce a concept known as the Stackelberg embedding, denoted by Φ, which is
defined as the image of ϕ over the joint action space domain A× B,

Φ := Im(ϕ) = {ϕ(a,b)|a ∈ A,b ∈ B}. (2.6)

The construction of ϕ : A× B 7→ RD can be via any means, in our case a normalizing neural flow
network (but possibly any other architecture), but should abide by the imposed assumptions in Table
1. To be precise, ϕ̂ should denote our best learned representation of the ideal map ϕ. Provided that
we only have access to ϕ̂, purely for notational convenience, we will use ϕ to represent ϕ̂ moving
forward.
Definition 2.1. Bipartite Spherical Map ϕ(a,b): Let a ∈ A and b ∈ B, and define a mapping
ϕ : A × B → S(D−1) from Cartesian coordinates to spherical coordinates on the D-dimensional
unit sphere S(D−1). The spherical coordinates are partitioned such that, a parametrizes a subset of
the spherical coordinates, and b parametrizes the remaining coordinates νb(b). Also, νa ∩ νb = ∅,
meaning the partitions are disjoint. Thus, the full mapping is given by:

ϕ(a,b) := (νa(a), νb(b))
⊺ ∈ S(D−1),

where νa and νb represent distinct angular components of the spherical coordinates.

Mapping to a Spherical Manifold: The transformation from spherical coordinates to Cartesian
coordinates is used to map input features onto an D-dimensional spherical manifold. Therefore, in
addition to the properties of our feature map ϕ from Table 1, we also enforce ϕ as a bipartite spherical
map from Def. 2.1. This bipartite spherical map which constructs a disjoint spherical mapping to
parameterize two subspaces in Φ. To accomplish this, we define two heads in the neural network
input, the head from A specifically controls the azimuthal spherical coordinate and the head from
B specifically controls other coordinates. (A visualization of the results, showcasing the learned
bipartite mapping to Φ as a 3D spherical surface, is provided in Appendix E.1. This visualization is
generated by varying a or b to create longitudinal or latitudinal subspaces.)
Constructing a sufficient map to Φ involves specifying the architecture and training model parame-
ters such that it satisfies dynamics (D1) to (D6) as much as possible. This fundamentally requires a
trade-off between being well behaved on the manifold, as stipulated by (D3) and (D4), and having
an accurate inverse (D6). Thus, we train a neural network to approximate ϕ, via ϕ, with the loss
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function,

L(ϕ) = αNLN
ϕ + αRLR

ϕ + αP Var
(
ϕ(a,b)− ϕ(Jσ(a,b))

)
︸ ︷︷ ︸

Perturbation Loss:LP
ϕ

+αL

∣∣∣∥∇aϕ∥+ ∥∇bϕ∥ − C
∣∣∣︸ ︷︷ ︸

Lipschitz Loss:LL
ϕ

.

(2.14)

The total loss L(ϕ) is composed of multiple loss functions added together in a linear convex com-
bination. LN

ϕ represents the negative log-likelihood loss of the normalizing flow ϕ(·). To construct
the Stackelberg manifold Φ, data is first sampled uniformly the ambient Cartesian space. We then,
fit a normalizing flow to Φ based on the criteria in Table 1, minizing L(ϕ).
Loss Function Descriptions: LN

ϕ ensures transformed data matches the base distribution while
adjusting for volume changes from invertible transformations, with respect to Eq. (2.5). Minimizing
LN
ϕ allows the model to efficiently map complex data bijectively to simpler distributions. (A detailed

description of LN
ϕ can be found in Appendix A.7.) LR

ϕ represents the geodesic repulsion loss of
the output, which penalizes the concentration of elements being pairwise close to one another. (A
detailed description of LR

ϕ can be found in Appendix A.6.) Jσ(a,b) : A × B 7→ A × B is a
Gaussian perturbation function on the Cartesian product of the joint action space A × B to itself,
subject to standard deviation σ. (A formal definition is provided in Appendix A.5.) The variance of
the difference between ϕ(a,b) and the perturbed ϕ(Jσ(a,b)) should be kept minimal. This variance
is captured over all elements in Φ. The Lipschitz loss penalizes drastic deviations in the gradient
with respect to a and b, provided that the sum of the absolute values of the gradients does not deviate
too far from some target C ∈ R. The aforementioned losses in Eq. (2.14) are linearly combined in
a convex combination to form the total loss L(ϕ), denoted as αN , αR, αP , and αL respectively. The
hyperparameters were optimized via a selection process, leveraging empirical validation to identify
the settings that maximized performance. Experimental hyperparameters and architecture of the
normalizing neural flow network can be found in Appendix D.

2.3 REWARD FUNCTION

Reward Mechanisms: A Stackelberg game provides two reward functions µA(a,b) and µB(a,b).
Both of which are linearizable with sub-Gaussian noises, ϵA and ϵB , i.e.,

µA(a,b) = ⟨θ∗A, ϕ(a,b)⟩+ ϵA, (2.15) µB(a,b) = ⟨θ∗B , ϕ(a,b)⟩+ ϵB . (2.16)
We assume zero-mean sub-Gaussian distribution for both ϵA and ϵB but they do not necessarily
need to be identical. The objective is to learn the parameters θ∗A ∈ RD, and possibly as an extension
problem θ∗B . The feature map ϕ(·) maps the joint action space A× B, to a subspace in RD. The
parameters of the model, can be estimated via parameterized regression,

θ̂t = (ϕ1:tϕ
⊤
1:t + λregI)

−1ϕ⊤1:t µ1:t, for A and B, respectively, (2.17)

Where ϕ1:t represents the sequence of ϕ(·) values via the feature map given the action sequences
a1:t and b1:t, λreg serves as a regularization parameter, I is the identity matrix, and µ1:t are the
historical rewards of players A or B (depending on the subscript). Here, we extend the reward
structure of classical linear bandits in (Abbasi-Yadkori, Pál, and Szepesvári 2011; Chu et al. 2011)
to a setting where two players jointly decide on the action sequence. We stipulate assumptions to
ensure that the covariance matrix Σ−1T is well-conditioned and positive semi-definite (PSD), with
a regularization parameter λreg balancing bias and variance, while the norm ||ϕ(at,bt)||Σ−1

T
must

remain small to facilitate efficient uncertainty reduction. (These assumptions are outlined in detail
in Appendix A.2.)

3 OPTIMIZATION OF STACKELBERG GAMES

Optimization under Perfect Information: We see that regardless of the convexity of A or B, so
long as we are dealing with compact spaces, under perfect information, we can solve the Stackelberg
equilibrium by solving a bilevel optimization problem expressed as,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

π∗A = arg max
πA∈ΠA

E
[
⟨θ∗A, ϕ(πA, π

∗
B(πA))⟩

]
,

(3.1)

π∗B(πA) := arg max
πB∈ΠB

E
[
⟨θ∗B , ϕ(πA, πB)⟩

]
,

(3.2)
With a slight abuse of notation, we use ϕ(πA, πB) and π∗B(πA) to denote EπA,πB

[ϕ] and the best
response function in response to policy πA, respectively. The expectation are taken with respect to
the sub-Gaussian noises.
Optimization under Parameter Uncertainty: For some no-regret learning algorithm suppose that
after observing t samples, the uncertainty among the parameters θ is characterized by,

Ball(θ∗, Cθ(t)) :=
{
θ : ∥θ∗ − θ∥ ≤ Cθ(t)

}
. (3.3)

with probability at least 1−δ. In this formulation, ||·|| denotes some norm in the space of parameters.
Assuming a pessimistic leader, the optimization problem under parameter uncertainty at round t can
be expressed as,

π∗A := arg max
πA∈ΠA

min
θA

E
[
⟨θA, ϕ(πA, π

∗
B(πA))⟩

]
, s.t. θA ∈ Ball(θ∗A, Cθ(t)), (3.4)

where π∗B(πA) := arg max
πB∈ΠB

max
θB

E
[
⟨θB , ϕ(πA, πB)⟩

]
, s.t. θB ∈ Ball(θ∗B , Cθ(t)). (3.5)

Given π∗B(·) in Eq. (3.5), let us define,

H(θ∗A, t) := max
πA∈ΠA

min
θA

E
[
⟨θA, ϕ(πA, π

∗
B(πA))⟩

]
, s.t. θA ∈ Ball(θ∗A, Cθ(t)), (3.6)

H(θ∗A, t) := max
πA∈ΠA

max
θA

E
[
⟨θA, ϕ(πA, π

∗
B(πA))⟩

]
, s.t. θA ∈ Ball(θ∗A, Cθ(t)). (3.7)

We can see from the structure of Eq. (3.4) to Eq. (3.7), the resemblance to a bi-level optimiza-
tion problem, which can be solved both under perfect information and uncertainty. We provide a
discussion of such methods in Appendix B.1.

4 ONLINE LEARNING ON THE STACKELBERG MANIFOLD

To enable efficient multi-agent online learning on the Stackelberg manifold, Φ, we enforce Φ to be
a convex manifold. The convex manifold is a manifold where the geodesic between any two points
on the manifold is contained within or forms a geodesically convex set (Def. C.1). Essentially, in a
convex manifold, every geodesic between two points is contained within the manifold, adhering to
the geodesic convexity property. The formal definitions can be found in Appendix C.1.

4.1 STACKELBERG OPTIMIZATION UNDER PERFECT INFORMATION

Provided that we can transform data from the joint action space (or ambient data space) onto a
spherical manifold, we can leverage the properties of the D-sphere to determine the best response
solution for the Stackelberg follower and optimize the corresponding Stackelberg regret. Consider
the reward function structure outlined in Section 2.3. In general, for each agent, µ = ⟨θ, ϕ⟩. Here,
θ represents a D-dimensional vector in the manifold space, and we must find the element in Φ that
maximizes this inner product. In the Stackelberg game, since the leader moves first, they define
a restricted subspace on the Φ. The follower must then optimize within this subspace. Moving
forward, θA and θB will be referred to as objective vectors.
We define the divergence angle, αDiv as the angle between the two objective vectors. Further, we
can define the geodesic distance between two vectors, denoted as G(θA, θB), as follows. For a
unit-spherical manifold, this has the definition,

cos(αDiv) :=
⟨θA, θB⟩
∥θA∥∥θB∥

, G(θA, θB) := arccos

(
⟨θA, θB⟩
∥θA∥∥θB∥

)
. (4.1)

In a D-dimensional sphere, for a cooperative game with no divergence angle, the optimal solution
that maximizes the inner product is an element in Φ that is collinear with θA, mutatis mutandis for
θB . Lemmas 4.1 to 4.2 establishes a link between solving for the follower’s best response, from

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Eq. (2.2), and minimizing geodesic distance, in a general sum game. Moving forward, we use the
convention θ′A and θ′B to denote the projection of the objective vectors θA and θB onto Φ.
Lemma 4.1. Geodesic Distance and Closeness: Let Φ ⊂ RD be a manifold serving as a boundary
of a convex set in RD. Given θ, let ξθ ∈ Φ be the point on the manifold that maximizes the dot
product ⟨θ, ξθ⟩, and is orthogonal to Φ at the point of intersection. For any two points on the man-
ifold θ′A, θ

′
B ∈ Φ, if the geodesic distance between ξθ and θ′A is greater than the geodesic distance

between ξθ and θ′B , G(ξθ, θ
′
A) > G(ξθ, θ

′
B), then the dot product satisfies ⟨θ, θ′A⟩ < ⟨θ, θ′B⟩. (Proof

in Appendix C.2.)
Lemma 4.2. Pure Strategy of the Follower: While optimizing over a convex manifold, proposed in
Definition C.2, given any objective vector θ, the linear structure of the reward functions from Eq.
(2.15) and Eq. (2.16), and that the subspace induced by a ∈ A forms a geodesically convex subset,
as defined in Definition C.1, the optimal strategy of the follower will be that of a pure strategy, such
that πA(b|a) ∈ {0, 1}. (Proof provided in Appendix C.4.)

