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Abstract

Cryptocurrency markets exhibit extreme volatility, non-stationarity, and complex
inter-asset dependencies, posing significant challenges for generating realistic
synthetic data–a crucial need for risk management, backtesting, and strategy devel-
opment. While recent Time Series Generation (TSG) models, such as Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs), and diffusion
methods, have shown promise, they often fall short in capturing crypto-specific dy-
namics, generalizing effectively, and aligning synthetic data with trading objectives.
To address these challenges, we propose CMS-VAE, a VAE-based framework
tailored for Crypto Market Simulation. CMS-VAE employs a dilated CNN archi-
tecture to model long-range temporal dependencies and cross-asset correlations,
and introduces the Ensemble Financial Performance Loss (EFPL), which integrates
strategy-aware supervision over diverse strategies to produce strategy-consistent
and risk-aligned synthetic data. Extensive experiments across generative fidelity,
predictive modeling, and statistical arbitrage show that CMS-VAE consistently out-
performs state-of-the-art baselines. It achieves up to 96.8% lower prediction errors
and 1.4× improvements in the Sharpe ratio. These results position CMS-VAE as
an effective and efficient tool for high-fidelity crypto market simulation.

1 Introduction

The rise of DeFi and digital assets has pushed cryptocurrencies into the mainstream, but their extreme
volatility, structural non-stationarity, fragmented liquidity, and strong cross-asset co-movements
strain conventional models and complicate risk assessment, pricing, and trading. High-fidelity
Time Series Generation (TSG) is a promising remedy [2], yet state-of-the-art generators, GANs
[26, 23, 25, 6, 21], VAEs [7, 15, 18], diffusion [27, 9, 5, 16, 17], and mixed/flow models [1, 28, 12, 22],
are typically validated on generic benchmarks and struggle in crypto due to (1) weak modeling of
inter-asset dependencies critical for systemic moves, (2) training/sampling inefficiency (notably in
GANs/diffusion) that hinders time-sensitive deployment, and (3) lack of strategy-aware objectives
that tie synthetic data to financial utility [3, 2].

Interestingly, among these approaches, VAE-based models have demonstrated competitive (sometimes
superior) performance in both generation fidelity and efficiency, especially under conditions of limited
data or irregular sampling [2, 3]. This success stems from VAEs’ structured latent spaces, stable
training dynamics, and explicit likelihood modeling, which collectively mitigate issues such as mode
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collapse and adversarial instability prevalent in GANs. However, existing variants (e.g., TimeVAE,
discrete-latent TimeVQVAE, Koopman-based KoVAE) are not tailored to crypto’s volatility/regime
shifts and are commonly evaluated with generic, finance-agnostic metrics [3].
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Figure 1: Architecture of CMS-VAE.

To address these challenges, we introduce
CMS-VAE, a VAE tailored for Crypto Market
Simulation that integrates domain-specific pri-
ors with finance-aligned objectives: (1) A di-
lated 1D-CNN encoder–decoder assets as chan-
nels, efficiently capturing short-term fluctua-
tions, long-horizon dependencies, and cross-
asset co-movements. (2) An Ensemble Financial
Performance Loss (EFPL) augments ELBO with
portfolio-level risk-return measures, guiding the
latent space toward financially meaningful struc-
ture. (3) Strategy-aware supervision evaluates
EFPL across diverse trading strategies, ensuring
robustness across regimes and investment hy-
potheses. Comprehensive experiments demon-
strate that CMS-VAE delivers strong generative fidelity, superior forecasting and ranking accuracy,
and fee-robust statistical-arbitrage gains over state-of-the-art baselines on crypto benchmarks [3],
offering a practical capability–compute balance for high-stakes financial modeling.

2 Related Work

Synthetic TSG methods span GANs, VAEs, diffusion models, and mixed-type hybrids, each trading
off fidelity, stability, and efficiency [3, 2]. GANs capture realistic dynamics but suffer from instability
and mode collapse [26, 23, 21, 8, 2]. VAEs train stably yet underfit volatility and cross-dependencies
[7, 15, 18, 2, 3]. Diffusion models achieve high fidelity at heavy sampling cost [27, 9, 24, 3]. Mixed-
types combine strengths with added complexity [28, 12]. In finance, models such as Quant-GAN
[25], TailGAN [6], and Sig-GAN [19] target stylized facts like volatility clustering and jumps, with
recent work probing what patterns architectures truly learn [14, 11]. Yet instability, computational
overhead, and weak transfer across trading objectives remain, especially in crypto markets [3].

