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ABSTRACT

In this work, we propose a novel Trajectory Score Matching (TSM) method that aims
to solve the pseudo ground truth inconsistency problem caused by the accumulated error
in Interval Score Matching (ISM) when using the Denoising Diffusion Implicit Models
(DDIM) inversion process. Unlike ISM which adopts the inversion process of DDIM to
calculate on a single path, our TSM method leverages the inversion process of DDIM to
generate two paths from the same starting point for calculation. Since both paths start
from the same starting point, TSM can reduce the accumulated error compared to ISM,
thus alleviating the problem of pseudo ground truth inconsistency. TSM enhances the
stability and consistency of the model’s generated paths during the distillation process.
We demonstrate this experimentally and further show that ISM is a special case of TSM.
Furthermore, to optimize the current multi-stage optimization process from high-resolution
text to 3D generation, we adopt Stable Diffusion XL for guidance. In response to the issues
of abnormal replication and splitting caused by unstable gradients during the 3D Gaussian
splatting process when using Stable Diffusion XL, we propose a pixel-by-pixel gradient
clipping method. Extensive experiments show that our model significantly surpasses the
state-of-the-art models in terms of visual quality and performance.

1 INTRODUCTION

In recent years, Virtual Reality (VR) and Augmented Reality (AR) have increasingly become a part of our
daily lives, and the demand for high-quality 3D content has increased significantly. 3D technology has
become extremely important, allowing us to visualize, understand and interact with complex objects and
environments. It also plays a key role in various fields such as architecture, animation, gaming and virtual
reality. In addition, 3D technology shows broad application prospects in retail (Wodehouse & Abba, 2016),
online meetings (Nakanishi et al., 1999), education (Reisoğlu et al., 2017) and other fields (Miao et al., 2024).
Despite its wide application, the complexity of creating 3D content poses considerable challenges: generating
high-quality 3D models requires computional time, effort, and expertise. Given these challenges, methods
for generating 3D from text have become particularly important in recent years (Lin et al., 2023; Zhu &
Zhuang, 2023; Ma et al., 2023; Shi et al., 2023b). These methods create accurate 3D models directly from
natural language descriptions, thereby reducing manual input in traditional 3D modeling processes. Once the
text-to-3D method can efficiently generate large amounts of data, it will not only shorten the production time
of 3D content, but also reduce costs and improve production efficiency.

Typically, text-to-3D generation methods utilize pre-trained text-to-image diffusion models (Saharia et al.,
2022) as an image prior to training neural parametric 3D models such as Neural Radiance Fields (NeRF)
(Mildenhall et al., 2021) and 3D Gaussian splitting (Kerbl et al., 2023). These approaches enable the
rendering of consistent images that are aligned with the text. This process essentially relies on Score
Distillation Sampling (SDS) (Poole et al., 2022). Through SDS, the model can distill the capabilities of
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“A pyramid shaped burrito 
with a slice cut out of it.”

“A Supercar made 
out of toy bricks.” “A delicious hamburger.”

“An icecream.” “A pineapple.” “A highly-detailed sandcastle.” “A forbidden castle high up 
in the mountains.”

“The vibrant red rose, with 
delicate petals and thorny stem.” “a DSLR photo of a football helmet.” “A delicate porcelain teacup, adorned 

with delicate floral patterns.”
“The warm, gooey brownie was 
flecked with melting chocolate.” “An avocado.”

“Viking axe, fantasy, weapon, 
blender, 8k, HDR.”

“a DSLR photo of a bagel filled 
with cream cheese and lox.”

“Luffy model with detailed facial features.” “A Mario 3D model, red hat, white gloves, 
dressed in his iconic overalls, 8K.”

“A cuddly panda bear, 
with black and white fur.”

“Robert Pattinson, HDR, photorealistic, 8K.” “A portrait of Spider man, head, photorealistic, 8K, HDR.”

Figure 1: Example of text-to-3D content generated from scratch by our Dreamer XL. Our Dreamer XL
is based on 3D Gaussian splatting using stable diffusion XL. Please zoom in for details.

the pre-trained 2D diffusion model to obtain rendered images, and optimize the parameters of the 3D
model through backpropagation, so that the 3D model can be effectively trained even without actual image
data. However, since random noise generates inconsistent pseudo-baselines, the results obtained by SDS
optimization of 3D models tend to be averaged, leading to problems such as over-smoothing.

