
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LitExplorer: A PLUGIN FOR ENHANCING TRAINING-
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Figure 1: Showcase of generated samples. The images from our model achieve a state-of-the-art
performance based on SD-XL.

ABSTRACT

Diffusion models have general generative abilities but struggle to align with spe-
cific objectives. Fine-tuning can improve alignment, yet its training cost is often
prohibitive. This led to training-free methods that apply objective-guided terms
in sampling to bias the distribution toward designated regions, e.g., high-reward
areas. However, these methods face two key issues: (1) the strong directional
bias narrows the pretrained distribution, and (2) indiscriminate guidance fails to
prune redundant signals, hurting both quality and efficiency. To solve the above
challenges, we propose LitExplorer, a plugin that mitigates distribution collapse
and reduces compute. Firstly, we adopts an Inheritance-Restart exploration mech-
anism, using probabilistic perturbation to avoid early convergence, while explo-
ration also raises the chance of high-reward trajectories. Then, it balances diver-
sity and fidelity, adding diversity without distribution shift. Second, our Qual-
ity–Efficiency arbitration mechanism improves guidance by removing incorrect
signals and cuts computation through dynamic early stopping driven by genera-
tion completeness and marginal reward gain. Experimental results indicate that
the proposed LitExplorer consistently achieves superior performance across 12
metrics, encompassing preference, fidelity, diversity, and richness.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Ramesh et al., 2022; Rombach et al., 2022), as one of the most
powerful generative frameworks, demonstrate exceptional generative capabilities by training on var-
ious large-scale datasets. This ability is reflected not only in high-quality image generation but also
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Figure 2: Feature visualization via t-SNE. The features are extracted by a general self-supervised de-
coder (i.e., DINOv2) from images generated by different methods. The results indicate that existing
methods (e.g., DyMO) designate more compact clustering, narrowing the range of the generated dis-
tribution, which in turn reduces the diversity of the generated data. This observation is substantiated
by the Silhouette Coefficient (Rousseeuw, 1987), a clustering evaluation metric, which demonstrates
its convergence and limited diversity. In contrast, our method maintains a broader generative distri-
bution while achieving comparable target reward scores (see Tab. 1). See Appendix. 12 for results of
other guidance methods in this setting.

in their capacity to cover a broad semantic and stylistic space. However, in practical applications,
there is a need not only to generate realistic images but also to ensure that the results align with spe-
cific target requirements, such as aesthetic preferences. This need for goal alignment is becoming a
core research problem, posing the challenge of how to effectively translate the general capabilities
of diffusion models into customized generation (Yeh et al., 2024; Kim et al., 2025).

Early research primarily relied on training strategies (Black et al., 2023; Fan et al., 2024; Yang
et al., 2024; Wallace et al., 2024). By fine-tuning diffusion models on specific preference objec-
tives, alignment performance could be significantly improved. However, such methods generally
face challenges of high training costs and poor transferability (Kim et al., 2025; Xie & Gong, 2025).
Whenever user requirements or objectives change, diffusion models must be fintuned again, which
limits their scalability in practical applications. To address this, researchers have begun searching
training-free methods (Chung et al., 2022; Kim et al., 2025; Deckers et al., 2024; Tang et al., 2024;
Xie & Gong, 2025), which do not modify the diffusion model’s weights but instead incorporate ex-
ternal signals during generation to achieve goal-guided results. The advantages of such approaches
are evident as they require no additional training costs and can quickly adapt to different objective
demands. Consequently, training-free guidance has gradually become one of the crucial directions
in diffusion model alignment. More detailed Related Works can be found in Appendix A.

However, existing training-free methods still suffer from two typical limitations: (1) current methods
suffer from overly narrow generative distributions. To enhance the alignment between generated
results and the target objectives, training-free methods need to apply target-guided terms during
the sampling process. These methods gradually shift the generative distribution toward specific
regions, such as high-reward subspaces. Although these approaches effectively enhance alignment,
their reliance on a consistent guidance direction easily leads to reward hacking (Tang et al., 2024).
In turn, causing a rapid narrowing of the pre-trained distribution, ultimately resulting in reduced
image diversity (Ho & Salimans, 2022; Tang et al., 2024); (2) The issue of inefficient guidance
cannot be overlooked. Current methods apply guidance terms indiscriminately throughout the entire
generation process, lacking the ability to identify and manage ineffective or redundant signals. This
not only results in unnecessary computational waste but may also introduce noise interference due
to ineffective guidance, ultimately compromising both alignment quality and generation efficiency.

To address the above challenges, we propose LitExplorer, an enhanced plugin compatible with exist-
ing training-free alignment methods. Specifically, LitExplorer first introduces an Inheritance-Restart
exploration mechanism that prevents premature convergence of generation trajectories to a single
mode through probabilistic perturbation and path screening. Simultaneously, it adaptively balances
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Figure 3: Overall framework of the proposed plug-and-play LitExplorer.

exploration and fidelity based on the generation progress, which mitigates diversity loss caused by
excessive guidance without deviating from the original distribution (we provide visual evidence
in Fig. 2). By incorporating this adaptive trade-off, the sampling process encourages exploratory
potential in early stages to enhance diversity. It gradually converges in later stages to maintain
the pre-trained distribution, thereby balancing creativity and reliability. Moreover, the progressive
incorporation of exploration during the generation process increases the likelihood of discovering
high-reward trajectories. Secondly, to improve guidance efficiency, LitExplorer employs a Quality-
Efficiency screening mechanism to filter out ineffective signals, ensuring that each guidance step
contributes meaningfully. Additionally, by integrating an adaptive factor and considering the dimin-
ishing marginal utility of rewards, our method dynamically cuts guidance in later generation stages
to avoid redundant optimization. Quality-Efficiency mechanism effectively reduces computational
overhead while maintaining alignment quality. Experiments demonstrate that while ensuring leading
performance in both fidelity and alignment objectives, LitExplorer effectively improves generative
diversity and outperforms existing baseline methods in computational efficiency. Our contributions
are summarized as follows:

• We propose Inheritance-Restart exploration mechanism to enhance diversity.
• We introduce a Quality-Efficiency arbitration mechanism to drop invalid signals, ensuring bet-

ter guidance and lower cost.
• We achieve two trade-offs: Diversity and Fidelity by generation progress. Further, Quality and

Efficiency by marginal reward gain.

2 METHOD

LitExplorer is a plugin that enhances training-free methods from exploration and efficiency perspec-
tives. First, in Sec. 2.1, we provide the necessary preliminaries for LitExplorer. In Sec. 2.2, we elab-
orate on the Inheritance-Restart exploration mechanism of LitExplorer, achieving an adaptive trade-
off between Diversity and Fidelity. Subsequently, in Sec. 2.3, we introduce a Quality–Efficiency
arbitration mechanism, which ensures guidance for quality in the early generation stages and effi-
ciency in the later stages. LitExplorer framework is shown in Fig. 3.

