

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LitExplorer: A PLUGIN FOR ENHANCING TRAINING-FREE DIFFUSION ALIGNMENT IN EFFICIENCY AND DIVERSITY

Anonymous authors

Paper under double-blind review

Figure 1: **Showcase of generated samples.** The images from our model achieve a state-of-the-art performance based on SD-XL.

ABSTRACT

Diffusion models have general generative abilities but struggle to align with specific objectives. Fine-tuning can improve alignment, yet its training cost is often prohibitive. This led to training-free methods that apply objective-guided terms in sampling to bias the distribution toward designated regions, e.g., high-reward areas. However, these methods face two key issues: (1) the strong directional bias narrows the pretrained distribution, and (2) indiscriminate guidance fails to prune redundant signals, hurting both quality and efficiency. To solve the above challenges, we propose *LitExplorer*, a plugin that mitigates distribution collapse and reduces compute. Firstly, we adopts an Inheritance-Restart exploration mechanism, using probabilistic perturbation to avoid early convergence, while exploration also raises the chance of high-reward trajectories. Then, it balances diversity and fidelity, adding diversity without distribution shift. Second, our Quality–Efficiency arbitration mechanism improves guidance by removing incorrect signals and cuts computation through dynamic early stopping driven by generation completeness and marginal reward gain. Experimental results indicate that the proposed *LitExplorer* consistently achieves superior performance across **12** metrics, encompassing preference, fidelity, diversity, and richness.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Ramesh et al., 2022; Rombach et al., 2022), as one of the most powerful generative frameworks, demonstrate exceptional generative capabilities by training on various large-scale datasets. This ability is reflected not only in high-quality image generation but also

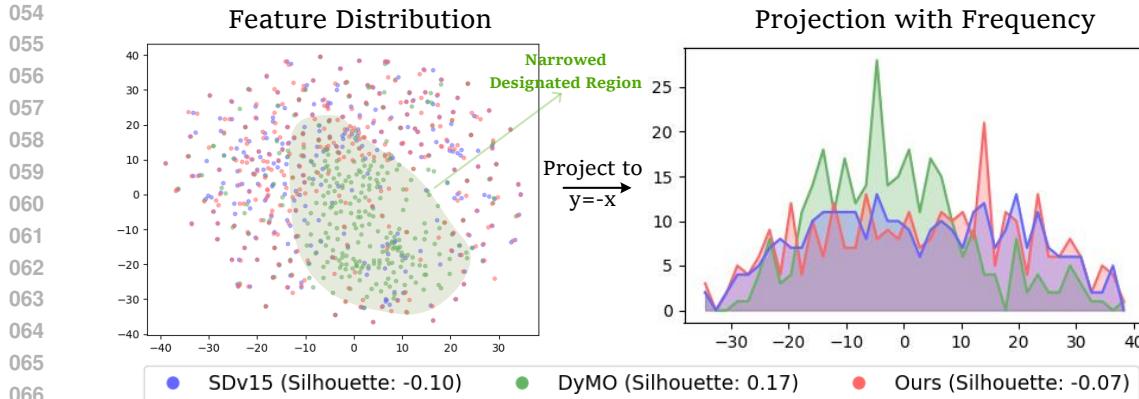


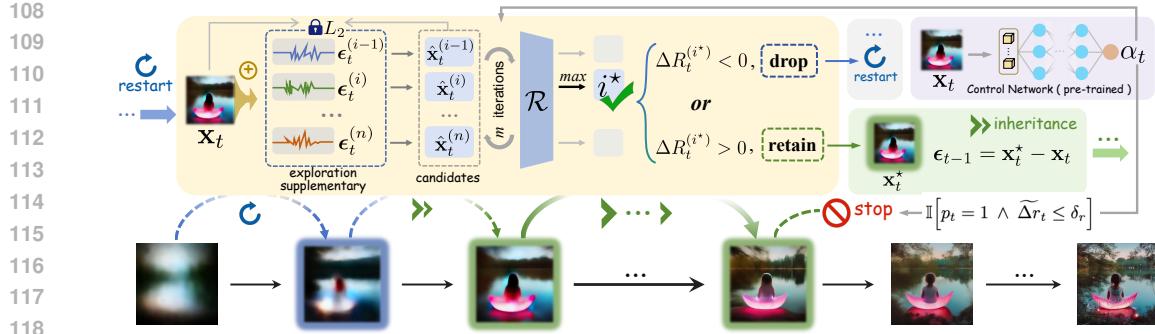
Figure 2: Feature visualization via t-SNE. The features are extracted by a general self-supervised decoder (*i.e.*, DINOv2) from images generated by different methods. The results indicate that existing methods (e.g., DyMO) designate more compact clustering, narrowing the range of the generated distribution, which in turn reduces the diversity of the generated data. This observation is substantiated by the Silhouette Coefficient (Rousseeuw, 1987), a clustering evaluation metric, which demonstrates its convergence and limited diversity. In contrast, our method maintains a broader generative distribution while achieving comparable target reward scores (see Tab. 1). *See Appendix. 12 for results of other guidance methods in this setting.*

in their capacity to cover a broad semantic and stylistic space. However, in practical applications, there is a need not only to generate realistic images but also to ensure that the results align with specific target requirements, such as aesthetic preferences. This need for goal alignment is becoming a core research problem, posing the challenge of how to effectively translate the general capabilities of diffusion models into customized generation (Yeh et al., 2024; Kim et al., 2025).

Early research primarily relied on training strategies (Black et al., 2023; Fan et al., 2024; Yang et al., 2024; Wallace et al., 2024). By fine-tuning diffusion models on specific preference objectives, alignment performance could be significantly improved. However, such methods generally face challenges of high training costs and poor transferability (Kim et al., 2025; Xie & Gong, 2025). Whenever user requirements or objectives change, diffusion models must be fintuned again, which limits their scalability in practical applications. To address this, researchers have begun searching training-free methods (Chung et al., 2022; Kim et al., 2025; Deckers et al., 2024; Tang et al., 2024; Xie & Gong, 2025), which do not modify the diffusion model’s weights but instead incorporate external signals during generation to achieve goal-guided results. The advantages of such approaches are evident as they require no additional training costs and can quickly adapt to different objective demands. Consequently, training-free guidance has gradually become one of the crucial directions in diffusion model alignment. More detailed **Related Works** can be found in Appendix A.

However, existing training-free methods still suffer from two typical limitations: (1) current methods suffer from overly narrow generative distributions. To enhance the alignment between generated results and the target objectives, training-free methods need to apply target-guided terms during the sampling process. These methods gradually shift the generative distribution toward specific regions, such as high-reward subspaces. Although these approaches effectively enhance alignment, their reliance on a consistent guidance direction easily leads to reward hacking (Tang et al., 2024). In turn, causing a rapid narrowing of the pre-trained distribution, ultimately resulting in reduced image diversity (Ho & Salimans, 2022; Tang et al., 2024); (2) The issue of inefficient guidance cannot be overlooked. Current methods apply guidance terms indiscriminately throughout the entire generation process, lacking the ability to identify and manage ineffective or redundant signals. This not only results in unnecessary computational waste but may also introduce noise interference due to ineffective guidance, ultimately compromising both alignment quality and generation efficiency.

To address the above challenges, we propose *LitExplorer*, an enhanced plugin compatible with existing training-free alignment methods. Specifically, *LitExplorer* first introduces an Inheritance-Restart exploration mechanism that prevents premature convergence of generation trajectories to a single mode through probabilistic perturbation and path screening. Simultaneously, it adaptively balances

Figure 3: Overall framework of the proposed plug-and-play *LitExplorer*.

exploration and fidelity based on the generation progress, which mitigates diversity loss caused by excessive guidance without deviating from the original distribution (we provide visual evidence in Fig. 2). By incorporating this adaptive trade-off, the sampling process encourages exploratory potential in early stages to enhance diversity. It gradually converges in later stages to maintain the pre-trained distribution, thereby balancing creativity and reliability. Moreover, the progressive incorporation of exploration during the generation process increases the likelihood of discovering high-reward trajectories. Secondly, to improve guidance efficiency, *LitExplorer* employs a Quality-Efficiency screening mechanism to filter out ineffective signals, ensuring that each guidance step contributes meaningfully. Additionally, by integrating an adaptive factor and considering the diminishing marginal utility of rewards, our method dynamically cuts guidance in later generation stages to avoid redundant optimization. Quality-Efficiency mechanism effectively reduces computational overhead while maintaining alignment quality. Experiments demonstrate that while ensuring leading performance in both fidelity and alignment objectives, *LitExplorer* effectively improves generative diversity and outperforms existing baseline methods in computational efficiency. Our contributions are summarized as follows:

- We propose Inheritance-Restart exploration mechanism to enhance diversity.
- We introduce a Quality-Efficiency arbitration mechanism to drop invalid signals, ensuring better guidance and lower cost.
- We achieve two trade-offs: Diversity and Fidelity by generation progress. Further, Quality and Efficiency by marginal reward gain.

2 METHOD

LitExplorer is a plugin that enhances training-free methods from exploration and efficiency perspectives. First, in Sec. 2.1, we provide the necessary preliminaries for *LitExplorer*. In Sec. 2.2, we elaborate on the Inheritance-Restart exploration mechanism of *LitExplorer*, achieving an adaptive trade-off between Diversity and Fidelity. Subsequently, in Sec. 2.3, we introduce a Quality-Efficiency arbitration mechanism, which ensures guidance for quality in the early generation stages and efficiency in the later stages. *LitExplorer* framework is shown in Fig. 3.