3 Preliminaries

Problem Formulation. We investigate the generation of synthetic cryptocurrency market data for risk
modeling and trading. This task is to simulate 24-hour log-return sequences by learning a generator
g : Z → R24×3 that maps a latent noise vector z to realistic sequences resembling historical data.

Variational Autoencoders (VAEs). To model this generative process, we adopt the framework of
VAEs [13]. Let X denote the training set of time series, where each x ∈ X is assumed to arise from a
latent variable model p(x|z) with z drawn from a lower-dimensional latent space. As illustrated in the
yellow block of Figure 1, a VAE consists of an encoder qϕ(z|x) that maps an input x to a Gaussian
distribution parameterized by mean µ and variance σ, and a decoder pθ(x|z) that reconstructs the
time series from latent code z ∼ N (µ,σ). The decoder outputs pθ(x|z) = N (ηθ(z),Σ

2I), with
parameters ϕ and θ jointly optimized. Training maximizes the Evidence Lower Bound (ELBO),
which balances reconstruction fidelity and latent regularization:

LELBO = LRecon +DKL = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)).

Here, the first term measures how well x is reconstructed, while the KL divergence ensures that
qϕ(z|x) remains close to the prior p(z), typically N (0, I). Once trained, new synthetic sequences
can be generated by sampling z from the prior and decoding it via pθ(x|z).

4 CMS-VAE

We propose CMS-VAE (Figure 1), a crypto-tailored VAE that (1) uses a dilated 1D-CNN to capture
long-range temporal and cross-asset structure, (2) augments ELBO with an Ensemble Financial
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Figure 2: Generative fidelity benchmarking.
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Figure 3: Predictive utility benchmarking.

Performance Loss (EFPL) to enforce portfolio-level risk–return alignment, and (3) applies strategy-
aware supervision via EFPL across diverse trading strategies. Together, these components generate
synthetic multi-asset series that maintain statistical fidelity while enhancing trading utility.

Dilated CNN Architecture. RNNs capture sequence dependence but scale poorly, Transformers
provide global context at high compute cost, and vanilla CNNs are efficient but limited in receptive
field [10, 4]. CMS-VAE addresses this by stacking dilated 1D convolutions, expanding context
without excessive depth. Treating assets as channels enables learning inter-asset correlations, while
dilation balances local variability with long-range dependencies. The design preserves temporal
coherence, controls parameter growth, and suits volatile, high-frequency crypto data.

Ensemble Financial Performance Loss (EFPL). Standard ELBO lacks financial semantics, often
producing statistically plausible but trading-misaligned samples. EFPL remedies this by penalizing
discrepancies between real and synthetic Value-at-Risk (VaR), Expected Shortfall (ES), Maximum
Drawdown (MDD), and Cumulative Profit-and-Loss (PnL), aggregated across multiple strategies
with tunable weights. The combined loss is:

LEFPL = wReconLRecon + wKLDKL + wVaRLVaR + wESLES + wMDDLMDD + wPnLLPnL,

where LVaR =
∑M

j=1 w
VaR
j · ∥xVaR

j − x̂VaR
j ∥, xVaR

j and x̂VaR
j are the VaR values for real and synthetic

series, with analogous terms for ES, MDD, and PnL. This ensures generated sequences align with
risk–return profiles relevant to practice.

Strategy-aware Supervision. To avoid overfitting to generic statistics [23, 7, 27], CMS-VAE applies
EFPL under a portfolio of canonical strategies, i.e., Equal-Weight (EW), Mean-Reversion (MR),
Trend-Following (TF), Volatility-Trading (VT) [3]; Robustness is evaluated on held-out strategies,
i.e., Relative Strength Index (RSI), Simple-Mean (SM), BreakOut (BO), where performance gains
reflect genuine transfer of risk-return structure [3]. The modular design of EFPL further allows
seamless extension to additional strategies.