2.1 REWARD-GUIDED DIFFUSION ALIGNMENT

2.1.1 GENERATIVE PROCESS OF DIFFUSION MODELS

The discrete-time generative process (or reverse process) aims to produce a data sample by iter-
atively denoising a latent variable. This process requires two key components: a predefined noise
schedule {βt}Tt=0 and a well-trained score function sθ(xt, t). For conciseness, we define αt = 1−βt

and ᾱt =
∏t

i=1 αi. The generation starts by sampling an initial latent variable from a standard nor-
mal distribution: xT ∼ N (0, I) Then, for each timestep t from T down to 0, the sample is iteratively
refined using the following update rule:

xt−1 =
1
√
αt

(xt + βtsθ(xt, t)) +
√
βtzt (1)
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where zt ∼ N (0, I). The final output after T steps is the generated sample x0. For convenience,
we also define a function fθ(xt, t) that provides a direct estimate of the clean sample x̂0 from
any noisy intermediate xt，x0|t = fθ(xt, t) = 1√

ᾱt
(xt + (1− ᾱt)sθ(xt, t))(Chung et al., 2022;

Bansal et al., 2023; Xie & Gong, 2025).

2.1.2 ITERATIVE REFINEMENT WITH GRADIENT GUIDANCE

To guide the generation process towards a specific objective, we can incorporate the gradient of
a reward function R. The reward function is defined in the data domain (i.e., it operates on the
estimated clean sample x0|t).

The guidance is injected at each step by first perturbing the current sample xt in the direction of the
reward gradient. Specifically, before applying the update in Eq. 1, we compute a guided sample xt:

xt ← xt + w∇xt
R(fθ(xt, t)), (2)

where w is a guidance scale factor, R(·) denotes the reward function for inference-time guidance.
The above process could be seen as one step of optimization. For simplicity, we can define opti-
mization with m steps of Eq. 2 as

x̃t = g(xt,R,m). (3)

This guided sample x̃t then replaces xt in the denoising update rule:

xt−1 =
1
√
αt

(x̃t + βtsθ(x̃t, t)) +
√
βtzt. (4)

2.2 INHERITANCE–RESTART EXPLORATION MECHANISM

To mitigate the issue of narrowed generative distribution caused by overly concentrated guidance
direction in training-free methods, LitExplorer equips an Inheritance and Restart exploration mech-
anism. This mechanism selectively introduces exploratory supplementary terms based on the gener-
ation progress, thereby preventing premature convergence of generative trajectories to a single mode
and increasing the probability of discovering high-reward paths.

2.2.1 EXPLORATION SUPPLEMENT VARIABLE

During the generation step t, we introduce exploration supplement variable ϵ
(i)
t , which allows the

generated trajectories to maintain a richer distribution. Specifically, we adopt Monte Carlo sampling
to obtain n candidates ϵ

(i)
t ∼ N (0, σ2

t I), i = 1, . . . , n. After incorporating ϵ
(i)
t , the original

latent variable xt without exploration is updated into a set {x̂(i)t }:

x̂
(i)
t = xt + ϵ

(i)
t . (5)

Subsequently, each candidate x̂(i)
t is mapped to its predicted reconstruction x̂

(i)
0|t = fθ(x̂

(i)
t , t), and is

evaluated via the objective reward functionR(x̂(i)
0|t). After m rounds of iteration based on Eq. 3, we

obtain a final set of candidates {x̃(i)
t } = g({x̂t

(i)},R,m). We then define the optimal generation
trajectory policy as:

i⋆ = arg max
i∈{1,...,n}

R(x̃(i)
0|t), x⋆

t = x̃
(i⋆)
t . (6)

This process picks the optimal candidate x⋆
t as the state of generation step t, which is adopted for

the following generations. In summary, the injection of the exploration supplementary term expands
the local search space. Next, the selection policy is employed to pick the optimal generation trajec-
tory with the highest alignment potential, thereby achieving increased diversity while maximizing
alignment rewards.

2.2.2 INHERITANCE–RESTART TECHNIQUE

In Sec. 2.2.1, the exploration supplementary term expands the generation space. Building upon
this, we apply an Inheritance-Restart technique to this term. This technique dynamically regulates

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

exploration behavior based on the target reward improvement, preserving high-quality explorations
while eliminating ineffective perturbations. Consequently, the exploration term is responsible for
diversity enhancing, while the Inheritance-Restart technique ensures that the exploration consis-
tently improves the target reward. Specifically, the reward changing for the supplementary term at
generation step t is defined as:

∆Rt = R(x⋆
0|t)−R(x0|t), (7)

(1) If ∆Rt > 0, it indicates that the exploration still yields a positive gain for the alignment reward.
In this case, the latent change from the previous step is carried over to the next step t−1, where
ϵt−1 = x⋆

t − xt. Under this inheritance strategy, the exploration candidate set contains only
this inherited signal, i.e., setting n = 1 in Eq. 5, and optimization continues via Eq. 3.

(2) If ∆Rt < 0, it indicates that the exploration gain becomes saturated or starts to decline. In this
case, the restart mechanism is activated: n exploration candidates are resampled in the next
step t − 1 as Eq. 5, and the exploration term is updated through the optimization in Eq. 3 and
the selection step in Eq. 6.

The inheritance-restart technique uses the reward as a criterion to enhance exploration diversity and
efficiency while ensuring benefits to the target alignment.

2.2.3 DIVERSITY AND FIDELITY ADAPTIVE TRADE-OFF

Diffusion models face the dual demands of diversity and fidelity. Diversity expands the coverage of
potential outputs, while fidelity ensures the results are credible and semantically consistent with the
conditioning. However, these two objectives often exhibit a trade-off during the generation process,
making their careful balance crucial for achieving high-quality results (Dhariwal & Nichol, 2021).
To address this, we propose an adaptive coordination technique that dynamically adjusts the empha-
sis based on the generation progress: it prioritizes exploration in the early stages to foster diversity
and gradually increases the strength of regularization in the later stages to ensure fidelity. Unlike ap-
proaches that use predefined static parameters, the adaptation technique can flexibly accommodate
the dynamic nature of the generation process.