2.1 REWARD-GUIDED DIFFUSION ALIGNMENT

2.1.1 GENERATIVE PROCESS OF DIFFUSION MODELS

The discrete-time generative process (or reverse process) aims to produce a data sample by iteratively denoising a latent variable. This process requires two key components: a predefined noise schedule $\{\beta_t\}_{t=0}^T$ and a well-trained score function $s_\theta(\mathbf{x}_t, t)$. For conciseness, we define $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$. The generation starts by sampling an initial latent variable from a standard normal distribution: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Then, for each timestep t from T down to 0, the sample is iteratively refined using the following update rule:

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t + \beta_t s_\theta(\mathbf{x}_t, t)) + \sqrt{\beta_t} \mathbf{z}_t \quad (1)$$

162 where $\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The final output after T steps is the generated sample \mathbf{x}_0 . For convenience,
 163 we also define a function $f_\theta(\mathbf{x}_t, t)$ that provides a direct estimate of the clean sample $\hat{\mathbf{x}}_0$ from
 164 any noisy intermediate \mathbf{x}_t , $\mathbf{x}_{0|t} = f_\theta(\mathbf{x}_t, t) = \frac{1}{\sqrt{\alpha_t}}(\mathbf{x}_t + (1 - \bar{\alpha}_t)\mathbf{s}_\theta(\mathbf{x}_t, t))$ (Chung et al., 2022;
 165 Bansal et al., 2023; Xie & Gong, 2025).

167 2.1.2 ITERATIVE REFINEMENT WITH GRADIENT GUIDANCE

169 To guide the generation process towards a specific objective, we can incorporate the gradient of
 170 a reward function \mathcal{R} . The reward function is defined in the data domain (i.e., it operates on the
 171 estimated clean sample $\mathbf{x}_{0|t}$).

172 The guidance is injected at each step by first perturbing the current sample \mathbf{x}_t in the direction of the
 173 reward gradient. Specifically, before applying the update in Eq. 1, we compute a guided sample \mathbf{x}_t :

$$174 \mathbf{x}_t \leftarrow \mathbf{x}_t + w \nabla_{\mathbf{x}_t} \mathcal{R}(f_\theta(\mathbf{x}_t, t)), \quad (2)$$

177 where w is a guidance scale factor, $\mathcal{R}(\cdot)$ denotes the reward function for inference-time guidance.
 178 The above process could be seen as one step of optimization. For simplicity, we can define optimi-
 179 zation with m steps of Eq. 2 as

$$180 \tilde{\mathbf{x}}_t = g(\mathbf{x}_t, \mathcal{R}, m). \quad (3)$$

181 This guided sample $\tilde{\mathbf{x}}_t$ then replaces \mathbf{x}_t in the denoising update rule:

$$182 \mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}}(\tilde{\mathbf{x}}_t + \beta_t \mathbf{s}_\theta(\tilde{\mathbf{x}}_t, t)) + \sqrt{\beta_t} \mathbf{z}_t. \quad (4)$$

185 2.2 INHERITANCE-RESTART EXPLORATION MECHANISM

187 To mitigate the issue of narrowed generative distribution caused by overly concentrated guidance
 188 direction in training-free methods, *LitExplorer* equips an Inheritance and Restart exploration mech-
 189 anism. This mechanism selectively introduces exploratory supplementary terms based on the gener-
 190 ation progress, thereby preventing premature convergence of generative trajectories to a single mode
 191 and increasing the probability of discovering high-reward paths.

192 2.2.1 EXPLORATION SUPPLEMENT VARIABLE

194 During the generation step t , we introduce exploration supplement variable $\epsilon_t^{(i)}$, which allows the
 195 generated trajectories to maintain a richer distribution. Specifically, we adopt Monte Carlo sampling
 196 to obtain n candidates $\epsilon_t^{(i)} \sim \mathcal{N}(0, \sigma_t^2 \mathbf{I})$, $i = 1, \dots, n$. After incorporating $\epsilon_t^{(i)}$, the original
 197 latent variable \mathbf{x}_t without exploration is updated into a set $\{\hat{\mathbf{x}}_t^{(i)}\}$:

$$199 \hat{\mathbf{x}}_t^{(i)} = \mathbf{x}_t + \epsilon_t^{(i)}. \quad (5)$$

201 Subsequently, each candidate $\hat{\mathbf{x}}_t^{(i)}$ is mapped to its predicted reconstruction $\hat{\mathbf{x}}_{0|t}^{(i)} = f_\theta(\hat{\mathbf{x}}_t^{(i)}, t)$, and is
 202 evaluated via the objective reward function $\mathcal{R}(\hat{\mathbf{x}}_{0|t}^{(i)})$. After m rounds of iteration based on Eq. 3, we
 203 obtain a final set of candidates $\{\tilde{\mathbf{x}}_t^{(i)}\} = g(\{\hat{\mathbf{x}}_t^{(i)}\}, \mathcal{R}, m)$. We then define the optimal generation
 204 trajectory policy as:

$$206 i^* = \arg \max_{i \in \{1, \dots, n\}} \mathcal{R}(\tilde{\mathbf{x}}_{0|t}^{(i)}), \quad \mathbf{x}_t^* = \tilde{\mathbf{x}}_t^{(i^*)}. \quad (6)$$

207 This process picks the optimal candidate \mathbf{x}_t^* as the state of generation step t , which is adopted for
 208 the following generations. In summary, the injection of the exploration supplementary term expands
 209 the local search space. Next, the selection policy is employed to pick the optimal generation trajec-
 210 tory with the highest alignment potential, thereby achieving increased diversity while maximizing
 211 alignment rewards.

213 2.2.2 INHERITANCE-RESTART TECHNIQUE

215 In Sec. 2.2.1, the exploration supplementary term expands the generation space. Building upon
 this, we apply an Inheritance-Restart technique to this term. This technique dynamically regulates

216 exploration behavior based on the target reward improvement, preserving high-quality explorations
 217 while eliminating ineffective perturbations. Consequently, the exploration term is responsible for
 218 diversity enhancing, while the Inheritance-Restart technique ensures that the exploration consis-
 219 tently improves the target reward. Specifically, the reward changing for the supplementary term at
 220 generation step t is defined as:

$$221 \quad \Delta \mathcal{R}_t = \mathcal{R}(\mathbf{x}_{0|t}^*) - \mathcal{R}(\mathbf{x}_{0|t}), \quad (7)$$

223 (1) If $\Delta \mathcal{R}_t > 0$, it indicates that the exploration still yields a positive gain for the alignment reward.
 224 In this case, the latent change from the previous step is carried over to the next step $t - 1$, where
 225 $\epsilon_{t-1} = \mathbf{x}_t^* - \mathbf{x}_t$. Under this inheritance strategy, the exploration candidate set contains only
 226 this inherited signal, i.e., setting $n = 1$ in Eq. 5, and optimization continues via Eq. 3.
 227

228 (2) If $\Delta \mathcal{R}_t < 0$, it indicates that the exploration gain becomes saturated or starts to decline. In this
 229 case, the restart mechanism is activated: n exploration candidates are resampled in the next
 230 step $t - 1$ as Eq. 5, and the exploration term is updated through the optimization in Eq. 3 and
 231 the selection step in Eq. 6.

232 The inheritance-restart technique uses the reward as a criterion to enhance exploration diversity and
 233 efficiency while ensuring benefits to the target alignment.

236 2.2.3 DIVERSITY AND FIDELITY ADAPTIVE TRADE-OFF

238 Diffusion models face the dual demands of diversity and fidelity. Diversity expands the coverage of
 239 potential outputs, while fidelity ensures the results are credible and semantically consistent with the
 240 conditioning. However, these two objectives often exhibit a trade-off during the generation process,
 241 making their careful balance crucial for achieving high-quality results (Dhariwal & Nichol, 2021).
 242 To address this, we propose an adaptive coordination technique that dynamically adjusts the empha-
 243 sis based on the generation progress: it prioritizes exploration in the early stages to foster diversity
 244 and gradually increases the strength of regularization in the later stages to ensure fidelity. Unlike ap-
 245 proaches that use predefined static parameters, the adaptation technique can flexibly accommodate
 246 the dynamic nature of the generation process.

246 To this end, we construct a Control Network (*This network outputs a simple noise scorer, analo-*
 247 *gous to scoring models such as PickScore and Aesthetic Score, and is therefore used as a pretrained*
 248 *model. Experimental support is provided in Tab. 10, with details in Appendix C.3.*), which is designed
 249 to assess the denoising progress of the intermediate state \mathbf{x}_t in real-time during the generation pro-
 250 cess. Specifically, the control network is defined as a mapping function: $h_{\theta_p} : \mathbf{x}_t \mapsto p_t$, where
 251 $\mathbf{x}_t \in \mathbb{R}^d$ denotes the state at generation step t , $p_t \in [0, 1]$ represents the probability that the current
 252 state is close to the clean image \mathbf{x}_0 . This pre-trained network is obtained by minimizing a binary
 253 cross-entropy loss as the supervision signal (Appendix B.1 for more details). The control network
 254 can provide an adaptive factor p_t for any intermediate state \mathbf{x}_t during inference, where $p_t = h_{\theta_p}(\mathbf{x}_t)$.
 255 This factor reflects the degree of generation progress of the current state. We utilize p_t as an adaptive
 256 weighting to balance exploration diversity and generation fidelity. In the first round of optimization,
 257 the combined effect of the exploration and alignment signal gradients is written as:

$$258 \quad \hat{\mathbf{x}}_t = \mathbf{x}_t + \underbrace{(1 - p_t) \cdot \epsilon^{(i)} - p_t \cdot \nabla_{\mathbf{x}_t} L_2(\hat{\mathbf{x}}_t, \mathbf{x}_t) + \nabla_{\mathbf{x}_t} \mathcal{R}(\mathbf{x}_{0|t})}_{\text{Diversity-Fidelity Trade-off}}, \quad (8)$$

261 where $\epsilon^{(i)}$ is the exploration supplement variable and $\nabla_{\mathbf{x}_t} \mathcal{R}(\mathbf{x}_{0|t})$ represents the reward-based
 262 gradient guidance. We introduce L2 regularization to constrain the exploration scope. Then,
 263 based on the iteration defined in Eq. 3, we iteratively introduce guidance to obtain the final state
 264 $\tilde{\mathbf{x}}_t = g(\hat{\mathbf{x}}_t, \mathcal{R} - L_2, m)$.

