
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RIEMANNIAN MANIFOLD LEARNING FOR STACKEL-
BERG GAMES WITH NEURAL FLOW REPRESENTA-
TIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel framework for online learning in Stackelberg general-sum
games, where two agents, the leader and follower, engage in sequential turn-based
interactions. At the core of this approach is a learned diffeomorphism that maps
the joint action space to a smooth Riemannian manifold, referred to as the Stack-
elberg manifold. This mapping, facilitated by neural normalizing flows, ensures
the formation of tractable isoplanar subspaces, enabling efficient techniques for
online learning. By assuming linearity between the agents’ reward functions on
the Stackelberg manifold, our construct allows the application of standard bandit
algorithms. We then provide a rigorous theoretical basis for regret minimization
on convex manifolds and establish finite-time bounds on simple regret for learn-
ing Stackelberg equilibria. This integration of manifold learning into game the-
ory uncovers a previously unrecognized potential for neural normalizing flows as
an effective tool for multi-agent learning. We present empirical results demon-
strating the effectiveness of our approach compared to standard baselines, with
applications spanning domains such as cybersecurity and economic supply chain
optimization.

1 INTRODUCTION

A Stackelberg game consists of a sequential decision-making process involving two agents, a leader
and a follower. This framework, introduced in Stackelberg 1934 models hierarchical strategic inter-
actions where the leader moves first, anticipating the follower’s best response, and then the follower
reacts accordingly. These games have become central to understanding interactions in various fields,
from economics to societal security, providing a formal method for analyzing situations where one
party commits to a strategy before the other, affecting the subsequent decision-making process and
reward outcomes. Over time, Stackelberg games have evolved to address more complex environ-
ments, incorporating factors like imperfect information and no-regret learning of system parameters.
The solution to such a game typically revolves around finding a Stackelberg equilibrium, where the
leader optimizes his strategy assuming or knowing the follower type, which affects how she opti-
mizes her utility based on the leader’s action. (Kar et al. 2015; Korzhyk, Conitzer, and Parr 2010).
Several challenges arise in the practical applications of Stackelberg games. One key issue is the
uncertainty regarding the follower’s type or rationality (or sub-rationality). In many real-world sce-
narios, the follower might not be fully rational or the leader might have incomplete knowledge of the
follower’s preferences, leading to uncertainty in the leader’s decision-making process. Additionally,
imperfect information regarding reward outcomes adds another layer of complexity, as the leader
may not have accurate knowledge of the payoffs associated with various strategies. These uncer-
tainties have been addressed in domains such as security, where randomized strategies and robust
optimization approaches are deployed to mitigate risks arising from incomplete information and un-
predictable follower behaviour (Jiang et al. 2013; Kar et al. 2015; Debarun Kar et al. 2017). For
instance, in deployed systems like ARMOR at LAX or PROTECT at U.S. ports, leaders must make
security decisions under uncertainty, balancing multiple risks (Jain et al. 2011; Shieh et al. 2012).
Stackelberg games also feature prominently in supply chain optimization settings, where there exist
areas of uncertainty, such as demand manifestation (L. Liu and Rong 2024) (Cesa-Bianchi et al.
2023). Stackelberg game models have also found applications in novel areas like conversational
agents using large language models (LLMs), where one agent (the model) anticipates the user’s
behaviour and adjusts its responses accordingly (Nguyen et al. 2014).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

For non-cooperative multi-agent games that exhibit additive noise, sublinear regret can be achieved
via gradient based optimization methods, such as AdaGrad (Duchi, Hazan, and Singer 2011), in the
face of Gaussian noise but this is often subject to constraints on the magnitude of the noise (Hsieh
et al. 2023). Nevertheless, in these games, the problem settings are extended to an unlimited number
of players - with regret performance degrading as the number of players increases. We investigate
the problem setting of a two-player Stackelberg game, with a tractable best response function -
commonplace in economics and adversarial machine learning in general (Wang et al. 2024; Zhou
and Kantarcioglu 2016).
Problem Setting: We consider a two-player Stackelberg game where player A leads and player B
responds. Stackelberg games are sequential, meaning that the players take turns and, the follower can
best respond to the leader’s action, given information available to him. The best response of player
B lies on a manifold within a subspace of the joint action space A× B. We define this Stackelberg
game setting in the framework of optimal transport, where the structure of the best response function
B(·) gleans simplifications to the solution methodology to obtain Stackelberg regret. This research
focuses on applying multi-armed bandit (MAB) methods, particularly in Stackelberg equilibrium
settings, to achieve sublinear regret. It explores the game theory, utilizing geometric topologies to
better understand agent behaviour and simplify computations.
Key Contributions: We introduce a novel algorithm that significantly advances the understanding
of Stackelberg learning under imperfect information, akin to the problem settings covered in Balcan
et al. 2015 and Haghtalab et al. 2022, presenting a systematic framework for how equilibrium can be
efficiently solved in this problem setting. Central to our contribution is the construction of a feature
map using neural normalizing flows, which transforms the ambient joint action space into a more
tractable embedding, we define as the Stackelberg manifold. By leveraging the geodesic proper-
ties of this manifold, our approach allows for more efficient computation of Stackelberg equilibria
with respect to no-regret learning, particularly in the presence of parameter uncertainty. In addition
to this, we offer a rigorous theoretical foundation for optimizing Stackelberg games on spherical
manifolds. This framework is validated via empirical simulations, stemming from applications in
supply chain management and cybersecurity, demonstrating that our method outperforms standard
baselines, offering improvements in both computational efficiency and regret minimization.

2 FORMAL DEFINITIONS

In a Stackelberg game, two players take turns executing their actions. Player A is the leader, she
acts first with action a selected from her action space A. Player B is the follower, he acts second
with action b ∈ B. The follower acts in response to the leader’s action, and both players earn a joint
payoff as function of their actions.

2.1 REPEATED STACKELBERG GAMES

In a repeated Stackelberg game, the leader chooses actions at ∈ A, and the follower reacts with
actions bt ∈ B at each round t = 1, 2, . . . , T . The leader’s strategy πA(·|Ht) is a probability
distribution over the action space A which selects at based on past joint actions up to time t, i.e.,
Ht := {(aτ ,bτ)|τ < t}. Similarly, the follower’s strategy πB(·|Ht) is a conditional probability
distribution over B which determines bt given the full history, i.e.,Ht := Ht ∪ {at}.
Best Response Strategy of the Follower: To be specific, the follower selects his best response
strategy at round t by maximizing his expected reward function µB(a,b) : A×B → R given that the
leader has played action at. Since, we assume that the reward function solely depends on the most
recent pairs of actions, the follower’s best strategy is first order Markov, i.e., πB(·|Ht) = πB(·|at).
Formally, the follower’s best response at round t is given by,

π∗B(b|at) := argmax
πB∈ΠB

EπB
[µB(a,b)|a = at], (2.1) B(at) := {b ∈ B|π∗B(b|at) > 0}. (2.2)

where ΠB is the space of probability distributions over the action spaceB and the expectation is taken
with respecter to the strategy of the follower. In this case, we can define the set of follower’s best
responses in Eq. (2.2). Analogously, the leader aims at maximizing the expected utility µA(a

t,bt) :
A× B → R that is a deterministic function solely driven by her action at followed by the reaction
of the follower bt.
Stackelberg Equilibrium: Consider a follower whose best response is optimal. We denote this
scenario as Stackelberg Oracle (SOC) learning. From the leader’s perspective, the uncertainty is not

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

necessarily over the system, but rather the strategy of the follower πB(·). Stackelberg equilibrium
(π∗A, π

∗
B) is achieved when the follower is best responding, according to Eq. (2.2), and the leader

acts with an optimal policy given the best response of the follower,

π∗A := arg max
πA∈ΠA

EπA,π∗
B
[µA], (2.3) EπA,π∗

B
[µA] =

∫
A
πA(a)

∫
B
µA(a,b)πB(b|a) db da.

(2.4)

2.2 THE STACKELBERG MANIFOLD

To address the complexity of solving for Stackelberg equilibrium under uncertainty, we propose the
idea of mapping actions from the ambient space onto a manifold Φ leading to several key advan-
tages. Simplifying the problem by mapping to a geometric structure, such as a unit sphere, allows for
significantly faster numerical computation while optimizing directly on an intuitive intrinsic geom-
etry, reducing redundancies and provides ease with respect to enforcing constraints. Additionally,
smoothness on such a structure enables computational advantages through methods like Riemannian
gradient descent (Bonnabel 2013), which exploits differentiability for efficient optimization.
This concept of mapping the data from the ambient space, in our case defined by the joint action
space A× B, onto a latent space Φ has been explored in several prior works. For a well defined
manifold, typically the approach is to learn a diffeomorphism between the ambient data space, and
the objective manifold, which is a subspace of the ambient data space (D. J. Rezende, Papamakarios,
et al. 2020) (Gemici, D. Rezende, and Mohamed 2016). Suppose the manifold is not given, or there
lies flexibility in defining the structure of such a manifold, the certain manifold learning techniques
could be devised (Brehmer and Cranmer 2020). These approaches typically define invertible, or
pesudo-invertible, probability density maps between the ambient data space, the latent space, and
the manifold space.

2.2.1 NORMALIZING FLOWS FOR JOINT ACTION SPACE PROJECTION

We leverage normalizing flows to map a joint action space A × B ⊂ RD onto a manifold, Φ
embedded inRD (Dinh, Sohl-Dickstein, and Bengio 2016; Papamakarios et al. 2021; D. J. Rezende
and Mohamed 2015). Normalizing flows are a class of generative models that transform a high
dimensional simple distribution (i.e., isotropic Gaussian) into a complex one through a series of
invertible bijective mappings using neural networks that are computationally tractable. The joint
action space consists of actions taken by two agents, denoted as a ∈ A and b ∈ B, modelled via
normalizing flows to ensure bijectivity and a tractable density estimate. Let x ∈ A× B, the model
density pX(x) for a data point x ∈ RD is given by,

pX(x) = pZ(f(x))

∣∣∣∣det(∂f(x)

∂x

)∣∣∣∣ . (2.5)

Here Z represents the latent space with a simple distribution, and |det (∂f(x)/∂x)| is the Jaco-
bian determinant of the transformation f : RD → RD. Several open-source methodologies and
codebases have been developed to address this manifold mapping problem via normalizing flows
(Brehmer and Cranmer 2020). We extend the nflows package from Durkan et al. 2020 into our
approach. The key contribution of our application is the isolation of the input heads into two sep-
arate sections, before concatenating the inputs and feeding it through the normalizing flow. This
allows us to control the subspace induced by the leader’s action a ∈ A. (We provide detailed model
specifications in Appendix D.)

2.2.2 SPECIFICATIONS OF THE FEATURE MAP ϕ(a,b)

Feature Map ϕ(·): We propose a function ϕ, which is a feature map (Amani, Alizadeh, and
Thrampoulidis 2019; Moradipari et al. 2022; Zanette et al. 2021). Let |A| and |B| denote the finite
dimension of the action space of the leader and follower respectively, the feature map ϕ : A ×
B 7→ R

D, which effectively maps any A by B combination of vectors to a D dimensional feature
representation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition Expression
(D1) Φ is measurable and reachable w.r.t.
a σ-algebra over A × B (denoted as
EA×B).

Φ ⊆ A× B ⊆ RD, Φ ∈ EA×B. (2.7)

(D2) Φ is compact and closed.
See Appendix A.1 for detailed definition. (2.8)

(D3) Φ is Lipschitz in the joint A× B. ∣∣∣∥∇aϕ∥p + ∥∇bϕ∥p − C
∣∣∣ ≤ Lc (2.9)

(D4) Φ variational sensitivity in A× B,
with high probability. ||a− a′|| ≤ ϵ =⇒ ||ϕ(a′,b)− ϕ(a,b)|| ≤ δ,∀b (2.10)

||b− b′|| ≤ ϵ =⇒ ||ϕ(a,b′)− ϕ(a,b)|| ≤ δ,∀a (2.11)

(D5) Φ forms a smooth Riemannian man-
ifold. See Appendix A.4 for detailed definition. (2.12)

(D6) Φ has an approximate pullback.
There exists ϕ−1(·) : Φ 7→ A× B such
that,

∥∥ϕ−1(ϕ(a,b))− (a,b)
∥∥ ≤ ϵ, ∀a,b (2.13)

Table 1: Key assumptions of the Stackelberg Embedding Φ.

Further, we introduce a concept known as the Stackelberg embedding, denoted by Φ, which is
defined as the image of ϕ over the joint action space domain A× B,

Φ := Im(ϕ) = {ϕ(a,b)|a ∈ A,b ∈ B}. (2.6)

The construction of ϕ : A× B 7→ RD can be via any means, in our case a normalizing neural flow
network (but possibly any other architecture), but should abide by the imposed assumptions in Table
1. To be precise, ϕ̂ should denote our best learned representation of the ideal map ϕ. Provided that
we only have access to ϕ̂, purely for notational convenience, we will use ϕ to represent ϕ̂ moving
forward.
Definition 2.1. Bipartite Spherical Map ϕ(a,b): Let a ∈ A and b ∈ B, and define a mapping
ϕ : A × B → S(D−1) from Cartesian coordinates to spherical coordinates on the D-dimensional
unit sphere S(D−1). The spherical coordinates are partitioned such that, a parametrizes a subset of
the spherical coordinates, and b parametrizes the remaining coordinates νb(b). Also, νa ∩ νb = ∅,
meaning the partitions are disjoint. Thus, the full mapping is given by:

ϕ(a,b) := (νa(a), νb(b))
⊺ ∈ S(D−1),

where νa and νb represent distinct angular components of the spherical coordinates.