To this end, we construct a Control Network(This network outputs a simple noise scorer, analo-
gous to scoring models such as PickScore and Aesthetic Score, and is therefore used as a pretrained
model.Experimental support is provided in Tab. 10, with details in Appendix C.3.), which is designed
to assess the denoising progress of the intermediate state xt in real-time during the generation pro-
cess. Specifically, the control network is defined as a mapping function: hθp : xt 7→ pt, where
xt ∈ Rd denotes the state at generation step t, pt ∈ [0, 1] represents the probability that the current
state is close to the clean image x0. This pre-trained network is obtained by minimizing a binary
cross-entropy loss as the supervision signal (Appendix B.1 for more details). The control network
can provide an adaptive factor pt for any intermediate state xt during inference, where pt = hθp(xt).
This factor reflects the degree of generation progress of the current state. We utilize pt as an adaptive
weighting to balance exploration diversity and generation fidelity. In the first round of optimization,
the combined effect of the exploration and alignment signal gradients is written as:

x̂t = xt + (1− pt) · ϵ(i) − pt · ∇xt
L2(x̂t,xt)︸ ︷︷ ︸

Diversity-Fidelity Trade-off

+∇xtR(x0|t), (8)

where ϵ(i) is the exploration supplement variable and ∇xt
R(x0|t) represents the reward-based

gradient guidance. We introduce L2 regularization to constrain the exploration scope. Then,
based on the iteration defined in Eq. 3, we iteratively introduce guidance to obtain the final state
x̃t = g(x̂t,R− L2,m).

In summary, the adaptive trade-off technique enables the encouragement of exploratory diversity
in the early stages of generation. In the later stages, the continuous increase of the regularization
constraint prompts the generation process to transition from exploration to stable convergence grad-
ually, thereby ensuring high fidelity of the results. Through this design, LitExplorer achieves an
adaptive trade-off between creativity and stability.
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2.3 QUALITY–EFFICIENCY ARBITRATION MECHANISM

2.3.1 GUIDANCE SCREENING

Existing methods apply guidance signals indiscriminately throughout the entire sampling process,
which can lead to ineffective guidance and undermine alignment effectiveness. To address this,
LitExplorer introduces a guidance signal selection technique that dynamically discriminates the sig-
nal’s utility. Let the optimal guidance signal generated at step t be γ(i⋆)

t , which represents the reward
gradient corresponding to x⋆

t , i.e., the optimal candidate. We then define a selection operator F :

F(γ(i⋆)
t ) = {∆Rt > 0}.

With the proposed screening process, a guidance signal is retained only if it contributes to a positive
reward gain; otherwise, it is discarded, and the original latent xt from the base diffusion model is
used for the subsequent step. This reward-margin-based selection strategy ensures the quality of the
guidance signals for generation.

2.3.2 QUALITY–COMPUTE TRADE-OFF

Unlike existing methods that rigidly couple guidance with the generation steps, LitExplorer regulates
the use of guidance signals through the dual control of target reward marginal gain and generation
progress pt. This approach aims to reduce computational costs while ensuring alignment quality.
Guidance is stopped when it is insignificant to reward improvement and the denoising meets the
required threshold, thereby avoiding redundant costs and preventing over-guidance.

We first denote the step t rewardRt(·) as rt. Then, the smoothed trend of reward gain is defined as:

∆̃rt = (1− ϕ) ∆̃rt+1 + ϕ (rt − rt+1), (9)

where ϕ ∈ (0, 1]. If and only if pt = 1 and ∆̃rt ≤ δr，it can be interpreted that the reward return
margin has been reached and the early stopping is triggered, where δr ≥ 0 is the minimal tolerance
gain. We define the early-stopping indicator function as

Estop(t) = I
[
pt = 1 ∧ ∆̃rt ≤ δr

]
∈ {0, 1}.

When Estop(t) = 1, no exploration or guidance term is added. If Estop(t) = 0, the exploration and
guidance proceed as usual. This criterion ensures early stopping is triggered only when both condi-
tions are met: pt guarantees the state is “sufficiently clean”, while ∆̃rt ensures that ‘further explo-
ration guidance yields no significant reward improvement’. By requiring simultaneous satisfaction
of both conditions, this technique eliminates redundant guidance in the later stages of generation
without compromising target alignment quality, thereby reducing computational cost.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. In this paper, we deploy Pick-a-pic (Kirstain et al., 2023) and HPSv2 (Wu et al., 2023)
datasets as our basic test bed. Specifically, we randomly pick 500 prompts from Pick-a-pic val-
idation set and 500 prompts from HPSv2 photorealistic set, since they represent distinct stylistic
categories. Namely, the prompts in Pick-a-Pic are relatively complex, abstract, and surreal, whereas
those in HPSv2 are more realistic and closely aligned with the real world.
Optimization Objectives and Metrics. In this paper, we deploy three reward functions as the op-
timization objectives, that is, PickScore (Kirstain et al., 2023) (PS), Aesthetic Score (Schuhmann
et al., 2022) (AES), and ImageReward (Xu et al., 2023a) (IR). To quantitatively evaluate the gener-
ative performance as extensively as possible, we introduce 4 evaluating dimensions with 13 distinct
metrics, including: Aesthetic Preference: AES, PS, IR, and HPSv2 (Wu et al., 2023). Image Fi-
delity: ClipScore (Radford et al.) (Clip), Fréchet Inception Distance (FID) (Heusel et al., 2017), and
improved F1 Score (iFS) (Kynkäänniemi et al., 2019). Generative Diversity: LPIPS (Zhang et al.,
2018), TCE (Ibarrola & Grace, 2024), and Inception Score (Salimans et al., 2016) (IS). Composi-
tional Richness: NIQE (Mittal et al., 2012b), BRISQUE (BRI) (Mittal et al., 2012a), and Spectual
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Table 1: Main comparisons with SoTA (12 in total). All metrics are obtained with SDv15 as back-
bone, Pick-a-pic as prompt set, and PickScore as reward for guidance. Orange denotes gradient-
based training methods. Green denotes reinforcement-learning-based training methods. Blue de-
notes training-free methods.

Method Preference Fidelity Diversity Richness #Top2
PS↑ AES↑ IR↑ HPS↑ FID↓ CLIP↑ iFS↑ LPIPS↑ IS↑ TCE↑ BRI↓ NIQE↓ SE↑

SDv15 20.48 5.412 0.181 0.262 - 0.243 - 0.654 23.79 38.05 18.66 5.401 11.26 3

Diff-DPO 20.87 5.551 0.443 0.271 109.1 0.244 0.795 0.639 22.77 39.20 15.12 4.463 11.02 1
Diff-KTO 20.83 5.585 0.599 0.272 101.3 0.240 0.801 0.634 22.70 39.12 26.25 4.361 11.22 0
SPO 20.76 5.613 0.282 0.218 78.76 0.241 0.855 0.649 23.18 39.32 25.67 4.103 11.09 1
DRaFT 22.52 5.697 0.779 0.271 84.47 0.231 0.856 0.572 20.10 37.85 35.64 5.336 10.43 2

DDPO 21.79 5.704 0.196 0.212 147.5 0.242 0.539 0.629 20.01 39.18 12.46 4.328 11.74 1
DPOK 20.97 5.661 0.5828 0.272 99.30 0.242 0.820 0.641 22.52 39.35 12.28 4.608 11.23 2

DNO 20.87 5.479 0.425 0.271 79.96 0.239 0.851 0.591 19.94 38.88 17.23 4.757 11.07 0
TTScale 22.14 5.636 0.619 0.272 66.93 0.240 0.863 0.652 23.73 38.90 15.05 4.447 11.28 2
FKSteer 22.56 5.696 0.539 0.278 73.83 0.243 0.868 0.650 23.76 39.42 13.93 4.092 11.59 2
DAS 22.34 5.658 0.632 0.283 95.42 0.240 0.844 0.625 21.01 39.19 14.36 4.631 11.14 1
DyMO 22.79 5.694 0.709 0.279 90.56 0.239 0.849 0.627 20.97 39.29 16.18 4.545 11.29 1

Ours 22.91 5.707 0.812 0.280 71.36 0.242 0.891 0.654 23.71 39.37 10.92 2.886 12.07 11

Table 2: Results on HPSv2 dataset.

