
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNDERSTANDING THE DESIGN PRINCIPLES OF LINK
PREDICTION IN DIRECTED SETTINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Link prediction is a widely studied task in Graph Representation Learning (GRL)
for modeling relational data. Early theories in GRL were based on the assumption
of a symmetric adjacency matrix, reflecting an undirected setting. As a result,
much of the following state-of-the-art research has continued to operate under
this symmetry assumption, even though real-world data often involves crucial in-
formation conveyed through the direction of relationships. This oversight limits
the ability of these models to fully capture the complexity of directed interactions.
In this paper, we focus on the challenge of directed link prediction by evaluating
key heuristics that have been successful in the undirected settings. We propose
simple but effective adaptations of these heuristics to the directed link predic-
tion task and demonstrate that these modifications yield competitive performance
compared to leading Graph Neural Networks (GNNs) originally designed for undi-
rected graphs. Through an extensive set of experiments, we derive insights that
inform the development of a novel framework for directed link prediction, which
not only surpasses baseline methods but also outperforms state-of-the-art GNNs
on multiple benchmarks.

1 INTRODUCTION

Link prediction is a task that seeks to uncover missing connections (e.g. links), between entities (e.g.
vertices) in a graph, and has many industrial applications. For example, an e-commerce platform
might represent their users and items as vertices, and the transactions users make as edges from user
to item. In this setting, a recommendation system that predicts items that users might like to buy can
readily be cast as a link prediction task (Chamberlain et al., 2022; Wang et al., 2023). Beyond direct
applications, link prediction is often used in unsupervised settings to construct vertex representations
that can then be used in various downstream tasks, such as fraud or toxicity detection (Pal et al.,
2020; El-Kishky et al., 2022; Liu et al., 2020; Zhang et al., 2022).

Various methodologies for link prediction have been developed and can be broadly classified into
three categories. The first category, similarity-based heuristics, involves computing a score for each
pair of nodes to quantify their similarity (Wang et al., 2007). These scores are then ranked, with
higher scores indicating a greater likelihood of connection between node pairs. The second category
encompasses probabilistic and maximum likelihood models (Wang et al., 2007; Clauset et al., 2008;
Guimerà & Sales-Pardo, 2009). Although these models have demonstrated effectiveness on smaller
datasets, they tend to be computationally intensive and face scalability challenges in large real-world
graphs. The third category includes node representation learning methods, where an encoder learns
to represent each node as a vector in an embedding space, and a decoder processes pairs of node
embeddings to generate a score that quantifies the likelihood of a link existing. These embeddings
are optimized so that nodes with similar neighborhood structures are represented similarly in the em-
bedding space. Node representation methods can be further divided into three subcategories based
on the choice of encoder: random walk-based approaches (Perozzi et al., 2014; Trouillon et al.,
2016; Cao et al., 2018; Kazemi & Poole, 2018), matrix decomposition techniques (Acar et al., 2009;
Kazemi & Poole, 2018), and Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hamilton
et al., 2017; Ying et al., 2018; Veličković et al., 2017).

Although link prediction is valuable across many applications, most widely used methods assume
that links are undirected. In many settings, this assumption makes sense. For example, an edge

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An illustrative evaluation demonstrating the impact of incorporating directionality
into the design of predictive models. We generate a directed ring graph G = (V, E). Each node
u ∈ V is initialized with a two-dimensional embedding e

(0)
u . We then train GraphSage (Hamilton

et al., 2017), to update these embeddings using two different decoders: (1) a undirected decoder,
and (2) a directed decoder, to perform link prediction. By visualizing the output node embeddings
in both cases, we observe that the structural representation of nodes is significantly enhanced when
using a directed decoder, emphasizing the importance of directionality in the model design.

in the Facebook friendship graph will be undirected, because friendships are bidirectional on the
platform. As a result, it is common to transform directed graphs into undirected ones. However, this
undirected transformation does not make sense in all settings because an edge’s directionality can
denote the semantics of that edge, which is often crucial for accurately modeling interactions.

Intuitively, directed edges allow us to differentiate a node’s role as either a source or a target within a
network, which provides finer granularity when modeling interactions. In many real-world contexts,
this asymmetry is meaningful. For instance, consider a transaction network where the goal is to
identify fraudulent behavior. Suppose there are three types of participants: a parent, a teenager, and
a fraudster. Let’s assume the model aims to understand the identity and behavior of the teenager.
A money transfer from a parent to a teenager represents one type of pattern, while a transfer from
a teenager to a fraudster at the same monetary amount represents another. If we look at a scenario
where the teenager is receiving money from the parent, this pattern might be considered safe—such
as receiving an allowance. However, if the teenager is instead sending the same amount to a fraud-
ster, this could be a red flag. By taking into account the direction of these transactions, we can
more effectively distinguish between benign and suspicious patterns. In a directed setting, the di-
rectionality conveys vital information about who initiates and who receives a transaction, which
can significantly impact downstream predictions. Conversely, if we convert the originally directed
network into an undirected one by symmetrizing the adjacency matrix, the sender/receiver roles of
the teenager in these transactions would be lost, potentially leading to a misinterpretation of the
interactions and harming predictive performance.

To make this point clear, we have constructed a directed ring graph and present it in Figure 1, as
well as embeddings generated using both an undirected and a directed graph decoder. We clearly
observe that the asymmetric, or directed, decoder is more capable of replicating the expected planar
positioning, while the undirected decoder generates a set of embeddings where almost all vertices
collapse together in the embedding space. This example helps us to develop the intuition that using
undirected link predictors in directed settings may lead to poor performance.

In this paper, we take this intuition and make it concrete by exploring the problem of directed link
prediction. Along the way, we gain insights into the design principles needed for the development
of link predictors that are applicable to directed settings. The key contributions of our work are as
follows:

- We establish a robust comparison framework by constructing three types of baseline models:
heuristic approaches, Multi-Layer Perceptron (MLP), and GNN based models and their variants
for directed settings.

- We conduct extensive ablation experiments to extend the known design principles of link pre-
diction to include their directed variants, and study the impact of directionality on the predictive
performance for each such design principle.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

- Based on the design principles determined, we develop DirLP, a novel model for directed link
prediction that significantly outperforms the baseline models.

This work not only establishes a new state-of-the-art in directed link prediction but also offers ac-
tionable insights that inform the design of future models. Our contributions aim to bridge the gap
between undirected and directed link prediction research, providing strong foundations for future
work in this important area.

2 RELATED WORK

For the review of literature, we focus on similarity-based heuristics for link prediction, due to their
practical applicability, and Graph Neural Networks (GNNs), which represent the state-of-the-art in
the field.