Although some recent work (Wang et al., 2024; Liang et al., 2023) devote themselves to solving the over-
smoothing problems, they inevitably lead to the generation of low-resolution and average results due to the
inherent limitations of stable diffusion models and their sampling methods. For example, (Liang et al., 2023),
inspired by the DDIM inversion process, proposed interval score matching, which can generate relatively
consistent results. However, due to the inherent cumulative errors in the DDIM inversion process, it may lead
to the averaging of results in certain regions. Furthermore, most existing methods do not yet support the new
high-resolution Stable Diffusion XL (SDXL) (Podell et al., 2023; Luo et al., 2023). To achieve an output of
1024x1024 high resolution, multi-stage optimization is necessary. The main reason is the inherent instability
of the Variational Autoencoder (VAE) in the SDXL (Podell et al., 2023) architecture, which is particularly
evident during the optimization process of the 3D Gaussian Splatting. In this process, the gradients directly
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affect the duplication and deletion of point clouds in 3D space. The anomalous gradients introduced by SDXL
severely hinder the optimization process of 3D Gaussian Splatting, leading to generated 3D models that lose
complex texture details, have blurred appearances, and exhibit abnormal colors. In severe cases, this can
cause the 3D models to fail to converge.

In this work, we aim to overcome the above limitations. The reverse process of DDIM was adopted by (Liang
et al., 2023), effectively reducing the higher reconstruction errors generated by the diffusion model’s one-step
reconstruction and generating relatively consistent pseudo-ground truth. However, the inherent accumulation
errors in the reverse process of DDIM still result in semantic changes in these pseudo-ground truths, leading to
partially averaged reconstruction results in certain regions, resulting in erroneous and unrealistic outcomes in
these regions. To address this issue, we propose a novel method called Trajectory Score Matching (TSM). We
through simple improvements to Interval Score Matching (ISM) (Liang et al., 2023), effectively alleviate the
average effect of inconsistent pseudo-ground truths caused by inherent accumulation errors. We demonstrate
that our TSM has smaller accumulation errors compared to ISM, and ISM can be considered as a special
case of TSM. Through experiments, we prove that the effects produced by our TSM are superior to ISM,
yielding highly realistic and detailed results. In order to achieve high-resolution output, previous methods
need to undergo multi-stage training. Our model directly uses SDXL that supports high resolution as guidance
without going through multi-stage training. This not only reduces training costs, but also simplifies the
training process. However, we still need to solve the inherent gradient instability problem of SDXL. Therefore,
we propose a pixel-by-pixel gradient clipping method, which effectively alleviates the inherent gradient
instability of SDXL. In summary, the contributions of our work are as follows:

• We investigate and analyze the inherent accumulated errors produced by DDIM inversion process in
interval score matching (ISM), resulting in the presence of inconsistent pseudo-ground truth.

• To address the aforementioned limitation, we introduce a novel Trajectory Score Matching (TSM)
method. Unlike the single path of ISM, TSM improves ISM to a dual path, effectively alleviating
the inconsistent pseudo-ground truth issue generated from the inherent accumulated error of DDIM.

• To simplify the training process and generate high-resolution, high-quality text-to-3D results. We
are the first to leverage SDXL for guidance based on 3D Gaussian splatting. In addition, we also
introduce a novel gradient clipping method, which effectively solves the problem of SDXL in
gradient stability. Extensive experiments demonstrate that our method significantly outperforms the
current state-of-the-art methods.

2 RELATED WORK

2D diffusion. Score-based generative models and diffusion models (Song & Ermon, 2019; Song et al., 2020b;
Ho et al., 2020; Balaji et al., 2022; Saharia et al., 2022; Podell et al., 2023) have shown excellent performance
in image synthesis (Dhariwal & Nichol, 2021), especially by introducing latent diffusion models (LDM)
(Rombach et al., 2022) into stable diffusion to generate high-resolution images in latent space. Podel et al.
(Podell et al., 2023) further extended this model to a larger latent space in SDXL, VAE and U-net, achieving
higher resolution (1024×1024). Zhang et al. (Zhang et al., 2023) enhanced the functionality of these models
by generating controllable images for different input types. At the same time, the diffusion model also showed
impressive performance in converting text into image synthesis, which opens up the possibility of using this
technology to directly generate 3D images from text (Chen et al., 2023; Hong et al., 2022; Lin et al., 2023;
Michel et al., 2022; Poole et al., 2022; Wang et al., 2024).

Text-to-3D Generation. Early attempts from text-to-3D are mainly guided by the use of multi-modal
information from CLIP (Radford et al., 2021) to achieve information conversion from text-to-3D, with
DreamField (Jain et al., 2021) being a pioneer in this direction. However, the multi-modal information of
CLIP can only provide rough alignment, and the results of using it for 3D distillation are often unsatisfactory.
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ISM TSM (Ours)

𝜀! 𝜀" 𝜀# 𝜀$ 𝜀! 𝜀" 𝜀# 𝜀$

Figure 2: ISM and our TSM example (Liang et al., 2023). We observed that when using the same initial x0,
timestep t, and fixed noise ϵ, the results generated by ISM exhibit significant inconsistencies (demonstrated
by four different noise generation outcomes). These inconsistencies arise from the inherent accumulation of
errors during the DDIM inversion process, leading to deviations in the approximation x̂0. In contrast, TSM
mitigates this issue, resulting in more consistent features and styles across different viewpoints.