Method IR PS CLIP LPIPS TCE NIQE↓
SDv15 0.231 21.57 0.249 0.643 39.62 4.656

Diff-DPO 0.571 22.03 0.245 0.619 37.97 4.471
SPO 0.300 21.58 0.249 0.595 39.37 4.172
DDPO 0.678 22.26 0.245 0.607 38.96 3.973

DNO 0.446 21.79 0.246 0.575 39.14 4.523
DAS 0.684 23.09 0.246 0.653 39.31 4.133
DyMO 0.805 23.46 0.246 0.610 39.57 4.088

Ours 0.872 23.79 0.247 0.671 39.92 2.595

Table 3: Results with advanced SD models.

Method IR PS CLIP LPIPS TCE NIQE↓
SD-XL 0.715 21.45 0.236 0.675 40.18 4.553

Diff-DPO 1.010 22.05 0.236 0.651 39.45 4.440
SPO 1.179 22.81 0.232 0.556 40.42 3.900
SDv35 1.193 21.90 0.238 0.621 39.42 4.873

DNO 0.924 22.58 0.238 0.581 39.34 4.783
DAS 1.171 23.07 0.237 0.594 39.36 5.365
DyMO 1.079 24.34 0.233 0.609 39.55 4.510

Ours 1.201 24.56 0.236 0.679 40.99 3.573

Entropy (SE) (Liu et al., 2014). Details of each metric can be found in Appendix.
Baselines. For comprehensive comparison, we introduce three types of State-of-The-Art (SoTA)
diffusion-based methods, including: Gradient-based Training: Diff-DPO (Wallace et al., 2024),
Diff-KTO (Li et al., 2024), SPO (Liang et al., 2024), and DRaFT (Clark et al., 2023). RL-based
Training: DDPO (Black et al., 2023), DPOK (Fan et al., 2023). Training Free: DAS (Kim et al.,
2025), TTScale (Ma et al., 2025), FKSteer (Singhal et al., 2025), DNO (Tang et al., 2024), and
DyMO (Xie & Gong, 2025).

All baselines are strictly reproduced based on their official code and settings within our evaluation
benchmark. Stable Diffusion v1.5 (SDv15) is taken as our primary backbone. More advanced dif-
fusion models such as SD XL1.0 (XL) and SD3 (see Appendix Tab. 11, Fig. 13) are also considered
for evaluation and comparison. All models and results are obtained on a single NVIDIA Tesla H100
GPU. More training details can be found in Appendix.

3.2 COMPARISONS WITH SOTA

Experiments on SDv15. To extensively demonstrate the effectiveness of LitExplorer (LitE), we
carefully reproduce and evaluate 12 baselines with PickScore as the objective on SDv15 and pick-
a-pic datasets. Since LitE is an efficient plugin, this section represents deploying LitE to DyMO.
Then, we introduce 13 metrics to assess from four dimensions. As shown in Tab.1, our method
achieves the best overall performance in all dimensions, achieving Top2 performance in 12 metrics.
Moreover, since the prompts in the Pick-a-pic dataset are somehow abstract and surreal, we further
conduct an experiment on the photorealistic HPSv2 dataset for comprehensive evaluation. In Tab.2,

7
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Gdt v15
Gdt v15
+LitE

DNO v15
DNO v15

+LitE
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DyMO XLDyMO v15

DyMO v15 DyMO XLDNO v15Gdt v15

Figure 4: Plug-and-Play effectiveness. While maintaining the Fidelity and Preference, our method
significantly enhances Diversity, Richness, and Speed in all cases, such as the “background and
pizza filling diversity” in the first row, and “improved Van Gogh style” in the second row.

all methods perform better because realistic objects are more likely to be seen during training and
hence easier to generate. Nevertheless, our method still achieves the best results on five metrics
and maintains comparable fidelity. The qualitative results could be found in the Appendix. C.9. In
addition, to assess the impact of random seeds on result stability, we compute the coefficient of vari-
ation (CoV) of each metric for the training-free baseline across different seeds. These results are
presented in Appendix Tab. 9.
Comparisons with more advanced SD models. In Tab. 3, we employ our method and other SoTA
on the SD-XL backbone, and introduce the advanced SDv35 as an additional baseline. The results
further demonstrate the superiority of our method as an effective plugin.
Results with alternative optimization targets. We also conduct experiments by replacing
PickScore with Aesthetic score as the optimization target to evaluate the adaptability of LitExplorer.
Due to the length limitation, the results are shown in Appendix C.9. Briefly, the results indicate our
overall superiority on aesthetic preference and generative diversity.
Computational Cost Comparison. To fairly evaluate the computational cost of each method and
verify the efficiency advantages of our approach, we measure and compare the time consumption of
all methods under consistent experimental conditions(see Fig 10).

3.3 PLUG-AND-PLAY EFFECTIVENESS

In Fig. 4, we discuss the plugin effectiveness of LitExplorer. Specifically, we present side-by-side
comparisons of results with and without LitE. Gdt represents backbones with naive Gradient guid-
ance. For simplicity, we choose PS, CLIP, LPIPS, 1

NIQE , and image per minute as the representations
of Preference, Fidelity, Diversity, Richness, and Speed. The results clearly show that LitE could ef-
fectively enhance the diversity of base methods and reduce computational cost while maintaining or
even improving other quality dimensions. To ensure that our integrability remains robust in larger
and more advanced models, we further conducted integration experiments on the leading diffusion
model SD3, with results shown in Fig. 13 and Tab. 11.