The intuition behind Lemmas 4.1 and 4.2 is that the maximum the dot product between θ′A and θ′B
on the convex manifold must be collinear with each other, ensuring the optimal reward. In the case
of a convex subspace, the follower acting optimally has no viable alternatives other than a single
choice.

4.2 REGRET DEFINITIONS

Definition 4.1. Stackelberg Regret: We define Stackelberg regret, denoted as RT
A for the leader,

measuring the difference in cumulative rewards between a best responding follower and an opti-
mal leader in a perfect information setting, against best responding follower and leader exhibiting
bounded rationality. The leader policy stipulates that the she acts rationally given the estimates of
the expected reward function from the data gathered, as in Eq. (3.7) and Eq. (3.6),

RT
A :=

T∑
t=1

E
[
max
a∈A

µA(a,B(a))− µA(a
t,B(at))

]
≤

T∑
t=1

(
H̄(θ∗A, t)−H(θ∗A, t)

)
. (4.2)

The leader selects at from policy πA according to their best estimate of θ̂A and θ̂B , following the
maximization equations in Eq. (3.4) and Eq. (3.5) respectively.

The leader commits to a strategy πA aimed at maximizing her reward while accounting for the un-
certainty in the follower’s response. The leader is free to estimate the follower’s response rationally,
and within the confidence interval. Our algorithm minimizes the Stackelberg regret, providing a no-
regret learning process for the leader. To compute the Stackelberg regret of the algorithm, which is
defined from the leader’s perspective, we must derive a closed form expression for the gap over time
between the expected reward under the optimal policy and the expected reward under any algorithm.
Definition 4.2. Simple Regret: Let us define the simple regret, where with probability 1−δ at time t,

reg(t) := ⟨θ∗A, ϕ(a∗,B(a∗))⟩ − ⟨θ∗A, ϕ(at,B(at))⟩ ≤ H̄(θ∗A, t)−H(θ∗A, t) (4.3)

This assumes that the leader is acting under the bounded rationality assumption.

4.3 QUANTIFYING UNCERTAINTY ON THE STACKELBERG MANIFOLD

We now revisit the parameter uncertainty constraints introduced in Sec. 2.3, which dictate the uncer-
tainty of a given learning algorithm, characterized by an uncertainty radius Cθ(t). Given the feature
map ϕ(·), which adheres to the linear reward assumptions, particularly with respect to the covariance
matrix of the regression (as outlined in Sec. 2.3), the learning leader can apply any bandit learning
algorithm that imposes a high-probability bound on the parameter estimate. This constraint is for-
malized in Eq. (3.3) by the uncertainty region Cθ(t). Let us define

←→
Φ a and

←→
Φ b as two subspaces,

which we will use to analyze the leader’s actions under these uncertainty constraints.
←→
Φ a := {ϕ(a,b′)|b′ ∈ B}, (4.4)

←→
Φ b := {ϕ(a′,b)|a′ ∈ A}, (4.5)

where
←→
Φ a and

←→
Φ b are the sub-spaces formed when we fix one of the leader or follower’s action,

and let the other action vary freely.
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Lemma 4.3. Intersection of
←→
Φ a and

←→
Φ b: Given a bipartite spherical map Q(·) from Definition

2.1, with a parameterizing the azimuthal (latitudinal) coordinates, the cardinality of the intersect
between

←→
Φ a and

←→
Φ b will be non-empty. That is, |

←→
Φ a ∩

←→
Φ b| > 0. (Proof is in Appendix C.5.)

The derivation of Lemma 4.3 first comes by isolating the subspaces in terms of angular coordinates.
Next, due to the Poincare-Hopf theorem (Hopf 1927; Poincaré 1885), the compactness of the smooth
Riemmanian manifold imposes strong geometric constraints such that the two subspaces cannot
avoid eachother.
Lemma 4.4. Orthogonality of Subspaces

←→
Φ a and

←→
Φ b: The two submanifolds

←→
Φ a and

←→
Φ b, are

orthognal to eachother within Φ. (Proof provided in Appendix C.6.)

Lemma 4.4 is proven by isolating and taking the partial derivatives of the cartesian coordinates
with respect to their spherical coordinates to obtain tangent vectors. Afterwards, by computing the
dot product between these two tangents and demonstrating that it equates to 0, we establish their
orthogonality.
Geodesic Isoplanar Subspace Alignment (GISA): The general methodology in which we can
compute the optimal leader strategy for a Stackelberg game, for manifold Φ that forms a convex
boundary, is that the leader can anticipate the follower strategy based on knowledge of follower’s
reward parameters θ′B and the isoplane

←→
Φ a. We denote this homeomorphism as f1(

←→
Φ a, θ

′
B) :

←→
Φ a 7→

←→
Φ b∗

a
. Thereafter, we compute the geodesic distance minimizing distance from

←→
Φ b∗

a
to

θ′A via injective map f2(
←→
Φ b∗

a
, θ′A) :

←→
Φ b∗

a
7→ R. Leader’s objective is to find a ∈ A such that it

minimizes the composition of f1◦f2, giving us the geodesic distance. This composition is abstractly
defined as,

←→
Φ a 7−→

f1(·,θ′
A)

←→
Φ b∗

a
7−→

f2(·,θ′
B)

G(a,b∗a) ∈ R, where, θ′ =
θ

∥θ∥
, for A and B. (4.6)

←→
Φ b

αDiv

θ′B

θ′A

←→
Φ a

Figure 1: Illustration of isoplanar subspaces
for players A and B.

θ′B

θ′A

←→
Φ a

Figure 2: Illustration of geodesic confidence
balls for players A and B.

Diagram Description: A visualization of the isoplanes
←→
Φ a and

←→
Φ b on a 2-sphere embedded in three di-

mensions is shown in Fig. 1. The isoplanes are depicted relative to the normalized objective vectors θ′A and
θ′B , which lie on the manifold surface, separated by a divergence angle αDiv . Figure 2 illustrates the geodesic
confidence balls, positioned on the surface of the spherical manifold. In three dimensions, it becomes evident
that
←→
Φ a and

←→
Φ b are orthogonal at any point of intersection. This intersection, denoted by

←→
Φ ba , is where the

joint action emerges, represented by a purple geodesic square indicating the uncertainty region.

Theorem 1. Isoplane Stackelberg Regret: For D-dimensional spherical manifolds embedded in
RD space, where ϕ(a, ·) generates an isoplanes

←→
Φ a, and the linear relationship to the reward

function in Eq. (2.15) and Eq. (2.16) and Eq. (2.15) and Eq. (2.16), the simple regret, defined in Eq.
(4.3), of any learning algorithm with uncertainty parameter uncertainty Cθ(t), refer to in Eq. (3.3),
is bounded by O(arccos

(
1− Cθ(t)2/2

)
). (Proof provided in Appendix C.11.)

The proof of Theorem 1 focuses on analyzing the geodesic distances on Φ due to uncertainty. First,
we argue that any norm-like confidence ball in Cartesian coordinates, Ball(·), can be transformed
into a confidence bound into a geodesic distance-based confidence ball, BallG(·), in spherical
coordinates (discussed in Lemma C.2 of the Appendix.) Due to orthogonality between

←→
Φ a and

8
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Algorithm 1 Geodesic Isoplanar Subspace Alignment (GISA) Algorithm

1: Input: Time horizon T , and confidence ball Cθ(·).
2: Output: Estimated optimal leader action â.
3: Initialize θ̂A and θ̂B uniformly at random.
4: Initialize reward and action histories, U andH as empty sets ∅.
5: Construct a Stackelberg embedding Φ and feature map ϕ per specifications in Sec. 2.2.
6: for t ∈ 1...T do:
7: if G(θ̂A, θ̂B) < 2Cθ(t) then
8: Phase 1: Select uniformly an action on the boundary of A’s geodesic confidence ball.
9: a ∼ Uniform[∂ BallG(Cθ(t))] (See Lemma C.2.)

10: else
11: Phase 2: Select a that minimizes the geodesic distance to θ̂B from BallG(Cθ(t)).
12: a← argmin

a∈BallG(Cθ(t))
G(a, θ̂B)

13: end if
14: b← argmin

b∈
←→
Φ a

G(b, θ̂B)

15: ât, b̂t ← ϕ−1(a,b) ▷ Perform an inverse map back to the joint action space.
16: yield ât, b̂t, and obtain empirical reward µt

A, µ
t
B .

17: H ← H∪ (ât, b̂t), U ← U ∪ (µt
A, µ

t
B).

18: Re-estimate θ̂A and θ̂B fromH and U , based on Eq. (2.17).
19: end for
20: return ât

←→
Φ b, we argue that that the geodesic distance either remains the same or decreases when we
projected from any Ball(·)′ from

←→
Φ a to

←→
Φ b (discussed in Lemma C.3 of the Appendix.) This

naturally extends to a bound on the maximum diameter of the projected confidence ball on
←→
Φ b.

This constitutes the best and worst possible outcomes due to misspecification in accordance with
the formulas in Eq. (3.6) and Eq. (3.7), as expressed in Eq. (4.3), which upper bounds the simple
regret.

Lemma 4.5. Pure Strategy of the Leader: Given a spherical manifold, Φ, and isoplanar subspace,←→
Φ a and

←→
Φ b for the longitudinal and lattitudinal subspaces respectively, the optimal strategy of the

leader is that of a pure strategy, that is, π∗A(a) ∈ {0, 1}. (Proof is provided in Appendix C.7.)

