DREAMER XL: TOWARDS HIGH-RESOLUTION TEXT-TO-3D GENERATION VIA TRAJECTORY SCORE MATCHING

Anonymous authors

000

001

002 003 004

005

006 007 008

010 011

012

013

014

015

016

017

018

019

021

023

024

027

028 029 Paper under double-blind review

ABSTRACT

In this work, we propose a novel Trajectory Score Matching (TSM) method that aims to solve the pseudo ground truth inconsistency problem caused by the accumulated error in Interval Score Matching (ISM) when using the Denoising Diffusion Implicit Models (DDIM) inversion process. Unlike ISM which adopts the inversion process of DDIM to calculate on a single path, our TSM method leverages the inversion process of DDIM to generate two paths from the same starting point for calculation. Since both paths start from the same starting point, TSM can reduce the accumulated error compared to ISM, thus alleviating the problem of pseudo ground truth inconsistency. TSM enhances the stability and consistency of the model's generated paths during the distillation process. We demonstrate this experimentally and further show that ISM is a special case of TSM. Furthermore, to optimize the current multi-stage optimization process from high-resolution text to 3D generation, we adopt Stable Diffusion XL for guidance. In response to the issues of abnormal replication and splitting caused by unstable gradients during the 3D Gaussian splatting process when using Stable Diffusion XL, we propose a pixel-by-pixel gradient clipping method. Extensive experiments show that our model significantly surpasses the state-of-the-art models in terms of visual quality and performance.

1 INTRODUCTION

In recent years, Virtual Reality (VR) and Augmented Reality (AR) have increasingly become a part of our 030 daily lives, and the demand for high-quality 3D content has increased significantly. 3D technology has 031 become extremely important, allowing us to visualize, understand and interact with complex objects and environments. It also plays a key role in various fields such as architecture, animation, gaming and virtual 033 reality. In addition, 3D technology shows broad application prospects in retail (Wodehouse & Abba, 2016), online meetings (Nakanishi et al., 1999), education (Reisoğlu et al., 2017) and other fields (Miao et al., 2024). 035 Despite its wide application, the complexity of creating 3D content poses considerable challenges: generating 036 high-quality 3D models requires computional time, effort, and expertise. Given these challenges, methods 037 for generating 3D from text have become particularly important in recent years (Lin et al., 2023; Zhu & 038 Zhuang, 2023; Ma et al., 2023; Shi et al., 2023b). These methods create accurate 3D models directly from natural language descriptions, thereby reducing manual input in traditional 3D modeling processes. Once the 040 text-to-3D method can efficiently generate large amounts of data, it will not only shorten the production time of 3D content, but also reduce costs and improve production efficiency. 041

Typically, text-to-3D generation methods utilize pre-trained text-to-image diffusion models (Saharia et al., 2022) as an image prior to training neural parametric 3D models such as Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) and 3D Gaussian splitting (Kerbl et al., 2023). These approaches enable the rendering of consistent images that are aligned with the text. This process essentially relies on Score Distillation Sampling (SDS) (Poole et al., 2022). Through SDS, the model can distill the capabilities of

079

081

083

Figure 1: Example of text-to-3D content generated from scratch by our Dreamer XL. Our Dreamer XL is based on 3D Gaussian splatting using stable diffusion XL. Please zoom in for details.

080 the pre-trained 2D diffusion model to obtain rendered images, and optimize the parameters of the 3D model through backpropagation, so that the 3D model can be effectively trained even without actual image 082 data. However, since random noise generates inconsistent pseudo-baselines, the results obtained by SDS optimization of 3D models tend to be averaged, leading to problems such as over-smoothing. 084

Although some recent work (Wang et al., 2024; Liang et al., 2023) devote themselves to solving the over-085 smoothing problems, they inevitably lead to the generation of low-resolution and average results due to the inherent limitations of stable diffusion models and their sampling methods. For example, (Liang et al., 2023), 087 inspired by the DDIM inversion process, proposed interval score matching, which can generate relatively 088 consistent results. However, due to the inherent cumulative errors in the DDIM inversion process, it may lead to the averaging of results in certain regions. Furthermore, most existing methods do not yet support the new high-resolution Stable Diffusion XL (SDXL) (Podell et al., 2023; Luo et al., 2023). To achieve an output of 091 1024x1024 high resolution, multi-stage optimization is necessary. The main reason is the inherent instability of the Variational Autoencoder (VAE) in the SDXL (Podell et al., 2023) architecture, which is particularly evident during the optimization process of the 3D Gaussian Splatting. In this process, the gradients directly

affect the duplication and deletion of point clouds in 3D space. The anomalous gradients introduced by SDXL severely hinder the optimization process of 3D Gaussian Splatting, leading to generated 3D models that lose complex texture details, have blurred appearances, and exhibit abnormal colors. In severe cases, this can cause the 3D models to fail to converge.

098 In this work, we aim to overcome the above limitations. The reverse process of DDIM was adopted by (Liang 099 et al., 2023), effectively reducing the higher reconstruction errors generated by the diffusion model's one-step 100 reconstruction and generating relatively consistent pseudo-ground truth. However, the inherent accumulation 101 errors in the reverse process of DDIM still result in semantic changes in these pseudo-ground truths, leading to 102 partially averaged reconstruction results in certain regions, resulting in erroneous and unrealistic outcomes in 103 these regions. To address this issue, we propose a novel method called Trajectory Score Matching (TSM). We 104 through simple improvements to Interval Score Matching (ISM) (Liang et al., 2023), effectively alleviate the average effect of inconsistent pseudo-ground truths caused by inherent accumulation errors. We demonstrate 105 that our TSM has smaller accumulation errors compared to ISM, and ISM can be considered as a special 106 case of TSM. Through experiments, we prove that the effects produced by our TSM are superior to ISM, 107 vielding highly realistic and detailed results. In order to achieve high-resolution output, previous methods 108 need to undergo multi-stage training. Our model directly uses SDXL that supports high resolution as guidance 109 without going through multi-stage training. This not only reduces training costs, but also simplifies the 110 training process. However, we still need to solve the inherent gradient instability problem of SDXL. Therefore, 111 we propose a pixel-by-pixel gradient clipping method, which effectively alleviates the inherent gradient 112 instability of SDXL. In summary, the contributions of our work are as follows: 113