266 In summary, the adaptive trade-off technique enables the encouragement of exploratory diversity
 267 in the early stages of generation. In the later stages, the continuous increase of the regularization
 268 constraint prompts the generation process to transition from exploration to stable convergence grad-
 269 ually, thereby ensuring high fidelity of the results. Through this design, *LitExplorer* achieves an
 adaptive trade-off between creativity and stability.

270 2.3 QUALITY-EFFICIENCY ARBITRATION MECHANISM
271272 2.3.1 GUIDANCE SCREENING
273

274 Existing methods apply guidance signals indiscriminately throughout the entire sampling process,
275 which can lead to ineffective guidance and undermine alignment effectiveness. To address this,
276 *LitExplorer* introduces a guidance signal selection technique that dynamically discriminates the sig-
277 nal’s utility. Let the optimal guidance signal generated at step t be $\gamma_t^{(i^*)}$, which represents the reward
278 gradient corresponding to \mathbf{x}_t^* , *i.e.*, the optimal candidate. We then define a selection operator \mathcal{F} :

$$279 \quad \mathcal{F}(\gamma_t^{(i^*)}) = \{\Delta \mathcal{R}_t > 0\}. \\ 280$$

281 With the proposed screening process, a guidance signal is retained only if it contributes to a positive
282 reward gain; otherwise, it is discarded, and the original latent x_t from the base diffusion model is
283 used for the subsequent step. This reward-margin-based selection strategy ensures the quality of the
284 guidance signals for generation.

285 2.3.2 QUALITY-COMPUTE TRADE-OFF
286

287 Unlike existing methods that rigidly couple guidance with the generation steps, *LitExplorer* regulates
288 the use of guidance signals through the dual control of target reward marginal gain and generation
289 progress p_t . This approach aims to reduce computational costs while ensuring alignment quality.
290 Guidance is stopped when it is insignificant to reward improvement and the denoising meets the
291 required threshold, thereby avoiding redundant costs and preventing over-guidance.

292 We first denote the step t reward $\mathcal{R}_t(\cdot)$ as r_t . Then, the smoothed trend of reward gain is defined as:
293

$$294 \quad \widetilde{\Delta r}_t = (1 - \phi) \widetilde{\Delta r}_{t+1} + \phi (r_t - r_{t+1}), \quad (9)$$

295 where $\phi \in (0, 1]$. If and only if $p_t = 1$ and $\widetilde{\Delta r}_t \leq \delta_r$, it can be interpreted that the reward return
296 margin has been reached and the early stopping is triggered, where $\delta_r \geq 0$ is the minimal tolerance
297 gain. We define the early-stopping indicator function as
298

$$299 \quad E_{stop}(t) = \mathbb{I}[p_t = 1 \wedge \widetilde{\Delta r}_t \leq \delta_r] \in \{0, 1\}. \\ 300$$

301 When $E_{stop}(t) = 1$, no exploration or guidance term is added. If $E_{stop}(t) = 0$, the exploration and
302 guidance proceed as usual. This criterion ensures early stopping is triggered only when both condi-
303 tions are met: p_t guarantees the state is ‘sufficiently clean’, while $\widetilde{\Delta r}_t$ ensures that ‘further explo-
304 ration guidance yields no significant reward improvement’. By requiring simultaneous satisfaction
305 of both conditions, this technique eliminates redundant guidance in the later stages of generation
306 without compromising target alignment quality, thereby reducing computational cost.

307 3 EXPERIMENTS
308309 3.1 EXPERIMENTAL SETUP
310

311 **Datasets.** In this paper, we deploy Pick-a-pic (Kirstain et al., 2023) and HPSv2 (Wu et al., 2023)
312 datasets as our basic test bed. Specifically, we randomly pick 500 prompts from Pick-a-pic val-
313 idation set and 500 prompts from HPSv2 photorealistic set, since they represent distinct stylistic
314 categories. Namely, the prompts in Pick-a-Pic are relatively complex, abstract, and surreal, whereas
315 those in HPSv2 are more realistic and closely aligned with the real world.

316 **Optimization Objectives and Metrics.** In this paper, we deploy three reward functions as the opti-
317 mization objectives, that is, PickScore (Kirstain et al., 2023) (PS), Aesthetic Score (Schuhmann
318 et al., 2022) (AES), and ImageReward (Xu et al., 2023a) (IR). To quantitatively evaluate the gener-
319 ative performance as extensively as possible, we introduce 4 evaluating dimensions with 13 distinct
320 metrics, including: **Aesthetic Preference:** AES, PS, IR, and HPSv2 (Wu et al., 2023). **Image Fi-**
321 **dentity:** ClipScore (Radford et al.) (Clip), Fréchet Inception Distance (FID) (Heusel et al., 2017), and
322 improved F1 Score (iFS) (Kynkänniemi et al., 2019). **Generative Diversity:** LPIPS (Zhang et al.,
323 2018), TCE (Ibarrola & Grace, 2024), and Inception Score (Salimans et al., 2016) (IS). **Composi-**
324 **tional Richness:** NIQE (Mittal et al., 2012b), BRISQUE (BRI) (Mittal et al., 2012a), and Spectual

324 Table 1: Main comparisons with SoTA (12 in total). All metrics are obtained with SDv15 as back-
 325 bone, Pick-a-pic as prompt set, and PickScore as reward for guidance. *Orange denotes gradient-
 326 based training methods. Green denotes reinforcement-learning-based training methods. Blue de-
 327 notes training-free methods.*

Method	Preference				Fidelity				Diversity				Richness				#Top2
	PS↑	AES↑	IR↑	HPS↑	FID↓	CLIP↑	iFS↑	LPIPS↑	IS↑	TCE↑	BRI↓	NIQE↓	SE↑				
SDv15	20.48	5.412	0.181	0.262	-	0.243	-	0.654	23.79	38.05	18.66	5.401	11.26	3			
Diff-DPO	20.87	5.551	0.443	0.271	109.1	0.244	0.795	0.639	22.77	39.20	15.12	4.463	11.02	1			
Diff-KTO	20.83	5.585	0.599	0.272	101.3	0.240	0.801	0.634	22.70	39.12	26.25	4.361	11.22	0			
SPO	20.76	5.613	0.282	0.218	78.76	0.241	0.855	0.649	23.18	39.32	25.67	4.103	11.09	1			
DRaFT	22.52	5.697	0.779	0.271	84.47	0.231	0.856	0.572	20.10	37.85	35.64	5.336	10.43	2			
DDPO	21.79	5.704	0.196	0.212	147.5	0.242	0.539	0.629	20.01	39.18	12.46	4.328	11.74	1			
DPOK	20.97	5.661	0.5828	0.272	99.30	0.242	0.820	0.641	22.52	39.35	12.28	4.608	11.23	2			
DNO	20.87	5.479	0.425	0.271	79.96	0.239	0.851	0.591	19.94	38.88	17.23	4.757	11.07	0			
TTScale	22.14	5.636	0.619	0.272	66.93	0.240	0.863	0.652	23.73	38.90	15.05	4.447	11.28	2			
FKSteer	22.56	5.696	0.539	0.278	73.83	0.243	0.868	0.650	23.76	39.42	13.93	4.092	11.59	2			
DAS	22.34	5.658	0.632	0.283	95.42	0.240	0.844	0.625	21.01	39.19	14.36	4.631	11.14	1			
DyMO	22.79	5.694	0.709	0.279	90.56	0.239	0.849	0.627	20.97	39.29	16.18	4.545	11.29	1			
Ours	22.91	5.707	0.812	0.280	71.36	0.242	0.891	0.654	23.71	39.37	10.92	2.886	12.07	11			

345 Table 2: Results on HPSv2 dataset.

346 Table 3: Results with advanced SD models.

Method	IR	PS	CLIP	LPIPS	TCE	NIQE↓
SDv15	0.231	21.57	0.249	0.643	39.62	4.656
Diff-DPO	0.571	22.03	0.245	0.619	37.97	4.471
SPO	0.300	21.58	0.249	0.595	39.37	4.172
DDPO	0.678	22.26	0.245	0.607	38.96	3.973
DNO	0.446	21.79	0.246	0.575	39.14	4.523
DAS	0.684	23.09	0.246	0.653	39.31	4.133
DyMO	0.805	23.46	0.246	0.610	39.57	4.088
Ours	0.872	23.79	0.247	0.671	39.92	2.595

Method	IR	PS	CLIP	LPIPS	TCE	NIQE↓
SD-XL	0.715	21.45	0.236	0.675	40.18	4.553
Diff-DPO	1.010	22.05	0.236	0.651	39.45	4.440
SPO	1.179	22.81	0.232	0.556	40.42	3.900
SDv35	1.193	21.90	0.238	0.621	39.42	4.873
DNO	0.924	22.58	0.238	0.581	39.34	4.783
DAS	1.171	23.07	0.237	0.594	39.36	5.365
DyMO	1.079	24.34	0.233	0.609	39.55	4.510
Ours	1.201	24.56	0.236	0.679	40.99	3.573

357 Entropy (SE) (Liu et al., 2014). Details of each metric can be found in Appendix.

358 **Baselines.** For comprehensive comparison, we introduce three types of State-of-The-Art (SoTA)
 359 diffusion-based methods, including: **Gradient-based Training:** Diff-DPO (Wallace et al., 2024),
 360 Diff-KTO (Li et al., 2024), SPO (Liang et al., 2024), and DRaFT (Clark et al., 2023). **RL-based**
 361 **Training:** DDPO (Black et al., 2023), DPOK (Fan et al., 2023). **Training Free:** DAS (Kim et al.,
 362 2025), TTScale (Ma et al., 2025), FKSteer (Singhal et al., 2025), DNO (Tang et al., 2024), and
 363 DyMO (Xie & Gong, 2025).