Lemma 4.5 argues that the intersection between
←→
Φ a and

←→
Φ b contains at most one element due

to their orthogonality. Consequently, no other actions on the manifold can further maximize the
leader’s reward. Intuitively, the positive curvature of the manifold ensures that once two non-
degenerate isoplanes intersect, the intersection is a unique point that maximizes the dot product
between the action and the objective vector.

5 EMPIRICAL EXPERIMENTS

We provide three practical instances of Stackelberg games in practice. We benchmark the GISA
from Algorithm 1 against a dual-UCB algorithm, where both agents are running a UCB algorithm.
Although a simplistic, benchmark, the dual-UCB algorithm does constitute a no-regret learning
algorithm (Blum and Mansour 2007).
R

1 Stackelberg Game: In this Stackelberg game, the leader selects an action while anticipating the
follower’s best response. The action spaces of both the leader and the follower are one-dimensional,
a,b ∈ R1. The interaction between nonlinear rewards and penalties requires numerical methods
to determine optimal strategies. However, the nonlinear reward functions introduce complexity,
resulting in a non-trivial equilibrium. A practical application is energy grid management, where a
utility company (leader) sets energy prices or output levels, anticipating the aggregate consumers’
(followers) energy usage while accounting for nonlinear feedback such as fluctuating demand or
storage limits. (Details and additional experiments are provided in Appendix G.1.)

9
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R
1 Stackelberg Regret. NPG Regret. SSG Regret.

Figure 3: Average cumulative regret performance across three Stackelberg games. Parameters of the simula-
tions outlined in Appendices G.1 - G.3. Uncertainty region denote upper and lower quartile of experimental
results.

The Newsvendor Pricing Game (NPG): We model two agents in a Newsvendor pricing game,
with a supplier (leader) and a retailer (follower), inspired by the work of Cesa-Bianchi et al. 2023
and L. Liu and Rong 2024. The action space of the leader is denoted as a ∈ R1, and for the
follower as b ∈ R2. The leader and follower interact with each other in a repeated Stackelberg
game, modelling a leader-follower supply chain game. The supplier dynamically prices the product,
aiming to maximize her reward, while the retailer determines the optimal pricing and order quantity
based on the demand distribution according to classical Newsvendor theory (Arrow, Harris, and
Marschak 1951; Petruzzi and Dada 1999). The reward function is an abstraction that is a function
of stochastic demand, and the reward formats are asymmetric, rendering computation and learning
of the Stackelberg equilibrium non-trivial. (We specify the details and additional experiments in
Appendix G.2.)
Stackelberg Security Game (SSG) inR5: In this Stackelberg security game (SSG), inspired by the
frameworks developed in Balcan et al. 2015 and Zhang and Malacaria 2021, the defender (leader)
allocates limited resources across multiple targets, anticipating the attacker’s (follower) strategy (i.e.
to protect a computer network from malicious intruders). In our example, both players select ac-
tions from R5, where the rewards are governed by the relative difference between their actions (i.e.,
a − b) and are subject to quadratic penalties for overextension. Furthermore, resource constraints
are modelled via weighted L1-norms, imposing additional limitations on the feasible actions. The
Stackelberg equilibrium in this setting is characterized by the leader’s optimal resource allocation,
taking into account the adversary’s best response. The interplay between nonlinear penalties and
resource constraints renders the equilibrium computation non-trivial, requiring advanced numerical
techniques for tractable solutions. (We specify the details and additional experiments in Appendix
G.3.)

6 CONCLUSION

This work establishes a foundational connection between Stackelberg games and normalizing neural
flows, marking a significant advancement in the study of equilibrium learning and manifold learning.
By utilizing normalizing flows to map joint action spaces onto Riemannian manifolds, particularly
spherical ones, we offer a novel, theoretically grounded framework with formal guarantees on simple
regret. This approach represents the first application of normalizing flows in game-theoretic settings,
specifically Stackelberg games, thereby opening new avenues for learning on convex manifolds.
Our empirical results, grounded in realistic simulation scenarios, highlight promising improvements
in both computational efficiency and regret minimization, underscoring the broad potential of this
methodology across multiple domains in economics and engineering. Despite potential challenges
related to numerical accuracy for the neural flow network, this integration of manifold learning into
game theory nevertheless exhibits strong implications for online learning, positioning neural flows
as a promising tool for both machine learning and strategic decision-making.
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A KEY ASSUMPTIONS AND DEFINITIONS

A.1 COMPACT AND CLOSED SETS

In this formal definition, Φ is both compact and closed in the product space A × B. A set Φ
is compact if for every open cover {Ui}i∈I of Φ, there exists a finite subcover such that Φ ⊆⋃n

k=1 Uik , where Uik are open sets in A× B. This ensures that Φ is ”contained” in a finite manner
within the space, even if A × B is infinite. Furthermore, Φ is closed if its complement, Φc =
(A × B) \ Φ, is open. This implies that Φ contains all its limit points, making it a complete set
within the topological space. Thus, Φ is a compact and closed subset of A × B, meaning that it is
both bounded and contains its boundary, providing useful properties for convergence and stability
in this space.

∀{Ui}i∈I , Φ ⊆
⋃
i∈I

Ui =⇒ ∃{Ui1 , Ui2 , . . . , Uin} such that Φ ⊆
n⋃

k=1

Uik , (A× B) \Φ is open.

(A.1)

A.2 ASSUMPTIONS ON LINEAR REWARD FUNCTION

1. Covariance Matrix:

ΣT :=

T∑
t=1

ϕ(at,bt)ϕ(at,bt)⊤ + λregI (A.2)

ϕ(at,bt) must ensure that the covariance matrix Σ−1T (a.k.a. the inverse of the covariance
matrix) is sufficiently large for effective learning.

2. Norm Bounds:

∥ϕ(at,bt)∥Σ−1
T
≡
√

ϕ(at,bt)Σ−1T ϕ(at,bt)⊤ (A.3)

∥ϕ(at,bt)∥Σ−1
T

must be small to ensure efficient uncertainty reduction.

3. Regularization Effect: Regularization parameter λreg balances bias and variance, affecting
sample complexity.

4. Positive Semi-Definiteness: Σ−1T is positive semi-definite (PSD).

A.3 DISCRETE MEASURE INTERPRETATION

Let {x1, x2, . . . , xn} be a set of discrete points in Rn. We define the measure α on these points as,

α =

n∑
i=1

α({xi})δxi (A.4)

where δxi
is the Dirac measure centered at xi. The integral of a function f : Rn → R with respect

to the measure α is given by,

∫
Rn

f(x) dα(x) =

k∑
i=1

α({xi})f(xi) (A.5)

A.4 DEFINITION OF RIEMANN MANIFOLD

A Riemannian manifold, expressed as Φ, consists of a smooth manifold Φ equipped with a smoothly
varying collection of inner products ωp on each tangent space TpΦ at every point p ∈ Φ. This
assignment ωp : TpΦ × TpΦ → R is positive-definite, meaning it measures angles and lengths in
a consistent and non-degenerate manner. Consequently, each vector v ∈ TpΦ inherits a smoothly
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defined norm ∥v∥p =
√
ωp(v,v). This structure allows Φ to possess a locally varying yet smoothly

coherent geometric framework.

A.5 STOCHASTIC PERTURBATION FUNCTION

To model uncertainty in the joint action space, we introduce a stochastic perturbation over the leader
and follower actions. Specifically, we define a small, one-step random perturbation function J(a,b),
where a ∈ Rm and b ∈ Rn are the actions of the leader and follower, respectively. The perturbed
joint action is given by:

J(a,b) = (a′,b′) = (a+ ϵa,b+ ϵb) (A.6)

where ϵa ∈ Rm and ϵb ∈ Rn are independent Gaussian perturbations with zero mean and variance
σ2
a and σ2

b , respectively:

ϵa ∼ N (0, σ2
aIm), ϵb ∼ N (0, σ2

b In) (A.7)

Here, σa and σb are scalar diffusion parameters controlling the magnitude of the perturbation, and
Im and In are identity matrices of size m ×m and n × n, ensuring isotropic perturbations in each
component of a and b.
In component form, this perturbation can be written as:

a′i = ai + ϵai
, ϵai

∼ N (0, σ2
a) (A.8)

b′j = bj + ϵbj , ϵbj ∼ N (0, σ2
b ) (A.9)

This formulation introduces small, independent, and isotropic random deviations from the original
actions, modeling the stochastic uncertainty in the decision-making process.

A.6 GEODESIC REPULSION LOSS

To encourage an even distribution of points on the spherical manifold, we employ the Geodesic
repulsion loss, which penalizes pairs of points that are too close in geodesic distance. This loss
function facilitates the spreading out of points uniformly over the sphere, preventing clustering.
Geodesic Distance: Let yi,yj ∈ RD be points on the surface of a Riemmanian manifold denoted as
G(yi,yj) in the abstract sense. For a unit sphere it would hold that ∥yi∥ = ∥yj∥ = 1). The geodesic
distance between two points on the sphere is the angle between them, which can be computed from
their dot product,

G(yi,yj) = arccos
(
y⊤i yj

)
, (A.10)

where y⊤i yj is the dot product of yi and yj .
Repulsion Term: To penalize pairs of points that are close in geodesic distance, we use an expo-
nential decay function, which strongly penalizes small distances:

exp

(
−G(yi,yj)

γ

)
, (A.11)

where γ > 0 is a sensitivity parameter controlling how strongly the loss reacts to small distances. A
smaller γ enforces stronger repulsion between nearby points.
Geodesic Repulsion Loss: The total Geodesic Repulsion Loss is computed as the sum of repulsion
terms over all pairs of points, excluding the diagonal (self-repulsion),

Lrepulsion =

n∑
i=1

n∑
j=1,j ̸=i

exp

(
−
arccos

(
y⊤i yj

)
γ

)
, (A.12)

where n is the number of points on the manifold. The geodesic distance G(yi,yj) is computed
using the angle between yi and yj , ensuring that points are uniformly spaced across the spherical
manifold.
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To avoid penalizing points for being close to themselves, we exclude the self-repulsion terms by
masking the diagonal elements in the pairwise distance computation,

G(yi,yi) = 0, for all i. (A.13)

This formulation ensures that points are pushed apart when their geodesic distances are too small,
leading to a more uniform distribution on the manifold, which is critical for preserving the geometry
of the learned representation.

