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ABSTRACT

Many problems in science and engineering involve optimizing an expensive black-
box function over a high-dimensional space. For such black-box optimization
(BBO) problems, we typically assume a small budget for online function evalu-
ations, but also often have access to a fixed, offline dataset for pretraining. Prior
approaches seek to utilize the offline data to approximate the function or its in-
verse but are not sufficiently accurate far from the data distribution. We propose
BONET, a generative framework for pretraining a novel black-box optimizer us-
ing offline datasets. In BONET, we train an autoregressive model on fixed-length
trajectories derived from an offline dataset. We design a sampling strategy to
synthesize trajectories from offline data using a simple heuristic of rolling out
monotonic transitions from low-fidelity to high-fidelity samples. Empirically, we
instantiate BONET using a causally masked Transformer (Radford et al., 2019)
and evaluate it on Design-Bench (Trabucco et al., 2022), where we rank the best
on average, outperforming state-of-the-art baselines.

1 INTRODUCTION

Many fundamental problems in science and engineering, ranging from the discovery of drugs and
materials to the design and manufacturing of hardware technology, require optimizing an expensive
black-box function in a large search space (Larson et al., 2019; Shahriari et al., 2016). The key
challenge here is that evaluating and optimizing such a black-box function is typically expensive, as
it often requires real-world experimentation and exploration of a high-dimensional search space.

Fortunately, for many such black-box optimization (BBO) problems, we often have access to an
offline dataset of function evaluations. Such an offline dataset can greatly reduce the budget for
online function evaluation. This introduces us to the setting of offline BBO. A key difference exists
between the offline BBO setting and its online counterpart; in offline BBO, we are not allowed
to actively query the black-box function during optimization, unlike in online BBO where most
approaches (Snoek et al., 2012; Shahriari et al., 2016) utilize iterative online solving. One natural
approach for offline BBO would be to train a surrogate (forward) model that approximates the black-
box function using the offline data. Once learned, we can perform gradient ascent on the input space
to find the optimal point. Unfortunately, this method does not perform well in practice because the
forward model can incorrectly give sub-optimal and out-of-domain points a high score (see Figure
1a). To mitigate this issue, COMs (Trabucco et al., 2021) learns a forward mapping that penalizes
high scores on points outside the dataset, but this can have the opposite effect of not being able to
explore high fidelity points that are far from the dataset. Further, another class of recent approaches
(Kumar & Levine, 2020; Brookes et al., 2019; Fannjiang & Listgarten, 2020) propose a conditional
generative approach that learns an inverse mapping function values to the points. For effective
generalization, such a mapping needs to be highly multimodal for high-dimensional functions, which
in itself presents a challenge for current approaches.

We propose Black-box Optimization Networks (BONET), a new generative framework for pretrain-
ing black-box optimizers on offline datasets. Instead of approximating the surrogate function (or its
inverse), we seek to approximate the dynamics of online black-box optimizers using an autoregres-
sive sequence model. Naively, this would require access to several trajectory runs of different black-
box optimizers, which is expensive or even impossible in many cases. Our key observation is that we
can synthesize synthetic trajectories comprised of offline points that mimic empirical characteristics
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Figure 1: (a) Example of offline BBO on toy 1D problem. Here, the domain ends at the red dashed
line. Thus, the correct optimal value is x∗, whereas gradient ascent on the fitted function will output
out of the domain point x̄. (b) Example trajectory on the 2D-Branin function. The dotted lines
denote the trajectories in our offline dataset, and the solid line refers to our model trajectory, with
low-quality blue points and high-quality red points. (c) Function values of trajectories generated by
a simple gaussian process (GP) based BayesOpt model on several synthetic functions.

of online BBO algorithms, such as BayesOpt. While one could design many characteristic proper-
ties, we build off an empirical observation related to the function values of the proposed points. In
particular, averaged over multiple runs, online black-box optimizers (e.g., BayesOpt) tend to show
improvements in the function values of the proposed points (Bijl et al., 2016), as shown in Fig-
ure 1c. While not exact, we build on this observation to develop a sorting heuristic that constructs
synthetic trajectories consisting of offline points ordered monotonically based on their ascending
function values. Even though such a heuristic does not apply uniformly for the trajectory runs of all
combinations of black-box optimizers and functions, we show that it is simple, scalable, and quite
effective in practice.

Further, we augment every offline point in our trajectories with a regret budget, defined as the cu-
mulative regret of the trajectory starting at the current point until the end of the trajectory. We train
BONET to generate trajectories conditioned on the regret budget of the first point of the trajectory.
Thus, at test time, we can generate good candidate points by rolling out a trajectory with a low regret
budget. Figure 1b shows an illustration.

We evaluate our method on several real-world tasks in the Design-Bench (Trabucco et al., 2022)
dataset. These tasks are based on real-world problems such as robot morphology optimization,
DNA sequence optimization, and optimizing superconducting temperature of materials, all of which
requires searching over a high-dimensional search space. We achieve a normalized mean score of
0.772 and an average rank of 2.4 across all tasks, outperforming the next best baseline, which
achieves a rank of 3.7.

2 PRETRAINING BLACK-BOX OPTIMIZERS VIA BONET

2.1 PROBLEM STATEMENT

Let f : X → R be a black-box function, where X ⊆ Rd is an arbitrary d-dimensional domain. In
black-box optimization (BBO), we are interested in finding the point x∗ that maximizes f :

x∗ ∈ argmax
x∈X

f(x) (1)

Typically, f is expensive to evaluate and we do not assume direct access to it during train-
ing. Instead, we have access to an offline dataset of N previous function evaluations D =
{(x1, y1), · · · , (xN , yN )}, where yi = f(xi). For evaluating a black-box optimizer post-training,
we allow it to query the black-box function f for a small budget of Q queries and output the point
with the best function value obtained. This protocol follows prior works in offline BBO (Trabucco
et al., 2021; 2022; Kumar & Levine, 2020; Brookes et al., 2019; Fannjiang & Listgarten, 2020).

Overview of BONET We illustrate our proposed framework for offline BBO in Figure 2 and Algo-
rithm 1 . BONET consists of 3 sequential phases: trajectory construction, autoregressive modelling,
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Figure 2: Schematic for BONET. In Phase 1, we construct a trajectory dataset Dtraj using SORT-
SAMPLE. In Phase 2, we learn an autoregressive model for Dtraj. In Phase 3, we condition the
model on an offline prefix sequence and unroll it further to obtain candidate proposals x̂P+1:T .

roll-out evaluation. In Phase 1 (Section 2.2), we transform the offline dataset D into a trajectory
dataset Dtraj. This is followed by Phase 2 (Section 2.3), where we train an autoregressive model on
Dtraj. Finally, we evaluate the model by rolling out Q candidate points in Phase 3 (Section 2.4).

2.2 PHASE 1: CONSTRUCTING TRAJECTORIES

Our key motivation in BONET is to train a model to mimic the sequential behavior of online black-
box optimizers. However, the difficulty is that we do not have the ability to generate trajectories by
actively querying the black-box function during training. In BONET, we overcome this difficulty
by synthesizing trajectories purely from an offline dataset based on two guiding desiderata.

Algorithm 1 Black-box Optimization Networks (BONET)

Input Offline dataset D, Evaluation Regret Budget R̂, Prefix length P, Query budget Q, Trajec-
tory length T , num trajs, Smoothing parameter K, Temperature τ , Number of bins NB

Output A set of proposed candidate points X with the constraint |X| ≤ Q

1: ▷ Phase 1: SORT-SAMPLE
2: Construct bins {B1, · · · , BNB

} from D, each bin covering equal y-range, as described in 2.2
3: Calculate the scores (n1, n2, · · · , nNB

) for each bin using K and τ
4: Dtraj ← ϕ
5: for i = 1, · · · ,num trajs do
6: Uniformly randomly sample ni points from Bi and concatenate them to construct T
7: Sort T in the ascending order of the function value
8: Represent T as (R1,x1, R2,x2, · · · , RT ,xT ), following equation 3, and append T to Dtraj
9: end for

10: ▷ Phase 2: Training
11: Train the model gθ to maximize the log-likelihood of Dtraj using the loss in equation 4
12: ▷ Phase 3: Evaluation
13: Construct a trajectory T ′ from D following Phase 1, and delete the last T − P points
14: Calculate Rt and feed (Rt,xt) to gθ sequentially, ∀t = 1, · · · , P
15: Roll-out gθ autoregressively while feeding Rt = R̂, ∀t = P + 1, · · · , T
16: X is the set of last min(Q,T − P ) rolled-out points.