- We investigate and analyze the inherent accumulated errors produced by DDIM inversion process in interval score matching (ISM), resulting in the presence of inconsistent pseudo-ground truth.
- To address the aforementioned limitation, we introduce a novel Trajectory Score Matching (TSM) method. Unlike the single path of ISM, TSM improves ISM to a dual path, effectively alleviating the inconsistent pseudo-ground truth issue generated from the inherent accumulated error of DDIM.
- To simplify the training process and generate high-resolution, high-quality text-to-3D results. We are the first to leverage SDXL for guidance based on 3D Gaussian splatting. In addition, we also introduce a novel gradient clipping method, which effectively solves the problem of SDXL in gradient stability. Extensive experiments demonstrate that our method significantly outperforms the current state-of-the-art methods.

2 RELATED WORK

114

115

116

117

118

119

120

121

122

123

124 125

126

127 **2D diffusion.** Score-based generative models and diffusion models (Song & Ermon, 2019; Song et al., 2020b; 128 Ho et al., 2020; Balaji et al., 2022; Saharia et al., 2022; Podell et al., 2023) have shown excellent performance 129 in image synthesis (Dhariwal & Nichol, 2021), especially by introducing latent diffusion models (LDM) 130 (Rombach et al., 2022) into stable diffusion to generate high-resolution images in latent space. Podel et al. 131 (Podell et al., 2023) further extended this model to a larger latent space in SDXL, VAE and U-net, achieving 132 higher resolution (1024×1024). Zhang et al. (Zhang et al., 2023) enhanced the functionality of these models 133 by generating controllable images for different input types. At the same time, the diffusion model also showed impressive performance in converting text into image synthesis, which opens up the possibility of using this 134 technology to directly generate 3D images from text (Chen et al., 2023; Hong et al., 2022; Lin et al., 2023; 135 Michel et al., 2022; Poole et al., 2022; Wang et al., 2024). 136

Text-to-3D Generation. Early attempts from text-to-3D are mainly guided by the use of multi-modal
 information from CLIP (Radford et al., 2021) to achieve information conversion from text-to-3D, with
 DreamField (Jain et al., 2021) being a pioneer in this direction. However, the multi-modal information of
 CLIP can only provide rough alignment, and the results of using it for 3D distillation are often unsatisfactory.

Figure 2: **ISM and our TSM example (Liang et al., 2023).** We observed that when using the same initial x_0 , timestep t, and fixed noise ϵ , the results generated by ISM exhibit significant inconsistencies (demonstrated by four different noise generation outcomes). These inconsistencies arise from the inherent accumulation of errors during the DDIM inversion process, leading to deviations in the approximation \hat{x}_0 . In contrast, TSM mitigates this issue, resulting in more consistent features and styles across different viewpoints.

Zero-1-to-3 (Liu et al., 2023b) first introduces camera parameters to fine-tune the 2D pre-trained stable 157 diffusion model, enabling it to generate multi-view images, and then use the multi-view images for 3D 158 reconstruction. This improvement not only facilitates more accurate 3D reconstructions, but also inspires 159 a wealth of derivative research (Metzer et al., 2023; Liu et al., 2024; Qian et al., 2023; Liu et al., 2023a; 160 Shi et al., 2023a). In addition, another research direction explores the possibility of using pre-trained 2D 161 diffusion models to directly optimize 3D representations. These methods often combine differentiable 162 3D representation techniques, such as NeRF (Mildenhall et al., 2021), NeuS (Wang et al., 2021), and 3D 163 Gaussian Splatting (Kerbl et al., 2023), and optimize model parameters through backpropagation techniques. 164 Dreamfusion (Poole et al., 2022) first introduces SDS to optimize 3D representations directly from pre-trained 165 2D text-to-image diffusion models. Similarly, Score Jacobian Chaining (Wang et al., 2023) proposes an 166 alternative method that achieves parameterization effects similar to SDS. ProlificDreamer (Wang et al., 2024) conducted an in-depth analysis of the objective function of SDS and proposed a particle-based variational 167 framework called Variational Score Distillation (VSD), which significantly improves the quality of generated 168 content. The latest research combines SDS with Gaussian Splatting to accelerate the optimization process. 169 Consistent3D (Wu et al., 2024) analyzes SDS from the latest perspective of ordinary differential equations 170 (ODE) and proposes a method called Consistency Distillation Sampling (CSD) to solve the challenges of 171 SDS in over-smoothing and inconsistency issues. Similarly, LucidDreamer (Liang et al., 2023) analyzed the 172 loss function of SDS and proposed interval score matching (ISM), which is very similar to the idea of CSD. 173 However, ISM utilizes the reversible diffusion trajectory of DDIM (Song et al., 2020a) when calculating the 174 two interval steps. DDIM will inevitably produce inherent accumulated errors in this process, resulting in 175 inconsistent reconstruction results. In this work, we empirically follow the mature mainstream architecture 176 method of 3D Gaussian Splatting (Liang et al., 2023; Tang et al., 2023; Yi et al., 2024) as the baseline of our 177 approach. On this basis, inspired by the recent Consistency trajectory model (Kim et al., 2023), we propose 178 to optimize the 3D model from two trajectories, and use the less noisy trajectory to guide another noisier trajectory to alleviate the inconsistency problem. 179

180 181

151

152

153

154

155 156

3 Methods

182 183

This section presents the preliminaries on the inverse DDIM process and ISM (see Section 3.1). We then propose the Trajectory Score Matching (TSM) method (see Section 3.2), which generates dual paths from the same starting point using the reverse process of DDIM. This enhances the stability and consistency of the model along the entire generative path during the distillation process. We further indicate that ISM is a special case of TSM (see Section 3.3). Additionally, we investigate the challenges of optimizing 3D models
 using the SDXL architecture (see Section 3.4).