3.4 ABLATION STUDY

Overall Ablation. To study the individual effects of the components proposed, we systematically
disassembled each component for ablation experiments. LitExplorer aims to balance the trade-offs
between diversity-fidelity and quality-efficiency, and thus can be divided into four categories based
on the objectives. Specifically, Diversity (Dive) includes directly adding exploration and adding
Monte Carlo exploration. Fidelity (Fide) refers to L2 constraints for regularization. Efficiency (Effi)
includes the I&R and early stopping. Guidance Screening aims to enhance Quality (Qual). Then,
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Table 4: Ablation study. For each component, ESV and M-ESV represent exploration supplement
variable and with Monte Carlo sampling. I&R and EarS denote Inheritance-Restart technique and
Early Stopping. GuiS denotes Guidance Screening.

Var Dive Fide Effi Qual IR PS CLIP LPIPS TCE NIQE↓ Time↓ #Top2
ESV M-ESV L2 I&R EarS GuiS

Base 0.709 22.79 0.239 0.627 39.29 4.454 44.92 0

V1 ✓ 0.739 22.12 0.236 0.659 39.30 2.897 46.31 1
V2 ✓ ✓ 0.734 22.46 0.240 0.636 39.30 3.379 51.24 0
V3 ✓ ✓ 0.757 22.75 0.240 0.641 39.32 2.939 67.08 0
V4 ✓ ✓ ✓ 0.746 22.73 0.241 0.640 39.29 3.039 48.56 0
V5 ✓ ✓ ✓ ✓ 0.759 22.66 0.242 0.645 39.28 3.120 40.91 2
V6 ✓ ✓ ✓ ✓ 0.774 22.95 0.241 0.653 39.35 2.847 44.73 4

Ours ✓ ✓ ✓ ✓ ✓ 0.812 22.91 0.242 0.654 39.37 2.886 37.28 7

Ours SDXL DyMODiff-DPO

A fluffy bunny as 
Rapunzel,..., 
glowing lanterns
in the night sky, 
warm fairytale 
atmosphere

A dog riding
a bike

PickScore: 24.44 LPIPS: 0.5247

PickScore: 24.09 LPIPS: 0.5173

PickScore: 21.94 LPIPS: 0.5007 PickScore: 22.74 LPIPS: 0.4989 PickScore: 24.32 LPIPS: 0.4930

PickScore: 22.10 LPIPS: 0.5010 PickScore: 23.05 LPIPS: 0.5076 PickScore: 24.02 LPIPS: 0.4835

Figure 5: Examples of generative diversity with the same prompt and different seeds.

Fixed-Levels of Regularization

Ours (Balanced)

Increase of Exploration Level

Increase of Regularization Level

Fixed-Levels of Exploration

Figure 6: Comparing our diversity-fidelity adaptive trade-off with different fixed exploration and
regularization intensities. The red dotted lines indicate our method.

we conducted detailed ablations in Tab. 4, where the proposed diversity-fidelity tradeoff effectively
improves the diversity of generated images while maintaining consistency. Meanwhile, the I&R
mechanism and early stopping greatly reduce computational overhead with almost no impact on
performance. GuiS improves inference efficiency and performance by removing invalid guidance.
In the Appendix, we further analyze the mutual correlation among different proposed components
based on the ablation results.
Analysis on Generative Diversity. The generative diversity is compared among SD-XL, Diff-DPO,
DyMo, and Ours by generating images with 40 seeds. As shown in Fig. 5, our method exhibits
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improved diversity while maintaining the impressive preference score and precise prompt-image
alignment. We have also investigated exploration diversity during inference in Appendix C.10.
Analysis on Diversity-Fidelity Trade-off. In Fig. 6, we examine the Diversity-Fidelity Trade-off
by fixing exploration and regularization levels instead of using dynamic pt for balancing. Results
show that stronger regularization undermines preference performance without enhancing diversity,
while higher exploration reduces diversity through image distortion. In contrast, our method
consistently surpasses baselines and achieves a balanced trade-off between richness and alignment.

4 CONCLUSION

We propose LitExplorer, a training-free plugin framework for diffusion models. It integrates an
Inheritance–Restart exploration mechanism and a Quality–Efficiency arbitration framework to pre-
vent early convergence, enhance high-reward exploration, and prune irrelevant signals. Experiments
show consistent gains in quality, diversity, and efficiency over existing methods.
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APPENDIX

A RELATED WORK

A.1 DIFFUSION MODEL

Diffusion models have achieved remarkable progress in generative modeling. Their stability and
gradual refinement allow them to approximate complex distributions, producing samples with both
high fidelity and diversity. They have shown strong generalization across domains, including text-
to-image (Li et al., 2024; Yuan et al., 2024; Ding et al., 2025), speech (Kong et al., 2020; Chen et al.,
2020; Liu et al., 2022), molecular design (Xu et al., 2022; 2023b), and protein generation (Watson
et al., 2023; Abramson et al., 2024; Qiao et al., 2022). However, since these models are typically
pretrained on broad datasets lacking task-specific signals, they often fail to reflect user-desired distri-
butions in specialized applications. This gap highlights the need for alignment:enabling customized
optimization toward target distributions without losing generality.

A.2 GRADIENT-BASED FINE-TUNING METHODS

Direct gradient-based fine-tuning is intuitively feasible for enhancing diffusion models. For exam-
ples, DRaFT Clark et al. (2023) performs differentiable reward optimization for diffusion models by
backpropagating reward gradients through sampling steps, forming a unified gradient-based frame-
work for preference-aligned fine-tuning; DRTune Wu et al. (2024) stabilizes reward-supervised dif-
fusion training by applying stop-gradient to denoiser inputs and uniformly sampling K timesteps,
enabling efficient supervision across all sampling depths; Diffusion-RPO Gu et al. (2024) extends
relative preference optimization to diffusion models by conducting stepwise preference contrasts
with CLIP-based multimodal weighting to learn coherent cross-semantic preference patterns. All
these methods improve preference alignment with limited stability, scalability, and robustness under
diverse real-world undifferentiated reward signals.

A.3 REINFORCEMENT LEARNING FINE-TUNING METHODS

Existing alignment approaches fall into two categories: fine-tuning (Black et al., 2023; Fan et al.,
2023) and training-free methods. The mainstream fine-tuning approach relies on reinforcement
learning (RL) (Sutton, 2018) to adjust diffusion model weights. RL greatly improves alignment to
downstream targets but faces challenges: rewards are only available after the full denoising process,
making them sparse and prone to reward hacking. This often leads to higher reward scores but
reduced diversity and poor distribution coverage. Moreover, RL-based fine-tuning comes with a
high computational cost (Kim et al., 2025).