First, the procedure for synthesizing trajectories should efficiently scale to high-dimensional data
points and large offline datasets. Second, each trajectory should mimic characteristic behaviors
commonly seen in online black-box optimizers. We identify one such characteristic of interest. In
particular, we note that the moving average of function values of points proposed by such black-box
optimizers tends to improve over the course of their runs barring local perturbations (e.g., due to
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exploration). While exceptions can and do exist, this phenomena is commonly observed in practice
for optimizers such as BayesOpt (Bijl et al., 2016). We also illustrate this behavior in Figure 1c for
some commonly used test functions optimized via BayesOpt.

Sorted Trajectories We propose to satisfy the above desiderata in BONET by following a sorting
heuristic. Specifically, given a set of T offline points, we construct a trajectory of length T by simply
sorting the points in ascending order from low to high function values. We note that sorting is just a
heuristic we use for constructing synthetic trajectories from the offline dataset, and this behavior may
not be followed by any general optimizer over any arbitrary functions. We also perform ablations
on different heuristics in Appendix C.1. Further, we note that sorting does not provide any guidance
on the rate or the relative spacing between the points i.e., how fast the function values increase. This
rate is important for controlling the sample budget for black-box optimization. Next, we discuss a
sampling strategy for explicitly controlling this rate.

(a) (b)

Figure 3: Plots showing the distribution of function values in
the offline datasetD (left) and the trajectories inDtraj (right)
for the Ant Morphology benchmark (Trabucco et al., 2022).
Notice how the overall density of points with high function
values is up-weighted post our re-weighting.

Sampling Strategies for Offline
Points So far, we have proposed a
simple heuristic for transitioning a set
of offline points into a sorted trajec-
tory. To obtain these offline trajec-
tory points from the offline dataset,
one default strategy is to sample uni-
formly at random T points from D
and sort them. However, we found
this strategy to not work well in prac-
tice. Intuitively, we might expect a
large volume of the search space to
consist of points with low-function
values.

Thus, if our offline dataset is uni-
formly distributed across the domain,
the probability of getting a high qual-
ity point will be very low with a uni-
form sampling strategy. To counter this challenge, we propose a 2 step sampling strategy based
on binning followed by importance reweighting. Our formulation is motivated by a similar strat-
egy proposed by Kumar & Levine (2020) for loss reweighting. First, we use the function values to
partition the offline dataset D into NB bins of equal-width, i.e., each bin covers a range of equal
length. Next, for each bin, we assign a different sampling probability, such that (a) bins where the
average function value is high are more likely to be sampled, and (b) bins with more points are
sampled more often. The former helps minimize the budget, whereas the latter ensures diversity in
trajectories. Based on these two criteria, the score si for a bin Bi is given as:

si =
|Bi|

|Bi|+K
exp

(
−|ŷ − ybi |

τ

)
(2)

where ŷ is the best function value in the dataset D, |Bi| refers to the number of points in the ith

bin, and ybi is the midpoint of the interval corresponding to the bin Bi. Here, the first term |Bi|
|Bi|+K

allows us to assign a higher weight to the larger bins with smoothing. The second term gives higher
weight to the good bins using an exponential weighting scheme. More details about K and τ can
be found in Appendix B. Finally, we use these scores si to proportionally sample ni points from
bin Bi where ni = T

⌊
si∑
j sj

⌋
for i ∈ {2, · · · , NB} and n1 = T −

∑
i>1 ni, making the overall

length of the trajectories equal to T . In Figure 3, we illustrate the shift in distribution of function
values due to our sampling strategy. We refer to the combined strategy of sampling and then sorting
as SORT-SAMPLE in Figure 2 and Algorithm 1.

Augmenting Trajectories With Regret Budgets Our sorted trajectories heuristically reflect roll-
outs of implicit black-box optimizers. However they do not provide us with information on the rate
at which a trajectory approaches the optimal value. A natural choice for such a knob would be the
cumulative regret. Moreover, as we shall show later, cumulative regret provides BONET a simple
and effective knob to generalize outside the offline dataset during the evaluation phase.
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Hence, we propose to augment each data point xi in our trajectory with a Regret Budget (RB).
The RB Ri at timestep i defined as the cumulative regret of the trajectory, starting at point xi:
Ri =

∑T
j=i(f(x

∗) − f(xj)). Intuitively, a high (low) value for Ri is likely to result in a high
(low) budget for the model to explore diverse points. Note, we are only assuming knowledge of an
estimate for f(x∗) (and not x∗). Thus, each trajectory in our desired set Dtraj can be represented as:

T = (R1,x1, R2,x2, · · · , RT ,xT ) (3)

We will refer to R1 as Initial Regret Budget (IRB) henceforth. This will be of significance for
evaluating our model in Phase 3 (Section 2.4), as we can specify a low IRB to induce the model to
output points close to the optima.

2.3 PHASE 2: TRAINING AN AUTOREGRESSIVE GENERATIVE MODEL

Given our trajectory dataset, we design our BBO agent as a conditional autoregressive model and
train it to maximize the likelihood of trajectories in Dtraj. More formally, we denote our model
parameterized by θ as gθ(xt|x<t, R≤t), where by k<t we mean the set {k1, · · · , kt−1}. Here, xi

are the sequence of points in a trajectory, and Ri refers to the regret budget at timestep i.

Building on recent advances in sequence modeling (Vaswani et al., 2017; Brown et al., 2020; Rad-
ford et al., 2019) , we instantiate our model with a causally masked transformer and train it to
maximize the likelihood of our trajectory dataset Dtraj.

L(θ;Dtraj) = E
T ∼Dtraj

[
T∑

i=1

log gθ(xi|x<i, R≤i)

]
(4)

In practice, we translate this loss to the mean squared error loss for a continuous X (equivalent to a
Gaussian gθ with fixed variance), and cross entropy loss for a discrete X .

2.4 PHASE 3: EVALUATION ROLLOUT OF FINAL CANDIDATES

Once trained, we can use our BBO agent to directly output new points as its candidate guesses for
maximizing the black-box function. We do so by rolling out evaluation trajectories from our model.
Each trajectory will be subdivided into a prefix subsequence and a prediction subsequence. The
prefix subsequence consists of P < T points sampled from our offline dataset as before. These
prefix points provide initial warm-up queries to the model. Thereafter, we rollout the prediction
subsequence consisting of T − P points by sampling from our autoregressive generative model.

Setting Regret Budgets One key question relates to setting the regret budget at the start of the suffix
subsequence. It is not preferable to set it to RP+1 of the sampled trajectory, as doing so will lead to
a slow rate of reaching high-quality regions similar to the one observed in the training trajectories.
This will not allow the suffix to generalize beyond the offline dataset.

Alternatively, we initialize it to a low value in BONET to accelerate the trajectory towards good
points following a prefix subsequence. We refer to this low value as Evaluation RB and denote it as
R̂ in Figure 2 and in Section 3. Thereafter, we keep the RB for the suffix subsequence fixed (R̂), as
the agent is expected to be already in a good region. Moreover, updating the RB here would require
sequential querying to the function f , which can be prohibitive. Thus, our evaluation protocol can
generate a set of candidate queries purely in an offline manner. In practice, we also find it helpful to
split the Q candidates among a few (and not 1) small R̂ values, each with a different prefix.

3 EXPERIMENTAL EVALUATION

We first empirically evaluate BONET for optimizing a synthetic 2D function, Branin, in order to
analyze its working and probe the various components. Next, we perform large-scale benchmarking
and experiments on Design-Bench (Trabucco et al., 2022), a suite of offline BBO tasks based on
real-world problems.
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3.1 BRANIN TASK

Branin is a well-known benchmark function for evaluating optimization methods. It is a 2D function
evaluated on the ranges x1 ∈ [−5, 10] and x2 ∈ [0, 15]:

fbr(x1, x2) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cosx1 + s (5)

where a = −1, b = 5.1
4π2 , c = 5

π , r = 6, s = −10, and t = 1
5π . In this square region, fbr has

three global maximas, (−π, 12.275), (π, 2.275), and (9.42478, 2.475); with the maximum value of
−0.397887. Figure 1b shows an illustration of the function contours. For offline optimization we
uniformly sample N = 5000 points in the domain, and remove the top 10%-ile (according to the
function value) from this set to remove points close to the optima to make the task more challenging.
We then construct 400 trajectories of length 64 each according to the SORT-SAMPLE strategy.

