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Abstract

As large language models (LLMs) are increasingly deployed across a wide range of1

application domains, understanding their capacity through uncertainty—especially2

in open-ended domains—is crucial to ensuring that they operate safely and reliably.3

Well-calibrated uncertainty estimates that accompany the text generated by an4

LLM can indicate the likelihood of an incorrect response, and as such, can serve as5

an effective fail-safe mechanism against hallucinations. Unfortunately, despite a6

growing body of research into uncertainty quantification in LLMs, existing methods7

largely fail to provide reliable uncertainty estimates in practice, and the lack of8

comparability across methods makes measuring progress difficult, necessitating9

the development of more robust methods that allow us to predict whether frontier10

models are able to provide a factual response to a given prompt. In this paper, we11

show that the probability of a frontier model providing a factually correct answer12

to a query can be predicted with high accuracy from smaller, weaker models. We13

believe that this work contributes to a deeper understanding of model capacity,14

particularly in terms of weak-to-strong generalization, and facilitates the creation15

of more trustworthy LLMs.16

1 Introduction17

Large Language Models (LLMs) are being increasingly used as vehicles for question answering and18

information retrieval in high-stakes scientific, business, and government settings. Because of this19

increase in usage it is paramount to user safety to develop models that do not deceive the user with20

their answers, a phenomenon known as hallucination (Xu et al., 2024). To mitigate this problem, we21

study whether a second model can oversee the output of a primary one: given a factual question and22

the answer provided by an LLM (the “generator”) to that question, can another LLM (the “evaluator”)23

tell us how likely is the answer to be right or wrong? We show that this is not only possible, but also24

that the evaluator LLM can be orders of magnitude smaller than the question-answering LLM.25

This finding is crucial for the engineering of safe LLMs as it allows for several key takeaways:26

1. The evaluator LLM can run locally on an end-user’s machine, and can work even when the27

generator is a black-box model. This prevents potential tampering with the model, were it to be28

hosted on a remote server, like a larger LLM would have to be.29

2. The evaluator LLM does not need to know the answer to the question in order to accurately30

judge whether the generator has answered it correctly. This suggests that the task of answering a31

question may be intrinsically different from the task of detecting the likely correctness of that32

answer.33

3. The evaluator LLM can achieve good calibration. This is particularly important in our setting34

as the predicted probability of the correctness of an answer given by the generator LLM is our35

chosen measure of uncertainty.36

Overall, these conclusions make contributions to the literature on uncertainty quantification in LLMs,37

in particular we add to the popular idea that LLMs can quantify their own uncertainty (Kadavath et al.,38
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2022) by showing that they can also quantify others. Our results show that harnessing uncertainty39

from frontier AI models may be a useful tools for interpreting ML models.40

The paper will proceed by first introducing some background on uncertainty quantification in LLMs41

(Section 2), then introducing our experimental design, methods and dataset tested (Section 3), and42

finally by presenting and discussing our results (Section 4 and Section 5).43

2 Background44

Uncertainty quantification in LLMs. When it comes to LLM research, model hallucination is one45

of the major concerns of that researchers hope to solve by quantifying model uncertainty (Yadkori46

et al., 2024). Many works develop novel metrics to compute uncertainty or confidence (Kuhn et al.,47

2023; Duan et al., 2024), while others understand uncertainty through narrowing down the range48

of data (Amayuelas et al., 2024; Yin et al., 2023). Another popular approach is to prompt LLMs49

to explicitly express their uncertainty (Lin et al., 2022; Tanneru et al., 2023). In this work, we will50

instead directly learn the probability that a model may be correct or incorrect about a specific question51

it is asked.52

Selective prediction. Besides knowing how capable a model is through accuracy, we also want to53

know if the evaluator is well-calibrated. This is crucial as this predicted probability is likely of more54

interest to an end-user than a simple yes/no judgement would be. To compute this, we introduce a55

rejection class (El-Yaniv and Wiener, 2010): if the evaluator’s uncertainty is beyond a given threshold,56

the model abstains from making a prediction. By evaluating model outputs on a variety of thresholds,57

we can compute selective metrics like selective accuracy (Fisch et al., 2024). By comparing the58

selective metrics with the non-selective ones, we can better understand if our model is well-calibrated59

