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Abstract

Active learning effectively collects data instances for training deep learning models
when the labeled dataset is limited and the annotation cost is high. Data aug-
mentation is another effective technique to enlarge the limited amount of labeled
instances. The scarcity of labeled dataset leads us to consider the integration
of data augmentation and active learning. One possible approach is a pipelined
combination, which selects informative instances via the acquisition function and
generates virtual instances from the selected instances via augmentation. However,
this pipelined approach would not guarantee the informativeness of the virtual
instances. This paper proposes Look-Ahead Data Acquisition via augmentation,
or LADA framework, that looks ahead the effect of data augmentation in the pro-
cess of acquisition. LADA jointly considers both 1) unlabeled data instance to
be selected and 2) virtual data instance to be generated by data augmentation, to
construct the acquisition function. Moreover, to generate maximally informative
virtual instances, LADA optimizes the data augmentation policy to maximize the
predictive acquisition score, resulting in the proposal of InfoSTN and InfoMixup.
The experimental results of LADA show a significant improvement over the recent
augmentation and acquisition baselines that were independently applied.

1 Introduction

Large-scale datasets in the big data era have opened the blooming of data science, but the data labeling
requires significant efforts from human annotators, or oracle. Therefore, an adaptive sampling by
an acquisition function, i.e. active learning, has been developed to select the most informative data
instances in learning the decision boundary [1–3]. This selection is difficult because it is influenced
by the learner and the dataset at the same time. Hence, the understanding of the relation between the
two has become the components of active learning, which queries the next training example by the
informativeness, assessed by acquisition function.

Besides active learning, data augmentation is another data source for learning models that provides
virtual data instances generated from the training dataset [4]. Conventional data augmentation has
been a simple transformation of labeled data instances, e.g., flipping, rotating, etc [5]. Recently,
the data augmentation has expanded to become a deep neural model generating virtual instances,
such as Generative Adversarial Networks (GAN) [6] or Variational Autoencoder (VAE) [7]. Spatial
Transform Networks (STN) [8] also generate spatially transformed instances for learning the classifier.
Since the conventional and the deep neural model-based augmentations perform the Vicinal Risk
Minimization (VRM) [9], they preserve labels of virtual instances and limit the feasible vicinity.
To overcome the limited vicinity of VRM, Mixup [10] and its variants have been proposed by
interpolating multiple data instances. The pair of interpolated features and labels, or the Mixup
instances, become virtual instances to enlarge the support of the data distribution.
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(a) Pipelined combination of
Max Entropy and Mixup

(b) LADA with Max Entropy
and Mixup
Figure 1: Illustration of dif-
ferent behaviors of the acqui-
sition process in active learn-
ing; with selected instances
(?), virtual instances (×), en-
tropy values of selected in-
stances (black number), and
averaged entropy values of vir-
tual instances (blue number).

Given the scarce labeled dataset, it is natural to consider combin-
ing active learning and data augmentation. One possible way is a
pipelined approach, which selects data instances by an acquisition
function and generates virtual instances from the selected instances
by an augmentation model afterward [11]. However, the acquisition
function does not consider the potential gain from the augmenta-
tion in the assessment of the informativeness. Hence, without any
feedback or integration effort at the acquisition level, the virtual
instances generated by data augmentation would not guarantee the
informativeness. Figure 1a illustrates the pipelined combination,
where the averaged entropy value of the virtual instances is 1.61.

This paper proposes the Look-Ahead Data Acquisition via augmen-
tation, or LADA framework. LADA looks ahead the effect of data
augmentation in advance of the actual acquisition process, by se-
lecting data instances according to the acquisition score of both
unlabeled real instances and their augmented virtual instances, at
the same time. The acquisition algorithm of LADA enables us to
train the classifier with the instances that are informative 1) when
labeled by oracle and 2) when augmented via data augmentation.
Furthermore, the data augmentation policy in LADA is trained to
maximize the acquisition score of the virtual instances. Figure 1b
illustrates the different behavior of LADA with Max Entropy and
Mixup, where the averaged entropy value of the virtual instances is
2.12, which is higher than the pipelined combination in Figure 1a.

Here are our contributions. First, we propose a generalized frame-
work, named LADA, that looks ahead the acquisition score of the
virtual data instances to be augmented, in advance of the acquisition. Second, we train the data
augmentation policy to maximize the acquisition score, hence generate informative virtual instances.
Particularly, we propose two data augmentation methods, InfoSTN and InfoMixup, which are trained
by the feedback of acquisition scores. Third, we instantiate the proposed framework with various
combinations of acquisition-augmentation of known methods. There have been some prior works that
suggest the concept of look-ahead, without acknowledging the value of augmentation [12, 3, 13]. We
claim our novelty for look-ahead in conjunction with the augmentation of virtual instances. Moreover,
look-ahead is a necessary concept in any active learning scheme because the active learning requires
an active seeking on high-value data instances which will impact the classifier if they are used in the
inference, so this assessment on the impact becomes the look-ahead in such active learning concept.