A.7 NEGATIVE LOG-LIKELIHOOD LOSS FOR NORMALIZING FLOWS

Let x ∈ Rd be an input data point, and let f : Rd → Rd be an invertible transformation defined
by the normalizing flow. The transformation f maps the input data x to a latent variable z = f(x)
that follows a simple base distribution pZ(z). Assume that the base distribution is a standard normal
distribution, Z ∼ N (0, Id), with the probability density function (PDF) given by,

pZ(z) =
1

(2π)d/2
exp

(
−1

2
∥z∥2

)
. (A.14)

The log probability under this distribution is,

log pZ(z) = −
1

2
∥z∥2 − d

2
log(2π). (A.15)

Using the change of variables formula, the probability density of x under the model is related to the
base distribution via the transformation f as follows,

pX(x) = pZ(f(x))

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ . (A.16)

Where ∂f(x)
∂x is the Jacobian matrix of f with respect to x, and

∣∣∣det ∂f(x)
∂x

∣∣∣ is the absolute value of
the determinant of the Jacobian.
NLL Loss: The negative log-likelihood (NLL) loss for a single data point x is defined as,

LN
ϕ (x) = − log pX(x) = −

[
log pZ(f(x)) + log

∣∣∣∣det ∂f(x)∂x

∣∣∣∣] . (A.17)

Substituting the log probability of z = f(x) under the base distribution:

LN
ϕ (x) =

1

2
∥f(x)∥2 + d

2
log(2π)− log

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ . (A.18)

For a dataset {xi}ni=1, the total NLL loss is the average over all data points:

LN
ϕ =

1

n

n∑
i=1

(
1

2
∥f(xi)∥2 +

d

2
log(2π)− log

∣∣∣∣det ∂f(xi)

∂xi

∣∣∣∣) . (A.19)

The objective of training is to minimize LN
ϕ , ensuring that the transformed latent variables z = f(x)

follow the base distribution and the transformation f appropriately adjusts the volume of space via
the Jacobian determinant.
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B OPTIMIZATION ALGORITHMS

B.1 BI-LEVEL OPTIMIZATION STRUCTURE

Bi-level Optimization Structure: The optimization problems represented by Eqs. (3.4) and (3.5)
exhibit the structure of a bi-level optimization problem (Balling and Sobieszczanski-Sobieski 1995;
Beck, Ljubić, and Schmidt 2023; Sinha, Malo, and Deb 2017). Generally, a bilevel optimiza-
tion problem comprises an upper-level optimization task with an embedded lower-level problem,
where the solution to the upper-level problem depends on the solution to the lower-level one. Two
conventional methods have been employed to address the bilevel optimization problem. The first
leverages the Karush-Kuhn-Tucker (KKT) conditions to exploit the optimality of the lower-level
problem (see Appendix B.2). The second employs gradient-based algorithms like gradient ascent
(discussed in Appendix B.3). Both approaches, however, have notable limitations. KKT conditions
assume strong convexity or pseudo-convexity, making them unsuitable for many non-convex set-
tings, while gradient-based methods, in addition to being computationally inefficient, often struggle
or converge poorly when weak-convexity is not guaranteed. Moreover, these methods typically as-
sume optimization under perfect information, whereas we focus on learning-based frameworks with
uncertainty due to sampling.

B.2 KKT REFORMULATION FOR SOLVING STACKELBERG OPTIMIZATION PROBLEMS

The bi-level optimization structure can be solved via reformulating the problem as a bilevel opti-
mization problem via the Karush-Kuhn-Tucker (KKT) conditions. It assumes convexity and differ-
entiability in the embedded space and transforms the original bilevel problem into a single-stage
optimization problem via the KKT conditions.

max
πA,πB ,λ

⟨θA, ϕ(πA, πB)⟩

s.t. πA ∈ ΠA

∇πB
⟨θB , ϕ(πA, πB)⟩+

ℓ∑
i=1

λi∇πB
gi(πB) = 0

g(πB) ≥ 0

λ ≥ 0

λ⊤g(πB) = 0

(B.1)

where ΠB = {πB |g(πB) ≥ 0} and gi represents the i-th constraint of ΠB . Specifically, it requires
the convexity of the lower level problem (3.2). Otherwise, KKT complementarity conditions turns
the problem into a nonconvex and nonlinear problem even πB is a set of linear constraints. And
the problem is incapable to solve under normal nonconvex and nonlinear algorithm. In addition,
Slater’s constraint qualification is required to ensure that the solution under KKT reformulation is the
solution of original bilevel problem.(Allende and Still 2013)The reformulation involves converting
non-linear constraints into a convex hull, thus simplifying the problem into a linear program (LP).
Sensitivity analysis can be then performed to understand how changes in constraints impact the
solution, with particular attention to the effects of shrinking parameters on the objective function.
The approach is utilizes the application of the Weak Duality Theorem to analyze sensitivity.

B.3 GRADIENT ASCENT APPROACH FOR SOLVING BILEVEL OPTIMIZATION PROBLEMS

Another approaches is transforming Stackelberg game into the the bilevel optimization problem.
Namely, we are interested in the following problem,

min
x∈Rd,y∈y∗(x)

f(x, y), (Upper-Level)

s.t. y∗(x) ≡ argmin
y∈Y

g(x, y). (Lower-Level)
(B.2)

The gradient-based algorithms have seen a growing interest in the bilevel problem (Huang 2024;
Huang et al. 2022; Ji, J. Yang, and Liang 2021; R. Liu et al. 2021; Sato, Tanaka, and Takeda
2021; Xiao, Lu, and Chen 2023). To measure the stationarity of the lower-level problem, Polyak-
Lojasiewicz(PL) condition on g(x, ·) is widely applied to show the last-iterate convergence of
∥∇xf(x

t, y⋆(xt))∥, i.e,
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∥∇yg(x, y)∥2 ≥ 2µ(g(x, y)−min
z

g(x, z)). (B.3)

where µ is a positive constant. This condition relaxes the strong convexity but is still not satis-
fied for the polynomial function g(x, y) = y4. Also, the lower level function g(x, ·) needs to be
differentiable in Rd. For the Stackelberg game, this is not the case since the follower’s strategy
πB ∈ ΠB .
Interestingly, should the objective functions be differentiable, one strategy to do this optimization
is via gradient descent. Of course the gradient descent algorithm would have to be reformulated
to accommodate to a finite amount of traversals based on the gradient update (Sato, Tanaka, and
Takeda 2021) (Franceschi et al. 2017) (Naveiro and Insua 2019).

B.4 TECHNICAL NOTE: CONVERSION OF ABSOLUTE VALUE CONSTRAINTS INTO REGULAR
LP CONSTRAINTS

Suppose there exists D dimensions on the L1 norm. Wnd we have the constraint,

∥x− c∥1 ≤ D, expressed as,
D∑
i=1

|xi − ci| ≤ C (B.4)

This can be expressed as,

zi ≥ xi − cd for i = 1, 2, . . . , D (B.5)
zi ≥ −(xi − cd) for i = 1, 2, . . . , D (B.6)

D∑
i=1

zi ≤ C (B.7)

zi ≥ 0 for i = 1, 2, . . . , D (B.8)

By introducing a new dummy variable zi, we and adding 2D + 1 additional constraints, we can
express this now as a standard linear program.
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C TOPOLOGY & GEODESY

C.1 CONVEX MANIFOLD DEFINITIONS:

Definition C.1. Geodesically Convex Sets: Let (Φ, h) be a Riemannian manifold, where Φ is a
smooth manifold and h(a,b) is a Riemannian metric on Φ (i.e. innner product). A subset SΦ ⊆ Φ
is said to be geodesically convex if for any two points a,b ∈ SΦ, there exists a geodesic τ : d ∈
[0, 1]→ Φ parameterized by d such that,

τ(0) = a, τ(1) = b, and, τ(d) ∈ SΦ, ∀d ∈ [0, 1]. (C.1)

Where d can be viewed as a parameter proportional to the distance travelled along the geodesic. In
other words, a set SΦ is geodesically convex if for any two points in SΦ, there exists a geodesic
between these points that lies entirely within SΦ.
Definition C.2. Convex Manifolds: A convex manifold is a manifold where the geodesic between
any two points on the manifold falls within, or constitutes, a geodesically convex set SΦ, as per
Definition C.1.

C.2 PROOF OF LEMMA 4.1

Geodesic Distance and Closeness to ξθ: Let Φ ⊂ RD be a manifold serving as a boundary of a
convex set in RD. Given θ, let ξθ ∈ Φ be the point on the manifold that maximizes the dot product
⟨θ, ξθ⟩, and is orthogonal to Φ at the point of intersection. For any two points on the manifold
θ′A, θ

′
B ∈ Φ, if the geodesic distance between ξθ and θ′A is greater than the geodesic distance between

ξθ and θ′B , G(ξθ, θ
′
A) > G(ξθ, θ

′
B), then the dot product satisfies ⟨θ, θ′A⟩ < ⟨θ, θ′B⟩.

Proof. Geodesic Distance and Closeness to ξθ: SinceM is a smooth, compact manifold bounding
a convex region, the geodesic distance between two points on M, say ξ1, ξ2 ∈ M, is defined
as the shortest path along the manifold G(ξ1, ξ2) between ξ1 and ξ2. For convex manifolds, the
geodesic distance behaves similarly to the distance on the surface of a sphere: an increase in the
geodesic distance from ξθ to another point on the manifold corresponds to an increase in the angle
between the tangent vector at ξθ and the vectors corresponding to points on the manifold. Hence, if
G(ξθ, θ

′
A) > G(ξθ, θ

′
B), the angle between ξθ and θ′A is larger than the angle between ξθ and θ′B .

Dot Product and Angle: The dot product ⟨θ, ξ⟩ between a normal vector θ at ξθ and a point ξ on
the manifold is given by:

⟨θ, ξ⟩ = ∥θ∥∥ξ∥ cos(α) (C.2)

where α is the angle between the vectors θ and ξ. Since θ = ξθ
∥ξθ∥ (as ξθ is a unit vector), the angle

between θ and any point ξ on the manifold depends only on the angle between ξθ and ξ. Since
G(ξθ, θ

′
A) > G(ξθ, θ

′
B) implies that the angle between ξθ and θ′A is larger than the angle between

ξθ and θ′B , we have:

cos
(
αθ′

A

)
< cos

(
αθ′

B

)
, (C.3)

where αθ′
A

is the angle between θ and θ′A, and αθ′
B

is the angle between θ and θ′B .
Conclusion on Dot Products: Since the dot product is proportional to the cosine of the angle
between the vectors, and cos

(
αθ′

A

)
< cos

(
αθ′

B

)
, it follows that:

⟨θ, θ′A⟩ = ∥θ∥∥ξθ′
A
∥ cos

(
αθ′

A

)
< ⟨θ, θ′B⟩ = ∥θ∥∥ξθ′

B
∥ cos

(
αθ′

B

)
. (C.4)

Therefore,

⟨θ, θ′A⟩ < ⟨θ, θ′B⟩. (C.5)
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C.3 LEMMA C.1

Lemma C.1. Maximization on a Manifold: Given a smooth manifold Φ, and objective vector θ,
the element on a manifold which optimizes ⟨ϕ, θ⟩ is the element whose normal vector’s tangent plane−→nΦ is collinear with θ. (Proof in Appendix C.3.)