(Rudner et al., 2024; Varshney et al., 2022).60

3 Experimental design61

We employ a larger, more capable language model, denoted as the Generator fG, to generate responses62

to questions from various datasets. In additon, We use a weaker model as the Evaluator fE . Our63

goal is to train fE to learn the uncertainty of fG from the responses given the dataset D. Below We64

describe our dataset construction and the design of fE .65

3.1 Dataset construction66

For a given dataset D, we collect n questions from D and query fG to generate k answers per67

question.1 We then compare each generated answer to the true answer in D and obtain the labels68

Y = {1, 0} indicating whether fG answers correctly. By averaging over the k answers of each69

question, we compute a probability label y of the answer from fG being correct.70

We evaluate from two datasets: TriviaQA (Joshi et al., 2017) and MMLU (Hendrycks et al., 2021), as71

both contain a large corpus of questions and factual answers. For the open-ended TriviaQA, only the72

original question is presented to fG. For the multiple-choice MMLU, we present both the question73

and the four choices together as a prompt to the fG.74

3.2 Evaluator training and evaluation setup75

To train the Evaluator fE , we leverage the high-dimensional representations of the input questions76

produced by a “backbone” LLM. These representations are inputs to a linear classification head. We77

experiment with two variants of this approach, a probe head setup and a supervised finetuning setup.78

Probe head classifier setup. We implement a probe head as a two-layer neural network that takes79

as input the high-dimensional text representations generated by an open-weight fixed “backbone”80

LLM. Following Kadavath et al. (2022), we use only the representation of the last non-padding token81

of each prompt, resulting in an input of shape X ∈ Rn×d, where d is the output dimension of the82

final layer of fE before the linear head. Since y represents a probability, the output of the probe head83

is one-dimensional, followed by a sigmoid function to normalize the output to within range [0, 1].84

We train the probe head using binary cross-entropy loss.85

1If not stated otherwise, k = 10.
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Figure 1: Evaluation results on TriviaQA with different fE . As the size and capability of fE increases,
there is a clear improvement in AUROC. GPT-3.5-turbo is consistently better learned than GPT-4o.

Supervised fine-tuning using LoRA. Empirical evidence suggests that finetuning can often im-86

prove performance over fixed representations (He et al., 2021). We fine-tune fE using Low-rank87

Adaption (LoRA) following Hu et al. (2021). In this setup, we train a single linear layer with a88

sigmoid activation as the probe head and apply LoRA to all layers preceding the final probe.89

Evaluation metrics. We evaluate the performance of our evaluators using a range of metrics. Since90

y represents a probability, we discretize both ytrue and ypred (classifying based on whether y ≥ 0.5)91

to compute metrics including accuracy and F1 score. For metrics like AUROC and AUPRC, we92

keep ypred as a probability, discretizing only ytrue to treat it as a classification task. To address data93

imbalance, we subsample the data to create a class-balanced test set, which we use to compute94

balanced accuracy. Additionally, we compute selective metrics to assess whether the model is95

well-calibrated to reject the uncertain answers. Unless stated otherwise, all metrics in the plots are96

presented as percentages.97

4 Results98

We constructed two datasets from TriviaQA and MMLU. For fG, we collected answers from GPT-99

3.5-turbo and GPT-4o. For fE , we used Llama2-7b, Llama3-8b, Llama3-8b-instruct, and Llama3.1-100

8b-instruct as the evaluator backbone to obtain representations.101

4.1 Dataset TriviaQA102

The TriviaQA dataset contains a wide range of trivia questions and corresponding keyword lists of103

answers. The first trend we observe is that scaling up the Evaluator backbone improves performance.104

With Llama2-7b as fE’s backbone, the AUROC for predicting the correctness of GPT-4o on TriviaQA105

is 58.89%. When scaled up to Llama3-8b, the AUROC increases significantly to 79.82%, as shown106

in Figure 1(a) – a notable improvement compared with the 14.29% increase in fE’s parameters.107

The training method of the “backbone” LLM contributes marginally to performance improvement in108

uncertainty estimation. The AUROC for GPT-4o prediction increases to 81.42% when Llama3-8b-109

instruct, which is fine-tuned via instruction (Wei et al., 2022), is used as fE . This trend, demonstrated110

in Figure 1, shows that AUROC consistently improves as the backbone of fE becomes more intelligent.111