2 Preliminaries

2.1 Problem Formulation

This paper trains a classifier network parameterized by θ, i.e., fθ, with dataset X while our scenario
is differentiated by assuming X = XU ∪XL and |XU | � |XL|. Here, XU is a set of unlabeled
data instances, and XL is a set of labeled data instances. Given these notations, a data augmentation
function, faug(x; τ) : X → T (X ), transforms a data, x ∈X , into a modified data, x̃ ∈ T (X );
where τ is a parameter describing the policy of transformation, and T (X ) is the transformed set
of X . On the other hand, a data acquisition function, facq(x; fθ) : XU → R, calculates a score of
each data instance, x ∈XU , based on the current classifier, fθ. facq provides the criteria of selection
strategy in the learning procedure of fθ with the instance, x ∈ XU . We categorize the acquisition
functions and the augmentation functions by placing the name of the algorithm as superscript.

2.2 Data Augmentation

In the conventional data augmentations, τ in faug(x; τ) indicates the predefined degree of rotating,
flipping, cropping, etc. τ is manually chosen to describe the vicinity of each data instance.

Another approach of modeling τ is utilizing the feedback from the current classifier network, fθ.
Spatial Transformer Network (STN) transforms a data using a grid sampler generated through a
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localisation network parameterized by τ , or fτ [8]. The augmentation policy, τ , in STN is trained
by the cross-entropy (CE) loss of the transformed data with the ground-truth label, y, resulting in
τ∗ = argminτ CE(fθ(f

STN
aug (x; τ)), y).

In a recent work, Mixup-based data augmentations generate a virtual data instance in between a
pair of data instances to overcome the limited vicinity. In Mixup, τ becomes the mixing policy of
two data instances, xi and xj , as fMixup

aug (xi, xj ; τ) = λxi + (1− λ)xj , λ ∼ Beta(τ, τ), where the
labels are also mixed by the proportion λ [10]. Further from mixing input features, Manifold Mixup
mixes the hidden features from the multiple middle layers of neural networks to learn a smoother
decision boundary [14]. Whereas τ is a fixed value without learning process so far, AdaMixup
learns τ by adopting a discriminator, ϕada, as τ∗ = argmaxτ [log P(ϕada(fMixup

aug (xi, xj ; τ)) =

1) + log P(ϕada(xi) = 0) + log P(ϕada(xj) = 0)] [15].

2.3 Active Learning

We focus on the pool-based active learning with an uncertainty score [3]. Given this scope of active
learning, the data acquisition function measures the utility score of the unlabeled data instances,
i.e. x∗U = argmaxxU∈XU

facq(x; fθ). The traditional acquisition functions measure the predic-
tive entropy, fEntacq (xU ; fθ) = H[ŷ|xU ; fθ] [16], where H := −

∑
c P(ŷ = c|xU ; fθ) log2 P(ŷ =

c|xU ; fθ) and ŷ = fθ(xU ); or the variation ratio, fV aracq (xU ; fθ) = 1 − maxŷP(ŷ|xU ; fθ) [17].
Bayesian approaches for active learning are also proposed as fBALDacq (xU ; fθ) = H[ŷ|xU ; fθ] −
EP(θ|Dtrain)[H[ŷ|xU ; fθ]] [18].

Additional modules are also applied to measure the acquisition score. Variational Adversarial
Active Learning (VAAL) introduces a discriminator, ϕV AAL, to estimate the probability of xU
belonging to XU , as fV AALacq (xU ;ϕV AAL) = P(xU ∈XU ;ϕV AAL) [19]. Learning Loss for Active
Learning (LL4AL) adopts a simple neural network called a loss prediction module, or fLPM [20].
fLPM is trained to predict the loss of each data, and the instance with the highest predictive loss
is selected, as fLL4AL

acq (xU ; fLPM ) = fLPM (fkθ (xU )|k ∈ K). Here, fkθ (xU ) represents the kth
hidden representation of xU , and K represents the set of hidden layers of the classifier, fθ.

2.4 Active Learning with Data Augmentation

There have been prior researches on leveraging data augmentation for active learning. Bayesian
Generative Active Deep Learning (BGADL) combines acquisition and augmentation in a pipelined
approach [11]; BGADL selects data instances via facq , and BGADL augments the selected instances
via faug , which is VAE-ACGAN. However, BGADL limits the vicinity to preserve the label validity.
Also, a large number of labeled instances are demanded to train the generative model, VAE-ACGAN,
of BGADL at every acquisition round. More importantly, BGADL does not consider the potential
gain from data augmentation in the process of acquisition.