Table 1: Best function value achieved by each method on Branin
task. We report mean and standard deviation averaged over 5
runs. Gradient ascent performs poorly because on many initial-
ization points, the trajectories escape out of the square domain.

OPTIMA D (best) BONET Grad. Ascent

−0.398 −6.119 −1.79± 0.843 −3.953± 4.258

During the evaluation, we ini-
tialize four trajectories with a
prefix length of 32 and un-
roll them for an additional 32
steps, and output the best result,
thus consuming a query budget
of 128. As we see in Table
1, BONET successfully gener-
alizes beyond the best point in
our offline dataset. We also re-
port numbers for a gradient as-
cent baseline, which uses the of-
fline dataset to train a forward model (a 2 layer NN) mapping x to y and then performs gradient
ascent on x to infer its optima. Next, we perform ablations to understand the effect of the Evaluation
RB R̂ and prefix length P on our rolled-out trajectories.

Impact of R̂ Figures 4a and 4b shows rolled-out trajectories for our model for different R̂ values,
with prefix lengths 16 and 32. We see that low R̂ rolls out higher quality points compared to high
R̂. To verify our semantics of regret budget as a knob for controlling the rate at which the model
accelerates to high-quality points, in the Figure 4c, we also plot trajectories where we update the RB
values in the suffix. We stop the roll-out if RB becomes non-positive. It is evident that for smaller
R̂, the agent quickly accelerates to high-quality regions, whereas for high R̂, it gradually shifts to
high-quality points. This shows how R̂ controls the rate of transition from low to high-quality points.

To further check whether our model has learned to generate a sequence having cumulative regret
close to the initial RB R1, we plot R1 vs the cumulative regret of a full rolled-out sequence in
Figure 5a. We observe that the curve is close to the desired ideal line y = x. Notice that the range
of R1 values of Dtraj is quite narrow, but BONET is able to generalize well to a much wider range,
allowing it to propose points even better than the dataset. During training, the model has only seen
low RB values towards the end of the trajectories. However, the powerful stitching ability (Chen
et al., 2021) of the model allows it to roll out a novel trajectory having low cumulative regret when
conditioned on low unseen R1 values. Finally, since in BBO our goal is to find the best point, we
also plot the best rolled-out point across a trajectory versus R̂ in Figure 5b while keeping the prefix
sequence fixed. As expected, we observe a decreasing trend, justifying our choice of small R̂ values.

Impact of Prefix Length Figure 5c shows the obtained best function values for different prefix
lengths, averaged over multiple R̂ values, with same query budget Q = 32. As expected, we see
an increasing trend in the best function value. We also observe a decreasing variance, indicating
that the trajectory roll-outs are more stable when augmented with history of points. Note that prefix
lengths larger than 32 doesn’t perform very well in practice because they have fewer than 32 shots
to propose a good point in a single trajectory. Empirically, we found prefix length equal to half of
the trajectory length to perform well across the experiments. We provide more details about the
ablations, experimental setup, and model hyper-parameters in the Appendix B and C.
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(a) (b) (c)

Figure 4: Rolled-out trajectories for Branin task for multiple R̂ values (averaged over 5 runs). Figure
(b) shows trajectories with prefix length 32, without updating RB (default evaluation setting). In
Figure (a), we change the prefix length to 16 while in Figure (c), we update RB in the suffix.

(a) Initial RB vs Cumulative Regret (b) Variation with R̂ (c) Variation with Prefix length

Figure 5: Ablation studies for Branin task. All the values are averaged over 5 runs.

3.2 DESIGN-BENCH TASKS

Next, we evaluate BONET on 7 complex real-world tasks of Design-Bench (Trabucco et al., 2022)1.
TF-Bind-8 and TF-Bind-10 are discrete tasks where the goal is to optimize for a DNA sequence
which has maximum affinity to bind with a particular transcription factor. The sequences are of
length 8 (10) for TF-Bind-8 (TF-Bind-10), where each element in the sequence is one of 4 bases.
ChEMBL is a discrete task where the aim is to design a drug with certain qualities. NAS is a discrete
task where we want to optimize a NN for performance on CIFAR10 (Krizhevsky et al., 2010). In
D’Kitty and Ant morphology tasks, we optimize the morphology of two robots: Ant from OpenAI
gym (Brockman et al., 2016) and D’Kitty from ROBEL (Ahn et al., 2019). In Superconductor task,
the aim is to find a chemical formula for a superconducting material with high critical temperature.
D’Kitty, Ant and Superconductor are continuous tasks with dimensions 56, 60, and 86 respectively.
For the first four tasks, we have query access to the exact oracle function. For Superconductor, we
only have an approximate oracle, which is a random forest regressor trained on a much larger hidden
dataset. These tasks are considered challenging due to high dimensionality, low quality points in the
offline dataset, approximate oracles in some cases, and highly sensitive landscapes with narrow
optima regions (Trabucco et al., 2022).

Baselines We compare BONET with multiple canonical baselines like gradient ascent, REIN-
FORCE (Sutton et al., 1999), BayesOpt (Snoek et al., 2012) and CMA-ES (Hansen, 2006). We
also compare with more recent methods like MINs (Kumar & Levine, 2020), COMs (Trabucco
et al., 2021) and CbAS (Brookes et al., 2019).2For inherently active methods like BayesOpt, since
we cannot query the oracle function f(x) during optimization (due to being in an offline setting), we
follow the procedure used by Trabucco et al. (2022), and perform BayesOpt on a surrogate model
f̂(x) (a feedforward NN) trained on the offline dataset. For the BayesOpt baseline, we use a Gaus-
sian Process to quantify uncertainty and use the quasi-Expected Improvement (Wilson et al., 2017)

1We haven’t included Hopper since the domain is buggy - we found that the oracle function used to evaluate
the task was highly inaccurate and noisy. An expanded discussion can be found in Appendix B.7

2We take the baseline implementations from https://github.com/brandontrabucco/design-baselines
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Table 2: 100th percentile comparative evaluation of BONET over 7 tasks averaged over 5 runs.
The error bars refer to the standard deviation across the 5 seeds. We report normalized scores with
Q = 256 (except for NAS, where we use Q = 128 due to compute restrictions) and highlight the top
2 results in each column. Blue denotes the best entry in the column, and Violet denotes the second
best. We observe that BONET is in the top 2 in 5 out of 7 tasks, and is also consistently able to
outperform the best offline dataset point in all tasks.

BASELINE TFBIND8 TFBIND10 SUPERCONDUCTOR ANT D’KITTY CHEMBL NAS MEAN SCORE (↑) MEAN RANK (↑)

D (best) 0.439 0.467 0.399 0.565 0.884 0.605 0.436 - -

CbAS 0.958± 0.018 0.657± 0.017 0.45± 0.083 0.876± 0.015 0.896± 0.016 0.640± 0.005 0.683± 0.079 0.737± 0.033 5.4
GP-qEI 0.824± 0.086 0.635± 0.011 0.501± 0.021 0.887± 0.0 0.896± 0.0 0.633± 0.000 1.009± 0.059 0.769± 0.026 5.3

CMA-ES 0.933± 0.035 0.679± 0.034 0.491± 0.004 1.436± 0.928 0.725± 0.002 0.636± 0.004 0.985± 0.079 0.840± 0.156 4.0
Gradient Ascent 0.981± 0.015 0.659± 0.039 0.504± 0.005 0.34± 0.034 0.906± 0.017 0.647± 0.020 0.433± 0.000 0.638± 0.018 4.0
REINFORCE 0.959± 0.013 0.64± 0.028 0.481± 0.017 0.261± 0.042 0.474± 0.202 0.636± 0.023 −1.895± 0.000 0.222± 0.046 6.7

MINs 0.938± 0.047 0.659± 0.044 0.484± 0.017 0.942± 0.018 0.944± 0.009 0.653± 0.002 0.717± 0.046 0.762± 0.026 3.7
COMs 0.964± 0.02 0.654± 0.02 0.423± 0.033 0.949± 0.021 0.948± 0.006 0.648± 0.005 0.459± 0.139 0.720± 0.034 4.4

BONET (Ours) 0.975± 0.004 0.681± 0.035 0.437± 0.022 0.976± 0.012 0.954± 0.012 0.654± 0.019 0.724± 0.008 0.772± 0.016 2.4

Table 3: 50th percentile evaluations on all the tasks. Similar to Table 2, we find that BONET
achieves both the best average rank and the best mean score on all tasks. This shows that BONET
consistently outputs good candidate points.