Similarity-based Heuristics. A variety of similarity-based heuristics have been developed for the
task of link prediction, primarily focusing on quantifying node similarity to predict the likelihood
of a connection. One of the earliest and simplest methods is the Common Neighbors (CN) heuristic,
where the number of shared neighbors between two nodes is used as an indicator of their likelihood
to form a link. Extensions of this idea include the Jaccard Index (JI) and Adamic-Adar index (AA),
which provide weighted variations by considering the degree of shared neighbors Adamic & Adar
(2003); Liben-Nowell & Kleinberg (2007). The Preferential Attachment (PA) heuristic, based on
the idea that high-degree nodes are more likely to attract additional links, is another widely used
method Newman (2001). Local Path index (LP) (Lü et al., 2009) expands upon the idea of common
neighbors by considering paths of length two between node pairs. It balances between global and
local information, providing a broader view of node similarity while still being computationally fea-
sible for large graphs. Resource Allocation index (RA) (Zhou et al., 2009) is another similarity-based
measure, where the likelihood of a link is determined by how resources (or connections) are shared
between two nodes via their common neighbors. It gives higher weight to common neighbors with
lower degrees, assuming that connections from lower-degree nodes are more significant. While these
heuristics are computationally efficient and effective in many settings, they are primarily designed
for undirected graphs and tend to struggle when applied to directed graphs. These methods also
assume that local structural properties of the graph are sufficient for prediction, limiting their ability
to capture more complex relational patterns. Despite these limitations, similarity-based heuristics
remain popular due to their simplicity and interpretability, often serving as strong baselines for more
advanced models like GNNs.

Graph Neural Networks (GNNs). Most of the popular GNNs (Kipf & Welling, 2016; Hamilton
et al., 2017; Veličković et al., 2017; Ying et al., 2018) primarily focus on node representation in
undirected graphs. Several studies have specifically addressed various aspects of directed graphs.
For example, GatedGCN (Li et al., 2015), which employs separate aggregations for in-neighbors
and out-neighbors in directed graphs, has proven effective for solving the genome assembly prob-
lem (Vrček et al., 2022). Additionally, research has aimed to generalize spectral convolutions for
directed graphs Ma et al. (2019); Monti et al. (2018); Tong et al. (2020b;a). A notable contribution
is made by Zhang et al. (2021b), who present a spectral method that utilizes a complex matrix for
graph diffusion, where the real part represents the undirected adjacency and the imaginary part cap-
tures the edge direction. Building on their work, Geisler et al. (2023) proposed a positional encoder
that integrates transformers into directed graphs. More recently, Rossi et al. (2024) emphasized that
effective link prediction in directed graphs necessitates distinct aggregation strategies for incoming
and outgoing edges to fully leverage directional information. They proposed a novel and generic
Directed Graph Neural Network (Dir-GNN) that can be integrated with any message-passing neural
network by implementing separate aggregations of incoming and outgoing edges.

Once the learned node embeddings are obtained, the link prediction problem can be framed as a
supervised binary classification task. In this context, the input consists of a pair of node embeddings
corresponding to the link of interest, while the output is a score that quantifies the probability of
the existence of that link. Various decoders have been proposed to achieve this classification, each
with distinct methodologies. One of the simplest and most widely used decoders is the dot product
decoder (Kipf & Welling, 2016). However, this method fails to account for the directionality of
links since the dot product is commutative. For instance, in a transactional context, the likelihood of
person A transferring money to person B is treated the same as that of person B transferring money

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to person A, which hinders accurate predictions of money flow. To address the limitations of the dot
product, Bilinear Decoders introduce a learned weight matrix, providing a more nuanced approach
to edge prediction (Yang et al., 2014). Another method for quantifying the similarity between two
nodes is the distance-based decoder, which predicts edge existence based on the distance between
node embeddings (Ou et al., 2016). Matrix factorization-based decoders decompose the adjacency
matrix into low-rank matrices representing node embeddings. The reconstructed adjacency matrix
can then be used for link prediction (Tang et al., 2015). Neural Tensor Network (NTN) (Socher et al.,
2013) replaces the standard linear layer with a bilinear tensor layer, directly relating the two nodes.
A novel decoder inspired by Newton’s theory of universal gravitation was introduced by Salha et al.
(2019). This approach uses node embeddings to reconstruct asymmetric relationships, facilitating
effective directed link prediction.

3 BACKGROUND AND PRELIMINARIES

In this section we introduce the notation employed throughout the paper in addition to metrics and
datasets used for experiments. Next, we provide an overview of two main frameworks adapted
to address directed link prediction problem in our analysis: (1) similarity-based heuristics and (2)
Graph Neural Networks (GNNs).

Notation. Given a graph G = (V, E) where V and E denote the set of vertices and edges respectively,
directed link prediction refers to the task of predicting the existence of an edge from u ∈ V to v ∈ V .
The adjacency matrix of G is denoted by A, where Auv = 1 if there is a directed edge from node
u to v, and Auv = 0, otherwise. Additionally, we denote the neighbourhood of a given node u as
N (u) throughout the paper. Each node u ∈ V is associated with a feature vector x ∈ Rd where d is
the feature dimensionality.

Metrics. In general, to evaluate the prediction performance of a given method, the set of edges is
divided into disjoint sets of training and testing splits; Etrain and Etest, respectively. In this paper,
we evaluate the predictive performance mainly by mean reciprocal rank (MRR), which is calculated
as the average of the reciprocal ranks of the true positives in the test set. The MRR is formulated as
follows:

MRR =
1

|Etest|
∑

(u,v)∈Etest

1

rank(u, v)
, (1)

where rank(u, v) is the rank of the true link (u, v) among possible candidate links involving node u.

Datasets. In our experiments, we evaluate directed link prediction performance of various ap-
proaches using six benchmark datasets: CORA (Yang et al., 2016), CITESEER (Yang et al., 2016),
CHAMELEON (Rozemberczki et al., 2021), SQUIRREL (Rozemberczki et al., 2021), BLOG (He et al.,
2022), WIKICS (Mernyei & Cangea, 2020). All datasets are directed and come from the PYTORCH
GEOMETRIC SIGNED DIRECTED software package (He et al., 2024). We use the directed version
of CORA and CITESEER and not their commonly used undirected versions. The details regarding
datasets are provided in Appendix A.