In comparison with BGADL, Consistency-based Active Learning (CAL) algorithms consider data
augmentation in the acquisition process, by replacing the uncertainty with augmentation-based
inconsistency, resulting in fCALacq (x; fθ) = D[P (Ŷ |x, fθ), P (Ŷ |x̃, fθ)] [21]. Here, D denotes the
L2 norm [22] or KL divergence [23] that represents the inconsistency of the predictions from the
transformation of the data instance x into x̃. The algorithm in [21] selects a data instance that has
the highest variance of class-wise predictions when it is transformed over a random set of data
augmentations. However, the augmentation in [21] is not learnable, i.e., not optimized to enhance the
informativeness of the augmented instance. Also, the augmentation is restricted to label-preserving
transformations, such as random cropping or horizontal flipping, to measure the dissimilarity in
predictions when the input is perturbed with the perceptual content of the instance being preserved.

3 Methodology

This paper differentiates itself from the previous acquisition-augmentation integration by presenting
the learnable augmentations in conjunction with the potential acquisition scores of the virtual instances.
Therefore, we start by formulating such a learnable framework in Section 3.1. Afterward, we propose
an integrated function for acquisition and augmentation as the implementation of the framework
in Section 3.2 and Section 3.3. Particularly, we propose adaptive versions of augmentation, i.e.,
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InfoSTN and InfoMixup, whose policies are learned by the feedback of data acquisition score, i.e.
Max Entropy. It should be noted that InfoMixup, as well as InfoSTN, can adopt various types of
acquisition functions, other than Max Entropy, for feedback to train, see Appendix D and Section 4.

3.1 Look-Ahead Data Acquisition via Augmentation

Figure 2: Overview of LADA framework

Since we look ahead the acquisition score of the
augmented data instances, it is natural to inte-
grate the functionalities of acquisitions and aug-
mentations. This paper proposes a framework of
Look-Ahead Data Acquisition via augmentation,
or the LADA framework, see Figure 2. The goal
of LADA is to enhance the informativeness of
both 1) real-world data instance, which is unla-
beled at current, but will be labeled by the oracle
in the future; and 2) virtual data instance, which will be generated from the unlabeled data instances
that are selected. This goal is achieved by looking ahead of the virtual examples’ acquisition scores
before actual selection.

Specifically, LADA trains the augmentation policy, τ , of faug(x; τ) to maximize the acquisition score
of the transformed data instance of xU before the oracle annotations. Eq. 1 specifies the learning
objectives of the augmentation policy via the feedback from acquisition.

τ∗ = argmax
τ

facq(faug(xU ; τ); fθ) (1)

With the optimal τ∗ corresponding to xU , LADA calculates the acquisition score of xU for selection,
by considering the utility of both xU and their augmented instances, faug(xU ; τ∗), as Eq. 2. In Eq. 2,
γ weights the relative importance of the acquisition from the virtual instance.

x∗U = argmax
xU∈XU

[facq(xU ; fθ) + γfacq(faug(xU ; τ∗); fθ)] (2)

To begin with, we introduce an integrated single function to substitute the composition of functions
as finteg = facq ◦ faug(xU ) = facq(faug(xU ; τ); fθ) for generality. finteg is a general formalism
for LADA that 1) constructs a part of the acquisition function that looks ahead the informativeness of
the virtual data instances, as Eq. 2. Also, finteg 2) becomes the objective function for training the
augmentation policy to maximize the informativeness of the virtual instances, as Eq. 1.

If we choose the simplest form of LADA, finteg can be a simple composition of well-known
acquisition functions and augmentation functions where the policy of augmentation is fixed. However,
this does not generate maximally informative virtual data instances. Hence, we propose the integration
where the policy of data augmentation is trained to maximize the acquisition score, within a single
function. We name the fixed integration case as LADAfixed, and compare it with LADA in Section 4.

3.2 Integrated Augmentation and Acquisition: InfoSTN

This section introduces LADA that adopts 1) STN for faug , i.e., fSTNaug ; and 2) Max Entropy for facq ,
i.e., fEntacq , to instantiate a case of finteg as f InfoSTNinteg , resulting in the proposal of InfoSTN.

3.2.1 Data Augmentation Policy Learning

STN is a learnable neural network inserted into the classifier network, fθ, which spatially manipulates
the data instance, x [8]. STN consists of three parts (see Appendix E); 1) The localization network,
fτ , i.e., a neural network parameterized by τ , regresses the transformation parameters, ν. 2) The
grid generator function, fT , generates a grid, g, from a regular grid, G, using the transformation
parameters, ν. 3) Finally, the sampler function, fS , is applied to the input data instance, x, with the
generated grid, g, to get a transformed instance, x̃. The overall process sums up to fSTNaug (x; τ) =
fS(x, g) = fS(x, fT (G; ν)) = fS(x, fT (G; fτ (x)). Hence, the parameters of the localization
network, or τ , correspond to the augmentation policy of STN.