364 All baselines are strictly reproduced based on their official code and settings within our evaluation
 365 benchmark. Stable Diffusion v1.5 (SDv15) is taken as our primary backbone. *More advanced dif-
 366 fusion models such as SD XL1.0 (XL) and SD3 (see Appendix Tab. 11, Fig. 13) are also considered
 367 for evaluation and comparison.* All models and results are obtained on a single NVIDIA Tesla H100
 368 GPU. More training details can be found in Appendix.

370 3.2 COMPARISONS WITH SOTA

372 **Experiments on SDv15.** To extensively demonstrate the effectiveness of *LitExplorer* (LitE), we
 373 carefully reproduce and evaluate **12 baselines** with PickScore as the objective on SDv15 and pick-
 374 a-pic datasets. Since LitE is an efficient plugin, this section represents deploying LitE to DyMO.
 375 Then, we introduce 13 metrics to assess from four dimensions. As shown in Tab.1, our method
 376 achieves the best overall performance in all dimensions, achieving Top2 performance in 12 metrics.
 377 Moreover, since the prompts in the Pick-a-pic dataset are somehow abstract and surreal, we further
 378 conduct an experiment on the photorealistic HPSv2 dataset for comprehensive evaluation. In Tab.2,

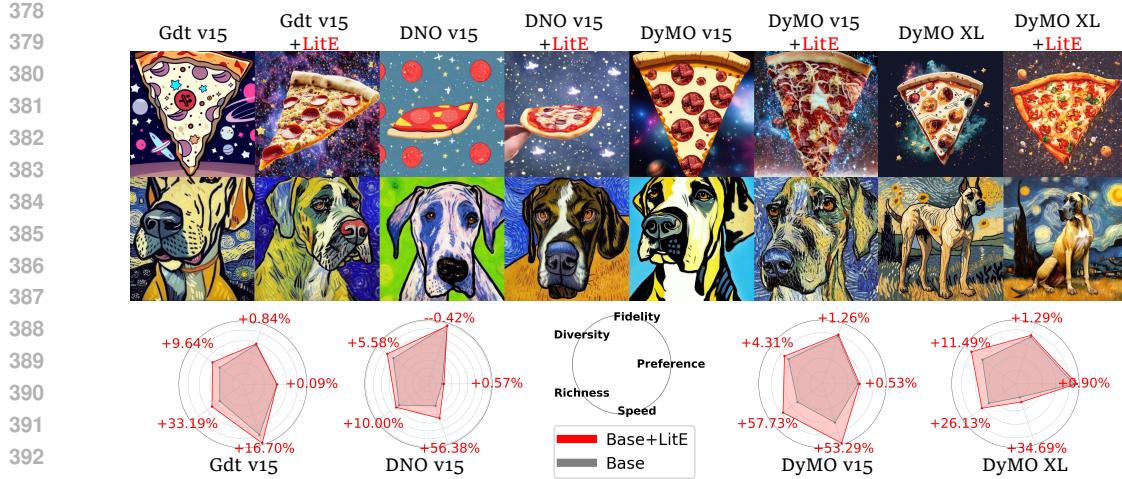


Figure 4: Plug-and-Play effectiveness. While maintaining the Fidelity and Preference, our method significantly enhances Diversity, Richness, and Speed in all cases, such as the “background and pizza filling diversity” in the first row, and “improved Van Gogh style” in the second row.

all methods perform better because realistic objects are more likely to be seen during training and hence easier to generate. Nevertheless, our method still achieves the best results on five metrics and maintains comparable fidelity. The qualitative results could be found in the Appendix C.9. *In addition, to assess the impact of random seeds on result stability, we compute the coefficient of variation (CoV) of each metric for the training-free baseline across different seeds. These results are presented in Appendix Tab. 9.*

Comparisons with more advanced SD models. In Tab. 3, we employ our method and other SoTA on the SD-XL backbone, and introduce the advanced SDv35 as an additional baseline. The results further demonstrate the superiority of our method as an effective plugin.

Results with alternative optimization targets. We also conduct experiments by replacing PickScore with Aesthetic score as the optimization target to evaluate the adaptability of *LitExplorer*. Due to the length limitation, the results are shown in Appendix C.9. Briefly, the results indicate our overall superiority on aesthetic preference and generative diversity.

Computational Cost Comparison. To fairly evaluate the computational cost of each method and verify the efficiency advantages of our approach, we measure and compare the time consumption of all methods under consistent experimental conditions(see Fig 10).

3.3 PLUG-AND-PLAY EFFECTIVENESS

In Fig. 4, we discuss the plugin effectiveness of *LitExplorer*. Specifically, we present side-by-side comparisons of results with and without LitE. Gdt represents backbones with naive Gradient guidance. For simplicity, we choose PS, CLIP, LPIPS, $\frac{1}{\text{NIQE}}$, and image per minute as the representations of Preference, Fidelity, Diversity, Richness, and Speed. The results clearly show that LitE could effectively enhance the diversity of base methods and reduce computational cost while maintaining or even improving other quality dimensions. *To ensure that our integrability remains robust in larger and more advanced models, we further conducted integration experiments on the leading diffusion model SD3, with results shown in Fig. 13 and Tab. 11.*

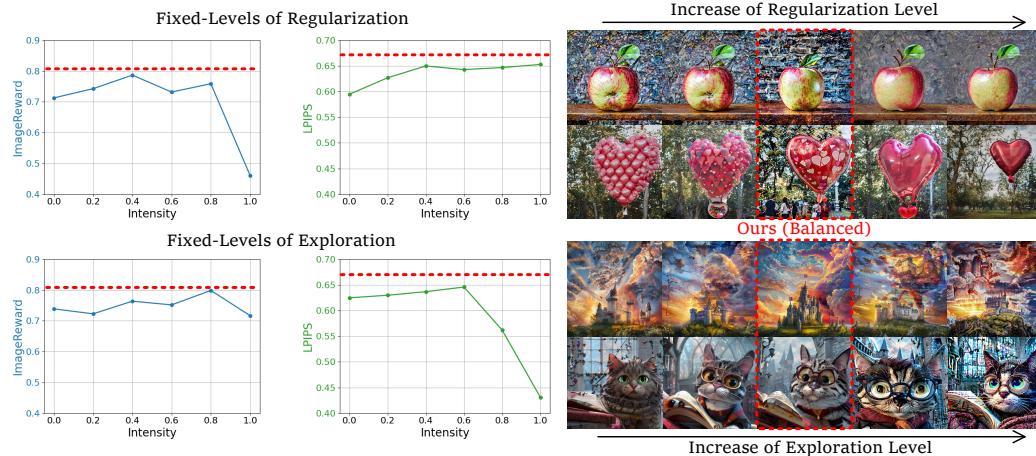
3.4 ABLATION STUDY

Overall Ablation. To study the individual effects of the components proposed, we systematically disassembled each component for ablation experiments. *LitExplorer* aims to balance the trade-offs between diversity-fidelity and quality-efficiency, and thus can be divided into four categories based on the objectives. Specifically, Diversity (Dive) includes directly adding exploration and adding Monte Carlo exploration. Fidelity (Fide) refers to L2 constraints for regularization. Efficiency (Effi) includes the I&R and early stopping. Guidance Screening aims to enhance Quality (Qual). Then,

432 Table 4: Ablation study. For each component, ESV and M-ESV represent exploration supplement
 433 variable and with Monte Carlo sampling. I&R and EarS denote Inheritance-Restart technique and
 434 Early Stopping. GuiS denotes Guidance Screening.

436 Var	437 Dive	437 Fide	437 Effi	437 Qual	438 IR	438 PS	438 CLIP	438 LPIPS	438 TCE	438 NIQE↓	438 Time↓	438 #Top2		
	437 ESV	437 M-ESV	437 L2	437 I&R	437 EarS	437 GuiS								
439 Base							0.709	22.79	0.239	0.627	39.29	4.454	44.92	0
440 V1	✓						0.739	22.12	0.236	0.659	39.30	2.897	46.31	1
441 V2	✓		✓				0.734	22.46	0.240	0.636	39.30	3.379	51.24	0
442 V3		✓	✓				0.757	22.75	0.240	0.641	39.32	2.939	67.08	0
443 V4		✓	✓	✓			0.746	22.73	0.241	0.640	39.29	3.039	48.56	0
444 V5		✓	✓	✓	✓		0.759	22.66	0.242	0.645	39.28	3.120	40.91	2
445 V6		✓	✓	✓		✓	0.774	22.95	0.241	0.653	39.35	2.847	44.73	4
446 Ours	✓	✓	✓	✓	✓		0.812	22.91	0.242	0.654	39.37	2.886	37.28	7

Figure 5: Examples of generative diversity with the same prompt and different seeds.



476 Figure 6: Comparing our diversity-fidelity adaptive trade-off with different fixed exploration and
 477 regularization intensities. The red dotted lines indicate our method.