3.1 PRELIMINARIES

191

192 193

194

195 196

Review of DDIM inversion We first consider the most common sampling scheme is that of DDIM (Song et al., 2020a) where intermediate steps are calculated as:

$$x_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{x_t - \sqrt{1 - \alpha_t} \epsilon_\phi(x_t, t, \emptyset)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1}} \epsilon_\phi(x_t, t, \emptyset), \tag{1}$$

where x_t and x_{t-1} represent the noisy latent, $\{\alpha_t\}_{t=0}^T$ (where $\alpha_0 = 1, \alpha_T = 0$) indicates a set of time steps indexing a strictly monotonically reducing noise schedule. The $\epsilon_{\phi}(x_t, t, \emptyset)$ denotes the predicted denoising direction (by stable diffusion model) with the given condition y (The condition is null, *i.e.*, unconditioned \emptyset).

The above denoising process can approximate the inverse transition from x_t to x_{t-1} , which is:

$$x_{t} = \sqrt{\alpha_{t}} \left(\frac{x_{t-1} - \sqrt{1 - \alpha_{t}} \epsilon_{\phi}(x_{t}, t, \emptyset)}{\sqrt{\alpha_{t-1}}} \right) + \sqrt{1 - \alpha_{t}} \epsilon_{\phi}(x_{t}, t, \emptyset)$$

$$\approx \sqrt{\alpha_{t}} \left(\frac{x_{t-1} - \sqrt{1 - \alpha_{t}} \epsilon_{\phi}(x_{t-1}, t-1, \emptyset)}{\sqrt{\alpha_{t-1}}} \right) + \sqrt{1 - \alpha_{t}} \epsilon_{\phi}(x_{t-1}, t-1, \emptyset),$$
(2)

where the approximation is a linearization assumption that $\epsilon_{\phi}(x_t, t, \emptyset) \approx \epsilon_{\phi}(x_{t-1}, t-1, \emptyset)$. This approximation inevitably introduces errors, resulting in inconsistencies between the diffusion states in the forward and backward processes.

Text-to-3D generation by interval score matching (ISM) The concepts of the ISM is first introduced by LucidDreamer (Liang et al., 2023) to address the issues of over-smoothness and inconsistency inherent in the original SDS method. The 3D model leverages a differentiable function $x = g(\theta, c)$ to render images, where θ represents the trainable 3D parameters and *c* is camera parameter. The gradient of the ISM loss for θ is expressed as follows:

$$\nabla_{\theta} \mathcal{L}_{\text{ISM}}(\theta) := \mathbb{E}_{t,c} \left[\omega(t) (\epsilon_{\phi}(x_t, t, y) - \epsilon_{\phi}(x_s, s, \theta)) \frac{\partial x}{\partial \theta} \right],$$
(3)

217 where 0 < s < t, the noisy latent x_t and x_s are calculated by DDIM inversion process, the $\epsilon_{\phi}(x_t, t, y)$ is the 218 predicted denoising direction given the conditioned y, and $\omega(t)$ is a time-dependent weighting function. ISM 219 employs DDIM inversion during the noise addition process in optimization to mitigate the inconsistencies 220 between pseudo-ground truths caused by random noise in SDS. Specifically, ISM adds noise through reverse iterations, progressively adding noise to the unknown x_0 up to a certain timestep t_i , resulting in x_{t_i} . It 221 then computes an approximation \hat{x}_0 of x_{t_i} and adds noise stepwise until it reaches x_t . However, during 222 the DDIM inversion process, the accumulated error is inevitable, leading to discrepancies between each 223 \hat{x}_0 approximated from different timesteps t and the original x_0 . These errors are further amplified when 224 conditional denoising is introduced during the iterative process. According to recent work (Yu et al., 2023), 225 the gradients of SDS-like methods can be decomposed into a reconstruction term and classifier-free guidance 226 terms. The primary improvement of ISM focuses on the reconstruction term, which can be expressed as: 227

228

215

216

229

$$\delta_{\text{recon}} := \epsilon_{\phi}(x_s, s, \emptyset) - \epsilon_{\phi}(x_t, t, \emptyset), \tag{4}$$

However, due to the nature of DDIM inversion, x_s and x_t originate from different approximations of \hat{x}_0 , meaning x_s is derived from \hat{x}_0^{s-1} and x_t from \hat{x}_0^s . Additionally, because the DDIM sampling process is deterministic, it generates two distinct trajectories. Therefore, inconsistent pseudo-ground truths will be generated when optimizing the 3D model, thus affecting the optimization quality of the final result, as shown in Figure 2. 238 3: 239 4: 240 5: 241 6: 242 243 7: 244 8: 245 246