Zero-1-to-3 (Liu et al., 2023b) first introduces camera parameters to fine-tune the 2D pre-trained stable
diffusion model, enabling it to generate multi-view images, and then use the multi-view images for 3D
reconstruction. This improvement not only facilitates more accurate 3D reconstructions, but also inspires
a wealth of derivative research (Metzer et al., 2023; Liu et al., 2024; Qian et al., 2023; Liu et al., 2023a;
Shi et al., 2023a). In addition, another research direction explores the possibility of using pre-trained 2D
diffusion models to directly optimize 3D representations. These methods often combine differentiable
3D representation techniques, such as NeRF (Mildenhall et al., 2021), NeuS (Wang et al., 2021), and 3D
Gaussian Splatting (Kerbl et al., 2023), and optimize model parameters through backpropagation techniques.
Dreamfusion (Poole et al., 2022) first introduces SDS to optimize 3D representations directly from pre-trained
2D text-to-image diffusion models. Similarly, Score Jacobian Chaining (Wang et al., 2023) proposes an
alternative method that achieves parameterization effects similar to SDS. ProlificDreamer (Wang et al., 2024)
conducted an in-depth analysis of the objective function of SDS and proposed a particle-based variational
framework called Variational Score Distillation (VSD), which significantly improves the quality of generated
content. The latest research combines SDS with Gaussian Splatting to accelerate the optimization process.
Consistent3D (Wu et al., 2024) analyzes SDS from the latest perspective of ordinary differential equations
(ODE) and proposes a method called Consistency Distillation Sampling (CSD) to solve the challenges of
SDS in over-smoothing and inconsistency issues. Similarly, LucidDreamer (Liang et al., 2023) analyzed the
loss function of SDS and proposed interval score matching (ISM), which is very similar to the idea of CSD.
However, ISM utilizes the reversible diffusion trajectory of DDIM (Song et al., 2020a) when calculating the
two interval steps. DDIM will inevitably produce inherent accumulated errors in this process, resulting in
inconsistent reconstruction results. In this work, we empirically follow the mature mainstream architecture
method of 3D Gaussian Splatting (Liang et al., 2023; Tang et al., 2023; Yi et al., 2024) as the baseline of our
approach. On this basis, inspired by the recent Consistency trajectory model (Kim et al., 2023), we propose
to optimize the 3D model from two trajectories, and use the less noisy trajectory to guide another noisier
trajectory to alleviate the inconsistency problem.

3 METHODS

This section presents the preliminaries on the inverse DDIM process and ISM (see Section 3.1). We then
propose the Trajectory Score Matching (TSM) method (see Section 3.2), which generates dual paths from
the same starting point using the reverse process of DDIM. This enhances the stability and consistency of
the model along the entire generative path during the distillation process. We further indicate that ISM is a
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special case of TSM (see Section 3.3). Additionally, we investigate the challenges of optimizing 3D models
using the SDXL architecture (see Section 3.4).

3.1 PRELIMINARIES

Review of DDIM inversion We first consider the most common sampling scheme is that of DDIM (Song
et al., 2020a) where intermediate steps are calculated as:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵϕ(xt, t, ∅)√

αt

)
+

√
1− αt−1ϵϕ(xt, t, ∅), (1)

where xt and xt−1 represent the noisy latent, {αt}Tt=0 (where α0 = 1, αT = 0) indicates a set of time steps
indexing a strictly monotonically reducing noise schedule. The ϵϕ(xt, t, ∅) denotes the predicted denoising
direction (by stable diffusion model) with the given condition y (The condition is null, i.e., unconditioned ∅).

The above denoising process can approximate the inverse transition from xt to xt−1, which is:

xt =
√
αt

(
xt−1 −

√
1− αtϵϕ(xt, t, ∅)√
αt−1

)
+
√
1− αtϵϕ(xt, t, ∅)

≈
√
αt

(
xt−1 −

√
1− αtϵϕ(xt−1, t− 1, ∅)

√
αt−1

)
+

√
1− αtϵϕ(xt−1, t− 1, ∅),

(2)

where the approximation is a linearization assumption that ϵϕ(xt, t, ∅) ≈ ϵϕ(xt−1, t− 1, ∅). This approxima-
tion inevitably introduces errors, resulting in inconsistencies between the diffusion states in the forward and
backward processes.