The same pattern is observed across balanced accuracy, AUPRC, F1 score, and other metrics. Full112

results can be found in Appendix A.113

Fine-tuning fE using LoRA enhances performance compared to only training the probe head. With114

the best-performing Llama3-8b-instruct, we achieved an AUROC of 82.16% and balanced accuracy115

of 72.09% for predicting correctness of GPT-4o. Fine-tuning the entire fE refines the representation,116

enabling more accurate uncertainty predictions.117

Tables 1, 2 and 5 in the appendix provide a comprehensive set of evaluations on TriviaQA. For118

GPT-4o, the top evaluator achieves over 90% in both AUPRC and F1 score. The LoRA-fine-tuned119

evaluator is well-calibrated, with selective accuracy and selective F1 increasing, indicating reduced120
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Figure 2: GPT-3.5-turbo achieved 66.22% accuracy on TriviaQA and GPT-4o achieved 72.97%; GPT-
3.5-turbo achieved 71.32% accuracy on MMLU and GPT-4o achieved 87.26%. As the accuracy of
Generator increases, AUROC of Evaluator decreases monotonically. This negative trend is observed
on both TriviaQA and MMLU datasets. As for the balanced accuracy on MMLU, the positive trend
can be attributed to the imbalance between class 0 and class 1.

prediction uncertainty as model confidence grows. For GPT-3.5-turbo, the best evaluator achieves an121

AUROC of 84.69%, accuracy of 82.16%, and balanced accuracy of 76.53%, with AUPRC and F1122

in the high 90%. fE for GPT-3.5-turbo is more calibrated than fE for gpt-4o, as evidenced by its123

higher selective AUROC. Our hypothesis is that GPT-3.5-turbo’s size and capability are closer to the124

Llama3 families, resulting in more aligned representations and improved calibrations. More results125

on selective performance are presented in Figure 3.126

4.2 Dataset MMLU127

However, fE’s performance varies depending on the task. When using the MMLU dataset (Hendrycks128

et al., 2021), which emphasizes reasoning, the Evaluator struggles to capture the uncertainty. For129

GPT-4o, the balanced accuracy drops to 52.3% and AUROC to 59.06%, despite the high accuracy of130

85.15%. This drop is likely due to GPT-4o’s strong performance on MMLU, with an answer accuracy131

of 87.26%, causing a highly imbalanced training set. This data imbalance is further reflected in the132

correlation between Generator accuracy and Evaluator performance, as shown in Figure 2. Predicting133

GPT-3.5-turbo performs better, with a balanced accuracy of 56.04% and AUROC of 64.36%. Fine-134

tuning with LoRA provides limited gains, likely due to: 1) the nature of the questions, which, unlike135

TriviaQA, are not explicitly tied to the answers, and 2) the multiple-choice format, which includes136

four answer choices, leading to incorrect options often containing irrelevant information. These137

factors complicate the representation learning. Full MMLU results are provided in Tables 3 to 5.138

5 Discussion and Conclusions139

In this paper, we explored the question to what extent the question-answering accuracy of a stronger140

LLM can be predicted by a weaker LLM. We found that, using a stronger model’s predictive141

uncertainty to learn an evaluator parameterized by a significantly smaller model, it is in fact possible142

to predict a stronger model’s ability to provide a correct answer. We find that the evaluators trained on143

responses from stronger models also well-calibrated: the predicted probabilities they output closely144

mimic the true probabilities of generators being correct in answering a question. In fact, we believe145

model-specific features are learned by these evaluators. (See Appendix C for more details). Our146

results are important both for the engineering of safe LLMs, in that they guide developers of these147

models, as well as for effective technical AI governance, as they give end users of LLMs ways to148

ascertain the accuracy of the model they use, even when these are black-boxes. We believe that149

further exploration of the relationship between weaker evaluators and stronger generators, such as150

whether self-evaluation (Kadavath et al., 2022) performs better than external evaluation, and whether151

evaluators are learning features specific to different generators, is important towards building more152

interpretable frontier models.153
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Appendix200