Mapping to a Spherical Manifold: The transformation from spherical coordinates to Cartesian
coordinates is used to map input features onto an D-dimensional spherical manifold. Therefore, in
addition to the properties of our feature map ϕ from Table 1, we also enforce ϕ as a bipartite spherical
map from Def. 2.1. This bipartite spherical map which constructs a disjoint spherical mapping to
parameterize two subspaces in Φ. To accomplish this, we define two heads in the neural network
input, the head from A specifically controls the azimuthal spherical coordinate and the head from
B specifically controls other coordinates. (A visualization of the results, showcasing the learned
bipartite mapping to Φ as a 3D spherical surface, is provided in Appendix E.1. This visualization is
generated by varying a or b to create longitudinal or latitudinal subspaces.)
Constructing a sufficient map to Φ involves specifying the architecture and training model parame-
ters such that it satisfies dynamics (D1) to (D6) as much as possible. This fundamentally requires a
trade-off between being well behaved on the manifold, as stipulated by (D3) and (D4), and having
an accurate inverse (D6). Thus, we train a neural network to approximate ϕ, via ϕ, with the loss

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

function,

L(ϕ) = αNLN
ϕ + αRLR

ϕ + αP Var
(
ϕ(a,b)− ϕ(Jσ(a,b))

)
︸ ︷︷ ︸

Perturbation Loss:LP
ϕ

+αL

∣∣∣∥∇aϕ∥+ ∥∇bϕ∥ − C
∣∣∣︸ ︷︷ ︸

Lipschitz Loss:LL
ϕ

.

(2.14)

The total loss L(ϕ) is composed of multiple loss functions added together in a linear convex com-
bination. LN

ϕ represents the negative log-likelihood loss of the normalizing flow ϕ(·). To construct
the Stackelberg manifold Φ, data is first sampled uniformly the ambient Cartesian space. We then,
fit a normalizing flow to Φ based on the criteria in Table 1, minizing L(ϕ).
Loss Function Descriptions: LN

ϕ ensures transformed data matches the base distribution while
adjusting for volume changes from invertible transformations, with respect to Eq. (2.5). Minimizing
LN
ϕ allows the model to efficiently map complex data bijectively to simpler distributions. (A detailed

description of LN
ϕ can be found in Appendix A.7.) LR

ϕ represents the geodesic repulsion loss of
the output, which penalizes the concentration of elements being pairwise close to one another. (A
detailed description of LR

ϕ can be found in Appendix A.6.) Jσ(a,b) : A × B 7→ A × B is a
Gaussian perturbation function on the Cartesian product of the joint action space A × B to itself,
subject to standard deviation σ. (A formal definition is provided in Appendix A.5.) The variance of
the difference between ϕ(a,b) and the perturbed ϕ(Jσ(a,b)) should be kept minimal. This variance
is captured over all elements in Φ. The Lipschitz loss penalizes drastic deviations in the gradient
with respect to a and b, provided that the sum of the absolute values of the gradients does not deviate
too far from some target C ∈ R. The aforementioned losses in Eq. (2.14) are linearly combined in
a convex combination to form the total loss L(ϕ), denoted as αN , αR, αP , and αL respectively. The
hyperparameters were optimized via a selection process, leveraging empirical validation to identify
the settings that maximized performance. Experimental hyperparameters and architecture of the
normalizing neural flow network can be found in Appendix D.

2.3 REWARD FUNCTION

Reward Mechanisms: A Stackelberg game provides two reward functions µA(a,b) and µB(a,b).
Both of which are linearizable with sub-Gaussian noises, ϵA and ϵB , i.e.,

µA(a,b) = ⟨θ∗A, ϕ(a,b)⟩+ ϵA, (2.15) µB(a,b) = ⟨θ∗B , ϕ(a,b)⟩+ ϵB . (2.16)
We assume zero-mean sub-Gaussian distribution for both ϵA and ϵB but they do not necessarily
need to be identical. The objective is to learn the parameters θ∗A ∈ RD, and possibly as an extension
problem θ∗B . The feature map ϕ(·) maps the joint action space A× B, to a subspace in RD. The
parameters of the model, can be estimated via parameterized regression,

θ̂t = (ϕ1:tϕ
⊤
1:t + λregI)

−1ϕ⊤1:t µ1:t, for A and B, respectively, (2.17)

Where ϕ1:t represents the sequence of ϕ(·) values via the feature map given the action sequences
a1:t and b1:t, λreg serves as a regularization parameter, I is the identity matrix, and µ1:t are the
historical rewards of players A or B (depending on the subscript). Here, we extend the reward
structure of classical linear bandits in (Abbasi-Yadkori, Pál, and Szepesvári 2011; Chu et al. 2011)
to a setting where two players jointly decide on the action sequence. We stipulate assumptions to
ensure that the covariance matrix Σ−1T is well-conditioned and positive semi-definite (PSD), with
a regularization parameter λreg balancing bias and variance, while the norm ||ϕ(at,bt)||Σ−1

T
must

remain small to facilitate efficient uncertainty reduction. (These assumptions are outlined in detail
in Appendix A.2.)

3 OPTIMIZATION OF STACKELBERG GAMES

Optimization under Perfect Information: We see that regardless of the convexity of A or B, so
long as we are dealing with compact spaces, under perfect information, we can solve the Stackelberg
equilibrium by solving a bilevel optimization problem expressed as,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

π∗A = arg max
πA∈ΠA

E
[
⟨θ∗A, ϕ(πA, π

∗
B(πA))⟩

]
,

(3.1)

π∗B(πA) := arg max
πB∈ΠB

E
[
⟨θ∗B , ϕ(πA, πB)⟩

]
,

(3.2)
With a slight abuse of notation, we use ϕ(πA, πB) and π∗B(πA) to denote EπA,πB

[ϕ] and the best
response function in response to policy πA, respectively. The expectation are taken with respect to
the sub-Gaussian noises.
Optimization under Parameter Uncertainty: For some no-regret learning algorithm suppose that
after observing t samples, the uncertainty among the parameters θ is characterized by,

Ball(θ∗, Cθ(t)) :=
{
θ : ∥θ∗ − θ∥ ≤ Cθ(t)

}
. (3.3)

with probability at least 1−δ. In this formulation, ||·|| denotes some norm in the space of parameters.
Assuming a pessimistic leader, the optimization problem under parameter uncertainty at round t can
be expressed as,

π∗A := arg max
πA∈ΠA

min
θA

E
[
⟨θA, ϕ(πA, π

∗
B(πA))⟩

]
, s.t. θA ∈ Ball(θ∗A, Cθ(t)), (3.4)

where π∗B(πA) := arg max
πB∈ΠB

max
θB

E
[
⟨θB , ϕ(πA, πB)⟩

]
, s.t. θB ∈ Ball(θ∗B , Cθ(t)). (3.5)

Given π∗B(·) in Eq. (3.5), let us define,

H(θ∗A, t) := max
πA∈ΠA

min
θA

E
[
⟨θA, ϕ(πA, π

∗
B(πA))⟩

]
, s.t. θA ∈ Ball(θ∗A, Cθ(t)), (3.6)

H(θ∗A, t) := max
πA∈ΠA

max
θA

E
[
⟨θA, ϕ(πA, π

∗
B(πA))⟩

]
, s.t. θA ∈ Ball(θ∗A, Cθ(t)). (3.7)

We can see from the structure of Eq. (3.4) to Eq. (3.7), the resemblance to a bi-level optimiza-
tion problem, which can be solved both under perfect information and uncertainty. We provide a
discussion of such methods in Appendix B.1.

4 ONLINE LEARNING ON THE STACKELBERG MANIFOLD

To enable efficient multi-agent online learning on the Stackelberg manifold, Φ, we enforce Φ to be
a convex manifold. The convex manifold is a manifold where the geodesic between any two points
on the manifold is contained within or forms a geodesically convex set (Def. C.1). Essentially, in a
convex manifold, every geodesic between two points is contained within the manifold, adhering to
the geodesic convexity property. The formal definitions can be found in Appendix C.1.

4.1 STACKELBERG OPTIMIZATION UNDER PERFECT INFORMATION

Provided that we can transform data from the joint action space (or ambient data space) onto a
spherical manifold, we can leverage the properties of the D-sphere to determine the best response
solution for the Stackelberg follower and optimize the corresponding Stackelberg regret. Consider
the reward function structure outlined in Section 2.3. In general, for each agent, µ = ⟨θ, ϕ⟩. Here,
θ represents a D-dimensional vector in the manifold space, and we must find the element in Φ that
maximizes this inner product. In the Stackelberg game, since the leader moves first, they define
a restricted subspace on the Φ. The follower must then optimize within this subspace. Moving
forward, θA and θB will be referred to as objective vectors.
We define the divergence angle, αDiv as the angle between the two objective vectors. Further, we
can define the geodesic distance between two vectors, denoted as G(θA, θB), as follows. For a
unit-spherical manifold, this has the definition,

cos(αDiv) :=
⟨θA, θB⟩
∥θA∥∥θB∥

, G(θA, θB) := arccos

(
⟨θA, θB⟩
∥θA∥∥θB∥

)
. (4.1)

In a D-dimensional sphere, for a cooperative game with no divergence angle, the optimal solution
that maximizes the inner product is an element in Φ that is collinear with θA, mutatis mutandis for
θB . Lemmas 4.1 to 4.2 establishes a link between solving for the follower’s best response, from

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Eq. (2.2), and minimizing geodesic distance, in a general sum game. Moving forward, we use the
convention θ′A and θ′B to denote the projection of the objective vectors θA and θB onto Φ.
Lemma 4.1. Geodesic Distance and Closeness: Let Φ ⊂ RD be a manifold serving as a boundary
of a convex set in RD. Given θ, let ξθ ∈ Φ be the point on the manifold that maximizes the dot
product ⟨θ, ξθ⟩, and is orthogonal to Φ at the point of intersection. For any two points on the man-
ifold θ′A, θ

′
B ∈ Φ, if the geodesic distance between ξθ and θ′A is greater than the geodesic distance

between ξθ and θ′B , G(ξθ, θ
′
A) > G(ξθ, θ

′
B), then the dot product satisfies ⟨θ, θ′A⟩ < ⟨θ, θ′B⟩. (Proof

in Appendix C.2.)
Lemma 4.2. Pure Strategy of the Follower: While optimizing over a convex manifold, proposed in
Definition C.2, given any objective vector θ, the linear structure of the reward functions from Eq.
(2.15) and Eq. (2.16), and that the subspace induced by a ∈ A forms a geodesically convex subset,
as defined in Definition C.1, the optimal strategy of the follower will be that of a pure strategy, such
that πA(b|a) ∈ {0, 1}. (Proof provided in Appendix C.4.)

The intuition behind Lemmas 4.1 and 4.2 is that the maximum the dot product between θ′A and θ′B
on the convex manifold must be collinear with each other, ensuring the optimal reward. In the case
of a convex subspace, the follower acting optimally has no viable alternatives other than a single
choice.

4.2 REGRET DEFINITIONS

Definition 4.1. Stackelberg Regret: We define Stackelberg regret, denoted as RT
A for the leader,

measuring the difference in cumulative rewards between a best responding follower and an opti-
mal leader in a perfect information setting, against best responding follower and leader exhibiting
bounded rationality. The leader policy stipulates that the she acts rationally given the estimates of
the expected reward function from the data gathered, as in Eq. (3.7) and Eq. (3.6),

RT
A :=

T∑
t=1

E
[
max
a∈A

µA(a,B(a))− µA(a
t,B(at))

]
≤

T∑
t=1

(
H̄(θ∗A, t)−H(θ∗A, t)

)
. (4.2)

The leader selects at from policy πA according to their best estimate of θ̂A and θ̂B , following the
maximization equations in Eq. (3.4) and Eq. (3.5) respectively.

The leader commits to a strategy πA aimed at maximizing her reward while accounting for the un-
certainty in the follower’s response. The leader is free to estimate the follower’s response rationally,
and within the confidence interval. Our algorithm minimizes the Stackelberg regret, providing a no-
regret learning process for the leader. To compute the Stackelberg regret of the algorithm, which is
defined from the leader’s perspective, we must derive a closed form expression for the gap over time
between the expected reward under the optimal policy and the expected reward under any algorithm.
Definition 4.2. Simple Regret: Let us define the simple regret, where with probability 1−δ at time t,

reg(t) := ⟨θ∗A, ϕ(a∗,B(a∗))⟩ − ⟨θ∗A, ϕ(at,B(at))⟩ ≤ H̄(θ∗A, t)−H(θ∗A, t) (4.3)

This assumes that the leader is acting under the bounded rationality assumption.

4.3 QUANTIFYING UNCERTAINTY ON THE STACKELBERG MANIFOLD

We now revisit the parameter uncertainty constraints introduced in Sec. 2.3, which dictate the uncer-
tainty of a given learning algorithm, characterized by an uncertainty radius Cθ(t). Given the feature
map ϕ(·), which adheres to the linear reward assumptions, particularly with respect to the covariance
matrix of the regression (as outlined in Sec. 2.3), the learning leader can apply any bandit learning
algorithm that imposes a high-probability bound on the parameter estimate. This constraint is for-
malized in Eq. (3.3) by the uncertainty region Cθ(t). Let us define

←→
Φ a and

←→
Φ b as two subspaces,

which we will use to analyze the leader’s actions under these uncertainty constraints.
←→
Φ a := {ϕ(a,b′)|b′ ∈ B}, (4.4)

←→
Φ b := {ϕ(a′,b)|a′ ∈ A}, (4.5)

where
←→
Φ a and

←→
Φ b are the sub-spaces formed when we fix one of the leader or follower’s action,

and let the other action vary freely.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Lemma 4.3. Intersection of
←→
Φ a and

←→
Φ b: Given a bipartite spherical map Q(·) from Definition

2.1, with a parameterizing the azimuthal (latitudinal) coordinates, the cardinality of the intersect
between

←→
Φ a and

←→
Φ b will be non-empty. That is, |

←→
Φ a ∩

←→
Φ b| > 0. (Proof is in Appendix C.5.)