Proof. Let Φ ⊂ RD be the unit sphere, defined as:

Φ = {ϕ ∈ RD | ∥ϕ∥ = 1}.

Given a vector θA ∈ RD, we aim to find the point ϕ∗ on the sphere that maximizes the inner product
⟨ϕ, θA⟩. This can be formally stated as the following optimization problem:

maximize
ϕ∈RD

⟨ϕ, θA⟩

subject to ∥ϕ∥ = 1.

Optimization Formulation: The problem is a constrained optimization problem where the objec-
tive is to maximize the dot product ⟨ϕ, θA⟩ and the constraint ensures that ϕ lies on the unit sphere.
Mathematically:

maximize
ϕ∈RD

⟨ϕ, θA⟩

subject to g(ϕ) = ∥ϕ∥2 − 1 = 0.

Here, g(ϕ) represents the constraint that ϕ lies on the unit sphere.

C.4 PROOF OF LEMMA 4.2

Pure Strategy of the Follower: While optimizing over a convex manifold, proposed in Definition
C.2, given any objective vector θ, the linear structure of the reward functions from Eq. (2.15) and
Eq. (2.16), and that the subspace induced by a ∈ A forms a geodesically convex subset, as defined
in Definition C.1, the optimal strategy of the follower, will be that of a pure strategy, such that
πA(b|a) ∈ {0, 1}.

Proof. The goal is to show that the follower’s optimal strategy πA(b|a) is a pure strategy, such that
πA(b|a) ∈ {0, 1}. Let the objective vector θ ∈ RD define the direction of optimization, with the
reward function given by,

µ(a,b) = ⟨ϕ(a,b), θ⟩, (C.6)

where ϕ : A× B → RD is a feature map.
Since Φ is geodesically convex, for any point a ∈ A, there exists a unique geodesic that connects
the subspace formed by fixing a, denoted as Φa ≡ ϕ(a, ·) to any other point g ∈ Φ. By Lemma 4.1
in order to maximize the follower’s reward µB , we must find the shortest geodesic distance, G(·), to
θ′A within SΦ. We express this as,

ϕ(a,b∗) = arg min
g∈SΦ

G(a,b), (C.7)

Since Φ is convex, this minimizer is unique. The reward function µB(a,b) depends on the inner
product ⟨ϕ(a,b), θB⟩. As this structure is linear with respect to ϕ(a,b), maximizing the reward is
equivalent to minimizing the geodesic distance from ϕ(a,b) to the objective vector θ. Since this
minimizer is unique by geodesic convexity, the follower’s optimal strategy will correspond to this
unique solution b∗ given a. As there are no alternative solutions for ϕ(b∗, ·) given a. Because
ϕ(·) is a bijective mapping, we conclude that any probablistic mapping function must adhere to
πA(b|a) ∈ {0, 1}.
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C.5 PROOF OF LEMMA 4.3

Intersection of
←→
Φ a and

←→
Φ b: Given a bipartite spherical map Q(·) from Definition 2.1, with a

parameterizing the azimuthal (latitudinal) coordinates, the cardinality of the intersect between
←→
Φ a

and
←→
Φ b will be non-empty. That is, |

←→
Φ a ∩

←→
Φ b| > 0.

Proof. Given two distinct points θ′A and θ′B , we define the isoplane,
←→
Φ a, as the submanifold formed

by fixing a subset of spherical coordinates (γ
(A)
1 , . . . , γ

(A)
k ), including the azimuthal angle ν(A),

and allowing the remaining coordinates to vary. Similarly, the isoplane at θ′B is formed by fixing a
different subset of spherical coordinates (γ(B)

k+1, . . . , γ
(B)
D−2), while allowing the rest to vary.

If Φ is a compact, orientable, smooth manifold without boundary, and X⃗ is a smooth vector field on
Φ with isolated zeros, the Poincaré-Hopf theorem states that,

∑
P∈Zeroes(X⃗)

Index(X⃗,P) = χ(Φ), (C.8)

where χ(Φ) is the Euler characteristic of the manifold, and Index(X⃗,P) denotes the index of the
vector field at point P. The compactness of SD−1 imposes strong geometric constraints: subspaces
or submanifolds (such as isoplanes) embedded within SD−1 must intersect unless they are specif-
ically configured to avoid each other (e.g., in certain degenerate cases of orthogonality). To dive
deeper, and provide a more fundamental and intuitive analysis, let Ψθ represent the intersection of
isoplanar subspaces,

Ψθ =
←→
Φ a ∩

←→
Φ b. (C.9)

First, the compactness of the unit sphere SD−1 implies that any sufficiently dimensional subspaces
embedded in the manifold cannot be disjoint. The intersection may be a single point or a higher-
dimensional subset, depending on the number of coordinates fixed and the degrees of freedom al-
lowed for the remaining coordinates. Secondly, even in the case where the isoplanes at

←→
Φ a and

←→
Φ b

are orthogonal, the fact that the subspaces are embedded in a compact, orientable manifold forces
them to intersect. This intersection result is a consequence of the general principles of intersec-
tion theory in compact manifolds, which asserts that two subspaces of sufficient dimension within a
compact manifold must intersect unless they are orthogonal in all directions. However, since we are
working with constrained isoplanes that do not span the entire manifold, even orthogonal subspaces
are forced to intersect due to the lack of space for complete disjointness. Therefore,

|Ψθ| > 0. (C.10)
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C.6 PROOF OF LEMMA 4.4

Orthogonality of Subspaces
←→
Φ a and

←→
Φ b: The two submanifolds

←→
Φ a and

←→
Φ b, are orthognal to

eachother within Φ.
We consider the spherical manifold SD−1, embedded in RD, where points are parameterized using
D − 1 angular coordinates. These coordinates are composed of latitude-like angles ν1, . . . , νD−2
and a longitude-like angle γ. The Cartesian coordinates, x = [x1, x2, . . . , xD]⊺, of a point on SD−1

are expressed as:

x1 =

D−2∏
i=1

sin(νi) cos(γ),

x2 =

D−2∏
i=1

sin(νi) sin(γ),

x3 =

D−3∏
i=1

sin(νi) cos(νD−2),

x4 =

D−4∏
i=1

sin(νi) cos(νD−3),

...
xD−1 = sin(ν1) cos(ν2),

xD = cos(ν1).

We aim to show that the subspaces generated by fixing θ′A, the set of latitude-like angles, and fixing
θ′B , the longitude-like angle, are orthogonal. To this end, we compute the tangent vectors of the
manifold in the directions of these angular coordinates.
First, we compute the partial derivative of each coordinate with respect to γ. The coordinates x1 and
x2 explicitly depend on γ, while the other coordinates x3, . . . , xD do not. Therefore, we have,

∂x1

∂γ
=

∂

∂γ

(
D−2∏
i=1

sin(νi) cos(γ)

)
= −

D−2∏
i=1

sin(νi) sin(γ),

∂x2

∂γ
=

∂

∂γ

(
D−2∏
i=1

sin(νi) sin(γ)

)
=

D−2∏
i=1

sin(νi) cos(γ),

∂xj

∂γ
= 0, ∀j ≥ 3.

Thus, the complete partial derivative with respect to γ is,

∂

∂γ
(x1, x2, . . . , xD) =

(
−

D−2∏
i=1

sin(νi) sin(γ),

D−2∏
i=1

sin(νi) cos(γ), 0, . . . , 0

)
.

Next, we compute the partial derivative of the coordinates with respect to ν1. This affects all coor-
dinates x1, x2, . . . , xD. Specifically:

∂x1

∂ν1
=

∂

∂ν1

(
D−2∏
i=1

sin(νi) cos(γ)

)
= cos(ν1)

D−2∏
i=2

sin(νi) cos(γ),

∂x2

∂ν1
=

∂

∂ν1

(
D−2∏
i=1

sin(νi) sin(γ)

)
= cos(ν1)

D−2∏
i=2

sin(νi) sin(γ),
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∂x3

∂ν1
=

∂

∂ν1

(
D−3∏
i=1

sin(νi) cos(νD−2)

)
= cos(ν1)

D−3∏
i=2

sin(νi) cos(νD−2),

∂x4

∂ν1
= · · · = ∂xD

∂ν1
= − sin(ν1).

Thus, the complete partial derivative with respect to ν1 is:

∂

∂ν1
(x1, x2, . . . , xD) =

(
cos(ν1)

D−2∏
i=2

sin(νi) cos(γ), cos(ν1)

D−2∏
i=2

sin(νi) sin(γ), − sin(ν1), 0, . . . , 0

)
.

Dot Product of Tangent Vectors: To prove orthogonality of the subspaces spanned by these vec-
tors, we compute the dot product of the tangent vectors ∂

∂γ and ∂
∂ν1

. The dot product is given by,

∂

∂γ
· ∂

∂ν1
=

(
−

D−2∏
i=1

sin(νi) sin(γ)

)
·

(
cos(ν1)

D−2∏
i=2

sin(νi) cos(γ)

)
+ . . . ,

which simplifies to zero, as the terms corresponding to the components in x1, x2, and x3 do not
align. Consequently, we have,

∂

∂γ
· ∂

∂ν1
= 0.

Since the dot product of the tangent vectors is zero, the subspaces spanned by fixing A and fixing
B are orthogonal at every point on SD−1. This orthogonality arises from the fact that the angular
coordinates for latitude and longitude parameterize independent directions in the tangent space of
the spherical manifold. Thus, we conclude that the subspaces resulting from fixing A and B are
mutually orthogonal.

C.7 PROOF OF LEMMA 4.5

Pure Strategy of the Leader: Given a spherical manifold, Φ, and isoplanar subspace,
←→
Φ a and←→

Φ b for the longitudinal and lattitudinal subspaces respectively, the optimal strategy of the leader
is that of a pure strategy, that is, π∗A(a) ∈ {0, 1}.

Proof. Let SD−1 ⊂ RD be the unit sphere embedded in D-dimensional Euclidean space.
Consider two distinct points θ′A and θ′B on the manifold, each with spherical coordinates
(γ

(A)
1 , γ

(A)
2 , . . . , γ

(A)
D−2, ν

(A)) and (γ
(B)
1 , γ

(B)
2 , . . . , γ

(B)
D−2, ν

(B)), respectively. We aim to demon-
strate that the isoplanes formed by fixing half of the spherical coordinates at θ′A and θ′B must inter-
sect, and this intersection Ψθ is a singleton. By Lemma 4.3 we infer that

←→
Φ a and

←→
Φ b must form a

non-empty intersect in Φ. Follower by Lemma 4.4,
←→
Φ a and

←→
Φ b are orthognal to eachother in Φ.