478 we conducted detailed ablations in Tab. 4, where the proposed diversity-fidelity tradeoff effectively
 479 improves the diversity of generated images while maintaining consistency. Meanwhile, the I&R
 480 mechanism and early stopping greatly reduce computational overhead with almost no impact on
 481 performance. GuiS improves inference efficiency and performance by removing invalid guidance.
 482 *In the Appendix, we further analyze the mutual correlation among different proposed components*
 483 *based on the ablation results.*

484 **Analysis on Generative Diversity.** The generative diversity is compared among SD-XL, Diff-DPO,
 485 DyMo, and Ours by generating images with 40 seeds. As shown in Fig. 5, our method exhibits

486 improved diversity while maintaining the impressive preference score and precise prompt-image
487 alignment. We have also investigated exploration diversity during inference in Appendix C.10.

488 **Analysis on Diversity-Fidelity Trade-off.** In Fig. 6, we examine the Diversity-Fidelity Trade-off
489 by fixing exploration and regularization levels instead of using dynamic p_t for balancing. Results
490 show that stronger regularization undermines preference performance without enhancing diversity,
491 while higher exploration reduces diversity through image distortion. In contrast, our method
492 consistently surpasses baselines and achieves a balanced trade-off between richness and alignment.

495 4 CONCLUSION

496 We propose *LitExplorer*, a training-free plugin framework for diffusion models. It integrates an
497 Inheritance–Restart exploration mechanism and a Quality–Efficiency arbitration framework to pre-
498 vent early convergence, enhance high-reward exploration, and prune irrelevant signals. Experiments
499 show consistent gains in quality, diversity, and efficiency over existing methods.

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

542 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
543 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambbrick, et al. Accurate structure
544 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

545 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
546 Geiping, and Tom Goldstein. Universal guidance for diffusion models. In *Computer Vision and*
547 *Pattern Recognition*, pp. 843–852, 2023.

548 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
549 models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

550 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
551 grad: Estimating gradients for waveform generation. *arXiv preprint arXiv:2009.00713*, 2020.

552 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
553 posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.

554 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
555 on differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023.

556 Niklas Deckers, Julia Peters, and Martin Potthast. Manipulating embeddings of stable diffusion
557 prompts. In *International Joint Conference on Artificial Intelligence*, pp. 7636–7644, 2024.

558 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
559 *in Neural Information Processing Systems*, 34:8780–8794, 2021.

560 Xin Ding, Lei Yu, Xin Li, Zhijun Tu, Hanting Chen, Jie Hu, and Zhibo Chen. Rass: Improving
561 denoising diffusion samplers with reinforced active sampling scheduler. In *Computer Vision and*
562 *Pattern Recognition Conference*, pp. 12923–12933, 2025.

563 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
564 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
565 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
566 36:79858–79885, 2023.

567 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
568 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
569 tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*, 36,
570 2024.

571 Yi Gu, Zhendong Wang, Yueqin Yin, Yujia Xie, and Mingyuan Zhou. Diffusion-rpo: Aligning dif-
572 fusion models through relative preference optimization. *arXiv preprint arXiv:2406.06382*, 2024.

573 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
574 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
575 *Neural Information Processing Systems*, 30, 2017.

576 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
577 *arXiv:2207.12598*, 2022.

578 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
579 *Neural Information Processing Systems*, 33:6840–6851, 2020.

580 Francisco Ibarrola and Kazjon Grace. Measuring diversity in co-creative image generation. *arXiv*
581 *preprint arXiv:2403.13826*, 2024.

582 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
583 reward over-optimization. *arXiv preprint arXiv:2501.05803*, 2025.

584 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
585 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural*
586 *Information Processing Systems*, 2023.

594 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
 595 diffusion model for audio synthesis. *arXiv preprint arXiv:2009.09761*, 2020.

596

597 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 598 precision and recall metric for assessing generative models. *Advances in Neural Information
 599 Processing Systems*, 32, 2019.

600 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Aligning
 601 diffusion models by optimizing human utility. *Advances in Neural Information Processing
 602 Systems*, 37:24897–24925, 2024.

603

604 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Ji Li, and Liang Zheng.
 605 Step-aware preference optimization: Aligning preference with denoising performance at each
 606 step. *arXiv preprint arXiv:2406.04314*, 2024.

607

608 Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffssinger: Singing voice synthesis
 609 via shallow diffusion mechanism. In *AAAI conference on artificial intelligence*, volume 36, pp.
 11020–11028, 2022.

610

611 Lixiong Liu, Bao Liu, Hua Huang, and Alan Conrad Bovik. No-reference image quality assessment
 612 based on spatial and spectral entropies. *Signal Processing: Image communication*, 29(8):856–
 613 863, 2014.

614

615 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 616 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
 617 scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.

618

619 Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
 620 ment in the spatial domain. *IEEE Transactions on Image Processing*, 21(12):4695–4708, 2012a.

621

622 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 623 analyzer. *IEEE Signal Processing Letters*, 20(3):209–212, 2012b.

624

625 Zhuoran Qiao, Weili Nie, Arash Vahdat, Thomas F Miller III, and Anima Anandkumar. Dynamic-
 626 backbone protein-ligand structure prediction with multiscale generative diffusion models. *arXiv
 627 preprint arXiv:2209.15171*, 1, 2022.

628

629 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 630 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 631 models from natural language supervision. In *International Conference on Machine Learning*.
 632 PmLR.

633

634 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 635 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

636

637 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 638 resolution image synthesis with latent diffusion models. In *Computer Vision and Pattern Recog-
 639 nition*, pp. 10684–10695, 2022.

640

641 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
 642 sis. *Journal of Computational and Applied Mathematics*, 20:53–65, 1987.

643

644 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 645 Improved techniques for training gans. *Advances in Neural Information Processing Systems*, 29,
 2016.

646

647 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 648 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 649 open large-scale dataset for training next generation image-text models. *Advances in Neural
 650 Information Processing Systems*, 2022.

651

652 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 653 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 654 models. *arXiv preprint arXiv:2501.06848*, 2025.

648 Richard S Sutton. Reinforcement learning: An introduction. *A Bradford Book*, 2018.
 649

650 Zhiwei Tang, Jiangweizhi Peng, Jiasheng Tang, Mingyi Hong, Fan Wang, and Tsung-Hui Chang.
 651 Inference-time alignment of diffusion models with direct noise optimization. *arXiv preprint*
 652 *arXiv:2405.18881*, 2024.

653 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 654 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 655 direct preference optimization. In *Computer Vision and Pattern Recognition*, pp. 8228–8238,
 656 2024.

657 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
 658 nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
 659 protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

660 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 661 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 662 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

663 Xiaoshi Wu, Yiming Hao, Manyuan Zhang, Keqiang Sun, Zhaoyang Huang, Guanglu Song, Yu Liu,
 664 and Hongsheng Li. Deep reward supervisions for tuning text-to-image diffusion models. In
 665 *European Conference on Computer Vision*, pp. 108–124. Springer, 2024.

666 Xin Xie and Dong Gong. Dymo: Training-free diffusion model alignment with dynamic multi-
 667 objective scheduling. In *Computer Vision and Pattern Recognition*, pp. 13220–13230, 2025.

668 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 669 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 670 *Advances in Neural Information Processing Systems*, 2023a.

671 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
 672 metric diffusion model for molecular conformation generation. *arXiv preprint arXiv:2203.02923*,
 673 2022.

674 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
 675 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
 676 pp. 38592–38610. PMLR, 2023b.

677 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu
 678 Li. Using human feedback to fine-tune diffusion models without any reward model. In *Computer
 679 Vision and Pattern Recognition*, pp. 8941–8951, 2024.

680 Po-Hung Yeh, Kuang-Huei Lee, and Jun-Cheng Chen. Training-free diffusion model alignment with
 681 sampling demons. *arXiv preprint arXiv:2410.05760*, 2024.

682 Huizhuo Yuan, Zixiang Chen, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning of diffusion
 683 models for text-to-image generation. *Advances in Neural Information Processing Systems*, 37:
 684 73366–73398, 2024.

685 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 686 effectiveness of deep features as a perceptual metric. In *Computer Vision and Pattern Recognition*,
 687 pp. 586–595, 2018.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX
703704
705 A RELATED WORK
706707 A.1 DIFFUSION MODEL
708

709 Diffusion models have achieved remarkable progress in generative modeling. Their stability and
710 gradual refinement allow them to approximate complex distributions, producing samples with both
711 high fidelity and diversity. They have shown strong generalization across domains, including text-
712 to-image (Li et al., 2024; Yuan et al., 2024; Ding et al., 2025), speech (Kong et al., 2020; Chen et al.,
713 2020; Liu et al., 2022), molecular design (Xu et al., 2022; 2023b), and protein generation (Watson
714 et al., 2023; Abramson et al., 2024; Qiao et al., 2022). However, since these models are typically
715 pretrained on broad datasets lacking task-specific signals, they often fail to reflect user-desired distri-
716 butions in specialized applications. This gap highlights the need for alignment:enabling customized
717 optimization toward target distributions without losing generality.