The derivation of Lemma 4.3 first comes by isolating the subspaces in terms of angular coordinates.
Next, due to the Poincare-Hopf theorem (Hopf 1927; Poincaré 1885), the compactness of the smooth
Riemmanian manifold imposes strong geometric constraints such that the two subspaces cannot
avoid eachother.
Lemma 4.4. Orthogonality of Subspaces

←→
Φ a and

←→
Φ b: The two submanifolds

←→
Φ a and

←→
Φ b, are

orthognal to eachother within Φ. (Proof provided in Appendix C.6.)

Lemma 4.4 is proven by isolating and taking the partial derivatives of the cartesian coordinates
with respect to their spherical coordinates to obtain tangent vectors. Afterwards, by computing the
dot product between these two tangents and demonstrating that it equates to 0, we establish their
orthogonality.
Geodesic Isoplanar Subspace Alignment (GISA): The general methodology in which we can
compute the optimal leader strategy for a Stackelberg game, for manifold Φ that forms a convex
boundary, is that the leader can anticipate the follower strategy based on knowledge of follower’s
reward parameters θ′B and the isoplane

←→
Φ a. We denote this homeomorphism as f1(

←→
Φ a, θ

′
B) :

←→
Φ a 7→

←→
Φ b∗

a
. Thereafter, we compute the geodesic distance minimizing distance from

←→
Φ b∗

a
to

θ′A via injective map f2(
←→
Φ b∗

a
, θ′A) :

←→
Φ b∗

a
7→ R. Leader’s objective is to find a ∈ A such that it

minimizes the composition of f1◦f2, giving us the geodesic distance. This composition is abstractly
defined as,

←→
Φ a 7−→

f1(·,θ′
A)

←→
Φ b∗

a
7−→

f2(·,θ′
B)

G(a,b∗a) ∈ R, where, θ′ =
θ

∥θ∥
, for A and B. (4.6)

←→
Φ b

αDiv

θ′B

θ′A

←→
Φ a

Figure 1: Illustration of isoplanar subspaces
for players A and B.

θ′B

θ′A

←→
Φ a

Figure 2: Illustration of geodesic confidence
balls for players A and B.

Diagram Description: A visualization of the isoplanes
←→
Φ a and

←→
Φ b on a 2-sphere embedded in three di-

mensions is shown in Fig. 1. The isoplanes are depicted relative to the normalized objective vectors θ′A and
θ′B , which lie on the manifold surface, separated by a divergence angle αDiv . Figure 2 illustrates the geodesic
confidence balls, positioned on the surface of the spherical manifold. In three dimensions, it becomes evident
that
←→
Φ a and

←→
Φ b are orthogonal at any point of intersection. This intersection, denoted by

←→
Φ ba , is where the

joint action emerges, represented by a purple geodesic square indicating the uncertainty region.

Theorem 1. Isoplane Stackelberg Regret: For D-dimensional spherical manifolds embedded in
RD space, where ϕ(a, ·) generates an isoplanes

←→
Φ a, and the linear relationship to the reward

function in Eq. (2.15) and Eq. (2.16) and Eq. (2.15) and Eq. (2.16), the simple regret, defined in Eq.
(4.3), of any learning algorithm with uncertainty parameter uncertainty Cθ(t), refer to in Eq. (3.3),
is bounded by O(arccos

(
1− Cθ(t)2/2

)
). (Proof provided in Appendix C.11.)

The proof of Theorem 1 focuses on analyzing the geodesic distances on Φ due to uncertainty. First,
we argue that any norm-like confidence ball in Cartesian coordinates, Ball(·), can be transformed
into a confidence bound into a geodesic distance-based confidence ball, BallG(·), in spherical
coordinates (discussed in Lemma C.2 of the Appendix.) Due to orthogonality between

←→
Φ a and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 Geodesic Isoplanar Subspace Alignment (GISA) Algorithm

1: Input: Time horizon T , and confidence ball Cθ(·).
2: Output: Estimated optimal leader action â.
3: Initialize θ̂A and θ̂B uniformly at random.
4: Initialize reward and action histories, U andH as empty sets ∅.
5: Construct a Stackelberg embedding Φ and feature map ϕ per specifications in Sec. 2.2.
6: for t ∈ 1...T do:
7: if G(θ̂A, θ̂B) < 2Cθ(t) then
8: Phase 1: Select uniformly an action on the boundary of A’s geodesic confidence ball.
9: a ∼ Uniform[∂ BallG(Cθ(t))] (See Lemma C.2.)

10: else
11: Phase 2: Select a that minimizes the geodesic distance to θ̂B from BallG(Cθ(t)).
12: a← argmin

a∈BallG(Cθ(t))
G(a, θ̂B)

13: end if
14: b← argmin

b∈
←→
Φ a

G(b, θ̂B)

15: ât, b̂t ← ϕ−1(a,b) ▷ Perform an inverse map back to the joint action space.
16: yield ât, b̂t, and obtain empirical reward µt

A, µ
t
B .

17: H ← H∪ (ât, b̂t), U ← U ∪ (µt
A, µ

t
B).

18: Re-estimate θ̂A and θ̂B fromH and U , based on Eq. (2.17).
19: end for
20: return ât

←→
Φ b, we argue that that the geodesic distance either remains the same or decreases when we
projected from any Ball(·)′ from

←→
Φ a to

←→
Φ b (discussed in Lemma C.3 of the Appendix.) This

naturally extends to a bound on the maximum diameter of the projected confidence ball on
←→
Φ b.

This constitutes the best and worst possible outcomes due to misspecification in accordance with
the formulas in Eq. (3.6) and Eq. (3.7), as expressed in Eq. (4.3), which upper bounds the simple
regret.

Lemma 4.5. Pure Strategy of the Leader: Given a spherical manifold, Φ, and isoplanar subspace,←→
Φ a and

←→
Φ b for the longitudinal and lattitudinal subspaces respectively, the optimal strategy of the

leader is that of a pure strategy, that is, π∗A(a) ∈ {0, 1}. (Proof is provided in Appendix C.7.)

Lemma 4.5 argues that the intersection between
←→
Φ a and

←→
Φ b contains at most one element due

to their orthogonality. Consequently, no other actions on the manifold can further maximize the
leader’s reward. Intuitively, the positive curvature of the manifold ensures that once two non-
degenerate isoplanes intersect, the intersection is a unique point that maximizes the dot product
between the action and the objective vector.

5 EMPIRICAL EXPERIMENTS

We provide three practical instances of Stackelberg games in practice. We benchmark the GISA
from Algorithm 1 against a dual-UCB algorithm, where both agents are running a UCB algorithm.
Although a simplistic, benchmark, the dual-UCB algorithm does constitute a no-regret learning
algorithm (Blum and Mansour 2007).
R

1 Stackelberg Game: In this Stackelberg game, the leader selects an action while anticipating the
follower’s best response. The action spaces of both the leader and the follower are one-dimensional,
a,b ∈ R1. The interaction between nonlinear rewards and penalties requires numerical methods
to determine optimal strategies. However, the nonlinear reward functions introduce complexity,
resulting in a non-trivial equilibrium. A practical application is energy grid management, where a
utility company (leader) sets energy prices or output levels, anticipating the aggregate consumers’
(followers) energy usage while accounting for nonlinear feedback such as fluctuating demand or
storage limits. (Details and additional experiments are provided in Appendix G.1.)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

R
1 Stackelberg Regret. NPG Regret. SSG Regret.

Figure 3: Average cumulative regret performance across three Stackelberg games. Parameters of the simula-
tions outlined in Appendices G.1 - G.3. Uncertainty region denote upper and lower quartile of experimental
results.

The Newsvendor Pricing Game (NPG): We model two agents in a Newsvendor pricing game,
with a supplier (leader) and a retailer (follower), inspired by the work of Cesa-Bianchi et al. 2023
and L. Liu and Rong 2024. The action space of the leader is denoted as a ∈ R1, and for the
follower as b ∈ R2. The leader and follower interact with each other in a repeated Stackelberg
game, modelling a leader-follower supply chain game. The supplier dynamically prices the product,
aiming to maximize her reward, while the retailer determines the optimal pricing and order quantity
based on the demand distribution according to classical Newsvendor theory (Arrow, Harris, and
Marschak 1951; Petruzzi and Dada 1999). The reward function is an abstraction that is a function
of stochastic demand, and the reward formats are asymmetric, rendering computation and learning
of the Stackelberg equilibrium non-trivial. (We specify the details and additional experiments in
Appendix G.2.)
Stackelberg Security Game (SSG) inR5: In this Stackelberg security game (SSG), inspired by the
frameworks developed in Balcan et al. 2015 and Zhang and Malacaria 2021, the defender (leader)
allocates limited resources across multiple targets, anticipating the attacker’s (follower) strategy (i.e.
to protect a computer network from malicious intruders). In our example, both players select ac-
tions from R5, where the rewards are governed by the relative difference between their actions (i.e.,
a − b) and are subject to quadratic penalties for overextension. Furthermore, resource constraints
are modelled via weighted L1-norms, imposing additional limitations on the feasible actions. The
Stackelberg equilibrium in this setting is characterized by the leader’s optimal resource allocation,
taking into account the adversary’s best response. The interplay between nonlinear penalties and
resource constraints renders the equilibrium computation non-trivial, requiring advanced numerical
techniques for tractable solutions. (We specify the details and additional experiments in Appendix
G.3.)

6 CONCLUSION

This work establishes a foundational connection between Stackelberg games and normalizing neural
flows, marking a significant advancement in the study of equilibrium learning and manifold learning.
By utilizing normalizing flows to map joint action spaces onto Riemannian manifolds, particularly
spherical ones, we offer a novel, theoretically grounded framework with formal guarantees on simple
regret. This approach represents the first application of normalizing flows in game-theoretic settings,
specifically Stackelberg games, thereby opening new avenues for learning on convex manifolds.
Our empirical results, grounded in realistic simulation scenarios, highlight promising improvements
in both computational efficiency and regret minimization, underscoring the broad potential of this
methodology across multiple domains in economics and engineering. Despite potential challenges
related to numerical accuracy for the neural flow network, this integration of manifold learning into
game theory nevertheless exhibits strong implications for online learning, positioning neural flows
as a promising tool for both machine learning and strategic decision-making.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

We affirm that this research adheres to the ICLR Code of Ethics. All simulations and methodologies
were conducted with integrity and transparency, without harm to individuals, groups, or the environ-
ment. We ensured that the theoretical and practical contributions of this work are aimed at advancing
knowledge in a responsible and ethical manner, with no misuse or malicious application of the tech-
niques proposed. Additionally, no conflicts of interest or external influences have compromised the
objectivity or scientific rigour of this work.

REFERENCES

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári (2011). “Improved algorithms for linear
stochastic bandits”. In: Advances in neural information processing systems 24.

Allende, Gemayqzel Bouza and Georg Still (2013). “Solving bilevel programs with the KKT-
approach”. In: Mathematical programming 138, pp. 309–332.

Amani, Sanae, Mahnoosh Alizadeh, and Christos Thrampoulidis (2019). “Linear stochastic bandits
under safety constraints”. In: Advances in Neural Information Processing Systems 32.

Arrow, Kenneth J, Theodore Harris, and Jacob Marschak (1951). “Optimal inventory policy”. In:
Econometrica: Journal of the Econometric Society, pp. 250–272.

Balcan, Maria-Florina et al. (2015). “Commitment without regrets: Online learning in stackelberg
security games”. In: Proceedings of the sixteenth ACM conference on economics and computation,
pp. 61–78.

Balling, RJ and Jaroslaw Sobieszczanski-Sobieski (1995). “An algorithm for solving the system-
level problem in multilevel optimization”. In: Structural optimization 9, pp. 168–177.

Beck, Yasmine, Ivana Ljubić, and Martin Schmidt (2023). “A survey on bilevel optimization under
uncertainty”. In: European Journal of Operational Research 311.2, pp. 401–426.

Blum, Avrim and Yishay Mansour (2007). “From external to internal regret.” In: Journal of Machine
Learning Research 8.6.

Bonnabel, Silvere (2013). “Stochastic gradient descent on Riemannian manifolds”. In: IEEE Trans-
actions on Automatic Control 58.9, pp. 2217–2229.

Brehmer, Johann and Kyle Cranmer (2020). “Flows for simultaneous manifold learning and density
estimation”. In: Advances in neural information processing systems 33, pp. 442–453.

Cesa-Bianchi, Nicolò et al. (2023). “Learning the stackelberg equilibrium in a newsvendor game”.
In: Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent
Systems, pp. 242–250.

Chu, Wei et al. (2011). “Contextual bandits with linear payoff functions”. In: Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, pp. 208–214.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2016). “Density estimation using real
nvp”. In: arXiv preprint arXiv:1605.08803.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for online learn-
ing and stochastic optimization”. In: Journal of Machine Learning Research 12.Jul, pp. 2121–
2159.

Durkan, Conor et al. (2020). nflows: normalizing flows in PyTorch. Version v0.14. DOI: 10.5281/
zenodo.4296287. URL: https://doi.org/10.5281/zenodo.4296287.