Singleton Intersection due to Orthogonality: Consider the isoplanes formed by fixing the angu-
lar coordinates θ′A (latitude-like) and θ′B (longitude-like) on the unit sphere SD−1. These isoplanes
correspond to submanifolds of the sphere, which are defined by holding certain angular coordinates
constant while allowing others to vary. In the special case where the isoplanes at θ′A and θ′B are
orthogonal, we argue that the intersection set of these submanifolds is reduced to a single element
(singleton). Let P be the point where the isoplanes associated with fixed θ′A and θ′B intersect. The
tangent space at P, denoted as TPS

D−1, consists of vectors tangent to the sphere at P.

The isoplane formed by fixing θ′A corresponds to a submanifold
←→
Φ a whose tangent space at p,

denoted Tp
←→
Φ a, is spanned by the partial derivatives with respect to the longitude-like angular coor-

dinates γi. Similarly, the isoplane formed by fixing θ′B corresponds to a submanifold
←→
Φ b, and the

tangent space Tp
←→
Φ b is spanned by the partial derivatives with respect to the latitude-like angular
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coordinates νj . Orthogonality between the isoplanes at θ′A and θ′B implies that the tangent spaces
Tp
←→
Φ a and Tp

←→
Φ b are mutually orthogonal. This means that the dot product of any vector from

Tp
←→
Φ a with any vector from Tp

←→
Φ b is zero:

vA · vB = 0, ∀vA ∈ Tp
←→
Φ a, vB ∈ Tp

←→
Φ b.

Geometrically, this implies that the submanifolds
←→
Φ a and

←→
Φ b intersect at a right angle at P. Since

the submanifolds are orthogonal, no other points of intersection can occur, and the intersection set
is reduced to the single point P. Therfore,

|Ψθ| = 1. (C.11)

Minimal Geodesic Distance from Ψθ: Let Ψγ = (x
(int)
1 , x

(int)
2 , . . . , x

(int)
D ) be the unique in-

tersection point of the two isoplaness. Now, we consider the geodesic distance from this in-
tersection point to any other point on the sphere. The geodesic distance between two points
P1 = (x

(1)
1 , x

(1)
2 , . . . , x

(1)
D ) and P2 = (x

(2)
1 , x

(2)
2 , . . . , x

(2)
D ) on the unit sphere is given by,

G(P1,P2) = arccos(P1 ·P2).

At the intersection point Ψθ, the geodesic distance is minimized, thus,

P1 = Ψθ =⇒ G(P1,Ψθ) = 0.

Suppose we move away from Ψγ along either the longitude isoplanes (by changing x1) or the lati-
tude isoplanes (by changing x2, x3, . . . , xD). Any such deviation implies a change in the dot product
P1 · P2, which results in an increase in the geodesic distance. Specifically, if we move along the
longitude isoplanes, we are changing x1, while the other coordinates remain constant, resulting in
a decrease in the dot product. Similarly, if we move along the latitude isoplanes, we are changing
x2, x3, . . . , xD, again causing a decrease in the dot product. Since the geodesic distance is a mono-
tonically increasing function of the angular separation, any deviation from Ψγ leads to an increase
in the geodesic distance,

G(P2,P1) > G(P1,Ψγ) = 0.

Thus, any deviation from the intersection point of the longitude and latitude isoplaness must result
in an increase in the geodesic distance, G(·). By Lemma 4.1, this increase in the geodesic distance
will decrease the expected reward µA. As the cardinality of Ψ is |Ψγ | = 1 from Eq. (C.11), this
implies no optimal mixed strategies exist for the leader, and thus, π∗A(a) ∈ {0, 1}.

C.8 CONVERSION OF CARTESIAN UNCERTAINTY TO SPHERICAL

Lemma C.2. Given two points θA, θ̃A ∈ RD, denoting points on the surface of a unit spherical
manifold, the uncertainty in Cartesian coordinates expressed as ∥θA−θ̃A∥ < Cθ(t) can be expressed

as uncertainty in geodesic distance as G(A, θ̃A) < cos−1
(
1− Cθ(t)

2

2

)
.

Proof. Given two points θA, θ̃A ∈ RD, with ∥A∥ = ∥θ̃A∥ = 1, denoting points on the surface of a
unit sphere, the uncertainty in Cartesian coordinates is expressed as:

∥θA − θ̃A∥ < Cθ(t)

where Cθ(t) ∈ R+ is the uncertainty bound. We aim to translate this uncertainty into spherical
coordinates.
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Cartesian Coordinates on the Unit Sphere: In RD, the spherical coordinates of a point θA on
the surface of the unit sphere can be represented as:

θ
(1)
A = cos(ν1),

θ
(2)
A = sin(ν1) cos(ν2),

θ
(3)
A = sin(ν1) sin(ν2) cos(ν3),

...

θ
(D−1)
A = sin(ν1) sin(ν2) . . . sin(νD−2) cos(γ),

θ
(D)
A = sin(ν1) sin(ν2) . . . sin(νD−2) sin(γ),

where ν1, ν2, . . . , νD−2 represent the latitude angles, and γ represents the longitude angle. Similarly,
the point θ̃A can be written in terms of spherical angles ν′1, ν

′
2, . . . , γ

′.

Uncertainty in Cartesian Coordinates: The uncertainty in Cartesian space is given by:

∥θA − θ̃A∥2 = (θ
(1)
A − θ̃

(1)
A )2 + (θ

(2)
A − θ̃

(2)
A )2 + . . .+ (θ

(D)
A − θ̃

(D)
A )2 < Cθ(t)2.

However, it is more efficient to relate this uncertainty directly to spherical angular distance.

Spherical Angular Distance: The squared Euclidean distance between two points θA and θ̃A on
the surface of the unit sphere is related to their angular distance ν by the spherical law of cosines:

∥θA − θ̃A∥2 = 2(1− cos(ν)),

where ν is the angular distance between the two points, and cos(ν) is given by:

cos(ν) = cos(ν1) cos(ν
′
1) + sin(ν1) sin(ν

′
1)
(
cos(ν2) cos(ν

′
2) + sin(ν2) sin(ν

′
2) · · ·

)
.

This expression provides the exact angular distance between points θA and θ̃A on the unit sphere.

Uncertainty in Spherical Coordinates: The inequality ∥θA − θ̃A∥ < Cθ(t) implies that the an-
gular distance ν between the two points satisfies:

2(1− cos(ν)) < Cθ(t)2,

which simplifies to:

cos(ν) > 1− Cθ(t)
2

2
.

Since cos(ν) ranges from 1 (when θA = θ̃A) to -1 (for antipodal points), the angular distance ν is
bounded by:

ν < cos−1
(
1− Cθ(t)

2

2

)
.

This inequality describes the exact spherical uncertainty region. Thus, the uncertainty ∥θA− θ̃A∥ <
Cθ(t) in Cartesian space corresponds to an angular uncertainty ν < cos−1

(
1− Cθ(t)

2

2

)
on the unit

sphere.

C.9 DISTANCE PRESERVING ORTHOGONAL PROJECTION:

Lemma C.3. Consider a unit sphere SD−1 ⊂ RD. Given a point θA ∈ SD−1 and a geodesic
ball BJ ⊂ SD−1 centered at θA, we are interested in the behaviour of this ball under orthogonal
projection onto a subspace of RD. Specifically, we aim to rigorously show that the diameter of the
orthogonally projected ball does not exceed the diameter of the original geodesic ball.
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Proof. Geodesic Uncertainty Balls: Let θA, θ̃A ∈ RD be two points on the unit sphere, i.e.,
∥θA∥ = ∥θ̃A∥ = 1, and let the geodesic distance between θA and θ̃A be denoted by γ(θA, θ̃A).
The geodesic distance between any two points on SD−1 is given by,

γ(θA, θ̃A) = arccos
(
θA · θ̃A

)
,

where θA · θ̃A is the Euclidean dot product between θA and θ̃A. A geodesic ball BJ(θA) centered at
θA with radius J is defined as the set of points on the unit sphere such that their geodesic distance
from θA is less than or equal to J :

BJ(θA) = {θ′A ∈ SD−1 | γ(θA, θ̃A) ≤ J}.

We are particularly interested in the case where J ≤ arccos
(
1− Cθ(t)

2

2

)
, where Cθ(t) is a positive

value corresponding to the uncertainty radius in the Euclidean distance.
Orthogonal Projection and Geodesic Distance: Given a subspace V ⊂ RD, let PV : RD → V
denote the orthogonal projection onto V . For any points θA, θ̃A ∈ RD, the Euclidean distance
between their projections is bounded by:

∥PV (θA)− PV (θ̃A)∥ ≤ ∥θA − θ̃A∥.

Since the geodesic distance on the unit sphere is a measure of arc length between points, it follows
that the geodesic distance between two points is non-increasing under orthogonal projection. We
aim to show that the diameter of the projected geodesic ball onto the subspace V does not exceed
the diameter of the original ball.
Diameter of a Geodesic Ball: The diameter of a set S ⊂ SD−1 is defined as the greatest geodesic
distance between any two points in S:

diam(S) = sup
x,y∈S

γ(x, y).

For a geodesic ball BJ(θA), the maximum geodesic distance occurs between two antipodal points
on the boundary of the ball. Therefore, the diameter of the geodesic ball is:

diam(BJ(θA)) = 2J.

In particular, for J = arccos
(
1− Cθ(t)

2

2

)
, we have:

diam(BJ(θA)) = 2 arccos

(
1− Cθ(t)

2

2

)
.

C.10 DIAMETER PRESERVING ORTHOGONAL PROJECTION

We now formalize the behaviour of the geodesic ball under orthogonal projection.

Lemma C.4. Let BJ(θA) be a geodesic ball of radius J ≤ arccos
(
1− Cθ(t)

2

2

)
on the unit sphere

SD−1 ⊂ RD. Let V ⊂ RD be a subspace, and let PV : RD → V be the orthogonal projection onto
V . Then, the diameter of the orthogonally projected ball PV (BJ(θA)) satisfies:

diam(PV (BJ(θA))) ≤ diam(BJ(θA)) = 2J.

Proof. Consider two points θA, θ̃A ∈ BJ(θA). By the definition of a geodesic ball, we know that:

γ(θA, θ̃A) ≤ 2J.
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Next, project θA and θ̃A orthogonally onto the subspace V , yielding the points PV (θA) and PV (θ̃A).
Since orthogonal projection reduces or preserves Euclidean distances, we have:

∥PV (θA)− PV (θ̃A)∥ ≤ ∥θA − θ̃A∥.

Moreover, since the geodesic distance between points on the sphere is a function of their Euclidean
distance, it follows that the geodesic distance between the projected points PV (θA) and PV (θ̃A) is
also bounded by:

γ(PV (θA), PV (θ̃A)) ≤ γ(θA, θ̃A).

Thus, for all pairs θA, θ̃A ∈ BJ(θA), we have:

γ(PV (θA), PV (θ̃A)) ≤ 2J.