Text-to-3D generation by interval score matching (ISM) The concepts of the ISM is first introduced by
LucidDreamer (Liang et al., 2023) to address the issues of over-smoothness and inconsistency inherent in the
original SDS method. The 3D model leverages a differentiable function x = g(θ, c) to render images, where
θ represents the trainable 3D parameters and c is camera parameter. The gradient of the ISM loss for θ is
expressed as follows:

∇θLISM(θ) := Et,c

[
ω(t)(ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅))

∂x

∂θ

]
, (3)

where 0 < s < t, the noisy latent xt and xs are calculated by DDIM inversion process, the ϵϕ(xt, t, y) is the
predicted denoising direction given the conditioned y, and ω(t) is a time-dependent weighting function. ISM
employs DDIM inversion during the noise addition process in optimization to mitigate the inconsistencies
between pseudo-ground truths caused by random noise in SDS. Specifically, ISM adds noise through reverse
iterations, progressively adding noise to the unknown x0 up to a certain timestep ti, resulting in xti . It
then computes an approximation x̂0 of xti and adds noise stepwise until it reaches xt. However, during
the DDIM inversion process, the accumulated error is inevitable, leading to discrepancies between each
x̂0 approximated from different timesteps t and the original x0. These errors are further amplified when
conditional denoising is introduced during the iterative process. According to recent work (Yu et al., 2023),
the gradients of SDS-like methods can be decomposed into a reconstruction term and classifier-free guidance
terms. The primary improvement of ISM focuses on the reconstruction term, which can be expressed as:

δrecon := ϵϕ(xs, s, ∅)− ϵϕ(xt, t, ∅), (4)

However, due to the nature of DDIM inversion, xs and xt originate from different approximations of x̂0,
meaning xs is derived from x̂s−1

0 and xt from x̂s
0. Additionally, because the DDIM sampling process is

deterministic, it generates two distinct trajectories. Therefore, inconsistent pseudo-ground truths will be
generated when optimizing the 3D model, thus affecting the optimization quality of the final result, as shown
in Figure 2.
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Algorithm 1 Trajectory Score Matching
1: Initialization: DDIM inversion step size δT and δS , the target prompt y, the offset rate γ ∈ [0, 1]
2: while θ is not converged do
3: Sample: x0 = g(θ, c), t ∼ U(1, 1000)
4: let s = t− δT , n = s/δS , and µ = s+ γδT
5: for i = [0, ..., n− 1] do

6: x(i+1)δS =
√
α(i+1)δS

(
xiδS

−
√

1−αiδS
ϵϕ(xiδS

,iδS ,∅)
√
αiδS

)
+

√
1− α(i+1)δS ϵϕ(xiδS , iδS , ∅)

7: end for
8: predict ϵϕ(xs, s, ∅), then step xs → xt and xs → xµ via

xt =
√
αt

(
xs−

√
1−αsϵϕ(xs,s,∅)√

αs

)
+

√
1− αtϵϕ(xs, s, ∅)

xµ =
√
αµ

(
xs−

√
1−αsϵϕ(xs,s,∅)√

αs

)
+

√
1− αµϵϕ(xs, s, ∅)

9: predict ϵϕ(xt, t, y), ϵϕ(xµ, µ, ∅) and compute TSM gradient
∇θLTSM = ω(t)(ϵϕ(xt, t, y)− ϵϕ(xµ, µ, ∅))

10: update x0 with ∇θLTSM
11: end while

3.2 TRAJECTORY SCORE MATCHING

To alleviate the inherent accumulated error in the DDIM inversion process, which leads to the production
of inconsistent pseudo-ground truths and consequently suboptimal 3D models. Inspired by recent work
(Kim et al., 2023), we propose a new approach, Trajectory Score Matching (TSM), which utilizes dual paths
originating from the same starting point to minimize error accumulation during iterations. Specifically, similar
to ISM (Liang et al., 2023), our TSM also utilizes the DDIM inversion to predict an invertible noisy latent
trajectory. For a given timestep s (where 0 < s < t), the corresponding noise latent xs can be obtained using
Equation (2). Considering xs as the starting latent, it is possible to approximate two noise latents, xµ and xt,
on the latent trajectory, where 0 < s < µ < t ≤ T . This can be expressed as follows:

xµ =
√
αµ

(
xs −

√
1− αsϵϕ(xs, s, ∅)√

αs

)
+

√
1− αµϵϕ(xs, s, ∅), (5)

xt =
√
αt

(
xs −

√
1− αsϵϕ(xs, s, ∅)√

αs

)
+

√
1− αtϵϕ(xs, s, ∅). (6)

Then, we can integrate DDIM inversion and DDIM denoising with the same step size. We define the naive
objective of 3D distillation as follows:

LTSM(θ) := Et,c

[
ω(t)||ϵϕ(xt, t, y)− ϵϕ(xµ, µ, ∅)||2

]
, (7)

where xt and xµ is generated through DDIM inversion from x0. Following (Liang et al., 2023), the gradient
of TSM loss over θ is:

∇θLTSM(θ) := Et,c

[
ω(t)(ϵϕ(xt, t, y)− ϵϕ(xµ, µ, ∅))

∂x

∂θ

]
. (8)

The optimization goal of TSM is to maintain the consistency of x0 updates as much as possible to reduce the
error introduced by DDIM inversion. Since TSM uses the same noise latent during the inversion process, its
cumulative error is relatively small. In other words, both xµ and xt come from x̂0 approximated by xs at
time step s. The algorithm flow of TSM is shown in the Algorithm 1. Among them, the blue part marks the
differences from ISM. For the workflow please refer to Appendix A.2.
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(a) (b) (c)

Figure 3: The error of approximated x0. (a) is the error of x0 approximated by ISM at time step 900 and
time step 800, (b) is the error of x0 approximated by TSM at time step 900 and time step 801, and (c) is the
error of x0 approximated by TSM at time step 900 and time step 810.