718
719 A.2 GRADIENT-BASED FINE-TUNING METHODS
720

721 *Direct gradient-based fine-tuning is intuitively feasible for enhancing diffusion models. For exam-
722 ples, DRaFT Clark et al. (2023) performs differentiable reward optimization for diffusion models by
723 backpropagating reward gradients through sampling steps, forming a unified gradient-based frame-
724 work for preference-aligned fine-tuning; DRTune Wu et al. (2024) stabilizes reward-supervised dif-
725 fusion training by applying stop-gradient to denoiser inputs and uniformly sampling K timesteps,
726 enabling efficient supervision across all sampling depths; Diffusion-RPO Gu et al. (2024) extends
727 relative preference optimization to diffusion models by conducting stepwise preference contrasts
728 with CLIP-based multimodal weighting to learn coherent cross-semantic preference patterns. All
729 these methods improve preference alignment with limited stability, scalability, and robustness under
730 diverse real-world undifferentiated reward signals.*

731
732 A.3 REINFORCEMENT LEARNING FINE-TUNING METHODS
733

734 Existing alignment approaches fall into two categories: fine-tuning (Black et al., 2023; Fan et al.,
735 2023) and training-free methods. The mainstream fine-tuning approach relies on reinforcement
736 learning (RL) (Sutton, 2018) to adjust diffusion model weights. RL greatly improves alignment to
737 downstream targets but faces challenges: rewards are only available after the full denoising process,
738 making them sparse and prone to reward hacking. This often leads to higher reward scores but
739 reduced diversity and poor distribution coverage. Moreover, RL-based fine-tuning comes with a
740 high computational cost (Kim et al., 2025).

741
742 A.4 TRAINING-FREE METHODS
743

744 Training-free methods (Kim et al., 2025; Xie & Gong, 2025) provide an alternative: instead of
745 changing diffusion model weights, they bias the sampling process at inference to guide results to-
746 toward target objectives. *For examples, TTScale Ma et al. (2025) boosts generation quality by shifting
747 extra inference compute from longer denoising chains to noise-search guided by a lightweight eval-
748 uator. FKSteer Singhal et al. (2025) enables inference-time controllability by using particle-based
749 weighting and resampling to steer diffusion trajectories without fine-tuning.* This avoids costly re-
750 training and reduces computation. First, prior work lacks an adaptive mechanism to balance diversity
751 and fidelity (Dhariwal & Nichol, 2021). Second, existing training-free methods often overempha-
752 size target guidance, forcing trajectories into narrow regions and reducing coverage of the pretrained
753 distribution. While less prone to severe reward hacking, this effect still harms diversity. Further,
754 guidance signals are typically applied indiscriminately across all steps (Tang et al., 2024), without
755 filtering ineffective or saturated signals. This overuse increases inference cost and amplifies noise,
sometimes even causing negative guidance effects.

756 **B METHOD SUPPLEMENT**
757758 **B.1 CONTROL NETWORK**
759760 We assign $y = 0$ to samples close to pure noise \mathbf{x}_T , and $y = 1$ to samples close to the target \mathbf{x}_0 ,
761 pretraining the network via the loss defined as follows.

762
$$\mathcal{L}(\theta) = -\mathbb{E}_{(\mathbf{x}_t, y)} [y \log f_\theta(\mathbf{x}_t) + (1 - y) \log(1 - f_\theta(\mathbf{x}_t))]. \quad (10)$$

763

764 **C ADDITIONAL EXPERIMENT RESULTS**
765766 **C.1 DETAILED HYPER-PARAMETER SETTING**
767769 Table 5: Hyper-parameters and metrics in our experiment. *Notably, only n and δ_r are newly introduced by our method; all other hyper-parameters follow DDIM or the baseline methods.*
770

Name	Description	Value
η	eta parameter for the DDIM sampler	1.0
w	classifier-free guidance weight	5.0
m_{dno}	Iteration Number for DNO	20
m_{dymo}	Iteration Number for DyMO	adaptive
n_{das}	Particle number for DAS	4
mp	mixed precision	fp16
n (LitExplorer-unique)	Exploration supplement number	2
δ_r (LitExplorer-unique)	Reward enhancement threshold	0.1

782 The full list of hyper-parameters in our paper is shown in Table 5. Then, we provide a detailed
783 illustration of each introduced metric:
784785 • **Aesthetic Preference**

- **AES (Aesthetic Score)** AES is a metric used for evaluating the aesthetic quality of an image, typically by training a model to predict human aesthetic ratings (Schuhmann et al., 2022).
- **PS (PickScore)** PS is a method based on human selection preferences for rating the aesthetic quality of images (Kirstain et al., 2023).
- **IR (ImageReward)** IR is a metric used for assessing image quality, often in the optimization process of image generation models (Xu et al., 2023a).
- **HPSv2 (Human Preference Score v2)** HPSv2 is a preference-based metric that predicts human preferences for generated images. This model fine-tunes the CLIP model on the HPD v2 dataset. HPSv2 excels in multiple styles, including animation, concept art, paintings, and photographs (Wu et al., 2023).

788 • **Image Fidelity**

- **ClipScore** ClipScore is a model-based image scoring metric that evaluates the similarity between a generated image and its textual description. It calculates the cosine similarity between the image and text embeddings. The metric is highly correlated with human judgment and does not require reference text (Radford et al.).
- **Fréchet Inception Distance (FID)** FID is a metric used to evaluate the quality of generated images. It compares the mean and covariance of the features extracted from real and generated images using the Inception v3 model. A lower FID value indicates that the generated image is closer to real images (Heusel et al., 2017).
- **Improved F1 Score (iFS)** iFS is an improvement over the traditional F1 score, aiming to provide a better evaluation of generative model performance. It optimizes the balance between precision and recall for more accurate assessments (Kynkänniemi et al., 2019).

809 • **Generative Diversity**

810 Table 6: Results with SDv14.
811

Method	IR	PS	CLIP	LPIPS	TCE	NIQE \downarrow
SDv14	0.744	20.62	0.240	0.671	40.32	4.6312
DDPO	1.056	21.20	0.240	0.609	39.61	4.554
DNO	0.915	21.85	0.239	0.597	39.24	4.875
DAS	1.217	22.58	0.238	0.610	39.56	5.451
DyMO	1.100	23.14	0.235	0.615	39.63	4.550
Ours	1.230	23.39	0.242	0.676	41.10	3.494

812 Table 7: Results with SDv21.
813

Method	IR	PS	CLIP	LPIPS	TCE	NIQE \downarrow
SDv21	0.541	20.63	0.280	0.644	39.69	5.672
DDPO	0.794	21.25	0.274	0.622	38.94	4.953
DNO	0.566	20.91	0.277	0.589	39.13	5.551
DAS	0.817	22.29	0.280	0.656	39.55	5.150
DyMO	0.921	22.62	0.279	0.623	39.62	5.176
Ours	0.980	22.91	0.280	0.677	40.07	3.695

814 – **LPIPS (Learned Perceptual Image Patch Similarity)** LPIPS is a metric for evaluating
815 perceptual similarity between images. It compares the feature activations of images in pre-
816 trained convolutional neural networks (e.g., VGG). A higher LPIPS value indicates lower
817 perceptual similarity and a higher diversity (Zhang et al., 2018).

818 – **TCE (Truncated CLIP Entropy)** Truncated CLIP Entropy (TCE) is a measure of semantic
819 diversity of a set of generated images, computed in the joint image–text embedding space of
820 CLIP. It is defined by first mapping each image x_i to a vector $\mathbf{z}_i = \text{CLIP}_{\text{img}}(x_i) \in \mathbb{R}^d$, then
821 forming the empirical covariance matrix Σ of these vectors, extracting its top- k eigenvalues
822 $\lambda_1 \geq \dots \geq \lambda_k$, and finally computing

$$823 \quad \text{TCE}_k = \frac{1}{2} \sum_{i=1}^k \log \lambda_i.$$

824 TCE gives a tractable proxy for how “spread out” the images are in the CLIP semantic
825 space. (Ibarrola & Grace, 2024).

826 – **Inception Score (IS)** IS is a metric used to evaluate the quality of generated images. It
827 calculates the entropy of the class distribution of images in a pre-trained Inception v3 model.
828 Higher IS values indicate that the generated images are both clear and diverse (Salimans
829 et al., 2016).

830 • **Compositional Richness**

831 – **NIQE (Natural Image Quality Evaluator)** NIQE is a no-reference image quality assess-
832 ment metric. It evaluates the image quality by measuring the distance between the natural
833 scene statistics of the image and a natural image database of undistorted images (Mittal
834 et al., 2012b). A lower NIQE value indicates better image quality.

835 – **BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator)** BRISQUE is another
836 no-reference image quality metric. It evaluates image quality by analyzing spatial-domain
837 features. It does not rely on reference images and is suitable for a variety of image quality
838 assessment tasks (Mittal et al., 2012a).

839 – **Spectral Entropy (SE)** SE is a metric for evaluating the spectral properties of images. It
840 calculates the entropy value of an image’s frequency spectrum to assess the complexity and
841 richness of image details. Higher SE values generally indicate more detailed and textured
842 images (Liu et al., 2014).

843 Table 8: Results of Restart Count and Early Stop across HPSv2 and Pick-a-Pic with SDv15 and
844 SD-XL backbones.
845

Avg. Value	Base	HPSv2		Pick-a-Pic	
		SDv15	SD-XL	SDv15	SD-XL
Restart Count	50	4.37	8.55	7.32	10.59
Guiding Step	50	37.35	44.21	40.67	44.30

Figure 7: The visual comparisons of different methods on SDv15. For photorealistic prompts from HPSv2, our results contain richer details while maintaining image-prompt alignment. For surreal prompts from Pick-a-Pic, we exhibit much more diverse patterns and colors.