235

236

237

247 248

249

250

253

254 255

257

259

261

264 265 266

267 268

269

270 271 272

273

274 275 276 Algorithm 1 Trajectory Score Matching 1: Initialization: DDIM inversion step size δ_T and δ_S , the target prompt y, the offset rate $\gamma \in [0, 1]$ 2: while θ is not converged do Sample: $x_0 = g(\theta, c), t \sim \mathcal{U}(1, 1000)$ let $s = t - \delta_T$, $n = s/\delta_S$, and $\mu = s + \gamma \delta_T$ for i = [0, ..., n - 1] do $x_{(i+1)\delta_S} = \sqrt{\alpha_{(i+1)\delta_S}} \left(\frac{x_{i\delta_S} - \sqrt{1 - \alpha_{i\delta_S}} \epsilon_{\phi}(x_{i\delta_S}, i\delta_S, \emptyset)}{\sqrt{\alpha_{i\delta_S}}} \right) + \sqrt{1 - \alpha_{(i+1)\delta_S}} \epsilon_{\phi}(x_{i\delta_S}, i\delta_S, \emptyset)$ end for predict $\epsilon_{\phi}(x_s, s, \emptyset)$, then step $x_s \to x_t$ and $x_s \to x_{\mu}$ via $\begin{aligned} x_t &= \sqrt{\alpha_t} \left(\frac{x_s - \sqrt{1 - \alpha_s} \epsilon_{\phi}(x_s, s, \emptyset)}{\sqrt{\alpha_s}} \right) + \sqrt{1 - \alpha_t} \epsilon_{\phi}(x_s, s, \emptyset) \\ x_\mu &= \sqrt{\alpha_\mu} \left(\frac{x_s - \sqrt{1 - \alpha_s} \epsilon_{\phi}(x_s, s, \emptyset)}{\sqrt{\alpha_s}} \right) + \sqrt{1 - \alpha_\mu} \epsilon_{\phi}(x_s, s, \emptyset) \\ \vdots &= \sqrt{\alpha_\mu} \left(\frac{x_s - \sqrt{1 - \alpha_s} \epsilon_{\phi}(x_s, s, \emptyset)}{\sqrt{\alpha_s}} \right) + \sqrt{1 - \alpha_\mu} \epsilon_{\phi}(x_s, s, \emptyset) \end{aligned}$ predict $\epsilon_{\phi}(x_t, t, y), \epsilon_{\phi}(x_{\mu}, \mu, \emptyset)$ and compute TSM gradient 9: $\nabla_{\theta} L_{\text{TSM}} = \omega(t) (\epsilon_{\phi}(x_t, t, y) - \epsilon_{\phi}(x_{\mu}, \mu, \emptyset))$ update x_0 with $\nabla_{\theta} L_{\text{TSM}}$

10: 11: end while

251 252

TRAJECTORY SCORE MATCHING 32

X

To alleviate the inherent accumulated error in the DDIM inversion process, which leads to the production 256 of inconsistent pseudo-ground truths and consequently suboptimal 3D models. Inspired by recent work (Kim et al., 2023), we propose a new approach, Trajectory Score Matching (TSM), which utilizes dual paths 258 originating from the same starting point to minimize error accumulation during iterations. Specifically, similar to ISM (Liang et al., 2023), our TSM also utilizes the DDIM inversion to predict an invertible noisy latent 260 trajectory. For a given timestep s (where 0 < s < t), the corresponding noise latent x_s can be obtained using Equation (2). Considering x_s as the starting latent, it is possible to approximate two noise latents, x_{μ} and x_t , on the latent trajectory, where $0 < s < \mu < t < T$. This can be expressed as follows: 262

$$x_{\mu} = \sqrt{\alpha_{\mu}} \left(\frac{x_s - \sqrt{1 - \alpha_s} \epsilon_{\phi}(x_s, s, \emptyset)}{\sqrt{\alpha_s}} \right) + \sqrt{1 - \alpha_{\mu}} \epsilon_{\phi}(x_s, s, \emptyset), \tag{5}$$

$$x_t = \sqrt{\alpha_t} \left(\frac{x_s - \sqrt{1 - \alpha_s} \epsilon_\phi(x_s, s, \emptyset)}{\sqrt{\alpha_s}} \right) + \sqrt{1 - \alpha_t} \epsilon_\phi(x_s, s, \emptyset).$$
(6)

Then, we can integrate DDIM inversion and DDIM denoising with the same step size. We define the naive objective of 3D distillation as follows:

$$\mathcal{L}_{\text{TSM}}(\theta) := \mathbb{E}_{t,c} \left[\omega(t) || \epsilon_{\phi}(x_t, t, y) - \epsilon_{\phi}(x_{\mu}, \mu, \emptyset) ||^2 \right], \tag{7}$$

where x_t and x_{μ} is generated through DDIM inversion from x_0 . Following (Liang et al., 2023), the gradient of TSM loss over θ is:

$$\nabla_{\theta} \mathcal{L}_{\text{TSM}}(\theta) := \mathbb{E}_{t,c} \left[\omega(t) (\epsilon_{\phi}(x_t, t, y) - \epsilon_{\phi}(x_{\mu}, \mu, \emptyset)) \frac{\partial x}{\partial \theta} \right].$$
(8)

277 The optimization goal of TSM is to maintain the consistency of x_0 updates as much as possible to reduce the 278 error introduced by DDIM inversion. Since TSM uses the same noise latent during the inversion process, its 279 cumulative error is relatively small. In other words, both x_{μ} and x_t come from \hat{x}_0 approximated by x_s at 280 time step s. The algorithm flow of TSM is shown in the Algorithm 1. Among them, the blue part marks the differences from ISM. For the workflow please refer to Appendix A.2. 281

Figure 3: The error of approximated x_0 . (a) is the error of x0 approximated by ISM at time step 900 and time step 800, (b) is the error of x0 approximated by TSM at time step 900 and time step 801, and (c) is the error of x0 approximated by TSM at time step 900 and time step 810.

3.3 COMPARISON WITH ISM

ISM is a special case of TSM. Theoretically, the optimization objectives of ISM and TSM are the same, however, TSM considers optimization steps that are closer together compared to ISM. Specifically, we can regard ISM as a special case of TSM. Between time steps s and t, we choose any time step $\mu = \gamma(t - s) + s$, where $\mu = s$ if and only if $\gamma = 0$. Therefore, our hypothesis is confirmed, and ISM is indeed a special case of TSM when $\mu = s$.