3.3 COMPARISON WITH ISM

ISM is a special case of TSM. Theoretically, the optimization objectives of ISM and TSM are the same,
however, TSM considers optimization steps that are closer together compared to ISM. Specifically, we can
regard ISM as a special case of TSM. Between time steps s and t, we choose any time step µ = γ(t− s) + s,
where µ = s if and only if γ = 0. Therefore, our hypothesis is confirmed, and ISM is indeed a special case of
TSM when µ = s.

TSM has smaller error. We conducted a 2D toy experiment. First, xt is denoised by the inverse DDIM
process, and then the approximate value x̂0 at that time step is predicted and calculated. As shown in the
figure, the error of ISM (Figure 3 (a)) is significantly larger than that of our TSM (Figure 3 (b)). It should be
noted that if 1 time step is not added, TSM will degenerate into ISM. In Figure 3 (c), after 10 time steps are
added, the change in error is not significant. Theoretically, at this time, there is no accumulated error between
the two in the previous iteration process, and these errors mainly come from the randomness of the diffusion
model. In addition, when µ = t, our TSM will degenerate into CSD (Yu et al., 2023) with denoising by the
inverse DDIM process. On the far right of the Figure 3, we also show the gradients of the reconstruction
terms of ISM and TSM in 3D asset optimization, showing that the gradient of our method is more stable. We
also provide intuitive proof in Appendix A.5.

3.4 THE ABNORMAL GRADIENT FROM ADVANCED PIPELINE

Previous methods have shown that increasing rendering resolution and training batch size can significantly
improve visual quality. Although increasing the resolution of rendering can significantly improve the visual
quality, most text-to-3D generation methods mainly use guidance based on Stable Diffusion 2.1 and only
support 512×512 resolution. Due to the impact of low resolution, local details are still blurred. Consequently,
we experimented with using Stable Diffusion XL as guidance, which supports 1024× 1024 resolutions. The
more advanced model Stable Diffusion XL has a different architecture from the previous one, and the VAE of
this model is unstable. Although it has a certain impact on NeRF-based methods, it is not serious. However,
this instability poses significant challenges for methods that employ 3D Gaussian splatting. In 3D Gaussian
splatting, the reliability of operations like copying and deleting point clouds is heavily dependent on gradient
stability. If the average positional gradient g of the Gaussian view space exceeds a preset threshold, regions
with under- or over-reconstruction of color c and depth d are intensively corrected. SDXL gradients are
usually large and unstable, and high average gradient values in this case may cause normal areas to still be
densified. An intuitive method is leveraging the gradient clip technical to handle this issue, previous related
work (Pan et al., 2024) has explored for NeRF-based method, which is not very suitable for 3D Gaussian
splatting. Thus, we propose an improved gradient clip method for 3D Gaussian splitting. Specifically, we still
use the (Pan et al., 2024) method for gradient clipping of color c. For depth d, we calculate its scaling factor
independently for each depth element and perform pixel-by-pixel pruning. The pruning gradient of depth ĝd

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

“A DSLR photo of the Imperial State Crown of England.”

“A DSLR photo of a Schnauzer wearing a pirate hat .”

DreamFusion(SDS) Fantasia3D ProlificDreamer (VSD) LucidDreamer (ISM) Ours

Figure 4: Comparison with state-of-the-art baseline methods in text-to-3D generation. Experimental
results show that our method can generate 3D content that is more consistent with input text prompts and has
more detailed details. All results of this work are generated on a single A100 GPU. Please zoom in to see
more details.

TSM (Ours)

ISM

TSM (Ours)

ISM

Stable Diffusion 2.1 base Stable Diffusion XL 1.0
“A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.” “Zombie JOKER, head, photorealistic, 8K, HDR.”

Figure 5: Comparison with the generation results of different stable diffusion models. Compared with
ISM, our TSM performs better in the clarity and consistency of local details. Please zoom in to see the circled
region for more details.

can be expressed as:

ĝd = gd ·min

(
s

|gd|
, c

)
, (9)

where gd is the gradient of depth, s is scale of Gaussian and c is the threshold. We can ensure that the updated
direction of the depth gradient remains unchanged and has no effect on the gradient of the normal region.