BASELINE TFBIND8 TFBIND10 SUPERCONDUCTOR ANT D’KITTY CHEMBL NAS MEAN SCORE MEAN RANK

CbAS 0.422± 0.007 0.458± 0.001 0.111± 0.009 0.384± 0.010 0.752± 0.003 0.633± 0.000 0.292± 0.027 0.436± 0.008 5.7
GP-qEI 0.443± 0.004 0.494± 0.002 0.299± 0.002 0.272± 0.006 0.754± 0.004 0.633± 0.000 0.544± 0.099 0.491± 0.016 4.0

CMA-ES 0.543± 0.007 0.483± 0.011 0.376± 0.004 −0.051± 0.004 0.685± 0.018 0.633± 0.000 0.591± 0.102 0.466± 0.020 3.4
Gradient Ascent 0.572± 0.024 0.470± 0.004 0.463± 0.022 0.141± 0.010 0.637± 0.148 0.633± 0.000 0.433± 0.000 0.478± 0.029 4.3
REINFORCE 0.450± 0.003 0.472± 0.000 0.470± 0.017 0.146± 0.009 0.307± 0.002 0.633± 0.000 −1.895± 0.000 0.083± 0.004 4.9

MINs 0.425± 0.011 0.471± 0.004 0.330± 0.011 0.651± 0.010 0.890± 0.003 0.633± 0.000 0.433± 0.000 0.547± 0.005 4.0
COMs 0.492± 0.009 0.472± 0.012 0.365± 0.026 0.525± 0.018 0.885± 0.002 0.633± 0.000 0.287± 0.173 0.522± 0.034 3.8

BONET 0.505± 0.055 0.496± 0.037 0.369± 0.015 0.819± 0.032 0.907± 0.020 0.630± 0.000 0.571± 0.095 0.614± 0.035 2.8

acquisition function for optimization, similar to prior work (Trabucco et al., 2022; 2021). MINs (Ku-
mar & Levine, 2020) also train a forward model to optimize over the conditioning parameters. Our
method does not need a separate forward model and thus, is not dependent on the quality of the fit
of the forward model. We provide other variants of BayesOpt baseline in Appendix D.2.

Evaluation We allow a query budget of Q = 256 for all the baselines, except for NAS, where we
use a reduced budget of Q = 128 due to compute restrictions. For BONET, across all tasks, we roll
out 4 trajectories, each with a prefix and prediction subsequence length of 64 each. The prediction
subsequence is initialized with one of 4 candidate low R̂ values 0, 0.01, 0.05, 0.1. For each R̂,
we then roll out for 64 timesteps and choose the best point. We report the mean and standard
deviation over 5 trials for each of the models and tasks in Table 2. Following the procedure used by
(Trabucco et al., 2021; 2022; Yu et al., 2021), the results of Table 2 are linearly normalized between
the minimum and maximum values of a large hidden offline dataset. In Table 3, we also present the
median function value of the the proposed output points for each method, averaged over 5 runs.

Results Overall, we obtain a mean score of 0.772 and an average rank of 2.4, which is the best
among all the baselines. We also achieve the best results on three tasks. Additionally, we are among
the top 2 for five out of seven tasks. We show significant improvements over generative methods
such as MINs (Kumar & Levine, 2020) or CbAS (Brookes et al., 2019), and forward mapping
methods such as COMs (Trabucco et al., 2021) on TF-Bind-8, TF-Bind-10, Ant and D’Kitty. We
also note that while BONET is placed second in Ant, it shows a much lower standard deviation
(0.012) compared to the to the best performing method CMA-ES, which has a much larger standard
deviation of 0.928. We also have a lowest mean standard deviation across all tasks, suggesting
that BONET is less sensitive to bad initializations compared to other methods. We report the un-
normalized results, ablations and other experimental details for Design-Bench tasks in Appendix C.
BONET also performs best on 50th percentile evaluation, showing that it has a better set of proposed
points compared to other methods, and that the performance is not by randomly finding good points.

4 RELATED WORK

Active BBO The majority of prior work in BBO have been in the active setting, where surro-
gate models are allowed to query the function during training. This includes long bodies of work

8
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in Bayesian Optimization, e.g., (Snoek et al., 2012; Swersky et al., 2013; Srinivas et al., 2010;
Nguyen & Osborne, 2020) and bandits, e.g., (Garivier et al., 2016; Riquelme et al., 2018; Joachims
et al., 2018b;a; Swaminathan & Joachims, 2015; Jacq et al., 2019). Such methods usually employ
surrogate models such as Gaussian Processes (Srinivas et al., 2010), Neural Processes (Garnelo
et al., 2018a;b; Gordon et al., 2019; Anonymous, 2022; Singh et al., 2019) or Bayesian Neural
Networks (Chang, 2021; Goan & Fookes, 2020) to approximate the black-box function, and an
uncertainty-aware acquisition strategy for querying new points.

Offline BBO Recent works have made use of such datasets and shown promising results (Kumar
& Levine, 2020; Trabucco et al., 2021; Brookes et al., 2019; Fannjiang & Listgarten, 2020; Fu &
Levine, 2021; Yu et al., 2021). Kumar & Levine (2020) train a stochastic inverse mapping from
the outputs y to inputs x using a generative model similar to a conditional GAN (Goodfellow et al.,
2014; Mirza & Osindero, 2014; Arjovsky et al., 2017; Nowozin et al., 2016). They then optimize
over y to find a good design point. Training GANs however can be difficult due to issues like mode
collapse (Arjovsky et al., 2017). Other methods make use of gradient ascent to find an optimal
solution. Trabucco et al. (2021) and Yu et al. (2021) train a model to be robust to outliers by
regularizing the objective such that they assign low score to those points. Fu & Levine (2021) train a
normalized maximum likelihood estimate of the function. We instead offer a fresh perspective based
on generative sequence modelling and we show strong results in comparison to many of these prior
works in Section 3.

Offline reinforcement learning (RL) While both RL and BBO are sequential decision-making
problems, the key difference is that RL is stateful while BBO is not. In the offline setting (Schmid-
huber, 2019; Jacq et al., 2019), both problems require models or policies that can generalize beyond
the offline dataset to achieve good performance. Related to our work, autoregressive transformers
have been successfully applied on trajectory data obtained from offline RL (Chen et al., 2021; Janner
et al., 2021). However, there are important differences between their setting and offline BBO. For
example, the data in offline BBO is not sequential in nature, unlike in offline RL where the offline
data is naturally in the form of demonstrations. One of our contributions is to design a notion of
‘high-to-low’ sequences to BBO for autoregressive modeling and test-time generalization.

Learned optimizers Our work also bears resemblance to work on meta-learning optimizers like
those of (Andrychowicz et al., 2016) and (Chen et al., 2017). However, a key difference between
these learned optimizers and BONET is that they require access to gradients either during training
time or during both training and evaluation time, whereas BONET has no such restriction, meaning
it can work in situations where access to gradient information is not practical (for instance with non-
differentiable black-box functions). Furthermore, we concentrate on the offline setting, in contrast
to learned optimizer work which usually looks at an active optimization setting.

5 DISCUSSION

We presented BONET, a novel generative framework for pretraining black-box optimizers using
offline data. BONET consists of a 3 phased process. In the first phase, we use a novel SORT-
SAMPLE strategy to generate trajectories from offline data that use the sorting heuristic to mimic
the behavior of online BBO optimizers. In phases 2 and 3, we train our model using an autore-
gressive transformer and use it to generate candidate points that maximize the black-box function.
Experimentally, we verify that BONET is capable of solving complex high-dimensional tasks like
the ones in Design-Bench, achieving an average rank of 2.4 with a mean score of 0.772.

Limitations and Future Work BONET assumes knowledge of the approximate value of the optima
f(x∗) to computes the regrets of points. Though we show in Appendix C.5 that different reasonable
estimates of f(x∗) can give similar results, this is still something we would like to address in future
work. We are also interested in extending BONET to an active setting where our model can quantify
uncertainty and actively query the black-box function after pretraining on an offline dataset. On
a practical side, we would also be interested in analyzing the properties of domains that dictate
where BONET can strongly excel (e.g., D’Kitty) or struggle (e.g., Superconductor) relative to other
approaches.Finally, we aim to expand our scope to a meta-task setting, where instead of a single
function, our offline data consists of past evaluations from multiple black-box functions.