TSM has smaller error. We conducted a 2D toy experiment. First, x_t is denoised by the inverse DDIM 301 process, and then the approximate value \hat{x}_0 at that time step is predicted and calculated. As shown in the 302 figure, the error of ISM (Figure 3 (a)) is significantly larger than that of our TSM (Figure 3 (b)). It should be 303 noted that if 1 time step is not added, TSM will degenerate into ISM. In Figure 3 (c), after 10 time steps are 304 added, the change in error is not significant. Theoretically, at this time, there is no accumulated error between 305 the two in the previous iteration process, and these errors mainly come from the randomness of the diffusion 306 model. In addition, when $\mu = t$, our TSM will degenerate into CSD (Yu et al., 2023) with denoising by the 307 inverse DDIM process. On the far right of the Figure 3, we also show the gradients of the reconstruction 308 terms of ISM and TSM in 3D asset optimization, showing that the gradient of our method is more stable. We 309 also provide intuitive proof in Appendix A.5.

310 311

312

290

291

292 293

294

3.4 THE ABNORMAL GRADIENT FROM ADVANCED PIPELINE

313 Previous methods have shown that increasing rendering resolution and training batch size can significantly 314 improve visual quality. Although increasing the resolution of rendering can significantly improve the visual 315 quality, most text-to-3D generation methods mainly use guidance based on Stable Diffusion 2.1 and only 316 support 512×512 resolution. Due to the impact of low resolution, local details are still blurred. Consequently, we experimented with using Stable Diffusion XL as guidance, which supports 1024×1024 resolutions. The 317 more advanced model Stable Diffusion XL has a different architecture from the previous one, and the VAE of 318 this model is unstable. Although it has a certain impact on NeRF-based methods, it is not serious. However, 319 this instability poses significant challenges for methods that employ 3D Gaussian splatting. In 3D Gaussian 320 splatting, the reliability of operations like copying and deleting point clouds is heavily dependent on gradient 321 stability. If the average positional gradient q of the Gaussian view space exceeds a preset threshold, regions 322 with under- or over-reconstruction of color c and depth d are intensively corrected. SDXL gradients are 323 usually large and unstable, and high average gradient values in this case may cause normal areas to still be 324 densified. An intuitive method is leveraging the gradient clip technical to handle this issue, previous related 325 work (Pan et al., 2024) has explored for NeRF-based method, which is not very suitable for 3D Gaussian 326 splatting. Thus, we propose an improved gradient clip method for 3D Gaussian splitting. Specifically, we still 327 use the (Pan et al., 2024) method for gradient clipping of color c. For depth d, we calculate its scaling factor 328 independently for each depth element and perform pixel-by-pixel pruning. The pruning gradient of depth \hat{q}_d

DreamFusion(SDS) Fantasia3D ProlificDreamer (VSD) LucidDreamer (ISM) Ours Image: A DSLR photo of the Imperial State Crown of England." Image: A DSLR photo of the Imperial State Crown of England." Image: A DSLR photo of the Imperial State Crown of England." Image: A DSLR photo of the Imperial State Crown of England." Image: A DSLR photo of the Imperial State Crown of England." Image: A DSLR photo of the Imperial State Crown of England." Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State Crown of England. Image: A DSLR photo of the Imperial State

"A DSLR photo of a Schnauzer wearing a pirate hat ."

Figure 4: **Comparison with state-of-the-art baseline methods in text-to-3D generation.** Experimental results show that our method can generate 3D content that is more consistent with input text prompts and has more detailed details. All results of this work are generated on a single A100 GPU. Please zoom in to see more details.

Figure 5: **Comparison with the generation results of different stable diffusion models.** Compared with ISM, our TSM performs better in the clarity and consistency of local details. Please zoom in to see the circled region for more details.

can be expressed as:

$$\hat{\boldsymbol{g}}_d = \boldsymbol{g}_d \cdot \min\left(\frac{s}{|\boldsymbol{g}_d|}, c\right),\tag{9}$$

where g_d is the gradient of depth, s is scale of Gaussian and c is the threshold. We can ensure that the updated direction of the depth gradient remains unchanged and has no effect on the gradient of the normal region.

4 **EXPERIMENTS**

4.1 QUALITATIVE RESULTS

Text-to-3D Generation. We show the generated results of Dreamer XL in Figure 1. The results show that
 Dreamer XL is capable of generating high-quality 3D content accurately based on the input text, and it
 performs exceptionally well in producing realistic and complex appearances, effectively avoiding common
 issues such as excessive smoothing or oversaturation. For example, it can finely reproduce the texture

Table 1: Quantitative evaluation. We compare with recent text-to-3D conversion methods. CLIP-score is used to measure the alignment between text and 3D content, while A-LPIPS is used to evaluate the degree of artifacts caused by inconsistencies in 3D content.

Methods	CLIP-Score ↑		A-LPIPS↓	
	CLIP-L/14	OpenCLIP-L/14	VGG	Alex
DreamFusion	0.232	0.165	0.081	0.080
Fantasia3D	0.233	0.207	0.077	0.082
ProlificDreamer	0.255	0.221	0.178	0.103
LucidDreamer	0.278	0.234	0.065	0.059
Ours (SD 2.1)	0.281	0.243	0.059	0.053
Ours (SDXL)	0.297	0.312	0.052	0.041

Figure 6: Ablation on offset rate. $\gamma = 0.3$ achieves optimal visual quality and ensures high consistency between the generated results and the original text.

details of objects like teacups. Moreover, our framework can generate objects that are close to reality and create imaginary ones. This flexibility offers possibilities for various application scenarios. Comparison with State-of-the-Art Methods. We compare our approach with four state-of-the-art text-to-3D baselines: DreamFusion (Poole et al., 2022) proposes Score Distillation Sampling (SDS) leveraging a pre-trained 2D text-to-image diffusion model for text-to-3D synthesis; Fantasia3D (Chen et al., 2023) disentangle geometric and appearance attributes to simulate real-world physical environments; ProlificDreamer (Wang et al., 2024) introduces Variational Score Distillation (VSD), a particle-based variational framework to address issues of oversaturation, oversmoothing, and low diversity; LucidDreamer (Liang et al., 2023) introduces Interval Score Matching (ISM), utilizing deterministic diffusion trajectories and interval-based score matching to alleviate oversmoothing problems, and employs a 3D Gaussian splatting for 3D representation. The comparison results are shown in Figure 4. The results generated by our method are significantly clearer than other baseline results. For example, the crown shows a more precise geometric structure and a more realistic color, and the Schnauzer's hair texture and overall body shape show obvious advantages. We can observe that our method significantly outperforms existing methods in both visual quality and consistency.