For xU ∈XU , we propose the adaptive version of STN, or InfoSTN, which is trained via the feedback
from the acquisition function of active learning. InfoSTN learns its policy, τ , with the objective
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Algorithm 1 LADA with Max Entropy and Manifold Mixup

Input: Labeled dataset X 0
L , Classifier fθ

1: for j = 0, 1, 2, . . . do . active learning iteration
2: Get X ′

U which is randomly shuffled XU

3: Randomly chose the layer index k of the fθ
4: φ∗ = argminφ

1
|XU |

∑
(xi,x′i)∈(XU ,X ′

U ) Lπ([hk(xi), h
k(x′i)]) . learning policy

5: τ∗i = πφ∗([h
k(xi), h

k(x′i)]) for (xi, x
′
i) ∈ (XU ,X ′

U )
6: Construct fLADAacq as Eq. 13 and select and query the dataset, XS

7: Update the labeled dataset, X j+1
L = X j

L ∪XS

8: for t = 0, 1, 2, . . . do . training fθ
9: Get virtual dataset, XM , from XS using the optimal augmentation policy, τ∗i

10: Update θ with the loss, Lf , as Eq. 14
11: end for
12: end for

function of f InfoSTNinteg , described as below:

f InfoSTNinteg (xU ; τ, fθ) = fEntacq (fSTNaug (xU ; τ); fθ) = H[ŷ|fS(xU , fT (G; fτ (xU ))); fθ]. (3)

Then, the augmentation policy, τ , of InfoSTN in LADA is optimized to maximize the informativeness
of the transformations of the unlabeled data instances, i.e., f InfoSTNinteg , as below:

τ∗ = argmax
τ

1

|XU |
∑

xU∈XU

H[ŷ|fS(xU , fT (G; fτ (xU ))); fθ]. (4)

It should be noted that τ is originally designed to minimize the cross-entropy loss of the labeled data
instances, at the training process of the classifier network, fθ. This optimization is in a different
direction from the optimization of Eq. 4. The original optimization on τ is dedicated to exploiting
the classifier, but Eq. 4 has an optimization component to explore the augmentation space. Hence,
at the beginning of each acquisition iteration, we save the current parameters, τ , of the localization
network. Then, we load the saved parameters to insert to fθ when learning the classifier fθ.

3.2.2 Acquisition Function by Learned Policy and Model Training

With the optimal policy, τ∗, we construct the acquisition function, fLADAacq , that looks ahead the
informativeness of 1) the unlabeled instances and 2) the transformed instance by InfoSTN with the
optimal policy, τ∗.

fLADAacq (xU ; fθ) = H[ŷ|xU ; fθ] + γH[ŷ|fS(xU , fT (G; fτ∗(xU ))); fθ] (5)

For the active learning with the allowed budget per acquisition as b, we acquire the top-b instances,
i.e., XS , among the subsets, X ′

S ⊂ XU with |X ′
S | = b, by the acquisition function, fLADAacq ;

XS = argmaxX ′
S⊂XU

∑
xi∈X ′

S
fLADAacq (xi; fθ). After acquiring and labeling XS , we load the

saved parameters, τ , to current STN and insert the STN to the classifier network, fθ, for training with
the labeled data instances and the augmented instances in an end-to-end fashion, see Appendix E.

3.3 Integrated Augmentation and Acquisition: InfoMixup

STN and our proposed variant, InfoSTN, are label-preserving data augmentations, which limit the
vicinity of the transformed instances. Hence, to overcome the limitation of the vicinity, this section
introduces LADA that adopts 1) Mixup for faug , i.e. fMixup

aug ; and 2) Max Entropy for facq , i.e. fEntacq ,
to instantiate another case of finteg as f InfoMixup

integ , resulting in the proposal of InfoMixup. Here, we
adopt ManifoldMixup to learn smoother decision boundary at multiple levels of representations.

3.3.1 Data Augmentation Policy Learning

InfoMixup is an adaptive version of Mixup to train the data augmentation via the feedback from
an acquisition function. InfoMixup learns its mixing policy, τi, corresponding to the i-th pair,
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(xi, x
′
i) ∈XU ×XU , with the objective function of f InfoMixup

integ as Eq. 6.

f InfoMixup
integ (xi, x

′
i; τi, fθ) = fEntacq (fMixup

aug (xi, x
′
i; τi); fθ) (6)

Then, the optimal mixing policy, τ∗i , of InfoMixup is found by the optimization as below:

τ∗i = argmax
τi

f InfoMixup
integ (xi, x

′
i; τi, fθ). (7)

Different from the learning process of τ in InfoSTN, we need a policy generator network, πφ, to
perform an amortized inference on the Beta distribution of InfoMixup. While we provide the details
in Section 4.1 and Figure 3, we formulate this inference process as Eq. 8 and Eq. 91.

hk(xi) = f0:k
θ (xi), hk(x′i) = f0:k

θ (x′i) (8)

τi = πφ([hk(xi), h
k(x′i)]) = NNφ([hk(xi), h

k(x′i)]) (9)

Figure 3: Training process of the policy gener-
ator network, πφ, in LADA with Max Entropy
and Manifold Mixup

To train the parameters, φ, of the policy genera-
tor network, πφ; the paired latent features, hk(xi)
and hk(x′i), are mixed-up with N number of λni ∼
Beta(τi, τi) to produce hk,nmix(xi, x

′
i; τi) as below:

hk,nmix(xi, x
′
i; τi) = λni h

k(xi) + (1− λni )hk(x′i),

n ∈ {1, . . . , N}. (10)

By processing hk,nmix for the rest layers of the classifier
network, the predictive class probability of the mixed
features is obtained as ŷni = fk:K

θ (hk,nmix(xi, x
′
i; τi)).