A.4 TRAING-FREE METHODS

Training-free methods (Kim et al., 2025; Xie & Gong, 2025) provide an alternative: instead of
changing diffusion model weights, they bias the sampling process at inference to guide results to-
ward target objectives. For examples, TTScale Ma et al. (2025) boosts generation quality by shifting
extra inference compute from longer denoising chains to noise-search guided by a lightweight eval-
uator. FKSteer Singhal et al. (2025) enables inference-time controllability by using particle-based
weighting and resampling to steer diffusion trajectories without fine-tuning. This avoids costly re-
training and reduces computation. First, prior work lacks an adaptive mechanism to balance diversity
and fidelity (Dhariwal & Nichol, 2021). Second, existing training-free methods often overempha-
size target guidance, forcing trajectories into narrow regions and reducing coverage of the pretrained
distribution. While less prone to severe reward hacking, this effect still harms diversity. Further,
guidance signals are typically applied indiscriminately across all steps (Tang et al., 2024), without
filtering ineffective or saturated signals. This overuse increases inference cost and amplifies noise,
sometimes even causing negative guidance effects.
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B METHOD SUPPLEMENT

B.1 CONTROL NETWORK

We assign y = 0 to samples close to pure noise xT , and y = 1 to samples close to the target x0,
pretraining the network via the loss defined as follows.

L(θ) = −E(xt,y) [y log fθ(xt) + (1− y) log(1− fθ(xt))] . (10)

C ADDITIONAL EXPERIMENT RESULTS

C.1 DETAILED HYPER-PARAMETER SETTING

Table 5: Hyper-parameters and metrics in our experiment. Notably, only n and δr are newly intro-
duced by our method; all other hyper-parameters follow DDIM or the baseline methods.

Name Description Value
η eta parameter for the DDIM sampler 1.0
w classifier-free guidance weight 5.0
mdno Iteration Number for DNO 20
mdymo Iteration Number for DyMO adaptive
ndas Particle number for DAS 4
mp mixed precision fp16

n (LitExplorer-unique) Exploration supplement number 2
δr (LitExplorer-unique) Reward enhancement threshold 0.1

The full list of hyper-parameters in our paper is shown in Table 5. Then, we provide a detailed
illustration of each introduced metric:

• Aesthetic Preference
– AES (Aesthetic Score) AES is a metric used for evaluating the aesthetic quality of an

image, typically by training a model to predict human aesthetic ratings (Schuhmann et al.,
2022).

– PS (PickScore) PS is a method based on human selection preferences for rating the aesthetic
quality of images (Kirstain et al., 2023).

– IR (ImageReward) IR is a metric used for assessing image quality, often in the optimiza-
tion process of image generation models (Xu et al., 2023a).

– HPSv2 (Human Preference Score v2) HPSv2 is a preference-based metric that predicts
human preferences for generated images. This model fine-tunes the CLIP model on the HPD
v2 dataset. HPSv2 excels in multiple styles, including animation, concept art, paintings, and
photographs (Wu et al., 2023).

• Image Fidelity
– ClipScore ClipScore is a model-based image scoring metric that evaluates the similarity

between a generated image and its textual description. It calculates the cosine similarity be-
tween the image and text embeddings. The metric is highly correlated with human judgment
and does not require reference text (Radford et al.).

– Fréchet Inception Distance (FID) FID is a metric used to evaluate the quality of generated
images. It compares the mean and covariance of the features extracted from real and gener-
ated images using the Inception v3 model. A lower FID value indicates that the generated
image is closer to real images (Heusel et al., 2017).

– Improved F1 Score (iFS) iFS is an improvement over the traditional F1 score, aiming
to provide a better evaluation of generative model performance. It optimizes the balance
between precision and recall for more accurate assessments (Kynkäänniemi et al., 2019).

• Generative Diversity

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Results with SDv14.

Method IR PS CLIP LPIPS TCE NIQE↓
SDv14 0.744 20.62 0.240 0.671 40.32 4.6312

DDPO 1.056 21.20 0.240 0.609 39.61 4.554
DNO 0.915 21.85 0.239 0.597 39.24 4.875
DAS 1.217 22.58 0.238 0.610 39.56 5.451
DyMO 1.100 23.14 0.235 0.615 39.63 4.550

Ours 1.230 23.39 0.242 0.676 41.10 3.494

Table 7: Results with SDv21.

Method IR PS CLIP LPIPS TCE NIQE↓
SDv21 0.541 20.63 0.280 0.644 39.69 5.672

DDPO 0.794 21.25 0.274 0.622 38.94 4.953
DNO 0.566 20.91 0.277 0.589 39.13 5.551
DAS 0.817 22.29 0.280 0.656 39.55 5.150
DyMO 0.921 22.62 0.279 0.623 39.62 5.176

Ours 0.980 22.91 0.280 0.677 40.07 3.695

– LPIPS (Learned Perceptual Image Patch Similarity) LPIPS is a metric for evaluating
perceptual similarity between images. It compares the feature activations of images in pre-
trained convolutional neural networks (e.g., VGG). A higher LPIPS value indicates lower
perceptual similarity and a higher diversity(Zhang et al., 2018).

– TCE (Truncated CLIP Entropy) Truncated CLIP Entropy (TCE) is a measure of semantic
diversity of a set of generated images, computed in the joint image–text embedding space of
CLIP. It is defined by first mapping each image xi to a vector zi = CLIPimg(xi) ∈ Rd, then
forming the empirical covariance matrix Σ of these vectors, extracting its top-k eigenvalues
λ1 ≥ · · · ≥ λk, and finally computing

TCEk = 1
2

k∑
i=1

log λi.

TCE gives a tractable proxy for how “spread out” the images are in the CLIP semantic
space. (Ibarrola & Grace, 2024).

– Inception Score (IS) IS is a metric used to evaluate the quality of generated images. It
calculates the entropy of the class distribution of images in a pre-trained Inception v3 model.
Higher IS values indicate that the generated images are both clear and diverse (Salimans
et al., 2016).

• Compositional Richness

– NIQE (Natural Image Quality Evaluator) NIQE is a no-reference image quality assess-
ment metric. It evaluates the image quality by measuring the distance between the natural
scene statistics of the image and a natural image database of undistorted images (Mittal
et al., 2012b). A lower NIQE value indicates better image quality.

– BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator) BRISQUE is another
no-reference image quality metric. It evaluates image quality by analyzing spatial-domain
features. It does not rely on reference images and is suitable for a variety of image quality
assessment tasks (Mittal et al., 2012a).

– Spectral Entropy (SE) SE is a metric for evaluating the spectral properties of images. It
calculates the entropy value of an image’s frequency spectrum to assess the complexity and
richness of image details. Higher SE values generally indicate more detailed and textured
images (Liu et al., 2014).

Table 8: Results of Restart Count and Early Stop across HPSv2 and Pick-a-Pic with SDv15 and
SD-XL backbones.