3.1 SIMILARITY-BASED HEURISTICS

In general, similarity-based heuristic methods used for link prediction assign a similarity score
S(u, v) for each pair of nodes, such that S(u, v) serves as an estimator on the likelihood of a link
between node u and node v. For example, the Resource Allocation (RA) heuristic score between
node u and v is calculated as follows:

SRA(u, v) =
∑

t∈N (u)∩N (v)

1

|N (t)|
. (2)

By definition, RA is a symmetric score function, i.e. SRA(u, v) = SRA(v, u). In order to adapt
the existing similarity scores into directed settings, we utilize directed neighborhood operator. Let
Nin(u)(Nout(u)) consists of all nodes that have a directed edge pointing toward (originating from)
node u. Formally:

Nin(u) = {v ∈ V | (v, u) ∈ E}, Nout(u) = {v ∈ V | (u, v) ∈ E}. (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Using Nin(·) and Nout(·), one can define four variants of common neighbourhood for a given node
pair u and v by Ndu

(u) ∩ Ndv
(v) where du, dv ∈ {in, out}. For example, given the set of nodes

that has an incoming link from u and has an outgoing link to v, the corresponding RA would be
calculated as follows:

SRA,in-out(u, v) =
∑

t∈Nin(u)∩Nout(v)

1

|N (t)|
. (4)

More details regarding the individual methods used in our experiments are provided in Appendix B.

3.2 GRAPH NEURAL NETWORKS (GNNS)

Encoders. Most common form of encoder used in GNNs is Message Passing Neural Networks
(MPNNs) in which vector-based messages are passed between nodes and then updated through neu-
ral networks to generate node embeddings. MPNNs initialize a set of the hidden node embeddings
h
(0)
u ,∀u ∈ V by input features, i.e., h(0)

u = xu. At the kth iteration of message passing hidden
embeddings h(k)

u for each node u ∈ V are updated as follows:

h(k+1)
u = f

(k)
update

(
h(k)
u , f

(k)
aggregate

({
h(k)
v ,∀v ∈ N (u)

}))
, (5)

where fupdate(·) and faggregate(·) are choice of differentiable functions. The final hidden embed-
dings are used as the output node embeddings e(0)u ,∀u ∈ V:

eu = h(K)
u ,∀u ∈ V, (6)

where K denotes the total number of update layers. In the functional form, an MPNN can be
summarized as follows:

fMPNN : G = (V, E) and xu,∀u ∈ V 7−→ eu,∀u ∈ V. (7)

In terms of link prediction task, MPNNs serve as an encoder that maps structural information of the
graph together with node features into a set of node embeddings.

Decoders. In the context of link prediction, the decoder is defined as f : RD×2 → R+, which
maps the embeddings for a given link to an individual score that corresponds to its likelihood to
exist. For edge-wise link-prediction it is common to use one of two link predictors: the dot product
(DP) fDP(vi, vj) = σ(eTi ej) and the hadamard product (HMLP) fHMLP(vi, vj) = fMLP(ei ◦· ej).
Both of these decoders are symmetric, (i.e. f(vi, vj) = f(vj , vi)), which is a desirable property
in undirected graphs but might not be so desirable in undirected settings. It is straight forward to
extend both DP and HMLP to directed settings through the insertion of a learnable matrix that looks
spiritually like a learnable metric tensor. Doing so, we introduce two variants we term matrix dot
product (mDP), fmDP(vi, vj) = σ(eTi Wej), and matrix HMLP, fmHMLP(vi, vj) = fMLP(Wei ◦·
ej), where W is a learnable matrix. In addition, we define a trivially asymmetric decoder named
Concat MLP (CMLP) and its matrix extension, matrix Concat MLP (mCMLP), defined as:

fCMLP = fMLP(ei∥ ej) and fmCMLP = fMLP(Wei∥ ej). (8)

4 ANALYSIS OF DIRECTIONALITY FOR LINK PREDICTION

In this section, we consider each of the design principles independently and perform experiments
that allow us to understand the impact of directionality on each one. All experiments are performed
on three different datasets: CORA, CHAMELEON, and BLOG, The results are averaged over ten runs,
and and the relevant hyperparameters are optimized using OPTUNA (Akiba et al., 2019). 1

Directed vs Undirected Graph Encoders. Traditionally, the form and structure of the graph en-
coder have been the main area of focus in the GNN literature. Thus, we explore multiple GNN
encoding architectures to understand the extent to which directionally aware graph encoders impact

1In the ablation study results presented in Tables 1-5, the best-performing version for each dataset is high-
lighted in orange.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the predictive performance. We constructed an experiment where comparing two standard graph en-
coders - a GCN and GraphSAGE – with a directionally aware convolution, DirGNN. We performed
this comparison by holding the decoder fixed and conducting a hyperparameter search over the rel-
evant hyperparameters of the encoder itself. We present the results of the experiment in Table 1.

Table 1: Encoder comparisons in terms of MRR.

Encoder CORA CHAMELEON BLOG
GCN 0.401±0.062 0.595±0.058 0.283±0.039

GraphSage 0.414±0.077 0.603±0.062 0.275±0.027

DirGNN 0.503±0.088 0.609±0.026 0.278±0.024

We observe that in two of three datasets,
DirGNN performs better than the other en-
coders. It is interesting to note that the ”up-
lift offered by more complex encoders pro-
vides only modest gains. This suggests that
in directed settings, DirGNN is a sensible first
choice as a graph encoder because it either per-

forms better than others, or is within the error bars of the best.

Directed vs Undirected Graph Decoders. Because link prediction is traditionally viewed as an
edge-wise prediction task with a link predictor taking the form f(vi, vj) → R+, we next explore
whether learning a link predictor with an asymmetric decoder (e.g., f(vi, vj) ̸= f(vj , vi)) leads to
better predictive performance.

Table 2: Decoder comparisons in terms of MRR.

Decoder CORA CHAMELEON BLOG
DP X±X 0.303±0.021 0.115±0.016

HMLP 0.178±0.046 0.261±0.047 0.113±0.024

CMLP 0.500±0.087 0.289±0.102 0.160±0.023

mDP 0.247±0.066 0.214±0.095 0.105±0.028

mHMLP 0.621±0.489 0.320±0.066 0.147±0.055

mCMLP 0.248±0.072 0.136±0.082 0.131±0.023

To explore this, we constructed an experiment
where the encoder was held fixed, and varied
the decoder over two symmetric and four asym-
metric decoders. For mathematical definitions
of all decoders, please see Section 3.2. The
results of this experiment are reported in Ta-
ble 2. We observe that asymmetric decoders
outperform symmetric ones across all three
datasets, confirming our intuition that asymme-
try is an important property to capture. Within

the asymmetric decoders, we find that both mHMLP and CMLP outperform the others. Because
mHMLP amounts to learning a pseudo-metric which can be unstable due to the many possible de-
generacies, we use CMLP in the subsequent work.