Then, the policy generator network, πφ, is trained to
minimize a loss function of Eq. 11, which is the negative value of the predictive entropy, so that
the policy generates high entropy valued, or informative, virtual instances. The gradient of this loss
function is calculated by averaging the N entropy values of the replicated mixed features.

∂

∂φ
Lπ([hk(xi),h

k(x′i)]) =
∂

∂φ
(− 1

N

N∑
n=1

H[ŷni |h
k,n
mix(xi, x

′
i; τi); f

k:K
θ ]) (11)

In the backpropagation, we have a process of sampling λis from the Beta distribution parameterized
by τi. To enable the backpropagation signals to pass by, we adopt the reparameterization technique
of the optimal mass transport (OMT) gradient estimator, which utilizes the implicit differentiation
[24, 25], see Appendix C. Finally, the optimal augmentation policy, τ∗i , of InfoMixup for the i-th pair
of unlabeled data instances, (xi, x

′
i), is found as below:

φ∗ = argmin
φ

Lπ([hk(xi), h
k(x′i)]), τ∗i = πφ∗([h

k(xi), h
k(x′i)]). (12)

3.3.2 Acquisition Function by Learned Policy and Model Training

With the optimal policy, τ∗, we construct the acquisition function, fLADAacq , which aggregates the
acquisition scores of 1) xi, 2) x′i, and 3) their mixed feature maps, hk,nmix(xi, x

′
i; τ
∗
i ) as below, with

the predicted labels, ŷ:

fLADAacq

(
(xi, x

′
i); fθ

)
= H[ŷi|xi; fθ] + H[ŷ

′

i|x′i; fθ] +
γ

N

N∑
n=1

H[ŷni |h
k,n
mix(xi, x

′
i; τ
∗
i ); fk:K

θ ]. (13)

Assuming that we start the jth iteration of active learning with an already acquired labeled dataset
X j
L , we acquire the set of top- b2 pairs of instances, i.e. XS , among the subsets, X ′

S ⊂XU ×XU

with |X ′
S | = b

2 , as XS = argmaxX ′
S⊂XU×XU

∑
(xi,x′i)∈X ′

S
fLADAacq ((xi, x

′
i); fθ). After querying

the label of XS to oracle, we construct a virtual dataset, XM , using InfoMixup with the optimal

1We denote the forward path from the ith layer to the jth layer of the classifier network as f i:jθ .
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mixing policy, τ∗, as XM =
⋃

(xi,x′i)∈XS
{λif0:k

θ (xi)+(1−λi)f0:k
θ (x′i)}, where λi ∼ Beta(τ∗i , τ

∗
i ).

Here, τ∗ is dynamically inferred by the neural network of πφ per each pair (see Appendix B.2).

Up to this phase, our training dataset becomes X j+1
L = X j

L ∪XS and XM . Our proposed algorithm,
described in Algorithm 1, utilizes XM for this active learning iteration only, with various λis sampled
at each training epoch. The classifier network’s parameter, θ, is learned via the gradient of the
cross-entropy loss as Eq. 14, where yi denotes the ground-truth label annotated from the oracle for
the first term; and the mixed label according to the mixing policy for the second term.

Lf =
1

|X j+1
L |

∑
xi∈X j+1

L

CE(fθ(xi), yi) +
1

|XM |
∑

xi∈XM

CE(fk:K
θ (xi), yi), (14)

4 Experiments

4.1 Baselines and Datasets

We specify the instantiated augmentation-acquisition by its subscript, e.g., LADAEntMix, which
adopts Max Entropy as data acquisition and Mixup as data augmentation. Similarly, we experiment
with the various acquisition functions, e.g., VarMix, VAALMix, or LL4ALMix, see Appendix D.
Also, we experiment with the STN as augmentation policy, e.g., EntSTN, see Appendix E.

