Proceedings of Machine Learning Research — Under Review:1-23, 2022 Full Paper — MIDL 2022 submission

On learning adaptive acquisition policies for undersampled
multi-coil MRI reconstruction

Tim Bakker*! T.B.BAKKERQUVA.NL
L University of Amsterdam

Matthew Muckley? MMUCKLEY@QFB.COM
Adriana Romero-Soriano? ADRIANARS@QFB.COM
Michal Drozdzalt? MDROZDZAL@FB.COM
Luis Pineda'? LEP@FB.COM

2 Facebook AI Research

Abstract

Most current approaches to undersampled multi-coil MRI reconstruction focus on learning
the reconstruction model for a fixed, equidistant acquisition trajectory. In this paper, we
study the problem of joint learning of the reconstruction model together with acquisition
policies. To this end, we extend the End-to-End Variational Network with learnable ac-
quisition policies that can adapt to different data points. We validate our model on a
coil-compressed version of the large scale undersampled multi-coil fastMRI dataset using
two undersampling factors: 4x and 8x. Our experiments show on-par performance with
the learnable non-adaptive and handcrafted equidistant strategies at 4x, and an observed
improvement of more than 2% in SSIM at 8x acceleration, suggesting that potentially-
adaptive k-space acquisition trajectories can improve reconstructed image quality for larger
acceleration factors. However, and perhaps surprisingly, our best performing policies learn
to be explicitly non-adaptive.

Keywords: MRI reconstruction, undersampled multi-coil MRI, adaptive acquisition.

1. Introduction

Magnetic resonance imaging (MRI) is one of the best non-invasive methods for assessing
soft-tissue structure in the clinic. However, widespread MRI adoption is limited due to
its long acquisition times. Almost since its inception, substantial research has been done
to reduce these acquisition times, yielding a variety of undersampled MRI reconstruction
techniques such as parallel imaging (Sodickson and Manning, 1997; Pruessmann et al.,
1999; Griswold et al., 2002), compressed sensing (Lustig et al., 2007) and deep learning
(DL) (Schlemper et al., 2017; Hammernik et al., 2018; Aggarwal et al., 2018). Although the
DL-based approaches have been shown to achieve the strongest results, they tend to use
either fixed or random k-space sampling patterns that do not adapt to the data, which may
be suboptimal and lead to underestimation of the maximum possible acceleration rates.
There is a substantial literature - going back decades - on designing sampling trajectories
for MRI (e.g. Cao and Levin (1993); Gao and Reeves (2000); Seeger et al. (2009); Haldar
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and Kim (2019)). Since the introduction of deep learning, researchers have attempted
to further improve DL-based MRI reconstruction by learning k-space sampling patterns
from the data. These learning-based approaches result in either non-adaptive or adaptive
sampling patterns — often referred to as policies. Non-adaptive policies learn a dataset
specific acquisition trajectory — e.g., each data point in the dataset is reconstructed following
the same learnt trajectory —, while adaptive policies are conditioned on the initial k-space
measurements and, as a result, have the potential to produce different sampling trajectories
per data point. Non-adaptive policies have been shown to outperform handcrafted sampling
patterns for both single-coil (Bahadir et al., 2019; Weiss et al., 2020; Huijben et al., 2020)
and multi-coil (Zhang et al., 2020; Wang et al., 2021; Zibetti et al., 2021) acquisition settings.
However, adaptive policies have only been devised in the single-coil setting (Zhang et al.,
2019; Jin et al., 2019; Sanchez et al., 2020; Pineda et al., 2020; Bakker et al., 2020; Yin et al.,
2021; Van Gorp et al., 2021), showing promising results which in some cases outperform
non-adaptive ones. Learning adaptive policies for deep multi-coil MRI remains, to the best
of our knowledge, largely unexplored.

In this work, we are the first to devise such a model for joint learning of 2D deep
learning MRI reconstruction together with adaptive k-space acquisition trajectories for the
more clinically relevant multi-coil setting. In particular, we extend recent work that learns
adaptive acquisition trajectories (Yin et al., 2021) to the multi-coil scenario and enhance
the End-to-End Variational Network (E2E VarNet) (Sriram et al., 2020), a standard model
for multi-coil reconstruction, with the ability to learn dataset-specific as well as potentially
adaptive k-space sampling strategies. We perform extensive evaluation on Cartesian sam-
pling for 2D MRI using the multi-coil fastMRI knee dataset (Knoll et al., 2020b) on 4x
and 8x acceleration. We hope our effort provides the community a point of departure for
further research into adaptive multi-coil acquisition. Our experiments!' show that:

e On the 8x setup, our learned policies improve ~ 2% in SSIM over the strongest
baseline, highlighting the ability of potentially-adaptive k-space acquisition to improve
MRI reconstruction under high acceleration factors.

e On the 4x setup, the gain due to k-space trajectory optimisation reduces, with our
policies performing on-par with the strongest competing method.

e Interestingly, our top performing policies learn to be explicitly non-adaptive, suggest-
ing that adaptivity of the k-space acquisition trajectories may come at the expense of
over-regularising the reconstruction model.