Avg. Value Base HPSv2 Pick-a-Pic

SDv15 SD-XL SDv15 SD-XL

Restart Count 50 4.37 8.55 7.32 10.59
Guiding Step 50 37.35 44.21 40.67 44.30
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Vanilla SPO DDPODNODAS DyMO Ours

A bicycle leaned 
against the hallway 
wall in a house

an empty bench 
sitting on the side 
of a sidewalk

A man and a 
woman looking at 
cell phones

…, oscure,  spiral, 

pixar style, 
concept art, ...

ocean wave made 
of porcelain with 
gold

Astronaut in a 
massive colorful 
space

Figure 7: The visual comparisons of different methods on SDv15. For photorealistic prompts from
HPSv2, our results contain richer details while maintaining image-prompt alignment. For surreal
prompts from Pick-a-Pic, we exhibit much more diverse patterns and colors.

Vanilla DDPO DPOK DNO DAS DyMO OursAesthetic Preference

Generative Diversity

Figure 8: Results with Aesthetic Score as the optimization objective.

C.2 SUPPLEMENTARY STATISTICAL SIGNIFICANCE

Since the generative quality is highly related to the initial noise decided by the seeds, we further con-
duct experiments with 5 different seeds and calculate their average Coefficient of Variation (CoV).
The metrics and evaluation protocol are strictly following Tab. 1. As shown in Tab. 9, it can be
observed that all methods exhibit similarly low CoV across various seeds, which indicates that
the guidance-based training-free scaling methods perform relatively stably. These results further
demonstrate that the performance reported in Table 1 is statistically significant.
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Table 9: CoV (%) comparison of methods across four evaluation metrics.

Method Preference Fidelity Diversity Richness
DNO 0.88 0.52 0.27 1.27
DAS 0.96 0.81 0.30 1.36
DyMO 0.62 0.86 0.28 1.15
Ours 0.65 0.79 0.28 1.41

Table 10: Mean step numbers predicted by the control network across different datasets. The control
network is trained on the simple animal and directly generalizes to other datasets.

Method Total SimpleAnimal Pick-a-Pic HPSv2 GenEval
SD15 50 37.3 40.9 39.8 38.1
SDXL 30 24.7 24.9 25.1 24.6

C.3 GENERALIZABILITY OF PRE-TRAINED CONTROL NETWORK

Considering training a control network could undermine the claim of “training-free” of the pro-
posed LitExplorer, it is necessary to demonstrate that the Control Network could also be seen as a
pre-trained scorer, which can be pre-trained once and be generalizable for all. Therefore, as shown
in Tab. 10, we pre-train the control network on the simple animal set and predict steps on other
datasets. The results demonstrate that the network could easily generalize to other datasets with
similar effective performance, which is caused by the fixed scheduler having already pre-set the
noise level for different steps in a coarse manner.

C.4 ANALYSIS ON PERFORMANCE-COMPUTATION TRADE-OFF

Due to the iterations or sampling numbers can influence the performance of inference-time scaling
methods, we investigate the relation between computational cost and performance. Specifically, we
first deploy extra mean number of Function Evaluated (nFE) to quantify the computational cost
in a unified manner, which represents the number of extra iterations or sampling in one denoising
step. Then, we compare our method with iteration-based DyMO and sampling-based DAS, where
the maximum iteration and sampling particle number are set to 2,4,8,16. Notably, LitExplorer
includes both sampling and iteration, we hence decouple these factors and design two variants of
our method, that is, Ours-i (iteration) and Ours-p (particles). As shown in Fig. 9, our results can
firstly save nFE because we conduct early stopping. Second, the curves of our results consistently
surpass the baselines, indicating the consistent superiority of LitExplorer.

Preference Diversity

Figure 9: Investigation on Performance-Computation Trade-off.
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Figure 10: Wall-clock runtime comparisons with details.

+Ours

+Ours DyMODyMO XL

DNO Gdt+Ours

+Ours

Figure 11: User study for plug-and-play effectiveness of our method.

C.5 COMPARISONS ON WALL-CLOCK RUNTIME.

To investigate the effectiveness in real-world application, we conduct comparisons on wall-clock
runtime with details. As shown in Fig. 10, we present the time consumption of running the entire
script. Firstly, their preparation time are similar and once prepared, the script can conduct arbitrary
times of inference. Then, it can be observed that our inference time is much faster than the baseline
DyMO, while Base has the smallest inference time since it includes no optimization or guidance.

C.6 USER STUDY

To subjectively evaluate the generative quality of different methods, we conduct a user study based
on the images from the Plug-and-Play experiments in Sec. 3.3. Specifically, we recruit five subjects
without prior knowledge to select the preferred image within paired images with the corresponding
prompt as the reference. As shown in Fig. 11, our method consistently performs as an effective
plugin that achieves superior quality compared to the implemented original models.

Figure 12: Feature visualization comparison with DAS.
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C.7 SUPPLEMENTARY DISTRIBUTION COMPARISON WITH DAS

In Fig. 2, we compare the feature distribution with the iteration-based DyMO, thus demonstrating
the diversity of our method. Here, we conduct a similar experiment to evaluate the sampling-based
baseline, i.e., DAS. As shown in Fig. 12, although the sampling-based DAS has richer diversity
compared to DyMO, it still tightens the distribution range of the original backbone. In contrast, our
result exhibits consistent diversity, which is demonstrated by the wider visualized distribution and
the lower Silhouette Coefficient value.

Table 11: Comparison results
with the backbone of SD3. Gdt
represents the baseline that di-
rectly applies the reward gradi-
ent to the latent code during in-
ference. Ours is designed based
on Gdt with the proposed plugin
components.

Method PS CLIP LPIPS NIQE↓
SD3 21.62 0.238 0.645 4.312
Gdt 22.17 0.239 0.636 4.304

Ours 22.57 0.241 0.641 2.990
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Figure 13: Visual impression on SD3. In comparison, our
results exhibit finer details, more diverse colors, and im-
proved aesthetic style.

C.8 SUPPLEMENTARY RESULTS ON DIT-BASED ADVANCED BACKBONE

To further validate the effectiveness of LitExplorer, we implement it to the advanced Stable Diffuion
V3 backbone with PS as the reward and Pick-a-pic as dataset. Quantitatively, as shown in Tab. 11,
our method can still effectively improve the reward score while maintaining the alignment and di-
versity. Qualitatively, it can be clearly observed that our method has achieved improved human
preference in aesthetics.

C.9 VISUAL QUALITY

To evaluate the generative quality, we compare some sampling results in Fig. 7, which further
demonstrates the superiority of our method. Moreover, as shown in 8, the results of guiding via aes-
thetic score indicate our overall superiority on aesthetic preference and generative diversity. Then,
in the visual results, it could be clearly observed that our generated images contain richer details,
better alignment, and improved aesthetic impressions.

C.10 ANALYSIS ON EXPLORATION.

To demonstrate the exploration effect of introducing ESV, we present the intermediate results during
generation. As shown in Fig. 14, our method exhibits superior exploration effect during denoising,
implying the improved generative quality.