This shows that the diameter of the projected geodesic ball PV (BJ(θA)) is at most 2J , i.e.,

diam(PV (BJ(θA))) ≤ diam(BJ(θA)) = 2J.

C.11 PROOF OF THEOREM 1

Isoplane Stackelberg Regret: For D-dimensional spherical manifolds embedded in RD space,
where ϕ(a, ·) generates an isoplanes

←→
Φ a, and the linear relationship to the reward function in

Eq. (2.15) and Eq. (2.16) holds, the simple regret, defined in Eq. (4.3), of any learning
algorithm with uncertainty parameter uncertainty Cθ(t), refer to in Eq. (3.3), is bounded by
O(2 arccos

(
1− Cθ(t)2/2

)
).

Proof. The proof of Theorem 1 hinges on the aforementioned arguments in Lemma C.2, Lemma
C.3, and Lemma C.4 sequentially, but in the context of parameter estimation.

First, Lemma C.2 argues that one can transform a confidence bound |θA − θ̂A| ≤ Cθ(t) into a con-
fidence bound on geodesic distance G(θA, θ̂A) ≤ cos−1

(
1− Cθ(t)

2

2

)
. Let us denote this as the

geodesic confidence ball BallG(θ
∗, Cθ(t)). Nevertheless, due to the separation of subspaces

←→
Φ a

and
←→
Φ b, we must find the projection of BallG(θ

∗, Cθ(t)) onto
←→
Φ b such that we can obtain a di-

ameter measure on the new intersecting subspace
←→
Φ a∩

←→
Φ b. Next, Lemma C.3 argues that geodesic

distances will either be preserved or reduced when making a projection to an orthogonal subspace
←→
Φ b, the orthogonality of this subspace was previously established in Lemma 4.4. Thereafter,
Lemma C.4 specifies that the maximum diameter of this new confidence ball Ball′G(θ

∗, Cθ(t))
that is projected onto

←→
Φ b is confined to a maximum diameter of 2 cos−1

(
1− Cθ(t)

2

2

)
.

Thus, this constitutes the best and worst possible outcomes due to misspecification in accordance
with the formulation in Eq. (3.6) and Eq. (3.7), denoted as H̄(θ∗A, t) −H(θ∗A, t), also expressed in
Eq. (4.3), which upper bounds the simple regret.
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D NEURAL FLOW ARCHITECTURAL SPECIFICATIONS

We present the mathematical foundations of the normalizing flow architecture used to model spher-
ical mappings. Our method combines a spherical coordinate transformation with normalizing flows
to provide an invertible mapping between input features and a latent space, with applications to tasks
requiring smooth transformations on a manifold.
Mapping to a Spherical Manifold: The transformation from Cartesian coordinates to spherical
coordinates is used to map input features onto an D-dimensional spherical manifold. We define
two heads in the neural network input, the head from A specifically controls the azimuthal spherical
coordinate and additional coordinates, and the head from B specifically controls other coordinates.
The output sizes of the neural network that transforms the inputs are ⌊D−12 ⌋ + 1 for A and ⌊D−12 ⌋
for B. The conversion from spherical coordinates to Cartesian coordinates, x ∈ RD, is defined in
Appendix F.1.
Affine Coupling Layers: A normalizing flow consists of a series of invertible transformations,
including affine coupling layers, which divide the input into two parts and transform one part condi-
tioned on the other. Let the input be x = [x1,x2], where x1 and x2 are disjoint subsets of the input.
The affine coupling transformation is defined as,

y1 = x1, (D.1)
y2 = x2 ⊙ exp(s(x1)) + t(x1), (D.2)

where ⊙ denotes element-wise multiplication, and s(x1) and t(x1) are the scaling and translation
functions, respectively, parameterized by a neural network. The inverse of this transformation is
straightforward:

x1 = y1, (D.3)
x2 = (y2 − t(y1))⊙ exp(−s(y1)). (D.4)

This transformation is invertible by design, making it suitable for use in flow-based models.
Log Determinant of the Jacobian: The log-likelihood calculation requires computing the log de-
terminant of the Jacobian matrix for the transformation. For the affine coupling layer, the Jacobian
matrix is triangular, and the log determinant is simply the sum of the scaling terms:

log

∣∣∣∣det ∂y∂x
∣∣∣∣ =∑

i

s(x1). (D.5)

This term contributes to the overall log probability during training.
Normalizing Flow Forward Transform: A normalizing flow is constructed by stacking several
affine coupling layers and random permutation layers. Let x ∈ Rd be the input, and z ∈ Rd be the
transformed latent variable after L layers of flow. Each layer applies a transformation fl such that:

z(l+1) = fl(z
(l)), (D.6)

where fl represents either an affine coupling transformation or a random permutation. After L
layers, the final output is denoted as z = z(L). The forward transformation can thus be written as:

z, log detJ = fflow(x), (D.7)

where log detJ is the log determinant of the Jacobian matrix for the entire flow.
To compute the log-likelihood of the input x, we map it to the latent space z under the flow trans-
formation. The probability of x is computed as:

p(x) = p(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ , (D.8)
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where p(z) is the probability of z under the base distribution (typically a standard normal distribu-
tion):

p(z) = N (z; 0, I). (D.9)

The log probability is then given by:

log p(x) = log p(z) + log

∣∣∣∣det ∂z∂x
∣∣∣∣ . (D.10)

Inverse Transform: The invertibility of the flow allows for both density estimation and sampling.
To sample from the model, we draw samples z ∼ N (0, I) from the base distribution and apply the
inverse transformation:

x = f−1flow(z). (D.11)

Each affine coupling layer and random permutation is applied in reverse order to recover the original
inputs.
Random Permutation Layer: The random permutation layer permutes the features of the input
vector to ensure that different parts of the input are transformed at each layer. Let x ∈ Rd be the
input, and let P be a permutation matrix. The permutation transformation is defined as:

x′ = Px. (D.12)

Since permutation matrices are orthogonal, the Jacobian determinant of this transformation is always
1, and it does not contribute to the log determinant calculation.

Layer Description Output Size
Input Head A Input head A NB × |A|
Input Head B Input head B NB × |B|
Input Features Input features NB ×D

Affine Coupling
Layer

No. of Affine Coupling layers NB × 64

fc A1 Hidden Dim. Number of hidden dimensions in first fully
connected layer A.

B × 1024

fc B1 Hidden Dim. Number of hidden dimensions in first fully
connected layer B.

B × 1024

Hidden Dim. No.of hidden layers for A and B. NB × 16

fc A1 Final Layer
Dim.

Number of hidden dimensions in final
layer A

NB ×
(
⌊D−12 ⌋+ 1

)
fc B1 Final Layer
Dim.

Number of hidden dimensions in final
layer B

NB ×
(
⌊D−12 ⌋

)
Output Output features after flow transformation NB ×D

Table 2: Normalizing Flows Neural Architecture Specifications.

Overview: In summary, the normalizing flow architecture combines spherical mapping, affine cou-
pling transformations, and random permutations to form a powerful framework for invertible trans-
formations. The model leverages the flexibility of normalizing flows to map inputs to a spherical
manifold, enabling efficient density estimation and sampling from a base Gaussian distribution.
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Parameter Value

NB Batch Size 2048
αN (Negative Log Liklihood Loss Coef.) 0.5

αR (Repulsion Loss Coef.) 1.0
αP (Perturb. Loss Coef.) 0.5
αL (Lipschitz Loss Coef.) 1.5

No. Epochs 20,000
αLR (Learning Rate) 0.05

CL (Lipschitz Constant) 0.5

Table 3: Hyper parameters used for normalizing neural flow network training.
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E VISUALIZATIONS

E.1 COMPUTATIONAL RESULTS OF ISOPLANE BEHAVIOUR

Longitudinal Isolines: Visualization of longitu-
dinal isolines generated by the normalizing neural
flow network.

Latitudinal Isoplanes: Visualization of lattitudinal
isolines generated by the normalizing neural flow
network.

Figure 4: Formation of isolines (or isoplanes in higher dimensions) forming on the spherical manifold Φ as we
fix a and vary b (longitudinal), and fix b and vary a (lattitudinal).
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F ALGORITHMS

F.1 MAPPING BETWEEN SPHERICAL AND CARTESIAN COORDINATES

Algorithm 2 Spherical to Cartesian Conversion in n-Dimensions

1: function SPHERICAL TO CARTESIAN(r, ν)
2: Input: r (radius), ν (Spherical coordinates D − 1 dimensions.)
3: Output: Cartesian coordinates p = [x1, x2, . . . , xD]
4: x1 ← r · cos(ν1)
5: for i = 2 to D − 1 do
6: xi ← r · sin(ν1) · sin(ν2) · · · · sin(νi−1) · cos(νi)
7: end for
8: xn ← r · sin(ν1) · · · · · sin(νD−1)
9: return [x1, x2, . . . , xD]

10: end function

Algorithm 3 Cartesian to Spherical Conversion in n-Dimensions

1: function CARTESIAN TO SPHERICAL(p)
2: Input: Cartesian coordinates p = [x1, x2, . . . , xD]
3: Output: r (radius), ν = [ν1, ν2, . . . , νD−1] (Spherical coordinates D − 1 dimensions.)
4: r ←

√
x2
1 + x2

2 + · · ·+ x2
D ▷ Compute the radius

5: ν1 ← arccos
(
x1

r

)
▷ First spherical angle

6: for i = 2 to n− 1 do
7: νi ← arctan 2

(√
x2
1 + x2

2 + · · ·+ x2
i , xi+1

)
▷ Spherical angles for i = 2 to D − 1

8: end for
9: return r, ν = [ν1, ν2, . . . , νD−1]

10: end function

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G EXPERIMENTAL RESULTS

G.1 R
1 STACKELBERG GAME

Problem Setup: We consider a Stackelberg game with a leader θA and a follower B, both operating
in continuous action spaces a, b ∈ R1. The leader chooses an action θA, and the follower responds by
choosing an action b based on the leader’s decision. The reward functions for both players are linear
in structure but include nonlinear components to model real-world constraints and interactions.
Leader’s Reward Function: The leader’s reward function µA(a, b) is defined as follows:

µA(a, b) = θ1a+ θ2 log
(
1 + b2

)
− θ3

2
a2 + ϵ, ϵ ∈ N (0, σ) (G.1)

where,

• θ1, θ2 > 0 are weight parameters that control the trade-off between the leader’s direct
action θA and the follower’s response b.

• log
(
1 + b2

)
introduces nonlinearity with respect to the follower’s action b.

• − θ3
2 a

2 is a quadratic penalty on large leader actions to avoid extreme behaviour by the
leader.

Follower’s Reward Function: The follower’s reward function µB(a,b) is given by:

µB(a,b) = α1(−b2) + α2ab+ ϵ, ϵ ∈ N (0, σ) (G.2)

where,

• α1, α2 > 0 are parameters that determine the influence of the follower’s own action b and
the leader’s action θA on the follower’s reward.