2. Preliminaries

2.1. Background

We consider a dataset D of k-space measurements y € CV*M from which we can reconstruct
MR images. In the single-coil setting, the reconstructed MR images can be obtained by the
inverse Fourier transform F~! as # = F~!(y). However, modern scanners accelerate the
acquisition of the k-space by using multiple receiver coils that are each sensitive to different
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regions of the anatomy, thus exploiting redundancies in k-space measurements (Sodickson
and Manning, 1997; Pruessmann et al., 1999; Griswold et al., 2002). Hence, in the multi-coil
setting, we define y € CV*MXK where K is the number of coils and where y; € CNV*M
represents the output of a measurement by the i-th coil. The reconstructed MR images can
then be obtained as

K
x:ZS'i@}“_l(yi), (1)

where ® denotes element-wise multiplication, and S; is the complex-conjugate of the
complex-valued sensitivity map associated with each receiver coil ¢, normalised such that
Zfil S;S; = 1. These sensitivity maps encode how sensitive each coil is to each region in
the anatomy, and can be estimated in an auto-calibrating fashion by fully sampling the
center of the k-space, also known as the auto-calibration signal (ACS) region, with each
coil. The acquisition of k-space measurements can be further accelerated by collecting fewer
measurements and reconstructing the images using a partially observed k-space. To sim-
ulate partial observations of the k-space, we introduce a Cartesian binary sampling mask
M that selects B < M measurements, including the ACS measurements, and define the
undersampled k-space as y; = M © y;, where ® denotes element-wise multiplication. Note
that the same mask is applied to the measurements from all coils. The reconstructed MR
images can then be obtained by leveraging the undersampled k-space as

K
&= SioF(§) 2)
1=1

This however results in blur or aliasing effects in the reconstructed images, which can be
mitigated through the use of recent deep learning models, such as the End-to-End Varia-
tional Network (E2E VarNet) (Sriram et al., 2020). In particular, the E2E VarNet takes
as input the partially observed k-space y along with the sampling mask M decomposed
into the mask of ACS measurements Macs and the mask of the non-ACS measurements
M, such that M = Macs + M’. The model estimates the sensitivity maps from the ACS
region, and uses a cascaded neural network, g, to produce a high fidelity image reconstruc-
tion, & = g(g, Macs, M'; ¢), where ¢ are learnable parameters. Note that M’ is commonly
handcrafted to select equidistant measurements.

2.2. Problem formulation

Our goal is to adapt the sampling of measurements in M’ to each MR slice (image). To
that end, we seek a policy that, given an initial undersampled k-space (e.g., the ACS k-
space, gacs), predicts which measurements to acquire next. More precisely, we aim to
learn an acquisition policy 7(gacs, Macs; ) — M/, parameterised by 6, that selects the
measurements to acquire in order to improve the image reconstruction process defined by g:

¢*,0" = argmin > _ L (&;,x;), (3)
¢7 9 y
J
where ¢* and 6* are the optimised reconstruction and policy parameters respectively, j
indexes the dataset, and £ is a loss function measuring the discrepancy between the model
prediction & and the image reconstructed from the fully sampled k-space .
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3. Method

This section outlines our Policy network and details its integration with the E2E VarNet.
An overview of the proposed system is depicted in Figure 1. From now on, we will use
the capitalised ‘Policy’ to refer to our proposed model, while continuing to use ‘policy’ as
general descriptor of ‘subsampling strategy’.
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Figure 1: Overview of our system. The E2E VarNet computes sensitivity maps from the
ACS, which are passed to the cascaded reconstruction model together with a subsampled
k-space. The final reconstruction is reduced to a real-valued MR image by a root-sum-
of-squares (RSS) operation. The subsampled k-space consists of the ACS and acquisitions
suggested by a sampling strategy, which may be adaptive or non-adaptive.