9
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6 ETHICAL AND SOCIAL RESPONSIBILITY

Offline black-box optimization can play a critical role in improving efficiency and safety in many
real-world settings like nuclear reactors or the pharmaceutical industry, where active optimization
may prove to be computationally inefficient (requiring too many queries) or even dangerous. How-
ever, while we do not anticipate anything inherently malicious about our work, it is possible to
utilize our proposed method (and other optimizers in general) in malicious settings (e.g., optimizing
for drugs that have harmful effects). This is something to remember when deploying algorithms
such as ours for high stake real-world applications.

7 REPRODUCIBILITY

Throughout the paper, we maintained a high standard of rigor for reproducibility. We report the
detailed pseudocode of our method in Algorithm 1, and we also provide the link to our code via an
anonymized link here. We provide more details on our training setup and choice of hyperparameters
in Appendix B. We report results on multiple datasets in Design-Bench (Trabucco et al., 2022), each
with different properties and benchmark our method over multiple baselines from different families
of approaches. Our results are averaged over 5 seeds, and we also provide the standard deviations.
We also conduct several ablations to evaluate sensitivity of BONET to different parameters.
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A NOTATIONS & THEORETICAL ANALYSIS

A.1 NOTATIONS

For ease of reference, we list the notations in Table 4.

Table 4: Important notations used in the paper

SYMBOL MEANING

f Black box function
X Support of f
x∗ Optima (taken to be maxima for consistency)
D Offline dataset
N Size of offline dataset
Dtraj Trajectory dataset
num trajs Number of trajectories in Dtraj

T A trajectory
T Length of a trajectory
Q Query budget for black-box function
P Prefix length
Ri Regret Budget at timestep i
R1 Initial Regret Budget
R̂ Evaluation Regret Budget
gθ Autoregressive generative model with parameters θ
K, τ SORT-SAMPLE hyperparameters
NB Number of bins
C Context Length

A.2 THEORETICAL ANALYSIS

One crucial component in the SORT-SAMPLE is sorting the trajectories in the increasing order
of the function values. Although our primary motivation for sorting is derived from the empiri-
cal observations from online black-box optimizers (Figure 1c), we note that for a certain class of
functions that are non-trivial to solve from the perspective of optimization (maximization for our
paper), lower (higher) function values occupy a larger (smaller) domain. Thus, intuitively we can
relate lower function values with exploration and higher function values with exploitation. With this
perspective, sorting can be seen as moving from a high-diversity region to a low-diversity region -
a behavior typically seen in online black-box optimizers (Bijl et al., 2016; Garivier et al., 2016). In
this section, we try to formally prove such properties for this constrained class of functions.

We consider the simplified case of differential 1D functions with certain assumptions for simplicity,
and further extend this notion to a more general D-dimensional case. First, we define a notion of
ϵ-high points.
Definition 1. ϵ-high values. Let the range of f be denoted as [ymin, ymax]. Then, a function value
y in this range is ϵ-high if y ≥ ymin + ϵ(ymax − ymin).

Intuitively, the above definition implies that y is ϵ-high if it is in the top 1 − ϵ fraction of the range
of f . The following result characterizes the relative diversity of regions consisting of ϵ-high points
for 1-D functions.
Proposition 1. Let f : [a, b]→ R, a, b ∈ R, be a real-valued, continuous and differentiable function
such that the f(a) and f(b) are not ϵ-high. Let H ⊆ [a, b] be a Lebesgue-measurable set of x values
for which f(x) is ϵ-high, with ϵ > 0.5. Let Hc = [a, b] \H . Without loss of generality, let’s assume
that f(a) ≤ f(b). If the Lipchitz constant L of f is upper bounded by

2(ϵ(ymax − ymin) + ymin − f(a))

b− a
, (6)

then |H| < |Hc|, where | · | denotes volume of a set w.r.t. the Lebesgue Measure.
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Proof of Proposition 1.

Note that if no point in the domain [a, b] achieves ϵ-high function value, then the statement holds
trivially true. So, we assume that there is atleast one point which has ϵ-high function value. Let
x1 and x2 be the smallest and largest such points in the domain. Since the boundary points doesn’t
have ϵ-high values, |Hc| ≥ (x1 − a) + (b − x2) and |H| ≤ (x2 − x1). Thus, if we prove that
(x1−a)+(b−x2) ≥ (x2−x1), then we are done. To prove this, we try to prove (x1−a) ≥ (x2−x1).

Assume, on the contrary, that (x1 − a) < (x2 − x1). Rearranging, we get

2

x2 − a
<

1

x1 − a
(7)

Now, by the definition of Lipchitz constant, we have:

f(x1)− f(a)

x1 − a
≤ L

⇒2(f(x1)− f(a))

x2 − a

7
≤ L

⇒2(ϵ ∗ (ymax − ymin) + ymin − f(a))

b− a
≤ L

(8)

Last inequality holds because x2 − a ≤ b − a. This inequality contradicts the bound 6 on L ,
completing our proof for Proposition 1.

Now, we show an extension of this proposition for D-dimensional functions with hypercube do-
mains.
Proposition 2. Let f : X → R be a D-dimensional, real-valued, continuous, and differentiable
function with hypercube domain X = [a1, b1] × [a2, b2], · · · ,×[aD, bD] , such that none of the
boundary points are ϵ-high, for some fixed ϵ. Here by boundary points, we mean the points on the
surface of the domain hypercube. Let ymax and ymin be the maximum and the minimum values
attained by f . Let H ⊆ X be a Lebesgue-measurable set of points for which f(x) is ϵ-high. Let
Hc = X \H . If the Lipchitz constant L of f is upper bounded by

2(ϵ ∗ (ymax − ymin) + ymin − max
x2,··· ,xD

f(a1, x2, · · · , xD))

b1 − a1
, (9)

then |H| < |Hc|, where | · | denotes volume of a set w.r.t. the Lebesgue Measure.

Proof. We prove this proposition by induction on the number of dimensions D. Notice that for
D = 1, the statement reduces to Proposition 1, which we have already proved. Next, we assume
that the statement holds for (D − 1)-dimensional functions and prove it for D dimensions, with
D > 1.

Let’s defineHD,ϵ : FD → BD to be a functional that maps any D-dimensional function, say f , to a
Lebesgue-measurable subset of RD that corresponds to the set of points where f(x) is ϵ-high. , Here,
FD and BD denote the set of all D-dimensional functions and the set of all Lebesgue-measurable
subsets of RD respectively.

We similarly define the mapping Hc
D,ϵ to be a functional mapping a function f to the complement

of its ϵ-high region. Thus, H = HD,ϵ(f) and Hc = Hc
D,ϵ(f). Now, by definition,

|HD,ϵ(f(•, · · · , •)| =
∫
xD

|HD−1,ϵ(f(•, · · · , •, xD))| dxD (10)

And similarly,

|Hc
D,ϵ(f(•, · · · , •)| =

∫
xD

|Hc
D−1,ϵ(f(•, · · · , •, xD))| dxD (11)

Consequently, to prove |HD,ϵ(f(•, · · · , •)| ≤ |Hc
D,ϵ(f(•, · · · , •)|, we prove

|HD−1,ϵ(f(•, · · · , •, xD))| ≤ |Hc
D−1,ϵ(f(•, · · · , •, xD))| for every xD ∈ [aD, bD].
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To do this, we first fix the Dth dimension to be c. In other words, we are considering the (D − 1)-
dimensional slice of f(x1, · · · , xD) with xD = c. Let g be such a slice with g(x1, · · · , xD−1) =
f(x1, · · · , xD−1, c). First we need ϵg for which ϵg-high value for g is ϵ-high for f :

ϵg(ygmax − ygmin) + ygmin = ϵ(ymax − ymin) + ymin (12)

where ygmax and ygmin are the minimum and maximum values respectively achieved by g. By
this choice of ϵg , we are ensuring that a point (x1, · · · , xD−1, c) is ϵ-high w.r.t f if and only if
(x1, · · · , xD−1) is ϵg-high w.r.t g. In other words,