Franceschi, Luca et al. (2017). “Forward and reverse gradient-based hyperparameter optimization”.
In: International Conference on Machine Learning. PMLR, pp. 1165–1173.

Gemici, Mevlana C, Danilo Rezende, and Shakir Mohamed (2016). “Normalizing flows on rieman-
nian manifolds”. In: arXiv preprint arXiv:1611.02304.

Haghtalab, Nika et al. (2022). “Learning in Stackelberg Games with Non-myopic Agents”. In: Pro-
ceedings of the 23rd ACM Conference on Economics and Computation, pp. 917–918.

Hopf, Heinz (1927). “Vektorfelder in n-dimensionalen Mannigfaltigkeiten”. In: Mathematische An-
nalen 96.1, pp. 225–250. DOI: 10.1007/BF01209164.

Hsieh, Yu-Guan et al. (2023). “No-Regret Learning in Games with Noisy Feedback: Faster Rates and
Adaptivity via Learning Rate Separation”. In: arXiv preprint arXiv:2206.06015. arXiv: 2206.
06015 [cs.GT].

Huang, Feihu (2024). “Optimal Hessian/Jacobian-Free Nonconvex-PL Bilevel Optimization”. In:
arXiv preprint arXiv:2407.17823.

Huang, Feihu et al. (2022). “Enhanced bilevel optimization via bregman distance”. In: Advances in
Neural Information Processing Systems 35, pp. 28928–28939.

11

https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.1007/BF01209164
https://arxiv.org/abs/2206.06015
https://arxiv.org/abs/2206.06015

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jain, M et al. (2011). “A double oracle algorithm for zero-sum security games on graphs”. In: Pro-
ceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS).

Ji, Kaiyi, Junjie Yang, and Yingbin Liang (2021). “Bilevel optimization: Convergence analysis and
enhanced design”. In: International conference on machine learning. PMLR, pp. 4882–4892.

Jiang, AX et al. (2013). “Monotonic maximin: A robust Stackelberg solution against boundedly
rational followers”. In: Conference on Decision and Game Theory for Security (GameSec).

Kar, D et al. (2015). “A game of thrones: when human behavior models compete in repeated Stack-
elberg security games”. In: International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS).

Kar, Debarun et al. (2017). “Trends and applications in Stackelberg security games”. In: Handbook
of dynamic game theory, pp. 1–47.

Korzhyk, D., V. Conitzer, and R. Parr (2010). “Complexity of computing optimal Stackelberg strate-
gies in security resource allocation games”. In: Proceedings of the 24th AAAI conference on arti-
ficial intelligence, pp. 805–810.

Liu, Larkin and Yuming Rong (2024). “No-Regret Learning for Stackelberg Equilibrium Computa-
tion in Newsvendor Pricing Games”. In: The 8th International Conference on Algorithmic Deci-
sion Theory.

Liu, Risheng et al. (2021). “Towards gradient-based bilevel optimization with non-convex followers
and beyond”. In: Advances in Neural Information Processing Systems 34, pp. 8662–8675.

Moradipari, Ahmadreza et al. (2022). “Feature and parameter selection in stochastic linear bandits”.
In: International Conference on Machine Learning. PMLR, pp. 15927–15958.

Naveiro, Roi and David Rı́os Insua (2019). “Gradient methods for solving stackelberg games”. In:
Algorithmic Decision Theory: 6th International Conference, ADT 2019, Durham, NC, USA, Oc-
tober 25–27, 2019, Proceedings. Springer, pp. 126–140.

Nguyen, T. H. et al. (2014). “Regret-based optimization and preference elicitation for Stackelberg
security games with uncertainty”. In: Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pp. 756–762.

Papamakarios, George et al. (2021). “Normalizing flows for probabilistic modeling and inference”.
In: Journal of Machine Learning Research 22.57, pp. 1–64.

Petruzzi, Nicholas C and Maqbool Dada (1999). “Pricing and the newsvendor problem: A review
with extensions”. In: Operations research 47.2, pp. 183–194.

Poincaré, Henri (1885). “Sur les courbes définies par les équations différentielles”. In: Journal de
Mathématiques Pures et Appliquées 1, pp. 167–244.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference with Normalizing
Flows”. In: International Conference on Machine Learning. PMLR, pp. 1530–1538.

Rezende, Danilo Jimenez, George Papamakarios, et al. (2020). “Normalizing flows on tori and
spheres”. In: International Conference on Machine Learning. PMLR, pp. 8083–8092.

Sato, Ryo, Mirai Tanaka, and Akiko Takeda (2021). “A gradient method for multilevel optimiza-
tion”. In: Advances in Neural Information Processing Systems 34, pp. 7522–7533.

Shieh, E. et al. (2012). “PROTECT: An application of computational game theory for the secu-
rity of the ports of the United States”. In: International Conference on Autonomous Agents and
Multiagent Systems (AAMAS).

Sinha, Ankur, Pekka Malo, and Kalyanmoy Deb (2017). “A review on bilevel optimization: From
classical to evolutionary approaches and applications”. In: IEEE transactions on evolutionary
computation 22.2, pp. 276–295.

Stackelberg, Heinrich von (1934). Marktform und Gleichgewicht. German. Vienna: Springer-Verlag.
Wang, Justin et al. (2024). “MAGICS: Adversarial RL with Minimax Actors Guided by Im-

plicit Critic Stackelberg for Convergent Neural Synthesis of Robot Safety”. In: arXiv preprint
arXiv:2409.13867.

Xiao, Quan, Songtao Lu, and Tianyi Chen (2023). “A Generalized Alternating Method for Bilevel
Learning under the Polyak-{\L} ojasiewicz Condition”. In: arXiv preprint arXiv:2306.02422.

Zanette, Andrea et al. (2021). “Design of experiments for stochastic contextual linear bandits”. In:
Advances in Neural Information Processing Systems 34, pp. 22720–22731.

Zhang, Yunxiao and Pasquale Malacaria (2021). “Bayesian Stackelberg games for cyber-security
decision support”. In: Decision Support Systems 148, p. 113599.

Zhou, Yan and Murat Kantarcioglu (2016). “Modeling adversarial learning as nested stackel-
berg games”. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer,
pp. 350–362.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A KEY ASSUMPTIONS AND DEFINITIONS

A.1 COMPACT AND CLOSED SETS

In this formal definition, Φ is both compact and closed in the product space A × B. A set Φ
is compact if for every open cover {Ui}i∈I of Φ, there exists a finite subcover such that Φ ⊆⋃n

k=1 Uik , where Uik are open sets in A× B. This ensures that Φ is ”contained” in a finite manner
within the space, even if A × B is infinite. Furthermore, Φ is closed if its complement, Φc =
(A × B) \ Φ, is open. This implies that Φ contains all its limit points, making it a complete set
within the topological space. Thus, Φ is a compact and closed subset of A × B, meaning that it is
both bounded and contains its boundary, providing useful properties for convergence and stability
in this space.

∀{Ui}i∈I , Φ ⊆
⋃
i∈I

Ui =⇒ ∃{Ui1 , Ui2 , . . . , Uin} such that Φ ⊆
n⋃

k=1

Uik , (A× B) \Φ is open.

(A.1)

A.2 ASSUMPTIONS ON LINEAR REWARD FUNCTION

1. Covariance Matrix:

ΣT :=

T∑
t=1

ϕ(at,bt)ϕ(at,bt)⊤ + λregI (A.2)

ϕ(at,bt) must ensure that the covariance matrix Σ−1T (a.k.a. the inverse of the covariance
matrix) is sufficiently large for effective learning.

2. Norm Bounds:

∥ϕ(at,bt)∥Σ−1
T
≡
√

ϕ(at,bt)Σ−1T ϕ(at,bt)⊤ (A.3)

∥ϕ(at,bt)∥Σ−1
T

must be small to ensure efficient uncertainty reduction.

3. Regularization Effect: Regularization parameter λreg balances bias and variance, affecting
sample complexity.

4. Positive Semi-Definiteness: Σ−1T is positive semi-definite (PSD).

A.3 DISCRETE MEASURE INTERPRETATION

Let {x1, x2, . . . , xn} be a set of discrete points in Rn. We define the measure α on these points as,

α =

n∑
i=1

α({xi})δxi (A.4)

where δxi
is the Dirac measure centered at xi. The integral of a function f : Rn → R with respect

to the measure α is given by,

∫
Rn

f(x) dα(x) =

k∑
i=1

α({xi})f(xi) (A.5)

A.4 DEFINITION OF RIEMANN MANIFOLD

A Riemannian manifold, expressed as Φ, consists of a smooth manifold Φ equipped with a smoothly
varying collection of inner products ωp on each tangent space TpΦ at every point p ∈ Φ. This
assignment ωp : TpΦ × TpΦ → R is positive-definite, meaning it measures angles and lengths in
a consistent and non-degenerate manner. Consequently, each vector v ∈ TpΦ inherits a smoothly

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

defined norm ∥v∥p =
√
ωp(v,v). This structure allows Φ to possess a locally varying yet smoothly

coherent geometric framework.

A.5 STOCHASTIC PERTURBATION FUNCTION

To model uncertainty in the joint action space, we introduce a stochastic perturbation over the leader
and follower actions. Specifically, we define a small, one-step random perturbation function J(a,b),
where a ∈ Rm and b ∈ Rn are the actions of the leader and follower, respectively. The perturbed
joint action is given by:

J(a,b) = (a′,b′) = (a+ ϵa,b+ ϵb) (A.6)

where ϵa ∈ Rm and ϵb ∈ Rn are independent Gaussian perturbations with zero mean and variance
σ2
a and σ2

b , respectively:

ϵa ∼ N (0, σ2
aIm), ϵb ∼ N (0, σ2

b In) (A.7)

Here, σa and σb are scalar diffusion parameters controlling the magnitude of the perturbation, and
Im and In are identity matrices of size m ×m and n × n, ensuring isotropic perturbations in each
component of a and b.
In component form, this perturbation can be written as:

a′i = ai + ϵai
, ϵai

∼ N (0, σ2
a) (A.8)

b′j = bj + ϵbj , ϵbj ∼ N (0, σ2
b) (A.9)

This formulation introduces small, independent, and isotropic random deviations from the original
actions, modeling the stochastic uncertainty in the decision-making process.

A.6 GEODESIC REPULSION LOSS

To encourage an even distribution of points on the spherical manifold, we employ the Geodesic
repulsion loss, which penalizes pairs of points that are too close in geodesic distance. This loss
function facilitates the spreading out of points uniformly over the sphere, preventing clustering.
Geodesic Distance: Let yi,yj ∈ RD be points on the surface of a Riemmanian manifold denoted as
G(yi,yj) in the abstract sense. For a unit sphere it would hold that ∥yi∥ = ∥yj∥ = 1). The geodesic
distance between two points on the sphere is the angle between them, which can be computed from
their dot product,

G(yi,yj) = arccos
(
y⊤i yj

)
, (A.10)

where y⊤i yj is the dot product of yi and yj .
Repulsion Term: To penalize pairs of points that are close in geodesic distance, we use an expo-
nential decay function, which strongly penalizes small distances:

exp

(
−G(yi,yj)

γ

)
, (A.11)

where γ > 0 is a sensitivity parameter controlling how strongly the loss reacts to small distances. A
smaller γ enforces stronger repulsion between nearby points.
Geodesic Repulsion Loss: The total Geodesic Repulsion Loss is computed as the sum of repulsion
terms over all pairs of points, excluding the diagonal (self-repulsion),

Lrepulsion =

n∑
i=1

n∑
j=1,j ̸=i

exp

(
−
arccos

(
y⊤i yj

)
γ

)
, (A.12)

where n is the number of points on the manifold. The geodesic distance G(yi,yj) is computed
using the angle between yi and yj , ensuring that points are uniformly spaced across the spherical
manifold.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

To avoid penalizing points for being close to themselves, we exclude the self-repulsion terms by
masking the diagonal elements in the pairwise distance computation,

G(yi,yi) = 0, for all i. (A.13)

This formulation ensures that points are pushed apart when their geodesic distances are too small,
leading to a more uniform distribution on the manifold, which is critical for preserving the geometry
of the learned representation.