Comparison with ISM in detail. As shown in Figure 5, we show the generation results of ISM and TSM using the same prompt on different stable diffusion models. In Iron Man, it can be seen that the ISM has significant inconsistencies on the left and right sides of the neck, while our TSM maintains consistency in this region. In Joker, the ISM has shallower wrinkles on the head compared to our TSM, which is due to the averaging effect caused by error accumulation. Furthermore, ISM also shows significant inconsistency in the neck region.

- 4.2 QUANTITATIVE RESULTS

423 Currently, there are no standardized evaluation metrics specifically ded-424 icated to text-to-3D. This is primarily due to the subjective nature of the 425 task and the presence of multiple dimensions that are difficult to quan-426 tify. To maintain consistency with existing text-to-3D evaluation methods, 427 we adopt CLIP-based metrics for quantitative analysis. Specifically, we 428 employ variants of the CLIP model, including OpenCLIP ViT-L/14 and CLIP ViT-L/14, to calculate the average CLIP score between the text and 429 its corresponding 3D render. Furthermore, considering the importance 430 of view consistency, we follow previous work calculating A-LPIPS to 431 determine view consistency, quantifying visual artifacts caused by view 432 inconsistency through calculating the average LPIPS score between ad-433 jacent 3D scene images. We adopt A-LPIPS as an alternative metric to 434 quantify view consistency, and present it alongside the CLIP scores in our 435 report. 436

437 Consistent with the qualitative results, we compare our method with four
438 state-of-the-art text-to-3D methods. Compared with the current best439 performing LucidDreamer, our method improves CLIP-Score (CLIP-L/14)
440 and CLIP-Score (OpenCLIP-L/14) by 6.83% and 33.33% respectively.

At the same time, our method reduces the performance by 20.00% and 30.51% respectively on the A-LPIPS (VGG) and A-LPIPS (Alex) evalu-

w/ gradient clipping Figure 7: **Ablation** on pixel-by-

pixel gradient clipping.

ation metrics, showing significant advantages in image authenticity and visual consistency. Overall, these
 results highlight the superior performance of our approach in terms of image quality and text consistency.

445

446 447

4.3 ABLATION STUDY

Ablation on offset rate γ . We investigate the impact of the offset rate γ on the generated results (Figure 6), and the best results are achieved when γ is set to 0.3. If γ is set too low, it will result in a loss of color details; if it is set too high, it may destroy the consistency between the generated results and the text. That is, when μ is too close to *s*, the average effect is too heavy, and its effect is similar to that of ISM. When μ is too close to *t*, although the cumulative error is reduced, the updated gradient will become very small, easily causing the model to fall into a local optimum. However, for simple scenes, the results are best when μ is close to *t*, and the analysis in Appendix A.4.

Ablation on pixel-by-pixel gradient clipping. As shown in Figure 7, when pixel-by-pixel gradient clipping is not applied, the instability of the gradients causes abnormal splitting and duplication in normal areas, filling the depth map with noise and making it rough and uneven, thus making the entire facial appearance abnormal. However, after applying pixel-by-pixel gradient clipping, it is clearly observed that the depth map becomes smoother, the texture returns to normal, and the normal facial features are displayed. This comparison demonstrates the effectiveness of our method. For more ablation please refer to Appendix A.4.

461 462

5 CONCLUSION

463 464

In this work, we investigate the inconsistency problem produced by ISM during the generation of 3D results. To alleviate this problem, we introduce TSM, which leverages dual paths to reduce error accumulation and thereby improve inconsistency. In addition, to simplify the generation of a high-resolution training process, we adopt SDXL as guidance and propose a pixel-by-pixel gradient clipping method to alleviate the abnormal splitting of normal regions in 3D Gaussian splatting caused by SDXL gradient instability. Our experimental results demonstrate that our method can effectively generate high-resolution, high-quality 3D results.

470 REFERENCES

478

488

495

496

497

505

511

- Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten Kreis,
 Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with an ensemble of
 expert denoisers. *arXiv preprint arXiv:2211.01324*, 2022.
- Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and appearance for high-quality text-to-3d content creation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 22246–22256, 2023.
- 479 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34:8780–8794, 2021.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020.
- Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-driven generation and animation of 3d avatars. *arXiv preprint arXiv:2205.08535*, 2022.
- Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided object
 generation with dream fields. *arXiv*, December 2021.
- Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
 real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023. URL https:
 //repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.
- Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
 He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode
 trajectory of diffusion. *arXiv preprint arXiv:2310.02279*, 2023.
 - Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, and Yingcong Chen. Luciddreamer: Towards high-fidelity text-to-3d generation via interval score matching. *arXiv preprint arXiv:2311.11284*, 2023.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,
Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 300–309,
2023.

- Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast single image to 3d objects with consistent multi-view generation and 3d diffusion. *arXiv preprint arXiv:2311.07885*, 2023a.
- Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su. One-2-3-45: Any single image to 3d mesh in 45 seconds without per-shape optimization. *Advances in Neural Information Processing Systems*, 36, 2024.
- Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-1 to-3: Zero-shot one image to 3d object, 2023b.
- Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthesizing high-resolution images with few-step inference. *arXiv preprint arXiv:2310.04378*, 2023.
- Baorui Ma, Haoge Deng, Junsheng Zhou, Yu-Shen Liu, Tiejun Huang, and Xinlong Wang. Geodream:
 Disentangling 2d and geometric priors for high-fidelity and consistent 3d generation. *arXiv preprint arXiv:2311.17971*, 2023.