HD−1,ϵg (g) = HD−1,ϵ(f(•, · · · , •, c))
Hc

D−1,ϵg (g) = Hc
D−1,ϵ(f(•, · · · , •, c))

(13)

Let the Lipchitz constant of g be Lg . First we show that Lg ≤ L. By definition of Lipchitz constant,
for x = (x1, · · ·xD−1), z = (z1, · · · , zD−1) in the domain of g,

Lg = sup
x̸=z

|g(x1, · · · , xD−1)− g(z1, · · · , zD−1)|√
D−1∑
i=1

(xi − zi)2

= sup
x̸=z

|f(x1, · · · , xD−1, c)− f(z1, · · · , zD−1, c)|√
D−1∑
i=1

(xi − zi)2 + (c− c)2

≤ L

(14)

Where last inequality is by definition of L w.r.t f . Combining this with our bound on L in 9, we get

Lg ≤
2(ϵ ∗ (ymax − ymin) + ymin − max

x2,··· ,xD

f(a1, x2, · · · , xD))

b1 − a1

≤
2(ϵ ∗ (ymax − ymin) + ymin − max

x2,··· ,xD−1

f(a1, x2, · · · , c))

b1 − a1
(fixing Dth dimension)

12
≤

2(ϵg ∗ (ygmax − ygmin) + ygmin − max
x2,··· ,xD−1

g(a1, x2, · · · , xD−1))

b1 − a1

(15)

Thus, the Lipchitz bound assumption is followed by g with ϵ = ϵg . Also, the boundaries are not ϵg-
high w.r.t g because of the choice of ϵg . This implies, by inductive assumption, that |HD−1,ϵg (g)| ≤
|Hc

D−1,ϵg (g)|. This, combined with equality 13 proves that that |HD−1,ϵ(f(•, · · · , •, c))| ≤
|Hc

D−1,ϵ(f(•, · · · , •, c))|. Since this is true for all c ∈ [aD, bD], by equations 10 and 11, our proof
for |HD,ϵ(f(•, · · · , •)| ≤ |Hc

D,ϵ(f(•, · · · , •)| is complete.

B EXPERIMENTAL DETAILS

B.1 SORT-SAMPLE

In SORT-SAMPLE, the score of each bin is calculated according to the formula

si =
|Bi|

|Bi|+K
exp

(
−|ŷ − ybi |

τ

)
The two variables K and τ here act as smoothing parameters. K controls the relative priority given
to the larger bins (bins with more points). Higher value of K assigns higher relative weight to these
large bins compared to smaller bins, whereas a low value of K the weight assigned to large and
small bins would be similar. In the extreme case where K = 0, the weight due to |Bi|

|Bi|+K will
always be 1, regardless of bin size. For very large value of K, the weight will be approximately
linearly proportional to the bin size |Bi|. The later case is not desirable because if there is a bin
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(a) Varying K and τ (b) Varying NB

Figure 6: We plot the best achieved function value for different combinations of K, τ and NB .
As expected, we don’t see much sensitivity to the choice of K and τ . For NB , as expected, we a
significant decrease for NB = 1, but NB = 32 is comparable to NB = 64

which has very large number of points (which might be a low quality bin), then most of the total
weight will be given to that bin because of the linear proportionality.

Temperature τ controls how harshly the bad bins are penalized. Lower the τ value, lower the relative
score of the low quality bins (bins with high regret) and vice versa.

In our experiments, we don’t tune the values of K, τ , and number of bins NB . In all the tasks, we
use K = 0.03 × N and τ = R10, where R10 is the 10th percentile regret value in D. For Branin
task, we use , NB = 32 and for all the Design-Bench tasks, we use NB = 64. Empirically, as we
show in Figure 6a, we didn’t observe much effect on K in the range [0.01, 0.1], and for τ from the
50th to the 10th percentiles of R. Figure 6b shows variation with NB , keeping all other parameters
fixed. As expected, NB = 1 doesn’t perform well, as having just one bin is equivalent to having no
re-weighting. Beyond 32, we don’t see much variation with the value of NB .

B.2 MODEL ARCHITECTURE & IMPLEMENTATION

Architecture We use a GPT (Radford et al., 2019) like architecture, where each timestep refers to
two tokens Rt and xt. Similar to Chen et al. (2021), we add a new learned timestep embedding (in
addition to the positional embedding already present in transformers). Each token Rt and xt that
goes as input to our model is first projected into a 128 dimensional embedding space using a linear
embedding layer. To this embedding, we also add the positional and timestep embeddings. This
is passed through a causally masked transformer. The prediction head for Rt predicts x̂t, which
is then used to compute the loss. The output of the prediction head for xt is discarded. At each
timestep, we feed in the last C timesteps to the model, where C here refers to the context length.
For continuous tasks, the prediction head for Rt outputs a d-dimensional prediction x̂t. For discrete
tasks, the prediction head outputs a V × d-dimensional prediction, where V refers to the number
of classes in the discrete task. Thus, each dimension in X corresponds to a V -dimensional logits
vector.

Code Our code (available at the anonymized link here) is built upon the code from minGPT 3 and
Chen et al. (2021) 4. All code we use is under the MIT licence.

Training The parameter details for all the tasks are summarized in the Table 5. Note that almost
all of the parameters are same across all the Design-Bench tasks. Number of layers is higher for
continuous tasks, as they are of higher dimensionalities. For all the tasks, we use a batch size of 128
and a fixed learning rate of 10−4 for 75 epochs. All training is done using 10 Intel(R) Xeon(R) CPU
cores (E5-2698 v4443 @ 2.20GHz) and one NVIDIA Tesla V100 SXM2 GPU.

3https://github.com/karpathy/minGPT
4https://github.com/kzl/decision-transformer
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B.3 EVALUATION

For all the Design-Bench tasks (except NAS), we use a query budget Q = 256. For NAS, we use a
query budget of Q = 128 due to compute restrictions. Since we use a trajectory length of 128 and a
prefix length of 64, this means that we can roll-out four different trajectories. There are two variable
parameters during the evaluation: Evaluation RB (R̂) and the prefix sub-sequence. We empirically
observed that R̂ has more impact on the variability of rolled-out points compared to prefix sub-
sequence. Hence, we roll-out trajectory for 4 different low R̂ values (0.0, 0.01, 0.05, 0.1). These
values are kept fixed across all the tasks and are not tuned. They are chosen to probe the interval
[0.0, 0.1], while giving slightly more importance to the low values by choosing 0.01. Evaluation
strategies with lower query budget Q available are discussed in the section C.2

Table 5: Important parameters for all the tasks

TASK Type HEADS LAYERS T P C NB num trajs

Branin (toy) Continuous 4 8 64 32 32 32 400

TFBind8 Discrete 8 8 128 64 64 64 800
TFBind10 Discrete 8 8 128 64 64 64 800
ChEMBL Discrete 8 8 128 64 64 64 800

NAS Discrete 8 8 128 64 64 64 800
D’Kitty Continuous 8 32 128 64 64 64 800

Ant Continuous 8 32 128 64 64 64 800
Superconductor Continuous 8 32 128 64 64 64 800

B.4 FIXED VS. UPDATED RB DURING EVALUATION

During the evaluation of the prediction sequence, we proposed to keep the Regret Budget (RB) fixed.
One alternative strategy is to sequentially update RB after every iteration, i.e. predict xt from Rt,
and compute Rt+1 = Rt − (f(x∗) − f(xt)). However, there are two issues with such an update
rule:

1. Updating RB adds a sequential dependency on our model during evaluation, as we must
query f(xt) to compute Rt+1. Thus, generating the Q candidate points is not purely offline.

2. While updating the regret budget Rt, it is possible that at some timestep t, Rt becomes
negative. Since the model has never seen negative RB values during training, this is unde-
sirable.

Hence, we do not update RB during evaluation, and instead provide a fixed R̂ value at every timestep
after the prefix length. This way, point proposal is not dependent on sequential evaluations of f ,
making it much faster as the evaluations on f can then be parallelized. Furthermore, by not updating
R̂ we sidestep the issue of negative RBs. Empirically, as we see in Figure 7, there is not much
difference across different strategies, which justifies our choice of not updating RB, allowing our
method to be purely offline.

B.5 BASELINES

For the gradient ascent baseline of Branin task, we train a 2 layer neural network (with hidden layer
of size 128) as a forward model for 75 epochs with a fixed learning rate of 10−4. For gradient ascent
on the learnt model during evaluation, we report results with a step size of 0.1 for 64 steps. We
average over 5 seeds, and for each seed we perform two random restarts.