Directed vs Undirected Labeling Tricks. Labeling tricks are one technique for breaking the node-
automorphism symmetry which limits the expressivity of GNNs for link prediction Zhang et al.
(2021a). To do this, the node-features of a vertex are augmented by labels that connote some struc-
tural information. Popular labeling tricks include distance encoding (Li et al., 2020) and double
radius node labeling (Zhang & Chen, 2018). However, in this work, we consider only the directed
extension of distance encoding due to its simplicity. Indeed, the directed extension of the distance
encoding described in (Li et al., 2020) simply involves computing the distance between two vertices
in a directed fashion as defined in Equation 9. It is canonical to define a maximum distance to limit
the computational expense of path finding. In undirected settings, this maximum distance is often
on the order of 3-5 (Chamberlain et al., 2023). In directed settings, this maximum may need to be
larger to account for the fact that ddir(u, v) ≥ dundir(u, v).

Table 3: Comparison of undirected and directed
labeling tricks in terms of MRR.

Labeling CORA CHAMELEON BLOG
de3-u 0.283±0.044 0.398±0.069 0.137±0.024

de15-u 0.324±0.049 0.385±0.109 0.116±0.031

delog-u 0.270±0.049 0.392±0.116 0.120±0.017

de3-d 0.498±0.071 0.289±0.102 0.160±0.023

de15-d 0.493±0.067 0.405±0.065 0.125±0.035

delog-d 0.305±0.050 0.397±0.077 0.109±0.027

To understand the impact of a directed dis-
tance encoding on the predictive performance
of GNN, we conducted an experiment where all
modeling parameters were held fixed, and only
the labeling trick was varied. The results are
reported in Table 3. For the labeling trick, we
constructed three variants of both the directed
and undirected distance encodings. These vari-
ants are de3, de5, delog; which correspond to
distance encodings with a maximum distance
of 3, 15, and no maximum but log-transformed.

The -d and -u labels indicate that the method is directed or undirected, respectively. In these exper-
iments, we observe that the directionality provides improvements across all datasets, but the size of
impact varies significantly. In the example of CORA, we observe a 50% improvement, while both
CHAMELEON and BLOG have much more modest gains. Interestingly, we find that the maximum
distance cutoff does not correlate in a predictable fashion with performance. Based on these results,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

we conclude that directionality should be accounted for when using a labeling trick during modeling,
and that the maximum distance cutoff should be carefully tuned.

Directed vs Undirected Negative Sampling. We next turn our attention to exploring the effects
of directionality in negative sampling. Link prediction is traditionally constructed as a binary clas-
sification task, where positive samples are observed edges and negative samples are unobserved
edges. Enumerating all negative samples is intractable, so it is common to sample a subset of those
negatives for training. It is possible to generate negative samples in either a directed or an undi-
rected fashion. Directed negative sampling generates a dataset Dn = {(u, v) : u, v ∼ V} with
(u, v) ̸= (v, u). In undirected negative sampling, Dn = {(u, v) : u, v ∼ V} with (u, v) = (v, u).

Table 4: Comparison of undirected and directed
negative sampling in terms of MRR.

Sampling CORA CHAMELEON BLOG
Undirected 0.48±0.12 0.60±0.07 0.27±0.03

Directed 0.50±0.09 0.61±0.03 0.28±0.02

To explore this design principle, we constructed
an experiment where we held the model pa-
rameters fixed, and altered only the negative
sampling strategy. In this experiment we used
DirGNN as the encoder, CMLP as the decoder,
de15 as the labeling method, and all structural

features. The results for this experiment are presented in Table 4. We note across all three datasets
that directed negative sampling provides a lift in MRR, although in two of the three datasets, the lift
is modest. We conclude that there is evidence to support the usage of directed negative sampling,
but that these effects are smaller than other design principles.

Directed vs Undirected Structural Features. Previous work has shown that the inclusion of edge-
wise structural features, such as the number of shared common neighbors at k-hops, leads to sig-
nificant performance improvements for link prediction (Zhang et al., 2024; Ai et al., 2022; Zhang
& Chen, 2018). Indeed, this intuitively makes sense because these structural features are the build-
ing blocks for heuristic similarity measures such as Adamic-Adar or Resource-Allocation, both of
which represent strong baselines in undirected link prediction settings. The definition of our struc-
tural features can be found in Equations 13-15.

Table 5: Comparison of undirected and directed
structural features in terms of MRR.

SFs CORA CHAMELEON BLOG
undirected 0.309±0.051 0.348±0.020 0.174±0.020

directed 0.412±0.064 0.534±0.038 0.251±0.033

To understand whether directionality affects the
performance of models that include structure
features, we constructed an experiment where
we used DirGNN as the encoder, and CMLP
as the decoder, while varying the structural fea-
tures. The results are reported in Table 5. We
observe that across all three datasets, directed

structural features provide a significant improvement over their undirected variants. In percentage-
increase terms, we find an uplift of 30% to 50% through the inclusion of directionality, indicating
that this is a significant design principle. The improvement is larger than the associated uncertainties,
giving us confidence that this improvement is robust.

5 PROPOSED MODEL

Based on the insights drawn through the experiments conducted on analyzing directionality, we
propose a framework, namely DirLP, for directed link prediction. DirLP features the following key
components: A directed labeling trick, a directed encoder, a directed structure feature extractor, and
an asymmetric decoder. An overview of model architecture is provided in Figure 5. In the remainder
of this section, we describe each element and how they’re combined to form DirLP.

We begin with the directed labeling trick, which injects structural information into our graph en-
coder, and is defined as:

lt =
[
dδ(t, v)∥dδ(t, v)∀v ∈ V

]
(9)

where dδ is the truncated graph distance defined as dδ(t, v) = min(δ, d(t, v)), t is the landmark
vertex, and δ is the maximum distance. For DirLP, we use two fixed landmarks.

We utilize Directed Graph Neural Network (DirGNN) as encoder, which aggregates messages
from incoming and outgoing edges separately for each node, and obtain layer updates by a non-
parametric combinator function (Rossi et al., 2024). More formally, DirGNN initializes the hidden
node embeddings by intermediate node features, i.e., h(0)

u = x′
u for all u ∈ V . With our choices of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

𝒢

X

ℰ− Z

EX′

ŷ

Negative
Sampling

Labelling
Trick

Loss
Function

Edge-wise Structural
Feature Extraction

Encoder: DirGNN

D
ecoder

in-aggregator

out-aggregator

combinator

union intersection

rightleft

 : input graph 𝒢 = (𝒱, ℰ)

 : set of negative edgesℰ−
 : input node featuresX ∈ ℝ|𝒱|×draw

 : intermediate node featuresX′ ∈ ℝ|𝒱|×(draw+dlabel)