We compare our models to 1) Random, 2) BALD [18], 3) Coreset [26], 4) BADGE [27], 5) Max
Entropy [16], 6) Variation Ratio [17], 7) VAAL [19] and 8) LL4AL [20]. We also include some
data augmented active learning: 1) BGADL [11], 2) CAL [21], 3) Manifold Mixup [14] and 4)
AdaMixup [15]. Here, Mixup variants are applied in a pipelined approach. BGADL is also a
pipelined approach for the combination, without a learning mechanism in the augmentation from the
feedback of acquisition. CAL does not infer the augmentation policy, either. CAL originally aims at
semi-supervised learning, so we turn CAL into a supervised setting and we apply Mixup after the
acquisition by CAL. We also include ablated baselines to see the effect of learning τ , introducing the
fixed τ case, as LADAfixed.

We conduct experiments on four benchmark datasets: FashionMNIST (Fashion) [28], SVHN [29],
CIFAR-10, and CIFAR-100 [30]. Since we assume the scarcity of labeled dataset, we construct a
random but balanced initial dataset with 20 instances for Fashion, SVHN, CIFAR-10, and 1,000
instances for CIFAR-100; and we acquire b=10 instances for Fashion, SVHN, CIFAR-10, and b=100
instances for CIFAR-100 at each iteration, following the prior work [18]. We repeat the acquisition
for 100 iterations. To use the same amount of oracle queries for all models, we selected top- b2 pairs
when adopting Mixup as data augmentation in the LADA framework. We set γ=1 for all experiments
in Eq. 5, except for EntSTN with CIFAR-10 as γ=0.3. We normalize the images with the channel
mean and standard deviation over all the datasets. For CIFAR-10 and CIFAR-100 datasets, we apply
a standard augmentation, such as random crop and random horizontal flip. We adopt the ResNet-18
[31] as fθ, and we utilize Adam optimizer [32] with a learning rate of 1e-03. The policy generator
network, πφ is much smaller network. Appendix A provides details of our experimental settings.

4.2 Quantitative Performance Evaluations

Table 1 shows the average test accuracy of five replications, and the accuracy of each replication
represents the best accuracy over the acquisition iterations. We separate the performances by the
instantiated acquisition functions. The group of baselines does not have any learning mechanism on
the acquisition metric. When we examine the general performance gain caused by applying LADA,
across datasets, we find the best performers as LADAEntMix in Fashion (4 2.52); LADAVAALMix

in SVHN (4 5.30) and CIFAR-10 (4 4.22); and LADALL4ALMix in CIFAR-100 (4 3.56). In terms
of the data augmentation, the Mixup-based augmentation outperforms the STN augmentation. In all
combinations of baselines and datasets, LADA variations show the best performance in all cases,
except the CIFAR-100 with similar performances across CAL, LADALL4ALMix and LADAVarMix.
From the ablation study of LADAfixed, the learning of the augmentation policy, τ , is meaningful
because in 19 out of 20 comparison cases of LADA and LADAfixed, LADA outperforms LADAfixed.

Figure 4 shows the test accuracy of the LADA frameworks and the data augmented active learning
methods over the acquisition iterations on the CIFAR-10 dataset. The result is averaged over the

7



Table 1: Comparison of the averaged test accuracy, the run-time of a single iteration of acquisition
(Time), and the number of parameters (Param.). The best performance in each category is indicated
in boldface. The run-time is calculated as the ratio to the Random acquisition. The number of
parameters is only reported for the auxiliary network, and - indicates that no auxiliary network is
adopted in the corresponding method. The result is replicated by five-fold.

Method Fashion SVHN CIFAR-10 CIFAR-100 Time Param.

Baselines

Random 80.97±0.55 71.51±1.41 50.15±1.37 43.51±0.33 1 -
BALD 80.79±0.38 74.49±3.39 54.33±1.23 46.29±0.50 1.36 -
Coreset 83.96±0.55 76.89±0.50 51.45±0.82 43.90±0.76 1.54 -
BADGE 83.06±0.79 75.47±1.87 51.83±1.30 44.13±0.64 1.31 -
BGADL 80.47±0.77 69.60±1.62 45.98±0.73 39.33±0.88 4.69 13M

CAL 78.10±0.70 75.17±2.03 53.74±0.89 47.38±0.60 1.82 -

Entropy-based

Max Entropy 81.16±1.11 72.55±1.21 51.45±2.12 45.14±0.58 1.01 -
Ent w.ManifoldMixup 82.03±0.63 72.15±1.08 51.77±1.76 45.96±0.69 1.03 -

Ent w.AdaMixup 81.29±0.47 72.46±1.01 51.86±2.32 46.23±0.68 1.03 5K
LADAfixed

EntMix 83.62±0.43 74.95±1.30 52.77±2.54 46.23±0.75 1.06 -
LADAEntMix 83.68±0.52 75.72±1.06 53.45±1.67 46.92±0.61 1.32 77K
LADAfixed

EntSTN 81.83±0.26 73.03±1.42 54.20±1.73 45.68±1.73 1.02 5K
LADAEntSTN 82.07±0.56 73.86±1.09 54.95±1.53 44.98±1.10 1.20 5K