For the baselines in the Design-Bench tasks, we run the baseline code 5 provided in Trabucco et al.
(2022) and report results with the default parameters for a query budget of 256.

5We were not able to reproduce the results of (Fu & Levine, 2021) and (Yu et al., 2021) on the latest version
of Design-Bench.
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Figure 7: Comparison between 3 strategies: (1) do not update the RB at all (blue), (2) update the
RB but do not handle the case when Rt becomes negative (orange) and (3) don’t make the update if
the update is going to make the RB negative and update otherwise (green). In all three cases, we see
similar performance.

B.6 DESIGN-BENCH TASKS

For the Design-Bench tasks, we pre-process the offline dataset to normalize the function values
before constructing the trajectory datasetDtraj. Normalized ynorm values are computed as ynorm =

y−ymin

ymax−ymin
, where ymin and ymax are minimum and maximum function values of a much larger

hidden dataset. Note that we only use the knowledge of ymin and ymax from this hidden dataset,
and not the corresponding x values. With this normalization procedure, we use 1.0 as an estimate of
f(x∗) while constructing trajectories in Dtraj.The results we report in Table 2 are also normalized
using the same procedure, similar to prior works (Trabucco et al., 2022; 2021). We also report
unnormalized results in Table 7.

Table 6: Task details

TASK SIZE DIMENSIONS TASK MAX

TFBind8 32898 8 1.0
TFBind10 10000 10 2.128
ChEMBL 1093 31 443000.0

NAS 1771 64 69.63
D’Kitty 10004 56 340.0

Ant 10004 60 590.0
Superconductor 17014 86 185.0

B.7 HOPPER TASK

We didn’t include the Hopper task in our results in Table 2 because of the inconsistency between the
offline dataset values and the oracle outputs. Hopper data consist of 3200 points, each with 5126
dimensions. The lowest and highest function values are 87.93 and 1361.61. Figure 8 shows the
distribution of the normalized function values. This distribution is extremely skewed towards low
function values. Only 6 points out of 3200 have a normalized function value greater than 0.5.

We noticed that the oracle of Hopper is highly inaccurate for points with higher function values.
Figure 9 shows the function values in the dataset vs. the oracle output for the top 10 best points in
the data, clearly showing the inconsistency between the two. In fact, the oracle minima and maxima
for the dataset are just 56.26 and 786.79, respectively, far from the actual dataset values. Due to
such discrepancies, we have decided not to include the Hopper task in our analysis.
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Figure 8: Histogram of normalized function val-
ues in the Hopper dataset. The distribution is
highly skewed towards low function values.

Figure 9: Dataset values vs Oracle values for top
10 points. Oracle being noisy, we show mean and
standard deviation over 20 runs.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATIONS ON SORT-SAMPLE STRATEGY

SORT-SAMPLE algorithm has two main components: Sampling after re-weighting and sorting.
Our sorting heuristic is primarily motivated by typical runs of online optimizers. To show this,
we run an online GP to optimize the three synthetic functions, namely the negative Branin, negative
Goldstein-Price and negative Six hump camel functions and plot the function values for the proposed
points. Figure 10 shows sample trajectories of the function values of the proposed maxima after each
function evaluation. We can see, on average, the function values tend to increase over time as the
number of queries increases. Such behavior has also been reported for other black-box functions
and setups, see e.g. (Bijl et al., 2016).

Figure 10: Mean and standard deviations of 10 trajectories unrolled by a simple GP-based BayesOpt
algorithm on the 3 synthetic functions.

However, in this section, we do perform ablations to see the effects of these components. To this
end, we construct trajectories using 4 strategies:

1. Random: Uniformly randomly sample a trajectory from the offline dataset.
2. Random + Sorting: Uniformly randomly sample a trajectory from the offline dataset and

sort it in ascending order of the function values.
3. Re-weighting + Partial Sorting: Perform re-weighting, uniformly randomly sample ni

number of points from each bin, and concatenate them from lowest quality bin to the high-
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est quality bin. This way, the trajectory will be partially sorted, i.e. the order of the bins
themselves is sorted, but the points sampled from a bin will be randomly ordered. In this
case, the trajectories are not entirely monotonic w.r.t. the function values. Intuitively, this
intermingles exploration and exploitation phases within and across bins respectively.

4. Re-weighting + Sorting (default in BONET): Sort the trajectory obtained in strategy 3. This
is the default setting we use in our experiments.

Figure 11 contains the results obtained by each of the four strategies. Note that while going from
strategy 1 to 2, we keep the points sampled in a trajectory the same, so the only difference be-
tween them is sorting. Figure 11 shows that strategy 1 clearly outperforms strategy 2. This means
that sorting has a significant impact on the results. Next, note that strategy 2 and 4 differ only in
their sampling strategy, and strategy 4 outperforms strategy 2, which shows the effectiveness of
re-weighting. This experiment justifies our choice for both re-weighting and sorting.

Figure 11: Results with various trajectory construction strategies for D’Kitty task, averaged over 5
runs. Comparing blue and orange bars, it is evident that sorting is improving the results. Similarly,
comparison of orange bar with red bar shows that re-weighting further improves the results.

C.2 ANALYSIS ON QUERY BUDGET Q

So far, we have been discussing the results with query budget Q = 256. Here, we describe the
evaluation strategy we use when lower query budget is available. Our strategy will be to give higher
preference to lower R̂ values when lower budget is available. For example, when Q = 192, we
only roll-out and evaluate for R̂ ∈ {0.0, 0.01, 0.05}. For 192 < Q ≤ 256, we will roll-out for R̂ ∈
{0.0, 0.01, 0.05, 0.1}, evaluate the entire predicted sub-sequences of lengths 64 for {0.0, 0.01, 0.05},
and evaluate the first Q− 192 points in the predicted sub-sequences for R̂ = 0.1. In the Figure 12,
we present the results for different query budgets for our method compared to important baselines,
for the D’Kitty task. We outperform the baselines for almost all the query budget values.

C.3 ADDITIONAL ABLATIONS

Here we present ablations similar to Section 3 on the D’Kitty task, and observe similar trends to
what we see in the Branin ablations.

C.4 EFFECT OF PREFIX SEQUENCES

During the evaluation, the unrolled trajectory depends on two factors affecting the unrolled output:
Evaluation Regret Budget R̂ and the prefix sequence. Empirically, we found that R̂ has a larger
impact on the unrolled trajectory than the prefix sequence. To show this, we first evaluate the Branin
task for 10 different randomly sampled prefix sequences for a fixed R̂ and then do the same with
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Figure 12: Results for various query budget values Q for D’Kitty task, averaged over 5 runs. We
match or outperform other baselines on almost all the values of Q.

(a) P = 64, without updating RB (b) P = 64, with updating RB

Figure 13: Figures 13a and 13b show plots of the trajectories generated on DKitty for different
values of evaluation RB (0, 8 and 10). In Figure 13a we show results without updating RB, and in
Figure 13b we show results with updating. All the trajectories are averaged over 5 runs.

(a) Initial RB vs Cumulative Regret (b) Effect of R̂

Figure 14: Ablations on D’Kitty, averaged over 5 runs.

10 different R̂ values sampled from the range (0.0, 0.5) for the same prefix sequence. Figure 15
shows the standard deviation of the minimum regret of the 10 different unrolled trajectories for 3
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Table 7: Unnormalized 100th percentile results

BASELINE TFBIND8 TFBIND10 SUPERCONDUCTOR ANT D’KITTY CHEMBL NAS

D (best) 0.439 0.00532 74.0 165.326 199.231 443000.000 63.79

CbAS 0.958± 0.018 0.761± 0.067 83.178± 15.372 468.711± 14.593 213.917± 19.863 389000.000± 500.000 66.355± 0.79
GP-qEI 0.824± 0.086 0.675± 0.043 92.686± 3.944 480.049± 0.000 213.816± 0.000 387950.000± 0.000 69.722± 0.59

CMA-ES 0.933± 0.035 0.848± 0.136 90.821± 0.661 1016.409± 906.407 4.700± 2.230 388400.000± 400.000 69.475± 0.79
Gradient Ascent 0.981± 0.010 0.770± 0.154 93.252± 0.886 −54.955± 33.482 226.491± 21.120 390050.000± 2000.000 63.772± 0.000
REINFORCE 0.959± 0.013 0.692± 0.113 89.027± 3.093 −131.907± 41.003 −301.866± 246.284 388400.000± 2100.000 39.724± 0.000

MINs 0.938± 0.047 0.770± 0.177 89.469± 3.227 533.636± 17.938 272.675± 11.069 390950.000± 200.000 66.076± 0.46
COMs 0.964± 0.020 0.750± 0.078 78.178± 6.179 540.603± 20.205 277.888± 7.799 390200.000± 500.000 64.041± 1.390

BONET 0.975± 0.004 0.855± 0.139 80.84± 4.087 567.042± 11.653 285.110± 15.130 391000.000± 1900.000 66.779± 0.16

Figure 15: Standard deviation of the minimum regret of the unrolled trajectories with 1) 10 different
prefix sequences for a fixed R̂ and 2) 10 different R̂ for a fixed prefix sequence.

fixed R̂ and prefix sequences, respectively. The standard deviation for the variation in prefix length
is consistently lower than that for the variation in R̂, explaining our choice of spending query budget
on different R̂ rather than different prefix sequences.