A.7 NEGATIVE LOG-LIKELIHOOD LOSS FOR NORMALIZING FLOWS

Let x ∈ Rd be an input data point, and let f : Rd → Rd be an invertible transformation defined
by the normalizing flow. The transformation f maps the input data x to a latent variable z = f(x)
that follows a simple base distribution pZ(z). Assume that the base distribution is a standard normal
distribution, Z ∼ N (0, Id), with the probability density function (PDF) given by,

pZ(z) =
1

(2π)d/2
exp

(
−1

2
∥z∥2

)
. (A.14)

The log probability under this distribution is,

log pZ(z) = −
1

2
∥z∥2 − d

2
log(2π). (A.15)

Using the change of variables formula, the probability density of x under the model is related to the
base distribution via the transformation f as follows,

pX(x) = pZ(f(x))

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ . (A.16)

Where ∂f(x)
∂x is the Jacobian matrix of f with respect to x, and

∣∣∣det ∂f(x)
∂x

∣∣∣ is the absolute value of
the determinant of the Jacobian.
NLL Loss: The negative log-likelihood (NLL) loss for a single data point x is defined as,

LN
ϕ (x) = − log pX(x) = −

[
log pZ(f(x)) + log

∣∣∣∣det ∂f(x)∂x

∣∣∣∣] . (A.17)

Substituting the log probability of z = f(x) under the base distribution:

LN
ϕ (x) =

1

2
∥f(x)∥2 + d

2
log(2π)− log

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ . (A.18)

For a dataset {xi}ni=1, the total NLL loss is the average over all data points:

LN
ϕ =

1

n

n∑
i=1

(
1

2
∥f(xi)∥2 +

d

2
log(2π)− log

∣∣∣∣det ∂f(xi)

∂xi

∣∣∣∣) . (A.19)

The objective of training is to minimize LN
ϕ , ensuring that the transformed latent variables z = f(x)

follow the base distribution and the transformation f appropriately adjusts the volume of space via
the Jacobian determinant.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B OPTIMIZATION ALGORITHMS

B.1 BI-LEVEL OPTIMIZATION STRUCTURE

Bi-level Optimization Structure: The optimization problems represented by Eqs. (3.4) and (3.5)
exhibit the structure of a bi-level optimization problem (Balling and Sobieszczanski-Sobieski 1995;
Beck, Ljubić, and Schmidt 2023; Sinha, Malo, and Deb 2017). Generally, a bilevel optimiza-
tion problem comprises an upper-level optimization task with an embedded lower-level problem,
where the solution to the upper-level problem depends on the solution to the lower-level one. Two
conventional methods have been employed to address the bilevel optimization problem. The first
leverages the Karush-Kuhn-Tucker (KKT) conditions to exploit the optimality of the lower-level
problem (see Appendix B.2). The second employs gradient-based algorithms like gradient ascent
(discussed in Appendix B.3). Both approaches, however, have notable limitations. KKT conditions
assume strong convexity or pseudo-convexity, making them unsuitable for many non-convex set-
tings, while gradient-based methods, in addition to being computationally inefficient, often struggle
or converge poorly when weak-convexity is not guaranteed. Moreover, these methods typically as-
sume optimization under perfect information, whereas we focus on learning-based frameworks with
uncertainty due to sampling.

B.2 KKT REFORMULATION FOR SOLVING STACKELBERG OPTIMIZATION PROBLEMS

The bi-level optimization structure can be solved via reformulating the problem as a bilevel opti-
mization problem via the Karush-Kuhn-Tucker (KKT) conditions. It assumes convexity and differ-
entiability in the embedded space and transforms the original bilevel problem into a single-stage
optimization problem via the KKT conditions.

max
πA,πB ,λ

⟨θA, ϕ(πA, πB)⟩

s.t. πA ∈ ΠA

∇πB
⟨θB , ϕ(πA, πB)⟩+

ℓ∑
i=1

λi∇πB
gi(πB) = 0

g(πB) ≥ 0

λ ≥ 0

λ⊤g(πB) = 0

(B.1)

where ΠB = {πB |g(πB) ≥ 0} and gi represents the i-th constraint of ΠB . Specifically, it requires
the convexity of the lower level problem (3.2). Otherwise, KKT complementarity conditions turns
the problem into a nonconvex and nonlinear problem even πB is a set of linear constraints. And
the problem is incapable to solve under normal nonconvex and nonlinear algorithm. In addition,
Slater’s constraint qualification is required to ensure that the solution under KKT reformulation is the
solution of original bilevel problem.(Allende and Still 2013)The reformulation involves converting
non-linear constraints into a convex hull, thus simplifying the problem into a linear program (LP).
Sensitivity analysis can be then performed to understand how changes in constraints impact the
solution, with particular attention to the effects of shrinking parameters on the objective function.
The approach is utilizes the application of the Weak Duality Theorem to analyze sensitivity.

B.3 GRADIENT ASCENT APPROACH FOR SOLVING BILEVEL OPTIMIZATION PROBLEMS

Another approaches is transforming Stackelberg game into the the bilevel optimization problem.
Namely, we are interested in the following problem,

min
x∈Rd,y∈y∗(x)

f(x, y), (Upper-Level)

s.t. y∗(x) ≡ argmin
y∈Y

g(x, y). (Lower-Level)
(B.2)

The gradient-based algorithms have seen a growing interest in the bilevel problem (Huang 2024;
Huang et al. 2022; Ji, J. Yang, and Liang 2021; R. Liu et al. 2021; Sato, Tanaka, and Takeda
2021; Xiao, Lu, and Chen 2023). To measure the stationarity of the lower-level problem, Polyak-
Lojasiewicz(PL) condition on g(x, ·) is widely applied to show the last-iterate convergence of
∥∇xf(x

t, y⋆(xt))∥, i.e,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

∥∇yg(x, y)∥2 ≥ 2µ(g(x, y)−min
z

g(x, z)). (B.3)

where µ is a positive constant. This condition relaxes the strong convexity but is still not satis-
fied for the polynomial function g(x, y) = y4. Also, the lower level function g(x, ·) needs to be
differentiable in Rd. For the Stackelberg game, this is not the case since the follower’s strategy
πB ∈ ΠB .
Interestingly, should the objective functions be differentiable, one strategy to do this optimization
is via gradient descent. Of course the gradient descent algorithm would have to be reformulated
to accommodate to a finite amount of traversals based on the gradient update (Sato, Tanaka, and
Takeda 2021) (Franceschi et al. 2017) (Naveiro and Insua 2019).

B.4 TECHNICAL NOTE: CONVERSION OF ABSOLUTE VALUE CONSTRAINTS INTO REGULAR
LP CONSTRAINTS

Suppose there exists D dimensions on the L1 norm. Wnd we have the constraint,

∥x− c∥1 ≤ D, expressed as,
D∑
i=1

|xi − ci| ≤ C (B.4)

This can be expressed as,

zi ≥ xi − cd for i = 1, 2, . . . , D (B.5)
zi ≥ −(xi − cd) for i = 1, 2, . . . , D (B.6)

D∑
i=1

zi ≤ C (B.7)

zi ≥ 0 for i = 1, 2, . . . , D (B.8)

By introducing a new dummy variable zi, we and adding 2D + 1 additional constraints, we can
express this now as a standard linear program.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C TOPOLOGY & GEODESY

C.1 CONVEX MANIFOLD DEFINITIONS:

Definition C.1. Geodesically Convex Sets: Let (Φ, h) be a Riemannian manifold, where Φ is a
smooth manifold and h(a,b) is a Riemannian metric on Φ (i.e. innner product). A subset SΦ ⊆ Φ
is said to be geodesically convex if for any two points a,b ∈ SΦ, there exists a geodesic τ : d ∈
[0, 1]→ Φ parameterized by d such that,

τ(0) = a, τ(1) = b, and, τ(d) ∈ SΦ, ∀d ∈ [0, 1]. (C.1)

Where d can be viewed as a parameter proportional to the distance travelled along the geodesic. In
other words, a set SΦ is geodesically convex if for any two points in SΦ, there exists a geodesic
between these points that lies entirely within SΦ.
Definition C.2. Convex Manifolds: A convex manifold is a manifold where the geodesic between
any two points on the manifold falls within, or constitutes, a geodesically convex set SΦ, as per
Definition C.1.

C.2 PROOF OF LEMMA 4.1

Geodesic Distance and Closeness to ξθ: Let Φ ⊂ RD be a manifold serving as a boundary of a
convex set in RD. Given θ, let ξθ ∈ Φ be the point on the manifold that maximizes the dot product
⟨θ, ξθ⟩, and is orthogonal to Φ at the point of intersection. For any two points on the manifold
θ′A, θ

′
B ∈ Φ, if the geodesic distance between ξθ and θ′A is greater than the geodesic distance between

ξθ and θ′B , G(ξθ, θ
′
A) > G(ξθ, θ

′
B), then the dot product satisfies ⟨θ, θ′A⟩ < ⟨θ, θ′B⟩.

Proof. Geodesic Distance and Closeness to ξθ: SinceM is a smooth, compact manifold bounding
a convex region, the geodesic distance between two points on M, say ξ1, ξ2 ∈ M, is defined
as the shortest path along the manifold G(ξ1, ξ2) between ξ1 and ξ2. For convex manifolds, the
geodesic distance behaves similarly to the distance on the surface of a sphere: an increase in the
geodesic distance from ξθ to another point on the manifold corresponds to an increase in the angle
between the tangent vector at ξθ and the vectors corresponding to points on the manifold. Hence, if
G(ξθ, θ

′
A) > G(ξθ, θ

′
B), the angle between ξθ and θ′A is larger than the angle between ξθ and θ′B .

Dot Product and Angle: The dot product ⟨θ, ξ⟩ between a normal vector θ at ξθ and a point ξ on
the manifold is given by:

⟨θ, ξ⟩ = ∥θ∥∥ξ∥ cos(α) (C.2)

where α is the angle between the vectors θ and ξ. Since θ = ξθ
∥ξθ∥ (as ξθ is a unit vector), the angle

between θ and any point ξ on the manifold depends only on the angle between ξθ and ξ. Since
G(ξθ, θ

′
A) > G(ξθ, θ

′
B) implies that the angle between ξθ and θ′A is larger than the angle between

ξθ and θ′B , we have:

cos
(
αθ′

A

)
< cos

(
αθ′

B

)
, (C.3)

where αθ′
A

is the angle between θ and θ′A, and αθ′
B

is the angle between θ and θ′B .
Conclusion on Dot Products: Since the dot product is proportional to the cosine of the angle
between the vectors, and cos

(
αθ′

A

)
< cos

(
αθ′

B

)
, it follows that:

⟨θ, θ′A⟩ = ∥θ∥∥ξθ′
A
∥ cos

(
αθ′

A

)
< ⟨θ, θ′B⟩ = ∥θ∥∥ξθ′

B
∥ cos

(
αθ′

B

)
. (C.4)

Therefore,

⟨θ, θ′A⟩ < ⟨θ, θ′B⟩. (C.5)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.3 LEMMA C.1

Lemma C.1. Maximization on a Manifold: Given a smooth manifold Φ, and objective vector θ,
the element on a manifold which optimizes ⟨ϕ, θ⟩ is the element whose normal vector’s tangent plane−→nΦ is collinear with θ. (Proof in Appendix C.3.)

Proof. Let Φ ⊂ RD be the unit sphere, defined as:

Φ = {ϕ ∈ RD | ∥ϕ∥ = 1}.

Given a vector θA ∈ RD, we aim to find the point ϕ∗ on the sphere that maximizes the inner product
⟨ϕ, θA⟩. This can be formally stated as the following optimization problem:

maximize
ϕ∈RD

⟨ϕ, θA⟩

subject to ∥ϕ∥ = 1.

Optimization Formulation: The problem is a constrained optimization problem where the objec-
tive is to maximize the dot product ⟨ϕ, θA⟩ and the constraint ensures that ϕ lies on the unit sphere.
Mathematically:

maximize
ϕ∈RD

⟨ϕ, θA⟩

subject to g(ϕ) = ∥ϕ∥2 − 1 = 0.

Here, g(ϕ) represents the constraint that ϕ lies on the unit sphere.

C.4 PROOF OF LEMMA 4.2

Pure Strategy of the Follower: While optimizing over a convex manifold, proposed in Definition
C.2, given any objective vector θ, the linear structure of the reward functions from Eq. (2.15) and
Eq. (2.16), and that the subspace induced by a ∈ A forms a geodesically convex subset, as defined
in Definition C.1, the optimal strategy of the follower, will be that of a pure strategy, such that
πA(b|a) ∈ {0, 1}.

Proof. The goal is to show that the follower’s optimal strategy πA(b|a) is a pure strategy, such that
πA(b|a) ∈ {0, 1}. Let the objective vector θ ∈ RD define the direction of optimization, with the
reward function given by,

µ(a,b) = ⟨ϕ(a,b), θ⟩, (C.6)

where ϕ : A× B → RD is a feature map.
Since Φ is geodesically convex, for any point a ∈ A, there exists a unique geodesic that connects
the subspace formed by fixing a, denoted as Φa ≡ ϕ(a, ·) to any other point g ∈ Φ. By Lemma 4.1
in order to maximize the follower’s reward µB , we must find the shortest geodesic distance, G(·), to
θ′A within SΦ. We express this as,

ϕ(a,b∗) = arg min
g∈SΦ

G(a,b), (C.7)

Since Φ is convex, this minimizer is unique. The reward function µB(a,b) depends on the inner
product ⟨ϕ(a,b), θB⟩. As this structure is linear with respect to ϕ(a,b), maximizing the reward is
equivalent to minimizing the geodesic distance from ϕ(a,b) to the objective vector θ. Since this
minimizer is unique by geodesic convexity, the follower’s optimal strategy will correspond to this
unique solution b∗ given a. As there are no alternative solutions for ϕ(b∗, ·) given a. Because
ϕ(·) is a bijective mapping, we conclude that any probablistic mapping function must adhere to
πA(b|a) ∈ {0, 1}.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.5 PROOF OF LEMMA 4.3

Intersection of
←→
Φ a and

←→
Φ b: Given a bipartite spherical map Q(·) from Definition 2.1, with a

parameterizing the azimuthal (latitudinal) coordinates, the cardinality of the intersect between
←→
Φ a

and
←→
Φ b will be non-empty. That is, |

←→
Φ a ∩

←→
Φ b| > 0.

Proof. Given two distinct points θ′A and θ′B , we define the isoplane,
←→
Φ a, as the submanifold formed

by fixing a subset of spherical coordinates (γ
(A)
1 , . . . , γ

(A)
k), including the azimuthal angle ν(A),

and allowing the remaining coordinates to vary. Similarly, the isoplane at θ′B is formed by fixing a
different subset of spherical coordinates (γ(B)

k+1, . . . , γ
(B)
D−2), while allowing the rest to vary.