Appendix A Further Experimental Results201

Note: All results in the tables and the plots below are of percentage.202

Table 1: Probe Head Evaluation Results on TriviaQA: fG = GPT-3.5-turbo.
fE Llama3.1-8b-instruct Llama3-8b-instruct Llama3-8b Llama2-7b

Metrics

AUROC 82.57 83.56 81.97 57.45
Accuracy 81.70 79.12 79.70 73.70
balanced accuracy 91.63 75.50 73.51 50.28
AUPRC 88.08 92.68 91.73 78.32
F1 Score 87.48 85.42 86.29 84.79
Selective Accuracy 90.60 87.87 86.89 76.60
Selective AUROC 81.06 89.07 85.48 52.38
Selective F1 94.04 91.43 91.22 86.34

Table 2: Probe Head Evaluation Results on TriviaQA: fG = GPT-4o.
fE Llama3.1-8b-instruct Llama3-8b-instruct Llama3-8b Llama2-7b

Metrics

AUROC 80.88 81.42 79.82 58.89
Accuracy 83.95 81.79 81.42 81.10
Balanced Accuracy 69.44 72.29 70.48 50.00
AUPRC 94.06 94.37 83.55 84.06
F1 Score 90.82 88.65 88.51 89.56
Selective Accuracy 92.39 91.79 91.06 83.98
Selective AUROC 71.23 72.82 72.51 55.93
Selective F1 95.43 94.94 94.48 90.85
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Table 3: Probe Head Evaluation Results on MMLU: fG = GPT-3.5-turbo.
fE Llama3-8b-instruct Llama3-8b Llama2-7b

Metrics

AUROC 64.11 63.80 65.28
Accuracy 70.07 70.23 69.26
Balanced Accuracy 57.07 55.86 55.31
AUPRC 78.62 77.83 79.28
F1 Score 80.99 81.33 80.70
Selective Accuracy 76.53 76.30 77.50
Selective AUROC 58.48 56.06 57.83
Selective F1 85.84 85.68 86.74

Table 4: Probe Head Evaluation Results on MMLU: fG = GPT-4o.
fE Llama3-8b-instruct Llama3-8b Llama2-7b

Metrics

AUROC 55.65 59.96 61.89
Accuracy 85.36 85.68 85.61
Balanced Accuracy 50.98 51.04 50.83
AUPRC 87.97 89.05 89.83
F1 Score 92.11 92.31 88.81
Selective Accuracy 87.00 88.07 83.98
Selective AUROC 53.91 53.65 54.76
Selective F1 92.60 92.83 93.61

Table 5: LoRA Evaluation Results: fE = Llama3-8b-instruct.
D TriviaQA MMLU
fG gpt-3.5-turbo gpt-4o gpt-3.5-turbo gpt-4o

Metrics

AUROC 84.69 82.16 64.36 59.06
Accuracy 82.16 84.43 67.93 85.15
Balanced Accuracy 76.53 72.09 56.04 52.38
AUPRC 92.87 94.35 78.83 89.02
F1 Score 88.38 90.73 79.50 91.66
Selective Accuracy 91.14 92.50 76.48 87.82
Selective AUROC 89.30 81.24 59.86 55.75
Selective F1 94.32 95.39 62.34 56.11
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Appendix B Visualization of Additional Evaluation Metrics203
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Figure 3: Selective prediction on TriviaQA.
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Figure 4: Evaluation results on MMLU with different fE .

Appendix C Further study: Are evaluators learning generator-specific204

features?205
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Figure 5: Selective prediction on MMLU.
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Figure 6: We visualize the predicted probability of fE for different fG on the first 100 questions
of the test set. For TriviaQA plot we are use llama3-8b and for MMLU llama3-8b-instruct as the
evaluator. For both datasets we observe that the evaluator learns different distributions from different
generators. This indicates that the same evaluator can learn generator-specific features, leading to the
different predictve distribution of P(fg is correct). For TriviaQA, we run a Kolmogorov–Smirnov
test and get K = 0.21, p-value= 0.02; for MMLU, K = 0.65, p-value= 3.1e−20. The low p-values
can make us reject the null hypothesis and demonstrate that the distributions are different.
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