5 Experiments

Setup. We evaluate CMS-VAE on both crypto-specific and general TSG tasks across four dimensions:
generative fidelity, predictive utility, statistical arbitrage, and ablation. The datasets include 24h
log-return windows of the top three cryptocurrencies [20] and CTBench [3], which provides high-
frequency returns for 450+ Binance assets across bull, bear, and sideways regimes. We benchmark
against 9 state-of-the-art baselines: Quant-GAN [25], TailGAN [6], COSCI-GAN [23], TimeVAE
[7], KoVAE [18], Diffusion-TS [27], FIDE [9], Fourier-Flow [1], and LS4 [28]).
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Figure 4: Statistical arbitrage benchmarking.
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Figure 5: Evaluation of four risk metrics across seven trading strategies for CMS-VAE model variants.

Evaluation metrics follow financial and predictive requirements. is measured by absolute gaps in
portfolio-level indicators: VaR, ES, MDD, and Cumulative PnL [20]. Predictive utility and market-
neutral arbitrage follow CTBench [3], using Mean Squared Error (MSE) and Mean Absolute Error
(MAE) for accuracy, Information Coefficient (IC) and Information Ratio (IR) for rank consistency,
and Compound Annual Growth Rate (CAGR), Sharpe Ratio (or simply Sharpe), MDD, VaR, and
ES for trading performance. All experiments are conducted on a workstation equipped with an Intel®
Xeon® Platinum 8480C @3.80GHz, 64 GB RAM, and an NVIDIA H100 GPU.

Generative Fidelity. In Figure 2, CMS-VAE achieves the smallest overall discrepancies, reducing
VaR gaps by 77.6% vs. TimeVAE and >86% vs. COSCI-GAN/Fourier-Flow, while maintaining
competitive MDD and PnL. Although FIDE slightly outperforms on ES, CMS-VAE delivers a more
balanced risk profile by jointly modeling tails and profitability, enabled by EFPL’s alignment with
risk–return metrics and the dilated CNN’s capture of volatility clustering.

Predictive Utility. For predictive utility (Figure 3), CMS-VAE consistently surpasses baselines,
cutting MSE by up to 97.3% and boosting rank-based IC/IR by more than 1.6× and nearly 2×,
respectively Unlike distribution-focused diffusion models, EFPL preserves predictive signals, trans-
lating into robust downstream trading: returns are ∼3.2× higher than TailGAN across CSM, LOTQ,
and PW strategies with controlled risk, while some baselines behave erratically.

Statistical Arbitrage. In statistical arbitrage (Figure 4), CMS-VAE delivers dominant performance
under both zero fees and 0.03% costs, with more than 11× higher CAGR than LS4 and ∼12× vs.
KoVAE, and remains robust under fees. Though risk metrics (MDD, VaR, ES) are moderately higher,
Sharpe improves by up to +0.54 over Diffusion-TS and +0.03 over LS4, with smaller fee-induced
degradation, indicating fee-robust tradable signals where distribution-matching models falter.

Ablation Study. Figure 5 confirms the role of both architecture and loss design of CMS-VAE.
Dilated CNNs reduce risk-metric gaps under ELBO training, with further gains from EFPL at
minimal parameter cost. ELBO-only models underperform EFPL-trained ones; strategy-specific
EFPL variants excel in their regimes, while multi-strategy EFPL achieves the best overall trade-off.
Crucially, generalization to held-out strategies (BO, SM, RSI) remains strong, showing that EFPL
captures transferable market dynamics beyond training objectives.

6 Conclusions

In this work, we present CMS-VAE, a crypto-tailored VAE for cryptocurrency market simulation.
By combining the dilated CNNs with a novel EFPL loss and strategy-aware supervision, CMS-VAE
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effectively captures long-range dependencies, inter-asset correlations, and financial risk profiles.
Empirical results show that CMS-VAE achieves superior generative fidelity across key financial
metrics, strong predictive utility, and high returns with robust Sharpe ratios. These results underscore
its value for backtesting and strategy development, while reduced variability supports more stable
models and better decision-making in volatile markets.
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