C.11 FURTHER ANALYSIS ON ABLATION STUDY

The proposed LitExplorer is designed considering two trade-offs, that is, Diversity-Fidelity and
Efficiency-Quality trade-offs. Therefore, different components are introduced with paired correla-
tions. Specifically, introducing M-ESV can introduce exploration and thus improve diversity, while
L2 can maintain the fidelity to prevent over-exploration that leads to the collapse of the denoising
process. Therefore, without ESV that encourages exploration, solely deploying L2 is unnecessary.
Then, both I&R and EarS are introduced to enhance the generation quality based on the explo-
ration. Meanwhile, GuiS builds upon the previously introduced exploration, as direct guidance
typically provides a straightforward path to higher rewards, making GuiS ineffective in such cases.
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Denoising Trajactory Denoising Trajactory

A girl holding a glowing teddy bear lantern, 
surrounded by softly falling snow, ...

A man standing under cherry blossoms in full 

bloom, …, cinematic storytelling portrait
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Figure 14: The proposed ESV facilitates exploration during the denoising process. Left: ESV en-
ables our method to identify a broader range of patterns and adjust the trajectory toward the “teddy
bear lantern” during intermediate stages. Right: Our method exhibits greater posture variation
throughout denoising. While this variation is not directly responsible for the superior final genera-
tion, it reflects an increased level of exploration.

In contrast, with ESV, guidance is not based on the current state but rather incorporates an ex-
ploratory shift, allowing GuiS to effectively filter out harmful optimization. As for the intensity of
different components in the trade-offs, we present Fig. 6 to demonstrate the superiority of our adap-
tive strategy. Overall, the components of our approach are interdependent and mutually reinforcing,
collectively contributing to the superior performance of our image generation scheme in terms of
inference-time scaling.

C.12 RESULTS ON MORE SD BACKBONES.

In addition to SDv15 and SD-XL presented in the main paper, we provide the results on SDv14 and
SDv21-turbo. As shown in Tab. 6 and 7, our method also leads in all metrics.

C.13 EXHIBITED ADAPTIVE VALUES FOR COMPUTATION REDUCTION.

Here, we provide the exhibited average values of restart counts and early stop positions. Specifically,
we calculate the average restart counts and average number of guiding steps on HPSv2 and Pick-a-
Pic datasets with SDv15 and SD-XL. As shown in Tab. 8, it can be observed that HPSv2 has smaller
values of both variables compared to Pick-a-Pic, while SDv15 has smaller values than SD-XL. This
is because HPSv2 has more photorealistic images that are easier than surreal one for denoising,
while SDv15’s lesser robustness makes it more amenable to external guidance.

D DECLARATION OF LLM USAGES.

While we utilized an LLM to assist in polishing the English for improved clarity, all aspects of idea
development, theoretical validation, and experiments were carried out solely by the authors, without
LLM interference.

D.1 SHOWCASE PROMPT TABLE

Please refers to Tab. 12, 13, 14, and 15.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Detailed prompts used for generated images in Fig. 1

Image Prompt

Fig. 1, Row 1, Col 1

ballet dancer, insanely detailed, photorealistic, 8k, perfect composition,
volumetric lighting, natural complexion, award-winning professional

photography, taken with Canon EOS 5D Mark IV, 85mm, mindblowing,
masterpiece

Fig. 1, Row 1, Col 2
A fluffy bunny as Rapunzel, with long golden ears flowing down from a tall

enchanted tower, glowing lanterns in the night sky, warm fairytale
atmosphere

Fig. 1, Row 1, Col 3 A dog in sportswear lifting tiny dumbbells at the gym, determined
expression, humorous fitness illustration

Fig. 1, Row 1, Col 4 A boy superhero landing on the ground in classic “hero pose,” debris and
glowing sparks flying around, comic action shot

Fig. 1, Row 1, Col 5 A phoenix rising up from ashes

Fig. 1, Row 2, Col 1 A young girl standing on a rooftop, blowing dandelions that transform into
glowing comets, shooting across the night sky, dreamy fantasy artwork

Fig. 1, Row 2, Col 2
A small hedgehog as the Frog Prince, wearing a tiny crown while sitting on a
lilypad, a kind-hearted swan princess leaning close, surrounded by glowing

fireflies, magical fairytale illustration

Fig. 1, Row 2, Col 3 a white polar bear cub wearing sunglasses sits in a meadow with flowers.

Fig. 1, Row 2, Col 4 A cat surfing on a giant wave at sunset, wearing cool shades, cinematic sports
illustration

Fig. 1, Row 2, Col 5 A sunflower in full bloom under golden sunlight, tiny dewdrops sparkling on
its petals, cinematic macro fantasy illustration

Fig. 1, Row 3, Col 1
A warrior standing at the edge of a glowing crater, surrounded by swirling

cosmic energy, their silhouette outlined against the birth of a new star,
ultimate epic fantasy art

Fig. 1, Row 3, Col 2 A boy lying on the grass in a field, listening to music with glowing
headphones, fireflies surrounding him

Fig. 1, Row 3, Col 3 A little girl painting a rainbow bridge from the classroom window into the
sky, playful magical fairytale art, hopeful and inspiring

Fig. 1, Row 3, Col 4
A group of playful penguins throwing glowing snowballs at each other, each

snowball turning into sparkling stars when it explodes, magical fairytale
scene

Fig. 1, Row 3, Col 5
Giant rubber duck floating in the ocean with a small island on its back,

surrounded by tropical palm trees and crystal clear water, bright and sunny
day, calm seas, vivid colors, cinematic lighting, high detail

Fig. 1, Row 3, Col 6 A cozy library built inside an ancient oak tree, warm lights glowing through
round windows, whimsical fairytale healing atmosphere

Fig. 1, Row 3, Col 7 A brave boy carrying a glowing lantern, releasing trails of light that form a
golden sunrise, cinematic epic fantasy style
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Table 13: Detailed prompts used for generated images in Fig. 8

Image Prompt

Fig. 8, Row 1 transylvania castle on hiltop and dusk bats and scifi

Fig. 8, Row 2
fantasy character portrait digital painting, anime style, detailed with beautiful

emotive lighting suggesting personality, and background that suggests
character backstory

Fig. 8, Row 3 Women in Saree playing Holi

Fig. 8, Row 4 a house burning at night

Table 14: Detailed prompts used for generated images in Fig. 4

Image Prompt

Fig. 4, Row 1 a slice of pizza floating through space with stars in the background

Fig. 4, Row 2 A Great Dane dog in the style of Vincent Van Gogh

Table 15: Detailed prompts used for generated images in Fig. 6

Image Prompt

Fig. 6, Row 1 Heart shaped balloon

Fig. 6, Row 2 An apple on a table

Fig. 6, Row 3 A castle in the sky, clouds, sunset, explosion

Fig. 6, Row 4 Harry potter as a cat, pixar style, octane render, HD, high-detail
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