VarRatio-based

VarRatio 80.98±0.58 73.89±1.08 55.88±0.74 46.16±0.59 1.01 -
LADAfixed

VarMix 82.84±0.64 74.61±0.98 56.17±0.73 46.54±0.40 1.06 -
LADAVarMix 83.29±0.27 75.24±0.77 56.26±1.29 47.18±0.97 1.33 77K
LADAfixed

VarSTN 83.32±0.75 74.70±0.75 54.22±0.91 46.07±0.31 1.02 5K
LADAVarSTN 83.35±0.56 74.86±1.53 55.76±0.53 46.42±0.40 1.20 5K

VAAL-based

VAAL 83.53±0.22 72.17±1.85 51.05±1.27 44.49±0.70 3.55 301K
LADAfixed

VAALMix 83.77±0.84 75.77±0.97 53.17±1.13 45.98±0.41 3.56 301K
LADAVAALMix 84.08±0.41 77.47±0.84 55.27±1.30 46.04±1.09 3.60 378K
LADAfixed

VAALSTN 83.32±0.77 72.86±1.59 51.33±0.13 44.27±0.26 3.56 306K
LADAVAALSTN 83.56±0.53 74.53±1.65 53.78±2.24 45.06±1.29 3.57 306K

LL4AL-based

LL4AL 83.31±1.34 74.14±1.62 53.01±2.90 43.58±0.42 1.55 124K
LADAfixed

LL4ALMix 84.59±0.53 74.92±1.08 55.39±1.49 46.88±0.56 1.69 124K
LADALL4ALMix 85.01±0.54 76.82±1.64 55.73±1.35 47.14±0.81 1.85 201K
LADAfixed

LL4ALSTN 83.69±0.28 74.63±1.82 53.28±0.67 45.01±0.90 1.63 129K
LADALL4ALSTN 83.16±0.22 74.74±1.17 53.17±0.22 45.94±0.61 1.68 129K

Figure 4: Test accuracy over the
acquisition iterations on
CIFAR-10 dataset

(a) LADAEntMix (b) LADAEntSTN

Figure 5: Ablation study of LADA on CIFAR-10 dataset

five-fold repeated trials, and the shaded area describes the standard deviations. We also provide the
figure of the test accuracy on the Fashion, SVHN, and CIFAR-100 datasets in Appendix B.1. Notably,
BGADL performs the worst in all datasets, because of the inadequate training of the generative
models with the small number of data instances in our active learning setting. The degradation in test
accuracies of BGADL becomes apparent as the dataset becomes complex. CAL performs comparably
with LADA except the Fashion dataset.

Additionally, we compare the integrated framework, a.k.a. LADA, to the pipelined approaches. In
Table 1, Max Entropy is the simplest model without an augmentation part. Then, Ent w.Manifold
Mixup adds the Manifold Mixup augmentation, but it does not have a learning process on the mixing
policy. Finally, Ent w.AdaMixup has a learning process on the mixing policy, but the learning
is separated from the acquisition. These pipelined approaches show lower performances than the
integration cases of LADA. This ablation study is also shown in Figure 5; Mixup-based augmentations
in Figure 5a and STN-based augmentations in Figure 5b, respectively. The figures confirm the effects
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of 1) considering the gain of augmentation in the acquisition functions, as well as 2) learning the
augmentation policy with feedback from the acquisition.

Next, since LADA trains the augmentation policy, we also compare LADA with AutoAugment [33].
To show the effectiveness of the look-ahead concept, we trained AutoAugment and then applied it in
1) pipe-lined approach (a.k.a. Ent w.AA) and 2) LADA approach (a.k.a. LADAfixed

EntAA). As shown
in Table 2, the LADAfixed shows better performance than the pipelined approach case, indicating
that looking ahead the informativeness of the virtual instances yields good performance. However, it
should be noted that training AutoAugment requires the labeled dataset, which is not available in
the active learning setting. Therefore, the learned AutoAugment could have been cheating under
the assumption of joint acquisition and augmentation. Second, the pre-trained AutoAugment does
not select the augmentation to maximize the acquisition score of the unlabeled instances, so the
acquisition with AutoAugment would not be optimal considering the missing contribution of labeling
hard instances. Some hard instances may become very informative after the acquisition because of
the augmented virtual instances, but the learned AutoAugment cannot anticipate this opportunity of
information gain because it is pre-trained and static.

Table 2: Test accuracy of pipe-lined method and LADA with learned AutoAugment

Method Fashion SVHN CIFAR-10 CIFAR-100
Ent w.AA 84.77±1.12 75.40±1.28 53.44±1.94 46.78±1.23

LADAfixed
EntAA 85.09±0.19 77.44±2.97 55.22±0.86 48.31±1.70

Also, we extend LADA by applying it to semi-supervised learning, since semi-supervised learning
algorithms also rely on the augmentation. For this experiment, we adopt the Π-model [34] for
semi-supervised model. As shown in Table 3, the combination of Π-model with LADA shows better
performance than the combination with Entropy acquisition.