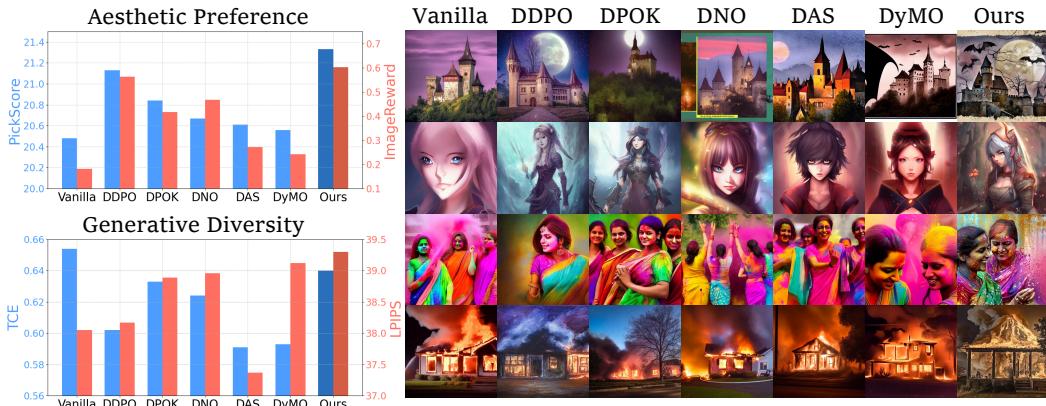


Figure 8: Results with Aesthetic Score as the optimization objective.

C.2 SUPPLEMENTARY STATISTICAL SIGNIFICANCE

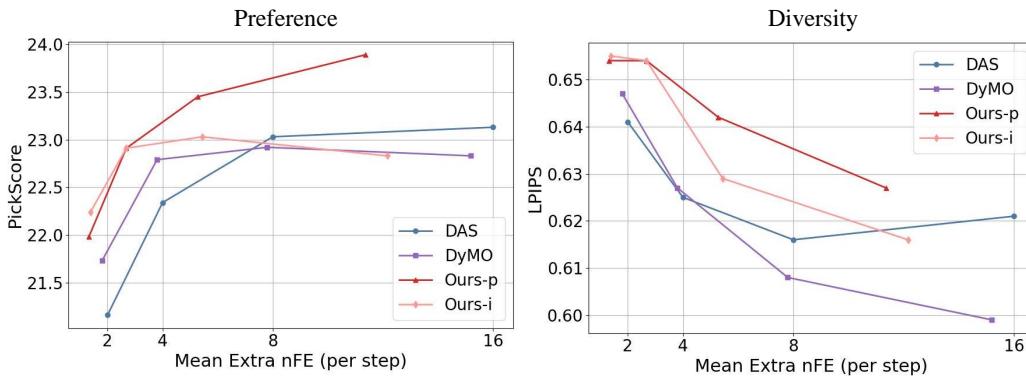
Since the generative quality is highly related to the initial noise decided by the seeds, we further conduct experiments with 5 different seeds and calculate their average Coefficient of Variation (CoV). The metrics and evaluation protocol are strictly following Tab. 1. As shown in Tab. 9, it can be observed that all methods exhibit similarly low CoV across various seeds, which indicates that the guidance-based training-free scaling methods perform relatively stably. These results further demonstrate that the performance reported in Table 1 is statistically significant.

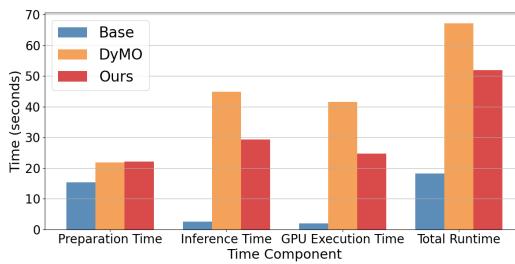
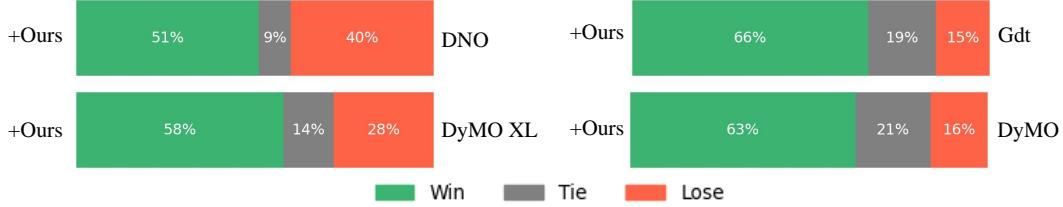
918
919
920
921
922
923
924
925
926
Table 9: *CoV (%) comparison of methods across four evaluation metrics.*

Method	Preference	Fidelity	Diversity	Richness
DNO	0.88	0.52	0.27	1.27
DAS	0.96	0.81	0.30	1.36
DyMO	0.62	0.86	0.28	1.15
Ours	0.65	0.79	0.28	1.41

927
928
Table 10: *Mean step numbers predicted by the control network across different datasets. The control
network is trained on the simple animal and directly generalizes to other datasets.*

Method	Total	SimpleAnimal	Pick-a-Pic	HPSv2	GenEval
SD15	50	37.3	40.9	39.8	38.1
SDXL	30	24.7	24.9	25.1	24.6

935
936
C.3 GENERALIZABILITY OF PRE-TRAINED CONTROL NETWORK937
938
939
940
941
942
943
Considering training a control network could undermine the claim of “training-free” of the pro-
posed LitExplorer, it is necessary to demonstrate that the Control Network could also be seen as a
pre-trained scorer, which can be pre-trained once and be generalizable for all. Therefore, as shown
in Tab. 10, we pre-train the control network on the simple animal set and predict steps on other
datasets. The results demonstrate that the network could easily generalize to other datasets with
similar effective performance, which is caused by the fixed scheduler having already pre-set the
noise level for different steps in a coarse manner.945
946
C.4 ANALYSIS ON PERFORMANCE-COMPUTATION TRADE-OFF947
948
949
950
951
952
953
954
955
956
Due to the iterations or sampling numbers can influence the performance of inference-time scaling
methods, we investigate the relation between computational cost and performance. Specifically, we
first deploy extra mean number of Function Evaluated (nFE) to quantify the computational cost
in a unified manner, which represents the number of extra iterations or sampling in one denoising
step. Then, we compare our method with iteration-based DyMO and sampling-based DAS, where
the maximum iteration and sampling particle number are set to 2,4,8,16. Notably, LitExplorer
includes both sampling and iteration, we hence decouple these factors and design two variants of
our method, that is, Ours-i (iteration) and Ours-p (particles). As shown in Fig. 9, our results can
firstly save nFE because we conduct early stopping. Second, the curves of our results consistently
surpass the baselines, indicating the consistent superiority of LitExplorer.965
966
967
968
969
970
971
Figure 9: *Investigation on Performance-Computation Trade-off.*

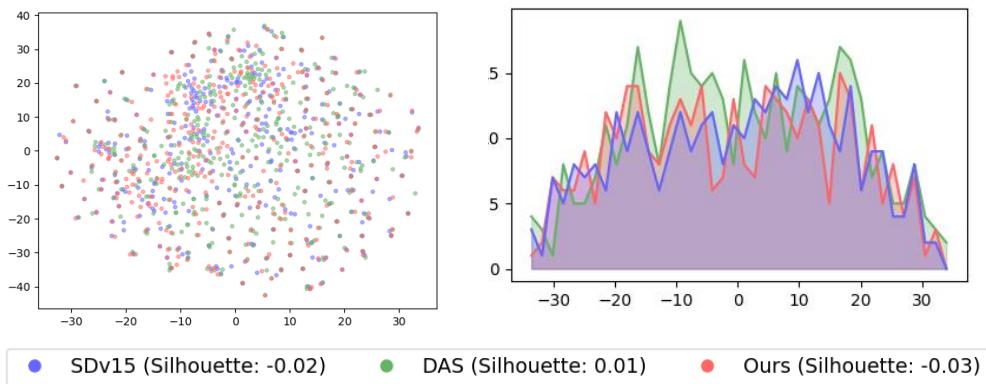
Figure 10: *Wall-clock runtime comparisons with details.*Figure 11: *User study for plug-and-play effectiveness of our method.*

C.5 COMPARISONS ON WALL-CLOCK RUNTIME.

To investigate the effectiveness in real-world application, we conduct comparisons on wall-clock runtime with details. As shown in Fig. 10, we present the time consumption of running the entire script. Firstly, their preparation time are similar and once prepared, the script can conduct arbitrary times of inference. Then, it can be observed that our inference time is much faster than the baseline *DyMO*, while *Base* has the smallest inference time since it includes no optimization or guidance.

C.6 USER STUDY

To subjectively evaluate the generative quality of different methods, we conduct a user study based on the images from the Plug-and-Play experiments in Sec. 3.3. Specifically, we recruit five subjects without prior knowledge to select the preferred image within paired images with the corresponding prompt as the reference. As shown in Fig. 11, our method consistently performs as an effective plugin that achieves superior quality compared to the implemented original models.

Figure 12: *Feature visualization comparison with DAS.*

1026
1027

C.7 SUPPLEMENTARY DISTRIBUTION COMPARISON WITH DAS

1028
1029
1030
1031
1032
1033

In Fig. 2, we compare the feature distribution with the iteration-based DyMO, thus demonstrating the diversity of our method. Here, we conduct a similar experiment to evaluate the sampling-based baseline, i.e., DAS. As shown in Fig. 12, although the sampling-based DAS has richer diversity compared to DyMO, it still tightens the distribution range of the original backbone. In contrast, our result exhibits consistent diversity, which is demonstrated by the wider visualized distribution and the lower Silhouette Coefficient value.

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

Table 11: *Comparison results with the backbone of SD3. Gdt represents the baseline that directly applies the reward gradient to the latent code during inference. Ours is designed based on Gdt with the proposed plugin components.*

1044
1045
1046
1047
1048

Method	PS	CLIP	LPIPS	NIQE \downarrow
SD3	21.62	0.238	0.645	4.312
Gdt	22.17	0.239	0.636	4.304
Ours	22.57	0.241	0.641	2.990

1049

C.8 SUPPLEMENTARY RESULTS ON DiT-BASED ADVANCED BACKBONE

1050
1051
1052
1053
1054
1055
1056
1057

To further validate the effectiveness of LitExplorer, we implement it to the advanced Stable Diffusion V3 backbone with PS as the reward and Pick-a-pic as dataset. Quantitatively, as shown in Tab. 11, our method can still effectively improve the reward score while maintaining the alignment and diversity. Qualitatively, it can be clearly observed that our method has achieved improved human preference in aesthetics.