4 EXPERIMENTS

4.1 QUALITATIVE RESULTS

Text-to-3D Generation. We show the generated results of Dreamer XL in Figure 1. The results show that
Dreamer XL is capable of generating high-quality 3D content accurately based on the input text, and it
performs exceptionally well in producing realistic and complex appearances, effectively avoiding common
issues such as excessive smoothing or oversaturation. For example, it can finely reproduce the texture

8
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Table 1: Quantitative evaluation. We compare with recent text-to-3D conversion methods. CLIP-score is
used to measure the alignment between text and 3D content, while A-LPIPS is used to evaluate the degree of
artifacts caused by inconsistencies in 3D content.

Methods CLIP-Score ↑ A-LPIPS ↓
CLIP-L/14 OpenCLIP-L/14 VGG Alex

DreamFusion 0.232 0.165 0.081 0.080
Fantasia3D 0.233 0.207 0.077 0.082
ProlificDreamer 0.255 0.221 0.178 0.103
LucidDreamer 0.278 0.234 0.065 0.059
Ours (SD 2.1) 0.281 0.243 0.059 0.053
Ours (SDXL) 0.297 0.312 0.052 0.041

𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.7 𝛾 = 0.9

“A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.”

Figure 6: Ablation on offset rate. γ = 0.3 achieves optimal visual quality and ensures high consistency
between the generated results and the original text.

details of objects like teacups. Moreover, our framework can generate objects that are close to reality and
create imaginary ones. This flexibility offers possibilities for various application scenarios. Comparison
with State-of-the-Art Methods. We compare our approach with four state-of-the-art text-to-3D baselines:
DreamFusion (Poole et al., 2022) proposes Score Distillation Sampling (SDS) leveraging a pre-trained 2D
text-to-image diffusion model for text-to-3D synthesis; Fantasia3D (Chen et al., 2023) disentangle geometric
and appearance attributes to simulate real-world physical environments; ProlificDreamer (Wang et al., 2024)
introduces Variational Score Distillation (VSD), a particle-based variational framework to address issues of
oversaturation, oversmoothing, and low diversity; LucidDreamer (Liang et al., 2023) introduces Interval Score
Matching (ISM), utilizing deterministic diffusion trajectories and interval-based score matching to alleviate
oversmoothing problems, and employs a 3D Gaussian splatting for 3D representation. The comparison results
are shown in Figure 4. The results generated by our method are significantly clearer than other baseline
results. For example, the crown shows a more precise geometric structure and a more realistic color, and the
Schnauzer’s hair texture and overall body shape show obvious advantages. We can observe that our method
significantly outperforms existing methods in both visual quality and consistency.

Comparison with ISM in detail. As shown in Figure 5, we show the generation results of ISM and TSM
using the same prompt on different stable diffusion models. In Iron Man, it can be seen that the ISM has
significant inconsistencies on the left and right sides of the neck, while our TSM maintains consistency in
this region. In Joker, the ISM has shallower wrinkles on the head compared to our TSM, which is due to the
averaging effect caused by error accumulation. Furthermore, ISM also shows significant inconsistency in the
neck region.

4.2 QUANTITATIVE RESULTS

9
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w/o gradient clipping

w/ gradient clipping
Figure 7: Ablation on pixel-by-
pixel gradient clipping.

Currently, there are no standardized evaluation metrics specifically ded-
icated to text-to-3D. This is primarily due to the subjective nature of the
task and the presence of multiple dimensions that are difficult to quan-
tify. To maintain consistency with existing text-to-3D evaluation methods,
we adopt CLIP-based metrics for quantitative analysis. Specifically, we
employ variants of the CLIP model, including OpenCLIP ViT-L/14 and
CLIP ViT-L/14, to calculate the average CLIP score between the text and
its corresponding 3D render. Furthermore, considering the importance
of view consistency, we follow previous work calculating A-LPIPS to
determine view consistency, quantifying visual artifacts caused by view
inconsistency through calculating the average LPIPS score between ad-
jacent 3D scene images. We adopt A-LPIPS as an alternative metric to
quantify view consistency, and present it alongside the CLIP scores in our
report.

Consistent with the qualitative results, we compare our method with four
state-of-the-art text-to-3D methods. Compared with the current best-
performing LucidDreamer, our method improves CLIP-Score (CLIP-L/14)
and CLIP-Score (OpenCLIP-L/14) by 6.83% and 33.33% respectively.
At the same time, our method reduces the performance by 20.00% and
30.51% respectively on the A-LPIPS (VGG) and A-LPIPS (Alex) evalu-
ation metrics, showing significant advantages in image authenticity and visual consistency. Overall, these
results highlight the superior performance of our approach in terms of image quality and text consistency.

4.3 ABLATION STUDY

Ablation on offset rate γ. We investigate the impact of the offset rate γ on the generated results (Figure 6),
and the best results are achieved when γ is set to 0.3. If γ is set too low, it will result in a loss of color details;
if it is set too high, it may destroy the consistency between the generated results and the text. That is, when µ
is too close to s, the average effect is too heavy, and its effect is similar to that of ISM. When µ is too close to
t, although the cumulative error is reduced, the updated gradient will become very small, easily causing the
model to fall into a local optimum. However, for simple scenes, the results are best when µ is close to t, and
the analysis in Appendix A.4.