538

544

- Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-nerf for shape-guided generation of 3d shapes and textures. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12663–12673, 2023.
- Xingyu Miao, Yang Bai, Haoran Duan, Fan Wan, Yawen Huang, Yang Long, and Yefeng Zheng. Conrf:
 Zero-shot stylization of 3d scenes with conditioned radiation fields, 2024.
- Socar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. Text2mesh: Text-driven neural stylization for meshes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13492–13502, 2022.
- Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
 Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65 (1):99–106, 2021.
- Hideyuki Nakanishi, Chikara Yoshida, Toshikazu Nishimura, and Toru Ishida. Freewalk: A 3d virtual space for casual meetings. *IEEE MultiMedia*, 6(2):20–28, 1999.
- Zijie Pan, Jiachen Lu, Xiatian Zhu, and Li Zhang. Enhancing high-resolution 3d generation through pixel-wise
 gradient clipping. In *International Conference on Learning Representations (ICLR)*, 2024.
- Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv* preprint arXiv:2307.01952, 2023.
- Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
 arXiv preprint arXiv:2209.14988, 2022.
- Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, et al. Magic123: One image to high-quality 3d object generation using both 2d and 3d diffusion priors. *arXiv preprint arXiv:2306.17843*, 2023.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
 Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
 language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.
- Ilknur Reisoğlu, Burcu Topu, Rabia Yılmaz, T Karakuş Yılmaz, and Yuksel Göktaş. 3d virtual learning
 environments in education: A meta-review. *Asia Pacific Education Review*, 18:81–100, 2017.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
 Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion
 models with deep language understanding. Advances in neural information processing systems, 35:
 36479–36494, 2022.
- Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen, Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base model. *arXiv preprint arXiv:2310.15110*, 2023a.
- Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view diffusion
 for 3d generation. *arXiv preprint arXiv:2308.16512*, 2023b.

- Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv:2010.02502,
 October 2020a. URL https://arxiv.org/abs/2010.02502.
- Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, 32, 2019.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 2020b.
- Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
 splatting for efficient 3d content creation. *arXiv preprint arXiv:2309.16653*, 2023.
- Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian chaining:
 Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12619–12629, 2023.
- Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv preprint arXiv:2106.10689*, 2021.
- Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer:
 High-fidelity and diverse text-to-3d generation with variational score distillation. *Advances in Neural Information Processing Systems*, 36, 2024.
- Andrew Wodehouse and Mohammed Abba. 3d visualisation for online retail: factors in consumer behaviour. *International Journal of Market Research*, 58(3):451–472, 2016.
- Zike Wu, Pan Zhou, Xuanyu Yi, Xiaoding Yuan, and Hanwang Zhang. Consistent3d: Towards consistent
 high-fidelity text-to-3d generation with deterministic sampling prior. *arXiv preprint arXiv:2401.09050*, 2024.
- Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by bridging 2d and 3d diffusion models. In *CVPR*, 2024.
- Xin Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Song-Hai Zhang, and Xiaojuan Qi. Text-to-3d with
 classifier score distillation. *arXiv preprint arXiv:2310.19415*, 2023.
- Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3836–3847, 2023.
 - Joseph Zhu and Peiye Zhuang. Hifa: High-fidelity text-to-3d with advanced diffusion guidance. arXiv preprint arXiv:2305.18766, 2023.
- 602 603 604

600

601

A APPENDIX

606 A.1 IMPLEMENTATION DETAILS

During the optimization process, we train the model for 2500 iterations. To optimize the 3D Gaussian model, we set the learning rates for opacity, scaling, and rotation to 0.05, 0.005, and 0.001 respectively. Furthermore, the learning rate of the camera encoder is set to 0.001. During training, RGB images and corresponding 611 depth maps from 3D Gaussians are used for rendering. Gaussian densification and pruning processes are 612 performed between 100 and 1500 iterations. We select the publicly available stable diffusion of text to images 613 as a guidance model and choose the checkpoint of Stable Diffusion XL^1 . The guidance scale is 7.5 for all 614 diffusion guidance models. 615

A.2 THE WORKFLOW OF ISM AND TSM

616

617 618

619 620

621

622

623

624

626

627 628 629

630 631 632

633 634

635

636

637 638

639

644

650

651

As shown in Figure 8, we present ISM and our TSM workflow.

Figure 8: The Workflow of ISM and TSM.

A.3 MORE QUALITATIVE RESULTS

As shown in Figure 9, we present additional generation results. It can be observed that our Dreamer XL is capable of generating 3D models that are visually high-quality, closely approximate reality, and maintain good consistency.

A.4 MORE ABLATION STUDY

640 Ablation on offset rate γ for simple scene Here, we provide more ablation on offset rate γ for simple 641 scene. As shown in Figures 10 and 11, if γ is set too low, the similarity between text and images decreases, and the images appear unrealistic. Raising γ can mitigate the problem of accumulated errors, but it also leads 642 to a loss of some details. 643

Ablation on pixel-by-pixel gradient clipping Here, we present additional result in Figures 12 and 13. In 645 Figure 12, once gradient clipping is not applied, the generated 3D model tends to be darker in color and lacks 646 realism. In Figure 13, without gradient clipping, the generated objects appear more blurry, and it is evident 647 from the depth map that there are numerous noise and spikes. As shown in Figure 14 for SD 2.1, there are 648 some minor changes but they are not obvious. 649

A.5 INTUITIVE PROOF OF CONSISTENCY IN TSM

652 Here, we provide an intuitive argument to illustrate the underlying principles. Consider the DDIM inversion 653 process, where cumulative errors lead to deviations in the approximation \hat{x}_0 . TSM minimizes the error 654 accumulation inherent in DDIM inversion by starting from the same starting point. TSM maintains a stable approximation of \hat{x}_0 across different perspectives. This synchronization reduces the variance in feature