 : node embeddings computed by encoder E ∈ ℝ|𝒱|×denc

 : directional edge featuresZ ∈ ℝ(|ℰ|+|ℰ−|)×dstr

 : predictionsŷ ∈ ℝ|ℰ|+|ℰ−|

 : number of raw input featuresdraw

 : encoder dimensionalitydenc
 : number of structural edge featuresdstr

glossary
 : number of labelling trick featuresdlabel

Figure 2: Overview of DirLP. Given the input graph G = (V, E) and node features x ∈ Rdraw ,∀u ∈
V , DirLP follows a series of steps to predict directed links. First, a set of negative edges E− is
generated. Next, for each edge (u, v) in the set E ∪ E−, structural edge features z(u,v) ∈ Rdstr are
computed. Then, directional labels are assigned to each node u ∈ V , and intermediate node features
x′
u ∈ Rdraw+dlabel are constructed by concatenating the original node features with the directional

labels. The model then applies DirGNN message passing to produce node embeddings eu ∈ Rdenc

for u ∈ V . For each edge (u, v) in E ∪ E−, the edge features are concatenated with the node
embeddings of the edge’s endpoints. Finally, these concatenated embeddings are passed through an
MLP followed by a sigmoid activation function to make predictions.

aggregation and update functions, GraphSage (Hamilton et al., 2017) and convex combination (Rossi
et al., 2024), respectively, at the kth layer of encoder node embeddings h(k)

u are updated as follows:

m
(k+1)
u,in = W

(k)
in,selfh

(k)
u +W

(k)
in

∑
v∈Nin(u)

h
(k)
v

|Nin(u)|
(10)

m
(k+1)
u,out = W

(k)
out,selfh

(k)
u +W

(k)
out

∑
v∈Nout(u)

h
(k)
v

|Nout(u)|
(11)

h(k+1)
u = α×m

(k+1)
u,in + (1− α)×m

(k+1)
u,out , (12)

where W
(k)
in ,W

(k)
in,self ,W

(k)
out,W

(k)
out,self are learnable parameters and α is a hyperparameter that

controls the trade-off of emphasis between incoming and outgoing edges. In our experiments, we
set α = 0.5 for all datasets to equally treat directions. The node embeddings are set to final layer
output, i.e., eu = h

(K)
u ,∀u ∈ V , where K denotes the total number of update layers.

We perform edge-wise structural feature extraction to incorporate the directionally aware struc-
tural information at the edge-level. We define a set of neighbourhood directionality sequences at
length n, Sn = {(s1, . . . , sn) : ∀si ∈ {in, out}}. Now, for a given node u and directionality se-
quence s = (s1, . . . , sn), we define directional neighbourhood N dir

s (u) such that v ∈ N dir
s (u), if

and only if v is reachable from u with an n-step walk where ith step is in the direction of si. For an
edge (u, v), we compute the cardinality of the union (U) and intersection (I) of the directed neigh-
borhoods of endpoints, in addition to the individual neighbourhoods of left (L) and right (R) side as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

follows:

zU(u,v) = [|Ns1(u) ∪Ns2(v)|]s1,s2∈⋃N
n=1 Sn , zL(u,v) = [|Ns(u)|]s∈⋃N

n=1 Sn , (13)

zI(u,v) = [|Ns1(u) ∩Ns2(v)|]s1,s2∈⋃N
n=1 Sn , zR(u,v) = [|Ns(v)|]s∈⋃N

n=1 Sn , (14)

zdir(u,v) = zU(u,v)∥ zI(u,v)∥ zL(u,v)∥ zR(u,v), (15)

where N is the maximum radius. Next, we compute the undirected versions over symmetrized
adjacency matrix that define neighbourhood Nk(u) which involves nodes at k-hop distance to a
given node u:

zundir(u,v) = [|Nk(u) ∪Nk(v)|]Nk=1∥[|Nk(u) ∩Nk(v)|]Nk=1∥[|Nk(u)|]Nk=1∥[|Nk(v)|]Nk=1. (16)

Finally, the complete edge feature vector is obtained by concatenating the directed and undirected
structural features; z(u,v) = zdir(u,v) ∥ z

undir
(u,v) .

We employ a simple feedforward network as decoder that concatenates the edge features and node
embeddings of source and target node and performs linear transformations through a Multi-layer
Perceptron (MLP):

ŷu,v = σ
(
fMLP

(
zu,v ∥ eu∥ ev

))
, (17)

where fMLP(·) is a feed forward network and σ is the sigmoid function.

Expressivity. Being able to represent edge direction through an asymmetric decoder and including
information about directed triangle counts, DirLP is capable of distinguishing edges that conven-
tional MPNNs are not able to which is stated by Theorem 5.1.

Theorem 5.1 Let MsGNN be the family of GNNs defined by Equation 7 equipped with a symmetric
decoder and augmented by undirected structural features. Additionally, let MDirLP be family of
all models defined by Equation 17. MDirLP is strictly more powerful than MsGNN (MsGNN ⊂
MDirLP).

This makes intuitive sense because our asymmetric decoder can represent all symmetric decoders,
which allows DirLP to distinguish all links any sGNN can. We present the proof in Appendix C.

6 PRINCIPLE COMPARISON

Table 6: Comparison of baseline methods and our proposed model in terms MRR on directed link
prediction task. The top three models are highlighted as First, Second, Third. Note that The Blog
dataset does not have vertex features and therefore MLP model built from vertex features do not
apply.

CORA CITESEER CHAMELEON SQUIRREL BLOG WIKICS
LP, sym 0.315±0.065 0.303±0.073 0.235±0.013 0.102±0.005 0.096±0.021 0.661±0.011

LP, asym 0.324±0.056 0.146±0.024 0.381±0.075 0.497±0.151 0.149±0.030 0.424±0.067

RA, sym 0.356±0.07 0.293±0.049 0.194±0.069 0.087±0.013 0.082±0.021 0.358±0.074

RA, asym 0.292±0.046 0.134±0.021 0.353±0.142 0.148±0.037 0.103±0.024 0.494±0.101

AA, sym 0.353±0.067 0.254±0.048 0.239±0.016 0.103±0.005 0.096±0.023 0.285±0.033

AA, asym 0.288±0.045 0.122±0.02 0.378±0.091 0.495±0.196 0.143±0.034 0.487±0.060

MLP 0.172±0.03 0.356±0.084 0.104±0.029 0.051±0.027 - 0.019±0.006

GAT 0.087±0.036 0.115±0.043 0.150±0.026 0.088±0.038 0.057±0.011 0.094±0.010

GCN 0.402±0.062 0.208±0.048 0.270±0.043 0.260±0.018 0.080±0.025 0.277±0.047

GraphSage 0.414±0.077 0.158±0.063 0.202±0.046 0.190±0.074 0.083±0.016 0.185±0.058

DirLP 0.504±0.088 0.480±0.108 0.657±0.037 0.759±0.012 0.280±0.031 0.752±0.028

Setup. In our experiments, we generated ten sets of random splits of datasets for training, valida-
tion, and testing to facilitate 10-fold cross-validation. These dataset splits will be made publicly
available upon official publication of this work. Each of the deep-learning models was optimized
using the hyperparameter tuning framework OPTUNA (Akiba et al., 2019), with 48 optimization

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Statistical Comparison Between GraphSage and DirLP. The violin plots illustrate the
performance of GraphSage and DirLP in terms of MRR across multiple data splits.

steps performed per model to find the best-performing configurations. The optimization process was
conducted on the validation set focusing on the Mean Reciprocal Rank (MRR). The search space
of OPTUNA and tuned hyperparameter settings for all deep-learning models are provided in Ap-
pendix E. Experiments were run on an NVIDIA DGX A100 machine with 128 AMD ROME 7742
cores and 8 NVIDIA A100 GPUs, utilizing PYTORCH GEOMETRIC 2.5.3 and PYTORCH 2.3.1 for
model training and evaluation.