Ablation on pixel-by-pixel gradient clipping. As shown in Figure 7, when pixel-by-pixel gradient clipping
is not applied, the instability of the gradients causes abnormal splitting and duplication in normal areas,
filling the depth map with noise and making it rough and uneven, thus making the entire facial appearance
abnormal. However, after applying pixel-by-pixel gradient clipping, it is clearly observed that the depth
map becomes smoother, the texture returns to normal, and the normal facial features are displayed. This
comparison demonstrates the effectiveness of our method. For more ablation please refer to Appendix A.4.

5 CONCLUSION

In this work, we investigate the inconsistency problem produced by ISM during the generation of 3D results.
To alleviate this problem, we introduce TSM, which leverages dual paths to reduce error accumulation and
thereby improve inconsistency. In addition, to simplify the generation of a high-resolution training process,
we adopt SDXL as guidance and propose a pixel-by-pixel gradient clipping method to alleviate the abnormal
splitting of normal regions in 3D Gaussian splatting caused by SDXL gradient instability. Our experimental
results demonstrate that our method can effectively generate high-resolution, high-quality 3D results.

10
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

During the optimization process, we train the model for 2500 iterations. To optimize the 3D Gaussian model,
we set the learning rates for opacity, scaling, and rotation to 0.05, 0.005, and 0.001 respectively. Furthermore,
the learning rate of the camera encoder is set to 0.001. During training, RGB images and corresponding
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depth maps from 3D Gaussians are used for rendering. Gaussian densification and pruning processes are
performed between 100 and 1500 iterations. We select the publicly available stable diffusion of text to images
as a guidance model and choose the checkpoint of Stable Diffusion XL1. The guidance scale is 7.5 for all
diffusion guidance models.

A.2 THE WORKFLOW OF ISM AND TSM

As shown in Figure 8, we present ISM and our TSM workflow.
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Figure 8: The Workflow of ISM and TSM.

A.3 MORE QUALITATIVE RESULTS

As shown in Figure 9, we present additional generation results. It can be observed that our Dreamer XL is
capable of generating 3D models that are visually high-quality, closely approximate reality, and maintain
good consistency.

A.4 MORE ABLATION STUDY

Ablation on offset rate γ for simple scene Here, we provide more ablation on offset rate γ for simple
scene. As shown in Figures 10 and 11, if γ is set too low, the similarity between text and images decreases,
and the images appear unrealistic. Raising γ can mitigate the problem of accumulated errors, but it also leads
to a loss of some details.

Ablation on pixel-by-pixel gradient clipping Here, we present additional result in Figures 12 and 13. In
Figure 12, once gradient clipping is not applied, the generated 3D model tends to be darker in color and lacks
realism. In Figure 13, without gradient clipping, the generated objects appear more blurry, and it is evident
from the depth map that there are numerous noise and spikes. As shown in Figure 14 for SD 2.1, there are
some minor changes but they are not obvious.

A.5 INTUITIVE PROOF OF CONSISTENCY IN TSM

Here, we provide an intuitive argument to illustrate the underlying principles. Consider the DDIM inversion
process, where cumulative errors lead to deviations in the approximation x̂0. TSM minimizes the error
accumulation inherent in DDIM inversion by starting from the same starting point. TSM maintains a stable
approximation of x̂0 across different perspectives. This synchronization reduces the variance in feature

1https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
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“A DSLR photo of A Rugged, 
vintageinspired hiking boots with a 

weathered leather finish, best quality, 
8K, HD.”

“a DSLR photo of A very beautiful tiny 
human heart organic sculpture made 
of copper wire and threaded pipes, 

very intricate, curved, Studio lighting, 
high resolution.”

“A durian, 8k, HDR.” “Marble bust of Theodoros 
Kolokotronis.”

“A DSLR photo of 
a Cream Cheese Donut.”

“a DSLR photo of 
a cat wearing armor.”

“A pillow.” “A ripe strawberry.”“a red apple.”

“A plate piled high 
with chocolate chip cookies.”

“A 3D model of an adorable cottage 
with a thatched roof.”

“A DSLR photo of A Stylish Air Jordan 
shoes, best quality, 8K, HD.”

“A Gundam model, with detailed panel lines and decals.” “An action figure of Iron Man, Marvel’s Avengers, HD.”

Figure 9: More results generated by our Dreamer XL framework. Please zoom in for details.

𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.7 𝛾 = 0.9

“The vibrant red rose, with delicate petals and thorny stem. ”

Figure 10: More Ablation on offset rate γ for simple scene.
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𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.7 𝛾 = 0.9

“A durian, 8k, HDR. ”

Figure 11: More Ablation on offset rate γ for simple scene.

w/o gradient clipping w/ gradient clipping

Figure 12: More Ablation on pixel-by-pixel gradient clipping.

w/o gradient clipping w/ gradient clipping

Figure 13: More Ablation on pixel-by-pixel gradient clipping.