C.5 EFFECT OF ESTIMATING yMAX

A key assumption of our method is the knowledge of ymax. Though in many problems this is not an
issue, there are many other problems where the value of ymax may not be known. A simple solution
could be to just estimate ymax. In Figure 16 we evaluate BONET on D’Kitty multiple varying values
of ymax starting from just beyond the dataset maxima. We find that the value of ymax initially affects
performance alot, but beyond a point, it plateaus..

Figure 16: Best points for different values of ymax on D’Kitty.
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Table 8: Results for when a random x% subsection of the offline dataset was withheld during training
from BONET

10% 50% 90% 99%

D (best) 74.21 74.20 73.99 65.71
BONET 286.60± 1.47 284.74± 23.68 274.11± 7.57 241.17± 18.07

Table 9: Results for when the top x% of the offline dataset was withheld during training from
BONET

10% 50% 90% 99%

D (best) 61.14 −40.40 −545.36 −548.89
BONET 267.68± 2.28 261.04± 28.09 211.56± 16.74 193.27± 5.51

C.6 ABLATION ON MODEL PARAMETERS

In this experiment we study the effect of changing the number parameters in BONET. We do this by
altering the number of layers and heads in BONET on D’Kitty. We find that increasing the number
of parameters helps up to a point, beyond which the model over-fits. It is important to note that
we present this study only to understand the impact of model size on our performance. We don’t
actually tune over these parameters in our experiments. They are kept fixed across all the discrete
and continuous tasks (refer to Table 5).

(a) Varying the number of layers in BONET.
Heads are fixed at 8

(b) Varying the number of heads in BONET. Lay-
ers are fixed at 16

Figure 17: We show the performance of various models with differing number of layers and heads
on D’Kitty to see their effect on BONET. We find that increasing the number of parameters helps
upto a point, beyond which it overfits.

C.7 ABLATIONS ON DATASET SIZE

To test the limits of BONET we run experiments where we withhold offline training data from
BONET and evaluate the performance. We have two settings, one where we withhold an x% size
random subsection of data in Table 8, and another where we withhold the top x percentile of data
during training and evaluation in Table 9. We see that with just reducing the number of points,
we don’t see as sharp of a drop off in performance as compared to when we withhold the good
points in the dataset. This leads us to believe that the dominating effect is not the size of the dataset
exactly, but the quality of points in the dataset. Further, note that even here the points proposed
are significantly larger than the maximum point in the dataset, which rules out the possibility of
memorization for BONET.
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C.8 NOISE ABLATION

We run an experiment where we add progressive larger amounts of noise to the y values in our
offline dataset while training our model, to test how robust BONET is to noisy data. We report the
results in Table 10 for D’Kitty. We find that, as expected, increasing noise reduces performance, and
BONET is in fact reasonably robust to noise, and the largest drop-off occurs when the magnitude of
noise is equal to the magnitude of values.

Table 10: Ablation on adding various magnitudes of noise to training data

NOISE SCALE SCORE

0% of max 285.110
2% of max 279.746

20% of max 255.925
100% of max 137.485

C.9 RANDOM BASELINE

One might argue that BONET just memorizes the best points in the offline dataset and outputs
random points close to those best points during evaluation. To rule out this possibility, we perform
a simple experiment for the D’Kitty task. We choose a small hypercube domain around the optimal
point in the offline dataset and uniformly randomly sample 256 points in that domain. In Table 11,
we show the results for different widths of this hypercube. 0 width means only the best point in the
dataset.

For smaller hypercubes around the best points in the offline dataset, we see that the best point
found by 256 random searches is roughly 225, which is significantly lower than what BONET finds
(291.08). For larger hypercubes, the points are highly diverse. These observations suggest that this
optimization problem cannot be solved by just randomly outputting points around the best point in
the dataset. If we look at the 256 points output by BONET, they are consistently good (mean is 220),
with comparatively very low variance. This suggests that BONET is not simply outputting random
points around the best points in the dataset.

D ADDITIONAL ANALYSIS

D.1 VIZUALIZATION OF PREDICTED POINTS

Here we try to visualize the predicted points of BONET compared to the points in the offline data to
study the nature of the points proposed by the model. As shown in Figure 18, BONET generalizes
well on the unseen maxima regions of the function and produces low regret points.

D.2 ACTIVE GP EXPERIMENT

We also run a experiment to compare BONET with an active BBO method. Namely, we compare
BONET with active BayesOpt, using the same GP prior and acquisition function (quasi-Expected
Improvement) as mentioned in Section 3. The difference between the active method and the offline
method we compare with in Table 2 is that while the active method directly optimizes the ground
truth function, the offline method first trains a surrogate neural network on the data, and then per-
forms bayesian optimization on the surrogate instead of the ground truth function. This is done to
make the BayesOpt baseline fully offline, and is the same procedure followed by Trabucco et al.
(2022; 2021). Note that this would result in an unfair comparison since the method is both online
and queries the oracle function resulting in it using more queries than our budget. As shown in Table
12, We find that using oracle actually doesn’t necessarily improve performance across all tasks, and
there are other tasks where the performance doesn’t change at all. And our model does outperform
even the oracle GP-qEI method on several tasks.
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Table 11: Results of using a simple sampling strategy randomly from a small hypercube centered
around the optima. We find that BONET considerably beats this baseline, indicating that general-
ization occurring with BONET is not fortuitous.

Width of hypercube Max. function Value Mean function Value Std. Deviation

0.0 199.23 199.23 0.0
0.005 212.66 190.68 9.28
0.01 222.44 182.13 12.21
0.05 226.10 −169.62 331.00
0.1 209.00 −368.71 261.37

BONET 291.08 221.00 24.43

Figure 18: Vizualization of 32 points unrolled by a sample evaluation trajectory of BONET com-
pared to 2000 points randomly sampled from the offline dataset. Three maxima regions don’t contain
any dataset points because of the removal of the top 10%-ile of uniformly sampled points, as de-
scribed in the section 3.1. However, almost all the unrolled points fall into a maxima region, clearly
showing the generalization capability of BONET.

Table 12: Comparison with GP-qEI on oracle function

TFBIND8 TFBIND10 SUPERCONDUCTOR ANT D’KITTY

GP-qEI (active) 0.945± 0.018 0.922± 0.231 94.587± 2.137 480.049± 0.000 213.816± 0.000
GP-qEI 0.824± 0.086 0.675± 0.043 92.686± 3.944 480.049± 0.000 213.816± 0.000
BONET 0.975± 0.004 0.855± 0.139 80.84± 4.087 567.042± 11.653 285.110± 15.130

D.3 T-SNE PLOTS ON D’KITTY

We show t-SNE plots on DKitty for the datasets of differing sizes, with the removal of randomly
sampled x% of the data (setting one described in the previous section). The blue points represent
points proposed by our model, and the red points represent points in the dataset. In general, blue
points do not overlap the red points, indicating that the points proposed by BONET are from a
different region.
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(a) 99% (b) 90%

(c) 50% (d) 10%

Figure 19: We show tSNE plots on DKitty for the datasets of differing sizes with the removal of
randomly sampled x% of the data. The blue points represent points proposed by our model, and the
red points represent points in the dataset. We find that in general, blue points do not overlap the red
points, indicating that the points proposed by BONET are from a different region.
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