Baselines. We performed a set of principle comparison experiments between our proposed method,
DirLP, and several baseline approaches, including both symmetric and asymmetric versions of
similarity-based heuristics LP (Lü et al., 2009), RA (Zhou et al., 2009), and AA (Adamic &
Adar, 2003), as well as four deep-learning based baselines: MLP, GAT (Veličković et al., 2017),
GCN (Kipf & Welling, 2016) and GraphSage (Hamilton et al., 2017). The implementations of deep-
learning models were based on official code provided in PYTORCH GEOMETRIC 2.5.3, ensuring
consistency and reproducibility.

Results. The main results of our principle comparison experiments are presented in Table 6 in terms
of MRR. Additionally, in Appendix D, we report the performance comparison in terms of Hits@20
in the Appendix in Table 8. Based on these results, we draw several important conclusions. First, we
observe that the asymmetric versions of heuristic methods consistently outperform their symmetric
counterparts on datasets such as CHAMELEON, SQUIRREL, BLOG, and WIKICS, with the only
exception of LP on WIKICS. Reviewing the dataset statistics reported in Appendix A, we find
a positive correlation between graph density and the performance advantage of using asymmetric
methods. This suggests that as the complexity of the graph structure increases, the inclusion of
directional information becomes more critical.

In all cases, heuristic methods outperform deep-learning baselines that do not incorporate direc-
tionality in the message-passing framework. This finding suggests that incorporating edge direc-
tionality can have a greater impact than increasing model complexity, particularly in many settings.
Deep-learning baselines perform poorly, especially in cases where the node features offer limited
information. For instance, on datasets BLOG and WIKICS, which have relatively low vertex fea-
ture dimensionality compared to other datasets (see Appendix A), heuristic methods significantly
outperform the deep-learning baselines. This highlights the importance of effectively modeling di-
rectionality in graph structure when node features are insufficient.

The principle comparison experiments clearly demonstrate the superiority of DirLP, which captures
directionality through message-passing mechanisms and feature extraction both at the edge and
node level. In many instances, DirLP delivers significantly superior performance compared to deep-
learning baselines, highlighting its ability to model directional relationships more effectively.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sensitivity. A violin plot 2 illustrating the comparison between DirLP and GraphSage, in terms
of MRR, is shown in Figure 6, offering further insights into the model’s performance distribution
across the data splits. It is observed that DirLP shows higher variance, however on the average it
outperforms GraphSage clearly.

7 CONCLUSION

In conclusion, this paper introduces DirLP, a novel framework for directed link prediction that out-
performs existing models across benchmark datasets. By leveraging an asymmetric decoder and
directed structural features, DirLP effectively captures relationships in graphs where edge direction-
ality is critical, highlighting the limitations of traditional undirected methods.

Rather than introducing a complex new architecture, our work focuses on systematically exploring
the utility of simple, directed variants of existing techniques. Directed distance encoding and di-
rected GNNs, though seemingly minor modifications, demonstrate substantial performance gains,
emphasizing the practical value of incorporating directionality. This study serves as a guide for
practitioners, showing how fundamental, interpretable methods can deliver strong results in directed
settings.

While scalability remains a consideration due to preprocessing costs of edge-wise structural fea-
ture extraction, these are one-time operations that can be optimized. Future work will focus on
enhancing the efficiency of our approach and extending evaluations to larger datasets to broaden its
applicability.

This work sets a benchmark for directed link prediction and lays a foundation for future research,
encouraging deeper exploration into the role of directionality and the development of scalable, high-
performing solutions for directed graph tasks.

2Violin plots provides a visual summary of the data distribution along with its probability density that is
smoothed and symmetrized by a Kernel density estimation (KDE).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. Link prediction on evolving data using matrix
and tensor factorizations. In Proc. IEEE Int. Conf. Data Mining (ICDM) Workshops, pp. 262–269,
2009.

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks, 25, 2003.

Baole Ai, Zhou Qin, Wenting Shen, and Yong Li. Structure enhanced graph neural networks for link
prediction. arXiv preprint arXiv:2201.05293, 2022.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proc. ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, pp. 2623–2631, 2019.

Zhu Cao, Linlin Wang, and Gerard De Melo. Link prediction via subgraph embedding-based convex
matrix completion. In Proc. AAAI Conf. Artificial Intelligence, 2018.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M. Bronstein, and Max Hansmire. Graph neu-
ral networks for link prediction with subgraph sketching. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
m1oqEOAozQU.

Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hierarchical structure and the prediction
of missing links in networks. Nature, 453(7191):98–101, 2008.

Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim, Ramy Eskander,
Yury Malkov, Frank Portman, Sofı́a Samaniego, Ying Xiao, et al. Twhin: Embedding the twitter
heterogeneous information network for personalized recommendation. In Proc. ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining, pp. 2842–2850, 2022.

Simon Geisler, Yujia Li, Daniel J Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cosmin
Paduraru. Transformers meet directed graphs. In Proc. Int. Conf. Machine Learning (ICML), pp.
11144–11172, 2023.

Roger Guimerà and Marta Sales-Pardo. Missing and spurious interactions and the reconstruction
of complex networks. Proceedings of the National Academy of Sciences, 106(52):22073–22078,
2009.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems, 30, 2017.

Yixuan He, Gesine Reinert, and Mihai Cucuringu. Digrac: Digraph clustering based on flow imbal-
ance. In Proc. Learning on Graphs Conference, pp. 21:1–21:43, 2022.

Yixuan He, Xitong Zhang, Junjie Huang, Benedek Rozemberczki, Mihai Cucuringu, and Gesine
Reinert. Pytorch geometric signed directed: A software package on graph neural networks for
signed and directed graphs. In Proc. Learning on Graphs Conference, pp. 12–1, 2024.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs.
Advances in Neural Information Processing Systems, 31, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

12

https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=m1oqEOAozQU

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. J. Amer-
ican Society for Information Science and Technology, 2007.