ISM w/o gradient clipping TSM w/o gradient clipping

ISM w/ gradient clipping TSM w/ gradient clipping

Figure 14: textbfMore Ablation on pixel-by-pixel gradient clipping for SD 2.1.

representations and stylistic attributes, leading to more consistent optimization outcomes. Next, we discuss
in detail the optimization objectives and error accumulation of ISM (single-path optimization) and TSM
(dual-path optimization).

For ISM, the optimized goal is the minimum predicted noise from noise latent xs and xt. The noise latent can
be obtained from Equation (2) and then using the pre-trained stable diffusion model to predict noise. During
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the inversion process of DDIM, xs is approximated by the prediction noise at s− 1, and xt is approximated
by the prediction noise at s. For simplicity, we can regard the optimization goal of ISM as minimizing noise
latent, thus the accumulated error generated by ISM during the optimization process can be expressed as:

xt − xs =
√
αt

(
xs −

√
1− αsϵϕ(xs, s, ∅)√

αs

)
+

√
1− αtϵϕ(xs, s, ∅)

−
√
αs

(
xs−1 −

√
1− αs−1ϵϕ(xs−1, s− 1, ∅)

√
αs−1

)
+
√
1− αsϵϕ(xs−1, s− 1, ∅)

(10)

For our TSM, we can also give similar expresses as:

xt − xµ =
√
αt

(
xs −

√
1− αsϵϕ(xs, s, ∅)√

αs

)
+
√
1− αtϵϕ(xs, s, ∅)

−√
αµ

(
xs −

√
1− αsϵϕ(xs, s, ∅)√

αs

)
+

√
1− αµϵϕ(xs, s, ∅)

(11)

Compared with ISM, which is optimized for a single path, TSM is optimized for a dual path starting from the
same noise latent. We show that the accumulated error is smaller in TSM, as shown below.

Definition 1 (Accumulated Error in DDIM Reverse Process) The additional accumulated error during the
DDIM reverse process is the difference between two noise estimates from consecutive iterations. Let xi+1

and xi represent the noise approximate at iterations i+1 and i respectively. The additional accumulated error
η is given by:

η = x(i+1)δt − xiδt (12)

where δt denotes the time step size in the iteration process.

Proposition 1 (TSM has lower additional accumulated error) Consider three timesteps 0 < s < µ < t,
where µ is defined as µ = γ(t− s) + s, with γ ∈ [0, 1]. If the additional accumulated error of ISM, ηISM, is
higher than additional accumulated error of TSM, ηTSM, then, we have:

ηISM > ηTSM ⇒ (xt − xs)− (xt − xµ) > 0 ⇒ xµ − xs > 0, (13)

Proof: Assume xµ ≤ xs. Utilizing Equation (10) and Equation (11), we aim to demonstrate that:

√
αµ

(
xs −

√
1− αsϵϕ(xs, s, ∅)√

αs

)
+

√
1− αµϵϕ(xs, s, ∅)

≤
√
αs

(
xs−1 −

√
1− αs−1ϵϕ(xs−1, s− 1, ∅)

√
αs−1

)
+

√
1− αsϵϕ(xs−1, s− 1, ∅).

(14)

Where α represents a set of timesteps with a strictly monotonically reducing noise schedule, hence αs−1 >
αs > αµ. The first term can be written as √αµx̃

s
0 and

√
αsx̃

s−1
0 , where the coefficients ensure the correct

scale. The latter term x̃s
0 iterates one more time than x̃s−1

0 , thus accumulating one more iteration of error.
Therefore, x̃s

0 > x̃s−1
0 , which is contrary to the assumption. Considering the ϵϕ terms, due to the inversion

process of DDIM, ϵϕ(xs, s, ∅) ≈ ϵϕ(xs−1, s − 1, ∅) and
√

1− αµ >
√
1− αs. This also contradicts the

assumption. Therefore, our initial assumption xµ ≤ xs must be false. Consequently, we conclude that
xµ > xs, thus proving the theorem.
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A.6 LIMITATIONS

While our method can generate high-quality and relatively realistic 3D models, qualitative results show a
limitation in our approach regarding light handling. Specifically, we have observed anomalous blue reflections
in many scenes. Through our experiments, we have identified this problem as primarily caused by our use
of SDXL. When SDXL is applied, the blue channel values in rendered images tend to be large, resulting in
numerous areas exhibiting abnormal blue hues after normalization. Despite our attempts, including parameter
adjustments and different normalization methods, we have yet to find a viable solution. We speculate that
this may be attributed to the gradient or training data of SDXL. Additionally, it’s worth noting that while our
work aims to enhance the quality of generated models, it may inadvertently contribute to the advancement of
deepfake technology.
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