If Φ is a compact, orientable, smooth manifold without boundary, and X⃗ is a smooth vector field on
Φ with isolated zeros, the Poincaré-Hopf theorem states that,

∑
P∈Zeroes(X⃗)

Index(X⃗,P) = χ(Φ), (C.8)

where χ(Φ) is the Euler characteristic of the manifold, and Index(X⃗,P) denotes the index of the
vector field at point P. The compactness of SD−1 imposes strong geometric constraints: subspaces
or submanifolds (such as isoplanes) embedded within SD−1 must intersect unless they are specif-
ically configured to avoid each other (e.g., in certain degenerate cases of orthogonality). To dive
deeper, and provide a more fundamental and intuitive analysis, let Ψθ represent the intersection of
isoplanar subspaces,

Ψθ =
←→
Φ a ∩

←→
Φ b. (C.9)

First, the compactness of the unit sphere SD−1 implies that any sufficiently dimensional subspaces
embedded in the manifold cannot be disjoint. The intersection may be a single point or a higher-
dimensional subset, depending on the number of coordinates fixed and the degrees of freedom al-
lowed for the remaining coordinates. Secondly, even in the case where the isoplanes at

←→
Φ a and

←→
Φ b

are orthogonal, the fact that the subspaces are embedded in a compact, orientable manifold forces
them to intersect. This intersection result is a consequence of the general principles of intersec-
tion theory in compact manifolds, which asserts that two subspaces of sufficient dimension within a
compact manifold must intersect unless they are orthogonal in all directions. However, since we are
working with constrained isoplanes that do not span the entire manifold, even orthogonal subspaces
are forced to intersect due to the lack of space for complete disjointness. Therefore,

|Ψθ| > 0. (C.10)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.6 PROOF OF LEMMA 4.4

Orthogonality of Subspaces
←→
Φ a and

←→
Φ b: The two submanifolds

←→
Φ a and

←→
Φ b, are orthognal to

eachother within Φ.
We consider the spherical manifold SD−1, embedded in RD, where points are parameterized using
D − 1 angular coordinates. These coordinates are composed of latitude-like angles ν1, . . . , νD−2
and a longitude-like angle γ. The Cartesian coordinates, x = [x1, x2, . . . , xD]⊺, of a point on SD−1

are expressed as:

x1 =

D−2∏
i=1

sin(νi) cos(γ),

x2 =

D−2∏
i=1

sin(νi) sin(γ),

x3 =

D−3∏
i=1

sin(νi) cos(νD−2),

x4 =

D−4∏
i=1

sin(νi) cos(νD−3),

...
xD−1 = sin(ν1) cos(ν2),

xD = cos(ν1).

We aim to show that the subspaces generated by fixing θ′A, the set of latitude-like angles, and fixing
θ′B , the longitude-like angle, are orthogonal. To this end, we compute the tangent vectors of the
manifold in the directions of these angular coordinates.
First, we compute the partial derivative of each coordinate with respect to γ. The coordinates x1 and
x2 explicitly depend on γ, while the other coordinates x3, . . . , xD do not. Therefore, we have,

∂x1

∂γ
=

∂

∂γ

(
D−2∏
i=1

sin(νi) cos(γ)

)
= −

D−2∏
i=1

sin(νi) sin(γ),

∂x2

∂γ
=

∂

∂γ

(
D−2∏
i=1

sin(νi) sin(γ)

)
=

D−2∏
i=1

sin(νi) cos(γ),

∂xj

∂γ
= 0, ∀j ≥ 3.

Thus, the complete partial derivative with respect to γ is,

∂

∂γ
(x1, x2, . . . , xD) =

(
−

D−2∏
i=1

sin(νi) sin(γ),

D−2∏
i=1

sin(νi) cos(γ), 0, . . . , 0

)
.

Next, we compute the partial derivative of the coordinates with respect to ν1. This affects all coor-
dinates x1, x2, . . . , xD. Specifically:

∂x1

∂ν1
=

∂

∂ν1

(
D−2∏
i=1

sin(νi) cos(γ)

)
= cos(ν1)

D−2∏
i=2

sin(νi) cos(γ),

∂x2

∂ν1
=

∂

∂ν1

(
D−2∏
i=1

sin(νi) sin(γ)

)
= cos(ν1)

D−2∏
i=2

sin(νi) sin(γ),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

∂x3

∂ν1
=

∂

∂ν1

(
D−3∏
i=1

sin(νi) cos(νD−2)

)
= cos(ν1)

D−3∏
i=2

sin(νi) cos(νD−2),

∂x4

∂ν1
= · · · = ∂xD

∂ν1
= − sin(ν1).

Thus, the complete partial derivative with respect to ν1 is:

∂

∂ν1
(x1, x2, . . . , xD) =

(
cos(ν1)

D−2∏
i=2

sin(νi) cos(γ), cos(ν1)

D−2∏
i=2

sin(νi) sin(γ), − sin(ν1), 0, . . . , 0

)
.

Dot Product of Tangent Vectors: To prove orthogonality of the subspaces spanned by these vec-
tors, we compute the dot product of the tangent vectors ∂

∂γ and ∂
∂ν1

. The dot product is given by,

∂

∂γ
· ∂

∂ν1
=

(
−

D−2∏
i=1

sin(νi) sin(γ)

)
·

(
cos(ν1)

D−2∏
i=2

sin(νi) cos(γ)

)
+ . . . ,

which simplifies to zero, as the terms corresponding to the components in x1, x2, and x3 do not
align. Consequently, we have,

∂

∂γ
· ∂

∂ν1
= 0.

Since the dot product of the tangent vectors is zero, the subspaces spanned by fixing A and fixing
B are orthogonal at every point on SD−1. This orthogonality arises from the fact that the angular
coordinates for latitude and longitude parameterize independent directions in the tangent space of
the spherical manifold. Thus, we conclude that the subspaces resulting from fixing A and B are
mutually orthogonal.

C.7 PROOF OF LEMMA 4.5

Pure Strategy of the Leader: Given a spherical manifold, Φ, and isoplanar subspace,
←→
Φ a and←→

Φ b for the longitudinal and lattitudinal subspaces respectively, the optimal strategy of the leader
is that of a pure strategy, that is, π∗A(a) ∈ {0, 1}.

Proof. Let SD−1 ⊂ RD be the unit sphere embedded in D-dimensional Euclidean space.
Consider two distinct points θ′A and θ′B on the manifold, each with spherical coordinates
(γ

(A)
1 , γ

(A)
2 , . . . , γ

(A)
D−2, ν

(A)) and (γ
(B)
1 , γ

(B)
2 , . . . , γ

(B)
D−2, ν

(B)), respectively. We aim to demon-
strate that the isoplanes formed by fixing half of the spherical coordinates at θ′A and θ′B must inter-
sect, and this intersection Ψθ is a singleton. By Lemma 4.3 we infer that

←→
Φ a and

←→
Φ b must form a

non-empty intersect in Φ. Follower by Lemma 4.4,
←→
Φ a and

←→
Φ b are orthognal to eachother in Φ.

Singleton Intersection due to Orthogonality: Consider the isoplanes formed by fixing the angu-
lar coordinates θ′A (latitude-like) and θ′B (longitude-like) on the unit sphere SD−1. These isoplanes
correspond to submanifolds of the sphere, which are defined by holding certain angular coordinates
constant while allowing others to vary. In the special case where the isoplanes at θ′A and θ′B are
orthogonal, we argue that the intersection set of these submanifolds is reduced to a single element
(singleton). Let P be the point where the isoplanes associated with fixed θ′A and θ′B intersect. The
tangent space at P, denoted as TPS

D−1, consists of vectors tangent to the sphere at P.

The isoplane formed by fixing θ′A corresponds to a submanifold
←→
Φ a whose tangent space at p,

denoted Tp
←→
Φ a, is spanned by the partial derivatives with respect to the longitude-like angular coor-

dinates γi. Similarly, the isoplane formed by fixing θ′B corresponds to a submanifold
←→
Φ b, and the

tangent space Tp
←→
Φ b is spanned by the partial derivatives with respect to the latitude-like angular

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

coordinates νj . Orthogonality between the isoplanes at θ′A and θ′B implies that the tangent spaces
Tp
←→
Φ a and Tp

←→
Φ b are mutually orthogonal. This means that the dot product of any vector from

Tp
←→
Φ a with any vector from Tp

←→
Φ b is zero:

vA · vB = 0, ∀vA ∈ Tp
←→
Φ a, vB ∈ Tp

←→
Φ b.

Geometrically, this implies that the submanifolds
←→
Φ a and

←→
Φ b intersect at a right angle at P. Since

the submanifolds are orthogonal, no other points of intersection can occur, and the intersection set
is reduced to the single point P. Therfore,

|Ψθ| = 1. (C.11)

Minimal Geodesic Distance from Ψθ: Let Ψγ = (x
(int)
1 , x

(int)
2 , . . . , x

(int)
D) be the unique in-

tersection point of the two isoplaness. Now, we consider the geodesic distance from this in-
tersection point to any other point on the sphere. The geodesic distance between two points
P1 = (x

(1)
1 , x

(1)
2 , . . . , x

(1)
D) and P2 = (x

(2)
1 , x

(2)
2 , . . . , x

(2)
D) on the unit sphere is given by,

G(P1,P2) = arccos(P1 ·P2).

At the intersection point Ψθ, the geodesic distance is minimized, thus,

P1 = Ψθ =⇒ G(P1,Ψθ) = 0.

Suppose we move away from Ψγ along either the longitude isoplanes (by changing x1) or the lati-
tude isoplanes (by changing x2, x3, . . . , xD). Any such deviation implies a change in the dot product
P1 · P2, which results in an increase in the geodesic distance. Specifically, if we move along the
longitude isoplanes, we are changing x1, while the other coordinates remain constant, resulting in
a decrease in the dot product. Similarly, if we move along the latitude isoplanes, we are changing
x2, x3, . . . , xD, again causing a decrease in the dot product. Since the geodesic distance is a mono-
tonically increasing function of the angular separation, any deviation from Ψγ leads to an increase
in the geodesic distance,

G(P2,P1) > G(P1,Ψγ) = 0.

Thus, any deviation from the intersection point of the longitude and latitude isoplaness must result
in an increase in the geodesic distance, G(·). By Lemma 4.1, this increase in the geodesic distance
will decrease the expected reward µA. As the cardinality of Ψ is |Ψγ | = 1 from Eq. (C.11), this
implies no optimal mixed strategies exist for the leader, and thus, π∗A(a) ∈ {0, 1}.

C.8 CONVERSION OF CARTESIAN UNCERTAINTY TO SPHERICAL

Lemma C.2. Given two points θA, θ̃A ∈ RD, denoting points on the surface of a unit spherical
manifold, the uncertainty in Cartesian coordinates expressed as ∥θA−θ̃A∥ < Cθ(t) can be expressed

as uncertainty in geodesic distance as G(A, θ̃A) < cos−1
(
1− Cθ(t)

2

2

)
.

Proof. Given two points θA, θ̃A ∈ RD, with ∥A∥ = ∥θ̃A∥ = 1, denoting points on the surface of a
unit sphere, the uncertainty in Cartesian coordinates is expressed as:

∥θA − θ̃A∥ < Cθ(t)

where Cθ(t) ∈ R+ is the uncertainty bound. We aim to translate this uncertainty into spherical
coordinates.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Cartesian Coordinates on the Unit Sphere: In RD, the spherical coordinates of a point θA on
the surface of the unit sphere can be represented as:

θ
(1)
A = cos(ν1),

θ
(2)
A = sin(ν1) cos(ν2),

θ
(3)
A = sin(ν1) sin(ν2) cos(ν3),

...

θ
(D−1)
A = sin(ν1) sin(ν2) . . . sin(νD−2) cos(γ),

θ
(D)
A = sin(ν1) sin(ν2) . . . sin(νD−2) sin(γ),

where ν1, ν2, . . . , νD−2 represent the latitude angles, and γ represents the longitude angle. Similarly,
the point θ̃A can be written in terms of spherical angles ν′1, ν

′
2, . . . , γ

′.

Uncertainty in Cartesian Coordinates: The uncertainty in Cartesian space is given by:

∥θA − θ̃A∥2 = (θ
(1)
A − θ̃

(1)
A)2 + (θ

(2)
A − θ̃

(2)
A)2 + . . .+ (θ

(D)
A − θ̃

(D)
A)2 < Cθ(t)2.

However, it is more efficient to relate this uncertainty directly to spherical angular distance.

Spherical Angular Distance: The squared Euclidean distance between two points θA and θ̃A on
the surface of the unit sphere is related to their angular distance ν by the spherical law of cosines:

∥θA − θ̃A∥2 = 2(1− cos(ν)),

where ν is the angular distance between the two points, and cos(ν) is given by:

cos(ν) = cos(ν1) cos(ν
′
1) + sin(ν1) sin(ν

′
1)
(
cos(ν2) cos(ν

′
2) + sin(ν2) sin(ν

′
2) · · ·

)
.

This expression provides the exact angular distance between points θA and θ̃A on the unit sphere.

Uncertainty in Spherical Coordinates: The inequality ∥θA − θ̃A∥ < Cθ(t) implies that the an-
gular distance ν between the two points satisfies:

2(1− cos(ν)) < Cθ(t)2,

which simplifies to:

cos(ν) > 1− Cθ(t)
2

2
.

Since cos(ν) ranges from 1 (when θA = θ̃A) to -1 (for antipodal points), the angular distance ν is
bounded by:

ν < cos−1
(
1− Cθ(t)

2

2

)
.

This inequality describes the exact spherical uncertainty region. Thus, the uncertainty ∥θA− θ̃A∥ <
Cθ(t) in Cartesian space corresponds to an angular uncertainty ν < cos−1

(
1− Cθ(t)

2

2

)
on the unit

sphere.