Table 3: Test accuracy of semi-supervised learning with LADA on CIFAR-10 dataset

Methods # of labeled samples
250 500 1000 2000 4000

Π-model + Entropy 45.47 56.40 66.09 75.46 81.61
Π-model + LADAfixed

EntMix 45.47 59.51 68.30 77.77 82.86
Π-model + LADAEntMix 45.47 58.94 68.92 78.54 82.97

4.3 Qualitative Analysis on Acquired Data Instances

Besides the quantitative comparison, we provide reasoning on the behavior of LADA. Therefore,
we select LADAEntMix to contrast to the pipelined approach. We investigate on 1) selecting the
informative data instances by acquisition, 2) validating the optimal τ∗ in the augmentation learned
from the policy generator network πφ, and 3) examining the coverage of the explored space.

To check the informativeness of data instances, Figure 6 shows the different process of acquiring
instances between Max Entropy and LADAEntMix. Max Entropy selects a data instance with the
highest predictive entropy value. Compared to Max Entropy, LADAEntMix selects a pair of two
data instances with the highest value of the aggregated predictive entropy, i.e., the summation of the
predictive entropy from two data instances and one InfoMixup instance, as Eq. 13. By mixing two
unlabeled data instances with the optimal mixing policy τ∗, the virtual data instance, generated along
the interpolated space, results in a higher entropy value than the selected instance by Max Entropy.

To confirm the validity of the optimal τ∗, we compare three cases of 1) the inferred τ (LADAEntMix);
2) the fixed τ (LADAfixed

EntMix); and 3) the pipelined model’s τ (Ent w.Manifold Mixup). Figure 7a
shows the entropy of the virtual data instances over the acquisition process. The optimal τ∗ inferred
in LADAEntMix produces the highest entropy over the acquisition process. The differentiation
becomes significant after some acquisition iterations, which comes from the requirement of training
the classifier. Figure 7b shows the entropy distribution of virtual instances, with the median value
of each interval as x-axis. This also shows that the optimal τ∗ has the highest density beyond the
interval of the median 2.2.
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(a) Max Entropy at early (b) LADAEntMix at early (c) Max Entropy at late (d) LADAEntMix at late

Figure 6: tSNE [35] plot of acquired instance (?) and augmented instance (×), with entropy values.
The numbers written in black indicate the predictive entropy of unlabeled data instances that were
selected from the unlabeled pool. The numbers written in blue indicate the maximum (*average)
value of predictive entropy of the virtual data instances that were generated from InfoMixup. The
acquisition iterations of early and late are 7 and 76, respectively.

(a) Entropy value of
the virtual dataset

(b) Histogram of the
virtual dataset with
entropy values

Figure 7: Entropy values of the virtual data
generated from LADAEntMix, LADAfixed

EntMix,
and Ent w.Manifold Mixup

(a) LADAEntMix (b) Ent w.AdaMixup

Figure 8: tSNE plot of acquired data instances
(?) and generated virtual data instances (×). The
labels are categorized by colors.

To examine the coverage of the explored latent space, Figure 8 illustrates the latent space of the
acquired data instances and the augmented data instances. Ent w.AdaMixup learns the policy τ to
avoid the manifold intrusion, so its learned τ limits a sample of λ to be placed near either one of the
paired instances. Therefore, Ent w.AdaMixup ends up exploring the space near the acquired instances.
In contrast, the generated virtual instances by LADAEntMix show further exploration, because the
optimal τ∗ is guided by the entropy maximization and seeks along with the space that has not been
explored by the model yet. The latent space makes the linear interpolation of LADAEntMix to be
curved by the manifold, but it keeps the interpolation line of the curved manifold.

5 Conclusions
In the real world, gathering a large-scale labeled dataset is difficult, and learning a deep neural network
requires effective utilization of the limited resources. This limitation motivates the integration of
data augmentation and active learning. In this paper, we propose a generalized framework for such
integration, named as LADA, which adaptively selects the informative data instances by looking
ahead the acquisition score of both 1) unlabeled data instances and 2) virtual data instances to be
generated by data augmentation, in advance of the acquisition process. To enhance the effect of the
data augmentation, LADA learns the augmentation policy to maximize the acquisition score of the
virtual instance, as well. Through quantitative and qualitative analysis with various instantiations,
LADA is confirmed to select and augment informative data instances.

6 Limitations and Ethical Discussion
The proposed work is limited to the image classification task, so other tasks, e.g., object detection and
semantic segmentation, need to be studied in the future. LADA can be applied to these tasks with
simple extension in augmentations, and such extension will be the main topic of the study. However,
LADA still maintains its structure by differentiating the implemented augmentation policies by tasks.
On the societal impact, privacy issue is concerned when selecting and labeling dataset. Also, we need
to check the robustness of LADA to prevent the failure modes or sensitivities to architectural choices.
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