• −b2 represents a concave cost function for the follower, preferring smaller values of b.

• ab introduces an interaction term between the leader’s action and the follower’s action.

Follower’s Best Response: The follower maximizes their reward function µB(a,b) by choosing
b given θA. To determine the follower’s best response B(a), we compute the first-order condition
with respect to b:

∂E[µB(a,b)]

∂b
= −2α1b+ α2a = 0 (G.3)

Solving for b, the follower’s best response is:

B(a) =
α2a

2α1
(G.4)

Leader’s Optimization Problem: Given that the follower’s best response is B(a) = α2a
2α1

, the
leader maximizes their reward function µA(a,B(a)) as,

E[µA(a,B(a))] = θ1a+ θ2 log

(
1 +

(
α2a

2α1

)2
)
− θ3

2
a2. (G.5)

This results in the following optimization problem for the leader,
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max
a

(
θ1a+ θ2 log

(
1 +

α2
2a

2

4α2
1

)
− θ3

2
a2
)
. (G.6)

Non-Trivial Solution for the Leader: To solve for the leader’s optimal action a∗, we take the
derivative of the leader’s reward function with respect to θA and set it equal to zero,

d

da

(
θ1a+ θ2 log

(
1 +

α2
2a

2

4α2
1

)
− θ3

2
a2
)

= 0 (G.7)

θ1 − θ3a+ θ2 ·
2 ·
(

α2a
2α1

)
·
(

α2

2α1

)
1 +

α2
2a

2

4α2
1

= 0 (G.8)

Which simplifies to,

θ1 − θ3a+
θ2 · α

2
2a

α2
1

1 +
α2

2a
2

4α2
1

= 0. (G.9)

This equation has no simple closed-form solution and must be solved numerically. The interplay
between the nonlinear logarithmic term and the quadratic penalty introduces complexity into the
leader’s optimization, making the optimal value of a∗ non-trivial.
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G.1.1 R
2 STACKELBERG GAME

Parameters: θ1 = 4.0, θ2 = 1.0, θ3 = 0.9, α1 = 1.0, α2 = 2.0, σ = 6.0.

Parameters: θ1 = 4.0, θ2 = 2.0, θ3 = 0.9, α1 = 4.0, α2 = 2.0, σ = 6.0.

Parameters: θ1 = 3.0, θ2 = 3.0, θ3 = 0.9, α1 = 1.0, α2 = 2.0, σ = 4.0.

Figure 5: Mean values are calculated over 1,000 trials, with shaded regions representing confidence intervals,
all of which fall within the first quartile.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

G.2 THE NEWSVENDOR PRICING GAME SPECIFCATIONS (NPG)

We model the two learning agents in a Newsvendor pricing game, involving a supplier A and a
retailer B. The leader, a supplier, is learning to dynamically price the product for the follower, a re-
tailer, aiming to maximize her reward. To achieve this, the follower adheres to classical Newsvendor
theory, which involves finding the optimal order quantity given a known demand distribution before
the realization of the demand.
Rules of the Newsvendor Pricing Game: We explicitly denote a ≡ a ∈ R1, and b ≡ [b, p]⊺ ∈ R2.
Where a denotes wholesale price from the supplier firm, p and b denote the retail price and order
amount of the retail firm.

1. The supplier selects wholesale price a, and provides it to the retailer.
2. Given wholesale cost a, the retailer reacts with his best response [b, p]⊺, consisting of retail

price p, and order amount b.
3. As the retailer determines the optimal order amount b, he pays GA(a, b) = ab to the sup-

plier.
4. At time t, nature draws demand dt ∼ dρ(p), and it is revealed to the retailer.
5. The retailer makes a profit of GB(a, b) = p min{dt, b} − ab.
6. Steps 1 to 5 are repeated for t ∈ 1...T iterations.

a

ba

pa

d(pa)

GB(pa, ba) = pa min{d(pa), ba}GA(a) = aba

Leader (Supplier) Follower (Retailer) Market

Figure 6: The Newsvendor Pricing Game. From (L. Liu and Rong 2024), in this Stackelberg game, there a
logistics network between a supplier (leader) and retailer (follower), where utility functions are not necessarily
supermodular, the supplier issues a wholesale price a, and the retailer issues a purchase quantity b, and a retail
price p in response.

Demand Function: Stochastic demand is represented in Eq. G.11, which is governed by a linear
additive demand function Γρ(p) representing the expected demand, E[d(p)], as a function of p in
Eq. G.11. The demand function is governed by parameters ρ.

Γρ(p) = max{0, ρ0 − ρ1p}, ρ0 ≥ 0, ρ1 ≥ 0 (G.10)
dρ(p) = Γρ(p) + ϵ, ϵ ∈ N (0, σ) (G.11)

This problem combines the problem of the price-setting Newsvendor (Petruzzi and Dada 1999) (Ar-
row, Harris, and Marschak 1951), with that of a bilateral Stackelberg game under imperfect informa-
tion. Even in the scenario of perfect information, the price-setting Newsvendor has no closed-form
solution, therefore no exact solution to the Stackelberg equilibrium. We apply the algorithm from
(L. Liu and Rong 2024) to learn a Stackelberg equilibrium under a risk-free pricing strategy as-
sumption, and apply Algorithm 4 from (L. Liu and Rong 2024) as a baseline against Algorithm 1
(GISA).
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Algorithm 4 Learning Algorithm for Newsvendor Pricing Game from (L. Liu and Rong 2024)

1: for t ∈ 1...T do:
2: Leader and follower estimates a confidence interval Cθ(t) from available data.
3: H(ρ) = ρ̂0/ρ̂1.
4: Leader plays action a, where a = argmax

a∈A,ρ∈Ct
aF−1ρ̄a

(
1 − 2a

H(ρ)+a

)
from Eq. (3.8) in (L. Liu

and Rong 2024).
5: Follower sets price p = (H(ρ) + a)/2.
6: Follower estimates their optimistic parameters ρ̄a, and best response b̄a from from Eq. (3.4)

and (3.5a) respectively in (L. Liu and Rong 2024).
7: Leader obtains reward, GA = ab.
8: Follower obtains reward, GB = pmin{b, d(p)}.
9: end for
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G.2.1 NPG RESULTS

Parameters: ρ0 = 1, ρ1 = −1, σ = 0.1.

Parameters: ρ0 = 1, ρ1 = 0.5, σ = 0.1.

Parameters: ρ0 = 1, ρ1 = −1, σ = 0.5.

Figure 7: Mean values are calculated over 1,000 trials, with shaded regions representing confidence intervals,
all of which fall within the first quartile.

G.3 MULTI-DIMENSIONAL STACKELBERG GAME (SSG)

We consider a two-player Stackelberg game where the leader A and the follower B choose their
actions from a shared action space Rn. The leader chooses an action a ∈ Rn, anticipating the
follower’s response b ∈ Rn, where n = 5. Both players’ rewards are influenced by a combination
of the difference in their actions and quadratic penalties on their individual actions. The problem
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is constrained by weighted L1-norm bounds on both a and b, which limit the magnitude of their
respective actions.
The leader’s reward function µA is defined as:

µA(a,b) = θ⊤A(a− b)− θ⊤Af(a) + ϵ, ϵ ∈ N (0, σ) (G.12)

where:

• a ∈ Rn is the leader’s action,

• b ∈ Rn is the follower’s action,

• θA ∈ Rn is a weight vector for the leader,

• f(a) is the quadratic penalty function applied elementwise, such that f(a) =
[a21,a

2
2, . . . ,a

2
n].

The leader seeks to maximize µA(a, b) by selecting a, knowing that the follower will respond opti-
mally.
The follower’s reward function µB is defined as:

µB(a,b) = θ⊤B(a− b)− θ⊤Bg(b) (G.13)

where:

• a ∈ Rn is the leader’s action,

• b ∈ Rn is the follower’s action,

• θB ∈ Rn is a weight vector for the follower,

• g(b) is the quadratic penalty function applied elementwise, such that g(b) =
[b2

1,b
2
2, . . . , b

2
n].

The follower seeks to maximize µB(a,b) by choosing b, given the leader’s action a.
Both players are subject to weighted L1-norm constraints on their actions:

n∑
i=1

|θA,iai| ≤ CA for the leader (G.14)

n∑
i=1

|θB,ibi| ≤ CB for the follower (G.15)

where CA and CB are constants that limit the magnitude of the actions a and b, respectively, and
θA,i, θB,i are the elements of θA and θB .
Follower’s Optimization Problem (Best Response): Given the leader’s action a, the follower
solves the following optimization problem:

b∗(a) = argmax
b

(
θ⊤B(a− b)− θ⊤Bg(b)

)
(G.16)

subject to:

n∑
i=1

|θB,ibi| ≤ CB (G.17)

This is a quadratic optimization problem due to the quadratic penalty g(b), and the constraint en-
forces that the weighted L1-norm of the follower’s action does not exceed CB .
Leader’s Optimization Problem: Given the follower’s best response b∗(a), the leader solves the
following optimization problem:

a∗ = argmax
a

(
θ⊤A(a− b∗(a))− θ⊤Af(a)

)
(G.18)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

subject to:

n∑
i=1

|θA,iai| ≤ CA (G.19)

This is also a quadratic optimization problem due to the quadratic penalty f(a), and the constraint
enforces that the weighted L1-norm of the leader’s action does not exceed CA.
Stackelberg equilibrium: The Stackelberg equilibrium is reached when:

a∗ = argmax
a

(
θ⊤A(a− b∗(a))− θ⊤Af(a)

)
, b∗(a) = argmax

b

(
θ⊤B(a− b)− θ⊤Bg(b)

)
(G.20)

subject to the respective L1-norm constraints. At equilibrium, the leader chooses a∗ that maxi-
mizes their reward given the follower’s optimal response b∗(a), and the follower chooses b∗(a)
that maximizes their reward given the leader’s action.
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G.3.1 SSG EMPIRICAL RESULTS

Parameters: θA = [−0.850,−0.049, 0.620,−0.535,−0.313] , θB =
[−1.554,−0.176, 0.576, 0.803, 0.358] , σ = 0.1

Parameters: θA = [−1.557,−0.011, 0.821,−1.307,−0.262] , θB =
[−1.499, 0.317,−0.106, 0.465,−0.476] , σ = 0.1

Parameters: θA = [−0.599,−0.951, 0.156,−0.732, 0.375] , θB =
[−0.866, 0.708,−0.156, 0.601,−0.058] , σ = 0.1

Figure 8: Mean values are computed over 1,000 trials. All shaded areas, denoting confidence intervals, are
within a quarter quantile. UCB arms were discretized to increments of 200, with an exploration constant
αUCB = 0.01.
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