C.9 DISTANCE PRESERVING ORTHOGONAL PROJECTION:

Lemma C.3. Consider a unit sphere SD−1 ⊂ RD. Given a point θA ∈ SD−1 and a geodesic
ball BJ ⊂ SD−1 centered at θA, we are interested in the behaviour of this ball under orthogonal
projection onto a subspace of RD. Specifically, we aim to rigorously show that the diameter of the
orthogonally projected ball does not exceed the diameter of the original geodesic ball.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. Geodesic Uncertainty Balls: Let θA, θ̃A ∈ RD be two points on the unit sphere, i.e.,
∥θA∥ = ∥θ̃A∥ = 1, and let the geodesic distance between θA and θ̃A be denoted by γ(θA, θ̃A).
The geodesic distance between any two points on SD−1 is given by,

γ(θA, θ̃A) = arccos
(
θA · θ̃A

)
,

where θA · θ̃A is the Euclidean dot product between θA and θ̃A. A geodesic ball BJ(θA) centered at
θA with radius J is defined as the set of points on the unit sphere such that their geodesic distance
from θA is less than or equal to J :

BJ(θA) = {θ′A ∈ SD−1 | γ(θA, θ̃A) ≤ J}.

We are particularly interested in the case where J ≤ arccos
(
1− Cθ(t)

2

2

)
, where Cθ(t) is a positive

value corresponding to the uncertainty radius in the Euclidean distance.
Orthogonal Projection and Geodesic Distance: Given a subspace V ⊂ RD, let PV : RD → V
denote the orthogonal projection onto V . For any points θA, θ̃A ∈ RD, the Euclidean distance
between their projections is bounded by:

∥PV (θA)− PV (θ̃A)∥ ≤ ∥θA − θ̃A∥.

Since the geodesic distance on the unit sphere is a measure of arc length between points, it follows
that the geodesic distance between two points is non-increasing under orthogonal projection. We
aim to show that the diameter of the projected geodesic ball onto the subspace V does not exceed
the diameter of the original ball.
Diameter of a Geodesic Ball: The diameter of a set S ⊂ SD−1 is defined as the greatest geodesic
distance between any two points in S:

diam(S) = sup
x,y∈S

γ(x, y).

For a geodesic ball BJ(θA), the maximum geodesic distance occurs between two antipodal points
on the boundary of the ball. Therefore, the diameter of the geodesic ball is:

diam(BJ(θA)) = 2J.

In particular, for J = arccos
(
1− Cθ(t)

2

2

)
, we have:

diam(BJ(θA)) = 2 arccos

(
1− Cθ(t)

2

2

)
.

C.10 DIAMETER PRESERVING ORTHOGONAL PROJECTION

We now formalize the behaviour of the geodesic ball under orthogonal projection.

Lemma C.4. Let BJ(θA) be a geodesic ball of radius J ≤ arccos
(
1− Cθ(t)

2

2

)
on the unit sphere

SD−1 ⊂ RD. Let V ⊂ RD be a subspace, and let PV : RD → V be the orthogonal projection onto
V . Then, the diameter of the orthogonally projected ball PV (BJ(θA)) satisfies:

diam(PV (BJ(θA))) ≤ diam(BJ(θA)) = 2J.

Proof. Consider two points θA, θ̃A ∈ BJ(θA). By the definition of a geodesic ball, we know that:

γ(θA, θ̃A) ≤ 2J.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Next, project θA and θ̃A orthogonally onto the subspace V , yielding the points PV (θA) and PV (θ̃A).
Since orthogonal projection reduces or preserves Euclidean distances, we have:

∥PV (θA)− PV (θ̃A)∥ ≤ ∥θA − θ̃A∥.

Moreover, since the geodesic distance between points on the sphere is a function of their Euclidean
distance, it follows that the geodesic distance between the projected points PV (θA) and PV (θ̃A) is
also bounded by:

γ(PV (θA), PV (θ̃A)) ≤ γ(θA, θ̃A).

Thus, for all pairs θA, θ̃A ∈ BJ(θA), we have:

γ(PV (θA), PV (θ̃A)) ≤ 2J.

This shows that the diameter of the projected geodesic ball PV (BJ(θA)) is at most 2J , i.e.,

diam(PV (BJ(θA))) ≤ diam(BJ(θA)) = 2J.

C.11 PROOF OF THEOREM 1

Isoplane Stackelberg Regret: For D-dimensional spherical manifolds embedded in RD space,
where ϕ(a, ·) generates an isoplanes

←→
Φ a, and the linear relationship to the reward function in

Eq. (2.15) and Eq. (2.16) holds, the simple regret, defined in Eq. (4.3), of any learning
algorithm with uncertainty parameter uncertainty Cθ(t), refer to in Eq. (3.3), is bounded by
O(2 arccos

(
1− Cθ(t)2/2

)
).

Proof. The proof of Theorem 1 hinges on the aforementioned arguments in Lemma C.2, Lemma
C.3, and Lemma C.4 sequentially, but in the context of parameter estimation.

First, Lemma C.2 argues that one can transform a confidence bound |θA − θ̂A| ≤ Cθ(t) into a con-
fidence bound on geodesic distance G(θA, θ̂A) ≤ cos−1

(
1− Cθ(t)

2

2

)
. Let us denote this as the

geodesic confidence ball BallG(θ
∗, Cθ(t)). Nevertheless, due to the separation of subspaces

←→
Φ a

and
←→
Φ b, we must find the projection of BallG(θ

∗, Cθ(t)) onto
←→
Φ b such that we can obtain a di-

ameter measure on the new intersecting subspace
←→
Φ a∩

←→
Φ b. Next, Lemma C.3 argues that geodesic

distances will either be preserved or reduced when making a projection to an orthogonal subspace
←→
Φ b, the orthogonality of this subspace was previously established in Lemma 4.4. Thereafter,
Lemma C.4 specifies that the maximum diameter of this new confidence ball Ball′G(θ

∗, Cθ(t))
that is projected onto

←→
Φ b is confined to a maximum diameter of 2 cos−1

(
1− Cθ(t)

2

2

)
.

Thus, this constitutes the best and worst possible outcomes due to misspecification in accordance
with the formulation in Eq. (3.6) and Eq. (3.7), denoted as H̄(θ∗A, t) −H(θ∗A, t), also expressed in
Eq. (4.3), which upper bounds the simple regret.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D NEURAL FLOW ARCHITECTURAL SPECIFICATIONS

We present the mathematical foundations of the normalizing flow architecture used to model spher-
ical mappings. Our method combines a spherical coordinate transformation with normalizing flows
to provide an invertible mapping between input features and a latent space, with applications to tasks
requiring smooth transformations on a manifold.
Mapping to a Spherical Manifold: The transformation from Cartesian coordinates to spherical
coordinates is used to map input features onto an D-dimensional spherical manifold. We define
two heads in the neural network input, the head from A specifically controls the azimuthal spherical
coordinate and additional coordinates, and the head from B specifically controls other coordinates.
The output sizes of the neural network that transforms the inputs are ⌊D−12 ⌋ + 1 for A and ⌊D−12 ⌋
for B. The conversion from spherical coordinates to Cartesian coordinates, x ∈ RD, is defined in
Appendix F.1.
Affine Coupling Layers: A normalizing flow consists of a series of invertible transformations,
including affine coupling layers, which divide the input into two parts and transform one part condi-
tioned on the other. Let the input be x = [x1,x2], where x1 and x2 are disjoint subsets of the input.
The affine coupling transformation is defined as,

y1 = x1, (D.1)
y2 = x2 ⊙ exp(s(x1)) + t(x1), (D.2)

where ⊙ denotes element-wise multiplication, and s(x1) and t(x1) are the scaling and translation
functions, respectively, parameterized by a neural network. The inverse of this transformation is
straightforward:

x1 = y1, (D.3)
x2 = (y2 − t(y1))⊙ exp(−s(y1)). (D.4)

This transformation is invertible by design, making it suitable for use in flow-based models.
Log Determinant of the Jacobian: The log-likelihood calculation requires computing the log de-
terminant of the Jacobian matrix for the transformation. For the affine coupling layer, the Jacobian
matrix is triangular, and the log determinant is simply the sum of the scaling terms:

log

∣∣∣∣det ∂y∂x
∣∣∣∣ =∑

i

s(x1). (D.5)

This term contributes to the overall log probability during training.
Normalizing Flow Forward Transform: A normalizing flow is constructed by stacking several
affine coupling layers and random permutation layers. Let x ∈ Rd be the input, and z ∈ Rd be the
transformed latent variable after L layers of flow. Each layer applies a transformation fl such that:

z(l+1) = fl(z
(l)), (D.6)

where fl represents either an affine coupling transformation or a random permutation. After L
layers, the final output is denoted as z = z(L). The forward transformation can thus be written as:

z, log detJ = fflow(x), (D.7)

where log detJ is the log determinant of the Jacobian matrix for the entire flow.
To compute the log-likelihood of the input x, we map it to the latent space z under the flow trans-
formation. The probability of x is computed as:

p(x) = p(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ , (D.8)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where p(z) is the probability of z under the base distribution (typically a standard normal distribu-
tion):

p(z) = N (z; 0, I). (D.9)

The log probability is then given by:

log p(x) = log p(z) + log

∣∣∣∣det ∂z∂x
∣∣∣∣ . (D.10)

Inverse Transform: The invertibility of the flow allows for both density estimation and sampling.
To sample from the model, we draw samples z ∼ N (0, I) from the base distribution and apply the
inverse transformation:

x = f−1flow(z). (D.11)

Each affine coupling layer and random permutation is applied in reverse order to recover the original
inputs.
Random Permutation Layer: The random permutation layer permutes the features of the input
vector to ensure that different parts of the input are transformed at each layer. Let x ∈ Rd be the
input, and let P be a permutation matrix. The permutation transformation is defined as:

x′ = Px. (D.12)

Since permutation matrices are orthogonal, the Jacobian determinant of this transformation is always
1, and it does not contribute to the log determinant calculation.

Layer Description Output Size
Input Head A Input head A NB × |A|
Input Head B Input head B NB × |B|
Input Features Input features NB ×D

Affine Coupling
Layer

No. of Affine Coupling layers NB × 64

fc A1 Hidden Dim. Number of hidden dimensions in first fully
connected layer A.

B × 1024

fc B1 Hidden Dim. Number of hidden dimensions in first fully
connected layer B.

B × 1024

Hidden Dim. No.of hidden layers for A and B. NB × 16

fc A1 Final Layer
Dim.

Number of hidden dimensions in final
layer A

NB ×
(
⌊D−12 ⌋+ 1

)
fc B1 Final Layer
Dim.

Number of hidden dimensions in final
layer B

NB ×
(
⌊D−12 ⌋

)
Output Output features after flow transformation NB ×D

Table 2: Normalizing Flows Neural Architecture Specifications.

Overview: In summary, the normalizing flow architecture combines spherical mapping, affine cou-
pling transformations, and random permutations to form a powerful framework for invertible trans-
formations. The model leverages the flexibility of normalizing flows to map inputs to a spherical
manifold, enabling efficient density estimation and sampling from a base Gaussian distribution.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Parameter Value

NB Batch Size 2048
αN (Negative Log Liklihood Loss Coef.) 0.5

αR (Repulsion Loss Coef.) 1.0
αP (Perturb. Loss Coef.) 0.5
αL (Lipschitz Loss Coef.) 1.5

No. Epochs 20,000
αLR (Learning Rate) 0.05

CL (Lipschitz Constant) 0.5

Table 3: Hyper parameters used for normalizing neural flow network training.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E VISUALIZATIONS

E.1 COMPUTATIONAL RESULTS OF ISOPLANE BEHAVIOUR

Longitudinal Isolines: Visualization of longitu-
dinal isolines generated by the normalizing neural
flow network.

Latitudinal Isoplanes: Visualization of lattitudinal
isolines generated by the normalizing neural flow
network.

Figure 4: Formation of isolines (or isoplanes in higher dimensions) forming on the spherical manifold Φ as we
fix a and vary b (longitudinal), and fix b and vary a (lattitudinal).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

F ALGORITHMS

F.1 MAPPING BETWEEN SPHERICAL AND CARTESIAN COORDINATES

Algorithm 2 Spherical to Cartesian Conversion in n-Dimensions

1: function SPHERICAL TO CARTESIAN(r, ν)
2: Input: r (radius), ν (Spherical coordinates D − 1 dimensions.)
3: Output: Cartesian coordinates p = [x1, x2, . . . , xD]
4: x1 ← r · cos(ν1)
5: for i = 2 to D − 1 do
6: xi ← r · sin(ν1) · sin(ν2) · · · · sin(νi−1) · cos(νi)
7: end for
8: xn ← r · sin(ν1) · · · · · sin(νD−1)
9: return [x1, x2, . . . , xD]

10: end function

Algorithm 3 Cartesian to Spherical Conversion in n-Dimensions

1: function CARTESIAN TO SPHERICAL(p)
2: Input: Cartesian coordinates p = [x1, x2, . . . , xD]
3: Output: r (radius), ν = [ν1, ν2, . . . , νD−1] (Spherical coordinates D − 1 dimensions.)
4: r ←

√
x2
1 + x2

2 + · · ·+ x2
D ▷ Compute the radius

5: ν1 ← arccos
(
x1

r

)
▷ First spherical angle

6: for i = 2 to n− 1 do
7: νi ← arctan 2

(√
x2
1 + x2

2 + · · ·+ x2
i , xi+1

)
▷ Spherical angles for i = 2 to D − 1

8: end for
9: return r, ν = [ν1, ν2, . . . , νD−1]

10: end function

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G EXPERIMENTAL RESULTS

G.1 R
1 STACKELBERG GAME

Problem Setup: We consider a Stackelberg game with a leader θA and a follower B, both operating
in continuous action spaces a, b ∈ R1. The leader chooses an action θA, and the follower responds by
choosing an action b based on the leader’s decision. The reward functions for both players are linear
in structure but include nonlinear components to model real-world constraints and interactions.
Leader’s Reward Function: The leader’s reward function µA(a, b) is defined as follows:

µA(a, b) = θ1a+ θ2 log
(
1 + b2

)
− θ3

2
a2 + ϵ, ϵ ∈ N (0, σ) (G.1)

where,

• θ1, θ2 > 0 are weight parameters that control the trade-off between the leader’s direct
action θA and the follower’s response b.