¹https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0

Figure 10: More Ablation on offset rate γ for simple scene.

the inversion process of DDIM, x_s is approximated by the prediction noise at s - 1, and x_t is approximated by the prediction noise at s. For simplicity, we can regard the optimization goal of ISM as minimizing noise latent, thus the accumulated error generated by ISM during the optimization process can be expressed as:

$$x_{t} - x_{s} = \sqrt{\alpha_{t}} \left(\frac{x_{s} - \sqrt{1 - \alpha_{s}} \epsilon_{\phi}(x_{s}, s, \emptyset)}{\sqrt{\alpha_{s}}} \right) + \sqrt{1 - \alpha_{t}} \epsilon_{\phi}(x_{s}, s, \emptyset) - \sqrt{\alpha_{s}} \left(\frac{x_{s-1} - \sqrt{1 - \alpha_{s-1}} \epsilon_{\phi}(x_{s-1}, s - 1, \emptyset)}{\sqrt{\alpha_{s-1}}} \right) + \sqrt{1 - \alpha_{s}} \epsilon_{\phi}(x_{s-1}, s - 1, \emptyset)$$

$$(10)$$

For our TSM, we can also give similar expresses as:

$$x_{t} - x_{\mu} = \sqrt{\alpha_{t}} \left(\frac{x_{s} - \sqrt{1 - \alpha_{s}} \epsilon_{\phi}(x_{s}, s, \emptyset)}{\sqrt{\alpha_{s}}} \right) + \sqrt{1 - \alpha_{t}} \epsilon_{\phi}(x_{s}, s, \emptyset) - \sqrt{\alpha_{\mu}} \left(\frac{x_{s} - \sqrt{1 - \alpha_{s}} \epsilon_{\phi}(x_{s}, s, \emptyset)}{\sqrt{\alpha_{s}}} \right) + \sqrt{1 - \alpha_{\mu}} \epsilon_{\phi}(x_{s}, s, \emptyset)$$
(11)

Compared with ISM, which is optimized for a single path, TSM is optimized for a dual path starting from the same noise latent. We show that the accumulated error is smaller in TSM, as shown below.

Definition 1 (Accumulated Error in DDIM Reverse Process) The additional accumulated error during the DDIM reverse process is the difference between two noise estimates from consecutive iterations. Let x_{i+1} and x_i represent the noise approximate at iterations i + 1 and i respectively. The additional accumulated error η is given by:

$$\eta = x_{(i+1)\delta_t} - x_{i\delta_t} \tag{12}$$

where δ_t denotes the time step size in the iteration process.

Proposition 1 (TSM has lower additional accumulated error) *Consider three timesteps* $0 < s < \mu < t$, where μ is defined as $\mu = \gamma(t - s) + s$, with $\gamma \in [0, 1]$. If the additional accumulated error of ISM, η_{ISM} , is higher than additional accumulated error of TSM, η_{TSM} , then, we have:

$$\eta_{\text{ISM}} > \eta_{\text{TSM}} \Rightarrow (x_t - x_s) - (x_t - x_\mu) > 0 \Rightarrow x_\mu - x_s > 0, \tag{13}$$

Proof: Assume $x_{\mu} \leq x_s$. Utilizing Equation (10) and Equation (11), we aim to demonstrate that:

$$\sqrt{\alpha_{\mu}} \left(\frac{x_{s} - \sqrt{1 - \alpha_{s}} \epsilon_{\phi}(x_{s}, s, \emptyset)}{\sqrt{\alpha_{s}}} \right) + \sqrt{1 - \alpha_{\mu}} \epsilon_{\phi}(x_{s}, s, \emptyset) \\
\leq \sqrt{\alpha_{s}} \left(\frac{x_{s-1} - \sqrt{1 - \alpha_{s-1}} \epsilon_{\phi}(x_{s-1}, s - 1, \emptyset)}{\sqrt{\alpha_{s-1}}} \right) + \sqrt{1 - \alpha_{s}} \epsilon_{\phi}(x_{s-1}, s - 1, \emptyset).$$
(14)

792 Where α represents a set of timesteps with a strictly monotonically reducing noise schedule, hence $\alpha_{s-1} > \alpha_s > \alpha_{\mu}$. The first term can be written as $\sqrt{\alpha_{\mu}}\tilde{x}_0^s$ and $\sqrt{\alpha_s}\tilde{x}_0^{s-1}$, where the coefficients ensure the correct 794 scale. The latter term \tilde{x}_0^s iterates one more time than \tilde{x}_0^{s-1} , thus accumulating one more iteration of error. 795 Therefore, $\tilde{x}_0^s > \tilde{x}_0^{s-1}$, which is contrary to the assumption. Considering the ϵ_{ϕ} terms, due to the inversion 796 process of DDIM, $\epsilon_{\phi}(x_s, s, \emptyset) \approx \epsilon_{\phi}(x_{s-1}, s-1, \emptyset)$ and $\sqrt{1-\alpha_{\mu}} > \sqrt{1-\alpha_s}$. This also contradicts the 797 assumption. Therefore, our initial assumption $x_{\mu} \leq x_s$ must be false. Consequently, we conclude that 798 $x_{\mu} > x_s$, thus proving the theorem.

A.6 LIMITATIONS

While our method can generate high-quality and relatively realistic 3D models, qualitative results show a limitation in our approach regarding light handling. Specifically, we have observed anomalous blue reflections in many scenes. Through our experiments, we have identified this problem as primarily caused by our use of SDXL. When SDXL is applied, the blue channel values in rendered images tend to be large, resulting in numerous areas exhibiting abnormal blue hues after normalization. Despite our attempts, including parameter adjustments and different normalization methods, we have yet to find a viable solution. We speculate that this may be attributed to the gradient or training data of SDXL. Additionally, it's worth noting that while our work aims to enhance the quality of generated models, it may inadvertently contribute to the advancement of deepfake technology.

- - -