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the inconsistency
problem of applying graph neural network to fraud detection. In Proc. Int. ACM SIGIR Conf.
Research and Development in Information Retrieval, pp. 1569–1572, 2020.

Linyuan Lü, Ci-Hang Jin, and Tao Zhou. Similarity index based on local paths for link prediction
of complex networks. Phys. Rev. E, 80:046122, 2009.

Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based graph
convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural net-
works. In Proc. ICML Graph Representation Learning and Beyond workshop, 2020.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph convolu-
tional network for directed graphs. In Proc. IEEE Data Science Workshop, pp. 225–228, 2018.

M. E. J. Newman. Clustering and preferential attachment in growing networks. Physical Review E,
2001.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
pp. 1105–1114, 2016.

Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure Leskovec.
Pinnersage: Multi-modal user embedding framework for recommendations at pinterest. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2311–2320, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 701–710,
2014.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Günnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic
graphs. In Proc. Learning on Graphs Conference, pp. 25–1, 2024.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. J.
Complex Networks, 9(2), 2021.

Guillaume Salha, Stratis Limnios, Romain Hennequin, Viet-Anh Tran, and Michalis Vazirgiannis.
Gravity-inspired graph autoencoders for directed link prediction. In Proc. ACM Int. Conf. Infor-
mation and Knowledge Management, pp. 589–598, 2019.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. Advances in Neural Information Processing
Systems, 26, 2013.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. arXiv preprint arXiv:1910.00452, 2019.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proc. Int. Conf. World Wide Web (WWW), pp. 1067–1077,
2015.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim. Di-
graph inception convolutional networks. Advances in neural information processing systems, 33:
17907–17918, 2020a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed
graph convolutional network. arXiv preprint arXiv:2004.13970, 2020b.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In Proc. Int. Conf. Machine Learning (ICML), pp.
2071–2080, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Lovro Vrček, Xavier Bresson, Thomas Laurent, Martin Schmitz, and Mile Šikić. Learning to un-
tangle genome assembly with graph convolutional networks. arXiv preprint arXiv:2206.00668,
2022.

Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy. Local probabilistic models for link pre-
diction. In Proc. IEEE Int. Conf. Data Mining (ICDM), pp. 322–331, 2007.

Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma, Jianye Hao, and
Mark Coates. Structure aware incremental learning with personalized imitation weights for rec-
ommender systems. In Proc. AAAI Conf. Artificial Intelligence, 2023.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proc. Int. Conf. Machine Learning (ICML), 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proc. ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 974–983, 2018.

Ge Zhang, Zhao Li, Jiaming Huang, Jia Wu, Chuan Zhou, Jian Yang, and Jianliang Gao. efraud-
com: An e-commerce fraud detection system via competitive graph neural networks. ACM Trans.
Information Systems (TOIS), 40(3):1–29, 2022.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021a.

Tianyi Zhang, Haoteng Yin, Rongzhe Wei, Pan Li, and Anshumali Shrivastava. Learning scalable
structural representations for link prediction with bloom signatures. In Proceedings of the ACM
on Web Conference 2024, pp. 980–991, 2024.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:
A neural network for directed graphs. Advances in neural information processing systems, 34:
27003–27015, 2021b.

Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The
European Physical Journal B, 71:623–630, 2009.

A DATASET DETAILS

In our experiments, we evaluate directed link prediction performance of various approaches
using six benchmark datasets: CORA (Yang et al., 2016), CITESEER (Yang et al., 2016),
CHAMELEON (Rozemberczki et al., 2021), SQUIRREL (Rozemberczki et al., 2021), BLOG (He
et al., 2022), WIKICS (Mernyei & Cangea, 2020). CORA and CITESEER are citation networks
where the nodes denote the papers and links denote the citations from one to another. Likewise,
CHAMELEON, SQUIRREL and WIKICS are reference networks on Wikipedia pages in the corre-
sponding topics where edges reflect reference links between them. BLOG is a set of political blogs
from the 2004 US presidential election with links recording mentions between them.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Dataset Statistics. d, |V|, |E|, |E↔|/|E|, denote the number of node features, number of
nodes, number of edges and ratio of node pairs connected in both direction to total number of edges,
respectively. Grap density is calculated by |E|/(|V| × (|V| − 1)).

CORA CITESEER CHAMELEON SQUIRREL BLOG WIKICS
d 1, 433 3, 703 2, 325 2, 089 0 300
|V| 2, 708 3, 327 2, 277 5, 201 1, 222 11, 701
|E| 10, 556 9, 104 36, 101 217, 073 19, 024 297, 110

|E↔|/|E| 6.1% 4.9% 26% 17% 24% 52%
Density 0.1% 0.1% 0.7% 0.8% 1.3% 0.2%

B HEURISTICS FORMULATIONS

In our experiments we use three different node similarity scores and their directed variants; local path
index (LP), resource allocation index (RA), Adamic–Adar index (AA). Their original formulations
(symmetric versions) are formulated as follows for a pair of nodes u, v ∈ V:

SLP,sym(u, v) = Â2
u,v + ϵÂ3

u,v, (18)

SRA,sym(u, v) =
∑

t∈N (u)∩N (v)

1

|N (t)|
, (19)

SAA,sym(u, v) =
∑

t∈N (u)∩N (v)

1

log |N (t)|
. (20)

where Â denotes the symmetrized adjacency matrix and ϵ is a a free parameter set to 10−3 in our
experiments. Asymmetric variant of LP is simply defined as follows:

SLP,asym(u, v) = A2
u,v + ϵA3

u,v. (21)

Recall the definition for directed neighborhood operator:

Nin(u) = {v ∈ V | (v, u) ∈ E}, Nout(u) = {v ∈ V | (u, v) ∈ E}, (22)

where Nin(u)(N out(u)) consists of all nodes that have a directed edge pointing toward (originating
from) node u. The four directional variants of AA and RA for a given node pair u and v follows:

SRA, du−dv
(u, v) =

∑
t∈Ndu (u)∩Ndv (v)

1

|N (t)|
, (23)

SAA, du−dv
(u, v) =

∑
t∈Ndu (u)∩Ndv (v)

1

log |N (t)|
. (24)

The asymmetric variants of AA and RA on our baseline experiments are selected based on best
performing version of directed common neighbourhood operator.

C PROOF OF THEOREM 5.1

Our proof follows two steps. First, we show that MsGNN ⊆ MDirLP. Next, Then, we construct
a graph that exhibits an automorphic nodal structure for all elements of MsGNN, but not for any
element of MDirLP.