• log
(
1 + b2

)
introduces nonlinearity with respect to the follower’s action b.

• − θ3
2 a

2 is a quadratic penalty on large leader actions to avoid extreme behaviour by the
leader.

Follower’s Reward Function: The follower’s reward function µB(a,b) is given by:

µB(a,b) = α1(−b2) + α2ab+ ϵ, ϵ ∈ N (0, σ) (G.2)

where,

• α1, α2 > 0 are parameters that determine the influence of the follower’s own action b and
the leader’s action θA on the follower’s reward.

• −b2 represents a concave cost function for the follower, preferring smaller values of b.

• ab introduces an interaction term between the leader’s action and the follower’s action.

Follower’s Best Response: The follower maximizes their reward function µB(a,b) by choosing
b given θA. To determine the follower’s best response B(a), we compute the first-order condition
with respect to b:

∂E[µB(a,b)]

∂b
= −2α1b+ α2a = 0 (G.3)

Solving for b, the follower’s best response is:

B(a) =
α2a

2α1
(G.4)

Leader’s Optimization Problem: Given that the follower’s best response is B(a) = α2a
2α1

, the
leader maximizes their reward function µA(a,B(a)) as,

E[µA(a,B(a))] = θ1a+ θ2 log

(
1 +

(
α2a

2α1

)2
)
− θ3

2
a2. (G.5)

This results in the following optimization problem for the leader,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

max
a

(
θ1a+ θ2 log

(
1 +

α2
2a

2

4α2
1

)
− θ3

2
a2
)
. (G.6)

Non-Trivial Solution for the Leader: To solve for the leader’s optimal action a∗, we take the
derivative of the leader’s reward function with respect to θA and set it equal to zero,

d

da

(
θ1a+ θ2 log

(
1 +

α2
2a

2

4α2
1

)
− θ3

2
a2
)

= 0 (G.7)

θ1 − θ3a+ θ2 ·
2 ·
(

α2a
2α1

)
·
(

α2

2α1

)
1 +

α2
2a

2

4α2
1

= 0 (G.8)

Which simplifies to,

θ1 − θ3a+
θ2 · α

2
2a

α2
1

1 +
α2

2a
2

4α2
1

= 0. (G.9)

This equation has no simple closed-form solution and must be solved numerically. The interplay
between the nonlinear logarithmic term and the quadratic penalty introduces complexity into the
leader’s optimization, making the optimal value of a∗ non-trivial.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

G.1.1 R
2 STACKELBERG GAME

Parameters: θ1 = 4.0, θ2 = 1.0, θ3 = 0.9, α1 = 1.0, α2 = 2.0, σ = 6.0.

Parameters: θ1 = 4.0, θ2 = 2.0, θ3 = 0.9, α1 = 4.0, α2 = 2.0, σ = 6.0.

Parameters: θ1 = 3.0, θ2 = 3.0, θ3 = 0.9, α1 = 1.0, α2 = 2.0, σ = 4.0.

Figure 5: Mean values are calculated over 1,000 trials, with shaded regions representing confidence intervals,
all of which fall within the first quartile.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

G.2 THE NEWSVENDOR PRICING GAME SPECIFCATIONS (NPG)

We model the two learning agents in a Newsvendor pricing game, involving a supplier A and a
retailer B. The leader, a supplier, is learning to dynamically price the product for the follower, a re-
tailer, aiming to maximize her reward. To achieve this, the follower adheres to classical Newsvendor
theory, which involves finding the optimal order quantity given a known demand distribution before
the realization of the demand.
Rules of the Newsvendor Pricing Game: We explicitly denote a ≡ a ∈ R1, and b ≡ [b, p]⊺ ∈ R2.
Where a denotes wholesale price from the supplier firm, p and b denote the retail price and order
amount of the retail firm.

1. The supplier selects wholesale price a, and provides it to the retailer.
2. Given wholesale cost a, the retailer reacts with his best response [b, p]⊺, consisting of retail

price p, and order amount b.
3. As the retailer determines the optimal order amount b, he pays GA(a, b) = ab to the sup-

plier.
4. At time t, nature draws demand dt ∼ dρ(p), and it is revealed to the retailer.
5. The retailer makes a profit of GB(a, b) = p min{dt, b} − ab.
6. Steps 1 to 5 are repeated for t ∈ 1...T iterations.

a

ba

pa

d(pa)

GB(pa, ba) = pa min{d(pa), ba}GA(a) = aba

Leader (Supplier) Follower (Retailer) Market

Figure 6: The Newsvendor Pricing Game. From (L. Liu and Rong 2024), in this Stackelberg game, there a
logistics network between a supplier (leader) and retailer (follower), where utility functions are not necessarily
supermodular, the supplier issues a wholesale price a, and the retailer issues a purchase quantity b, and a retail
price p in response.

Demand Function: Stochastic demand is represented in Eq. G.11, which is governed by a linear
additive demand function Γρ(p) representing the expected demand, E[d(p)], as a function of p in
Eq. G.11. The demand function is governed by parameters ρ.

Γρ(p) = max{0, ρ0 − ρ1p}, ρ0 ≥ 0, ρ1 ≥ 0 (G.10)
dρ(p) = Γρ(p) + ϵ, ϵ ∈ N (0, σ) (G.11)

This problem combines the problem of the price-setting Newsvendor (Petruzzi and Dada 1999) (Ar-
row, Harris, and Marschak 1951), with that of a bilateral Stackelberg game under imperfect informa-
tion. Even in the scenario of perfect information, the price-setting Newsvendor has no closed-form
solution, therefore no exact solution to the Stackelberg equilibrium. We apply the algorithm from
(L. Liu and Rong 2024) to learn a Stackelberg equilibrium under a risk-free pricing strategy as-
sumption, and apply Algorithm 4 from (L. Liu and Rong 2024) as a baseline against Algorithm 1
(GISA).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Algorithm 4 Learning Algorithm for Newsvendor Pricing Game from (L. Liu and Rong 2024)

1: for t ∈ 1...T do:
2: Leader and follower estimates a confidence interval Cθ(t) from available data.
3: H(ρ) = ρ̂0/ρ̂1.
4: Leader plays action a, where a = argmax

a∈A,ρ∈Ct
aF−1ρ̄a

(
1 − 2a

H(ρ)+a

)
from Eq. (3.8) in (L. Liu

and Rong 2024).
5: Follower sets price p = (H(ρ) + a)/2.
6: Follower estimates their optimistic parameters ρ̄a, and best response b̄a from from Eq. (3.4)

and (3.5a) respectively in (L. Liu and Rong 2024).
7: Leader obtains reward, GA = ab.
8: Follower obtains reward, GB = pmin{b, d(p)}.
9: end for

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

G.2.1 NPG RESULTS

Parameters: ρ0 = 1, ρ1 = −1, σ = 0.1.

Parameters: ρ0 = 1, ρ1 = 0.5, σ = 0.1.

Parameters: ρ0 = 1, ρ1 = −1, σ = 0.5.

Figure 7: Mean values are calculated over 1,000 trials, with shaded regions representing confidence intervals,
all of which fall within the first quartile.

G.3 MULTI-DIMENSIONAL STACKELBERG GAME (SSG)

We consider a two-player Stackelberg game where the leader A and the follower B choose their
actions from a shared action space Rn. The leader chooses an action a ∈ Rn, anticipating the
follower’s response b ∈ Rn, where n = 5. Both players’ rewards are influenced by a combination
of the difference in their actions and quadratic penalties on their individual actions. The problem

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

is constrained by weighted L1-norm bounds on both a and b, which limit the magnitude of their
respective actions.
The leader’s reward function µA is defined as:

µA(a,b) = θ⊤A(a− b)− θ⊤Af(a) + ϵ, ϵ ∈ N (0, σ) (G.12)

where:

• a ∈ Rn is the leader’s action,

• b ∈ Rn is the follower’s action,

• θA ∈ Rn is a weight vector for the leader,

• f(a) is the quadratic penalty function applied elementwise, such that f(a) =
[a21,a

2
2, . . . ,a

2
n].

The leader seeks to maximize µA(a, b) by selecting a, knowing that the follower will respond opti-
mally.
The follower’s reward function µB is defined as:

µB(a,b) = θ⊤B(a− b)− θ⊤Bg(b) (G.13)

where:

• a ∈ Rn is the leader’s action,

• b ∈ Rn is the follower’s action,

• θB ∈ Rn is a weight vector for the follower,

• g(b) is the quadratic penalty function applied elementwise, such that g(b) =
[b2

1,b
2
2, . . . , b

2
n].

The follower seeks to maximize µB(a,b) by choosing b, given the leader’s action a.
Both players are subject to weighted L1-norm constraints on their actions:

n∑
i=1

|θA,iai| ≤ CA for the leader (G.14)

n∑
i=1

|θB,ibi| ≤ CB for the follower (G.15)

where CA and CB are constants that limit the magnitude of the actions a and b, respectively, and
θA,i, θB,i are the elements of θA and θB .
Follower’s Optimization Problem (Best Response): Given the leader’s action a, the follower
solves the following optimization problem:

b∗(a) = argmax
b

(
θ⊤B(a− b)− θ⊤Bg(b)

)
(G.16)

subject to:

n∑
i=1

|θB,ibi| ≤ CB (G.17)

This is a quadratic optimization problem due to the quadratic penalty g(b), and the constraint en-
forces that the weighted L1-norm of the follower’s action does not exceed CB .
Leader’s Optimization Problem: Given the follower’s best response b∗(a), the leader solves the
following optimization problem:

a∗ = argmax
a

(
θ⊤A(a− b∗(a))− θ⊤Af(a)

)
(G.18)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

subject to:

n∑
i=1

|θA,iai| ≤ CA (G.19)

This is also a quadratic optimization problem due to the quadratic penalty f(a), and the constraint
enforces that the weighted L1-norm of the leader’s action does not exceed CA.
Stackelberg equilibrium: The Stackelberg equilibrium is reached when:

a∗ = argmax
a

(
θ⊤A(a− b∗(a))− θ⊤Af(a)

)
, b∗(a) = argmax

b

(
θ⊤B(a− b)− θ⊤Bg(b)

)
(G.20)

subject to the respective L1-norm constraints. At equilibrium, the leader chooses a∗ that maxi-
mizes their reward given the follower’s optimal response b∗(a), and the follower chooses b∗(a)
that maximizes their reward given the leader’s action.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

G.3.1 SSG EMPIRICAL RESULTS

Parameters: θA = [−0.850,−0.049, 0.620,−0.535,−0.313] , θB =
[−1.554,−0.176, 0.576, 0.803, 0.358] , σ = 0.1

Parameters: θA = [−1.557,−0.011, 0.821,−1.307,−0.262] , θB =
[−1.499, 0.317,−0.106, 0.465,−0.476] , σ = 0.1

Parameters: θA = [−0.599,−0.951, 0.156,−0.732, 0.375] , θB =
[−0.866, 0.708,−0.156, 0.601,−0.058] , σ = 0.1

Figure 8: Mean values are computed over 1,000 trials. All shaded areas, denoting confidence intervals, are
within a quarter quantile. UCB arms were discretized to increments of 200, with an exploration constant
αUCB = 0.01.

40

	Introduction
	Formal Definitions
	Repeated Stackelberg Games
	The Stackelberg Manifold
	Normalizing Flows for Joint Action Space Projection
	Specifications of the Feature Map (a,b)

	Reward Function

	Optimization of Stackelberg Games
	Online Learning on the Stackelberg Manifold
	Stackelberg Optimization under Perfect Information
	Regret Definitions
	Quantifying Uncertainty on the Stackelberg Manifold

	Empirical Experiments
	Conclusion
	Key Assumptions and Definitions
	Compact and Closed Sets
	Assumptions on Linear Reward Function
	Discrete Measure Interpretation
	Definition of Riemann Manifold
	Stochastic Perturbation Function
	Geodesic Repulsion Loss
	Negative Log-Likelihood Loss for Normalizing Flows

	Optimization Algorithms
	Bi-level Optimization Structure
	KKT Reformulation for Solving Stackelberg Optimization Problems
	Gradient Ascent Approach for Solving Bilevel Optimization Problems
	Technical Note: Conversion of Absolute Value Constraints into Regular LP Constraints

	Topology & Geodesy
	Convex Manifold Definitions:
	Proof of Lemma 4.1
	Lemma C.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Conversion of Cartesian Uncertainty to Spherical
	Distance Preserving Orthogonal Projection:
	Diameter Preserving Orthogonal Projection
	Proof of Theorem 1

	Neural Flow Architectural Specifications
	Visualizations
	Computational Results of Isoplane Behaviour

	Algorithms
	Mapping between Spherical and Cartesian Coordinates

	Experimental Results
	R1 Stackelberg Game
	R2 Stackelberg Game

	The Newsvendor Pricing Game Specifcations (NPG)
	NPG Results

	Multi-Dimensional Stackelberg Game (SSG)
	SSG Empirical Results