1058
1059
1060
1061
1062
1063
1064

C.9 VISUAL QUALITY

1065
1066
1067
1068
1069
1070

To evaluate the generative quality, we compare some sampling results in Fig. 7, which further demonstrates the superiority of our method. Moreover, as shown in 8, the results of guiding via aesthetic score indicate our overall superiority on aesthetic preference and generative diversity. Then, in the visual results, it could be clearly observed that our generated images contain richer details, better alignment, and improved aesthetic impressions.

1071
1072

C.10 ANALYSIS ON EXPLORATION.

1073
1074
1075
1076
1077
1078
1079

To demonstrate the exploration effect of introducing ESV, we present the intermediate results during generation. As shown in Fig. 14, our method exhibits superior exploration effect during denoising, implying the improved generative quality.

C.11 FURTHER ANALYSIS ON ABLATION STUDY

The proposed LitExplorer is designed considering two trade-offs, that is, Diversity-Fidelity and Efficiency-Quality trade-offs. Therefore, different components are introduced with paired correlations. Specifically, introducing M-ESV can introduce exploration and thus improve diversity, while L2 can maintain the fidelity to prevent over-exploration that leads to the collapse of the denoising process. Therefore, without ESV that encourages exploration, solely deploying L2 is unnecessary. Then, both I&R and Ears are introduced to enhance the generation quality based on the exploration. Meanwhile, GuiS builds upon the previously introduced exploration, as direct guidance typically provides a straightforward path to higher rewards, making GuiS ineffective in such cases.

Figure 13: *Visual impression on SD3. In comparison, our results exhibit finer details, more diverse colors, and improved aesthetic style.*

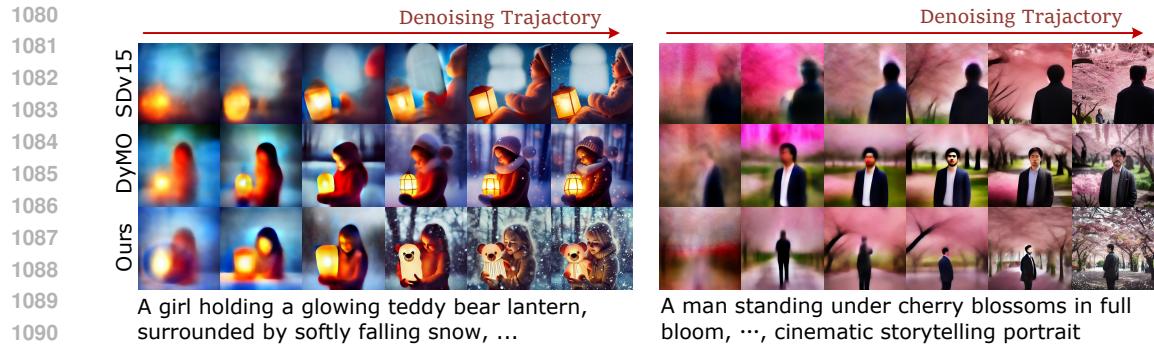


Figure 14: The proposed ESV facilitates exploration during the denoising process. **Left:** ESV enables our method to identify a broader range of patterns and adjust the trajectory toward the “teddy bear lantern” during intermediate stages. **Right:** Our method exhibits greater posture variation throughout denoising. While this variation is not directly responsible for the superior final generation, it reflects an increased level of exploration.

In contrast, with ESV, guidance is not based on the current state but rather incorporates an exploratory shift, allowing GuiS to effectively filter out harmful optimization. As for the intensity of different components in the trade-offs, we present Fig. 6 to demonstrate the superiority of our adaptive strategy. Overall, the components of our approach are interdependent and mutually reinforcing, collectively contributing to the superior performance of our image generation scheme in terms of inference-time scaling.

C.12 RESULTS ON MORE SD BACKBONES.

In addition to SDv15 and SD-XL presented in the main paper, we provide the results on SDv14 and SDv21-turbo. As shown in Tab. 6 and 7, our method also leads in all metrics.

C.13 EXHIBITED ADAPTIVE VALUES FOR COMPUTATION REDUCTION.

Here, we provide the exhibited average values of restart counts and early stop positions. Specifically, we calculate the average restart counts and average number of guiding steps on HPSv2 and Pick-a-Pic datasets with SDv15 and SD-XL. As shown in Tab. 8, it can be observed that HPSv2 has smaller values of both variables compared to Pick-a-Pic, while SDv15 has smaller values than SD-XL. This is because HPSv2 has more photorealistic images that are easier than surreal one for denoising, while SDv15’s lesser robustness makes it more amenable to external guidance.

D DECLARATION OF LLM USAGES.

While we utilized an LLM to assist in polishing the English for improved clarity, all aspects of idea development, theoretical validation, and experiments were carried out solely by the authors, without LLM interference.

D.1 SHOWCASE PROMPT TABLE

Please refers to Tab. 12, 13, 14, and 15.

Table 12: Detailed prompts used for generated images in Fig. 1

Image	Prompt
Fig. 1, Row 1, Col 1	ballet dancer, insanely detailed, photorealistic, 8k, perfect composition, volumetric lighting, natural complexion, award-winning professional photography, taken with Canon EOS 5D Mark IV, 85mm, mindblowing, masterpiece
Fig. 1, Row 1, Col 2	A fluffy bunny as Rapunzel, with long golden ears flowing down from a tall enchanted tower, glowing lanterns in the night sky, warm fairytale atmosphere
Fig. 1, Row 1, Col 3	A dog in sportswear lifting tiny dumbbells at the gym, determined expression, humorous fitness illustration
Fig. 1, Row 1, Col 4	A boy superhero landing on the ground in classic “hero pose,” debris and glowing sparks flying around, comic action shot
Fig. 1, Row 1, Col 5	A phoenix rising up from ashes
Fig. 1, Row 2, Col 1	A young girl standing on a rooftop, blowing dandelions that transform into glowing comets, shooting across the night sky, dreamy fantasy artwork
Fig. 1, Row 2, Col 2	A small hedgehog as the Frog Prince, wearing a tiny crown while sitting on a lily pad, a kind-hearted swan princess leaning close, surrounded by glowing fireflies, magical fairytale illustration
Fig. 1, Row 2, Col 3	a white polar bear cub wearing sunglasses sits in a meadow with flowers.
Fig. 1, Row 2, Col 4	A cat surfing on a giant wave at sunset, wearing cool shades, cinematic sports illustration
Fig. 1, Row 2, Col 5	A sunflower in full bloom under golden sunlight, tiny dewdrops sparkling on its petals, cinematic macro fantasy illustration
Fig. 1, Row 3, Col 1	A warrior standing at the edge of a glowing crater, surrounded by swirling cosmic energy, their silhouette outlined against the birth of a new star, ultimate epic fantasy art
Fig. 1, Row 3, Col 2	A boy lying on the grass in a field, listening to music with glowing headphones, fireflies surrounding him
Fig. 1, Row 3, Col 3	A little girl painting a rainbow bridge from the classroom window into the sky, playful magical fairytale art, hopeful and inspiring
Fig. 1, Row 3, Col 4	A group of playful penguins throwing glowing snowballs at each other, each snowball turning into sparkling stars when it explodes, magical fairytale scene
Fig. 1, Row 3, Col 5	Giant rubber duck floating in the ocean with a small island on its back, surrounded by tropical palm trees and crystal clear water, bright and sunny day, calm seas, vivid colors, cinematic lighting, high detail
Fig. 1, Row 3, Col 6	A cozy library built inside an ancient oak tree, warm lights glowing through round windows, whimsical fairytale healing atmosphere
Fig. 1, Row 3, Col 7	A brave boy carrying a glowing lantern, releasing trails of light that form a golden sunrise, cinematic epic fantasy style

1134
11351136
11371138
1139
1140
11411142
1143
11441145
11461147
1148

1149

1150
11511152
1153
11541155
11561157
11581159
11601161
1162
11631164
11651166
11671168
1169
11701171
1172
11731174
11751176
11771178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189
1190
1191
1192
1193

Table 13: Detailed prompts used for generated images in Fig. 8

Image	Prompt
Fig. 8, Row 1	transylvania castle on hiltop and dusk bats and scifi
Fig. 8, Row 2	fantasy character portrait digital painting, anime style, detailed with beautiful emotive lighting suggesting personality, and background that suggests character backstory
Fig. 8, Row 3	Women in Saree playing Holi
Fig. 8, Row 4	a house burning at night

1204
1205
1206
1207
1208
1209
1210
1211
1212

Table 14: Detailed prompts used for generated images in Fig. 4

Image	Prompt
Fig. 4, Row 1	a slice of pizza floating through space with stars in the background
Fig. 4, Row 2	A Great Dane dog in the style of Vincent Van Gogh

1220
1221
1222
1223
1224
1225
1226
1227
1228

Table 15: Detailed prompts used for generated images in Fig. 6

Image	Prompt
Fig. 6, Row 1	Heart shaped balloon
Fig. 6, Row 2	An apple on a table
Fig. 6, Row 3	A castle in the sky, clouds, sunset, explosion
Fig. 6, Row 4	Harry potter as a cat, pixar style, octane render, HD, high-detail

1238
1239
1240
1241