The first half of the proof can be seen by examining the structure of DirLP, and the way in which it
generalizes a GNN with a symmetric decoder and symmetric structural features. The general form
for a sGNN is given by:

fsGNN = fmlp(z
undir
u,v ||eu ◦· ev). (25)

Starting from Equation 17, we see immediately that we can recover a symmetric for decoder for
eu ∥ ev by selecting an initial layer that corresponds to two concatenated identity matrices. Turning
our attention to the structural features, we again see that a special combination of the elements of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

zu,v allows us to recover zundiru,v . Namely, a trace over all modes allows us to construct the undirected
structural features. This amounts to using a matrix of all 1s for the initial layer of our MLP. Putting
this all together, we observe that we can convert our set of directed input features to their undirected
variants using an MLP whose initial weight matrix is equal to [B ∥ ID×D ∥ ID×D], where B is the
desired trace matrix. Therefore, because there exists a DirLP that is equivalent to a sGNN, any edge
that is distinguished by an sGNN must also be distinguishable by a DirLP. This is sufficient to prove
that MsGNN ⊆ MDirLP.

Figure 4: A complete graph with four
nodes.

We next turn to the task of making this relationship strict,
which we do by constructing a graph for which sGNN
cannot distinguish a node pair but DirLP can. To do this,
we consider a complete graph with four nodes as shown
in Figure 4 and consider the edges (v0, v1) and v0, v3). In
the undirected setting, all vertices exist in the same orbit,
which means that no MPNN will be able to distinguish
these two edges (Srinivasan & Ribeiro, 2019). Looking
further, both edges have the same structural features. As
a result, fsGNN(v0, v1) = fsGNN(v0, v3). In the directed
setting, it is sufficient to show that zu,v provides different
representations for these two edges. Indeed, we observe
that z0,1 = [N in

0 ,N out
0 ,N in

1 ,N out
1 ...] = [2, 1, 1, 2, ...],

while z0,3 = [2, 1, 3, 1...], where we have neglected the
intersection and union features for convenience. We con-
clude that these two representations are indeed different,
which completes our proof.

D PRINCIPLE COMPARISON IN TERMS OF HITS@20

Another popular performance metric used in link prediction is Hits@k which measures the pro-
portion of correct links (positive samples) ranked within the top k positions of a sorted list and
formulated as follows:

Hits@k =
1

|Etest|
∑

(u,v)∈Etest

I (rank(u, v) ≤ k) , (26)

where I is the indicator function that returns 1 if the condition inside is true and 0 otherwise.

Table 8: The Hits@20 for models with top MRRs in Table 6. The top three models are highlighted
as First, Second, Third.

CORA CITESEER CHAMELEON SQUIRREL BLOG WIKICS
LP, sym 0.555±0.042 0.500±0.023 0.408±0.006 0.168±0.008 0.262±0.025 0.484±0.045

LP, asym 0.378±0.014 0.151±0.013 0.562±0.033 0.702±0.011 0.369±0.027 0.629±0.016

RA, sym 0.591±0.011 0.328±0.016 0.434±0.035 0.175±0.003 0.250±0.026 0.571±0.032

RA, asym 0.320±0.012 0.137±0.013 0.639±0.034 0.769±0.014 0.336±0.039 0.723±0.015

AA, sym 0.581±0.01 0.292±0.017 0.432±0.006 0.170±0.010 0.266±0.018 0.516±0.042

AA, asym 0.315±0.013 0.125±0.012 0.601±0.035 0.733±0.009 0.379±0.029 0.676±0.013

MLP 0.343±0.034 0.592±0.034 0.318±0.030 0.159±0.066 - 0.065±0.018

GAT 0.176±0.058 0.227±0.055 0.164±0.031 0.030±0.022 0.072±0.019 0.035±0.016

GCN 0.599±0.017 0.457±0.034 0.301±0.044 0.103±0.027 0.116±0.033 0.101±0.022

GraphSage 0.650±0.012 0.416±0.081 0.223±0.041 0.056±0.030 0.120±0.020 0.051±0.032

DirLP 0.767±0.057 0.991±0.012 0.727±0.032 0.706±0.013 0.384±0.035 0.635±0.053

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E HYPERPARAMETER SETTINGS

Table 9: Search spaces for hyperparameters.
Hyperparameter Sampling Distribution
of hidden layers {1,2,4}
hidden layer dim. {32,64,128}
final layer dim. {24,48,72}
of heads {2,4,8,16}
dropout prob. Uniform(0, 0.9)
learning rate Uniform(0.0001, 0.0600)

Table 10: Best hyperparameter settings for GAT experiments in Table 6.

CORA CITESEER CHAMELEON SQUIRREL BLOG WIKICS
of hidden layers 1 1 2 1 1 1
hidden layer dim. 128 128 32 32 32 32
final layer dim. 72 48 72 24 24 24
of heads 4 2 8 2 8 8
dropout prob. 0.040 0.145 0.301 0.414 0.020 0.479
learning rate 0.010 0.005 0.043 0.048 0.059 0.024

Table 11: Best hyperparameter settings for GCN experiments in Table 6.

CORA CITESEER CHAMELEON SQUIRREL BLOG WIKICS
of hidden layers 1 2 1 1 2 1
hidden layer dim. 64 128 64 64 64 32
final layer dim. 72 72 48 48 72 72
dropout prob. 0.003 0.007 0.331 0.274 0.144 0.090
learning rate 0.031 0.007 0.012 0.004 0.013 0.016

Table 12: Best hyperparameter settings for GraphSage experiments in Table 6.

CORA CITESEER CHAMELEON SQUIRREL BLOG WIKICS
of hidden layers 1 1 1 1 1 1
hidden layer dim. 64 64 32 32 32 32
final layer dim. 72 48 72 72 72 72
dropout prob. 0.181 0.264 0.120 0.049 0.044 0.062
learning rate 0.017 0.025 0.005 0.020 0.032 0.055

Table 13: Best hyperparameter settings for DirLP experiments in Table 6.

CORA CITESEER CHAMELEON SQUIRREL BLOG WIKICS
of hidden layers 1 2 2 1 2 2
hidden layer dim. 64 128 128 64 128 128
final layer dim. 72 48 72 48 72 24
dropout prob. 0.063 0.027 0.154 0.034 0.020 0.130
learning rate 0.045 0.037 0.037 0.029 0.090 0.014

17

	Introduction
	Related Work
	Background and Preliminaries
	Similarity-based Heuristics
	Graph Neural Networks (GNNs)

	Analysis of Directionality for Link Prediction
	Proposed Model
	Principle Comparison
	Conclusion
	Dataset Details
	Heuristics Formulations
	Proof of Theorem 5.1
	Principle Comparison in terms of Hits@20
	hyperparameter Settings