3.1. Policy network

Our Policy is a neural network that takes as input the ACS k-space yacs and the mask
of ACS measurements Mcg, and outputs a sampling probability for each measurement
in k-space. From yacs, we first estimate the sensitivity maps, and reconstruct a complex
image Zacs following Eq. 2. Using this image as input reduces the Policy network’s size
while maintaining relevant information, and allows for taking inspiration from convolutional
architectures that were successfully used in the single-coil adaptive MRI literature. In
particular, we employ the Policy network of Bakker et al. (2020) and extend it to handle
complex-valued inputs. The network is composed of a convolutional feature extractor,
followed by a fully-connected block that outputs a heatmap encoding the relative salience
of each potential k-space measurement in the acquisition step: see Appendix C.4 for details.
It remains to normalise these values and then sample k-space measurements. To this end,
Yin et al. (2021) have shown that straight-through estimation outperforms reinforcement
learning based approaches for backpropagation through discrete sampling in the single-
coil setting. We thus employ their formulation, which is as follows: a non-linearity (e.g.
a softplus as in Yin et al. (2021) or a sigmoid as in Bahadir et al. (2019); Zhang et al.
(2020)) is first applied to ensure non-negative values. To prevent already observed k-space
measurements in the ACS region from being sampled again, we set their corresponding
probabilities to 0. The resulting vector is normalised to obtain M independent realisations
of a Bernoulli distribution from which to sample the measurements to be acquired. We
employ rejection sampling to obtain exactly B measurements on each forward pass. As a
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result of the sampling, we obtain the binary mask of measurements to be acquired, M’. The
aforementioned straight-through estimation - employed during backpropagation - is realised
by treating the non-differentiable sampling discretisation as a sigmoid function with slope
10. In following Yin et al. (2021), we additionally enable a fairer comparison to the multi-
coil baseline of Zhang et al. (2020) (see Section 4.2), which employs such straight-through
estimation as well.

3.2. Integrating policy network and E2E VarNet

The original E2E VarNet takes as input a partially observed k-space g, a binary sampling
mask of ACS measurements Macs, and a predefined binary sampling mask of non-ACS
measurements M’. In the adaptive acquisition setup M’ is instead predicted by the policy
network, so we further decompose g into the ACS measurements yacs and the policy predic-
tion g’. As a result, our E2E VarNet takes as input gacs, ¥’, Macs, and M'. Following the
original work, we first estimate sensitivity maps from the ACS measurements yacs by means
of a U-Net (Ronneberger et al., 2015). The weights of the U-Net that predict the sensitivity
maps are tied between the E2E VarNet and the Policy network, such that the sensitivity
maps are re-used by both networks. Then, the output of the Policy network M’ is used to
acquire §’. As a result, we obtain a mask of observed measurements M = Macs + M’ and
a partially observed k-space § = ¢acs + ¥’ that are used inside the E2E VarNet to produce
a high fidelity MR image reconstruction. The original E2E VarNet is composed of cascaded
modules that apply soft data consistency (DC) layers and refinement operations simultane-
ously. DC layers ensure that k-space predictions stay close to the observed k-space, while
the refinement operations refine the k-space predictions by applying a U-Net to the corre-
sponding complex-valued image-space representation. The cascaded and data consistency
structure of the E2E VarNet offers several potential interface points with the policy model.
After experimentation we chose to re-purpose the DC layers to input acquisitions made by
the policy into the E2E VarNet pipeline. More precisely, we introduce hard DC layers into
the E2E VarNet (Schlemper et al., 2017), which directly replace phantasised measurements
in the k-space predictions with the observed measurements. To ensure that each cascade
possesses all relevant information, we apply DC and refinement operations sequentially,
rather than simultaneously. An E2E VarNet cascade now first applies a hard DC layer —
which inputs acquired measurements, and restores changes to observed measurements due
to a previous cascade —, followed by a refinement operation on the subsampled k-space y.

4. Experiments
4.1. Data

We use the fastMRI multi-coil knee dataset (Zbontar et al., 2018) for all experiments, which
contains 973 train volumes and 199 validation volumes of fully sampled k-space data. The
test volumes are not fully sampled, and therefore cannot be used for our purposes. Our
models treat every slice in a volume independently, resulting in 34,742 train slices and
7,135 validation slices to use as our dataset. For ease of experimentation, we reduce the
number of coils by taking a Singular Value Decomposition and using the K = 4 coils with
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the largest singular values (Buehrer et al., 2007). We further crop the MR slices to the
center (128 x 128) region of k-space, see Appendix C.1. To simulate clinical conditions
more closely, we create the ground truth target image from the uncompressed k-space by
applying a coil-wise inverse Fourier transform followed by a root-sum-of-squares (RSS) on
the resulting multi-coil image representation.

4.2. Baselines

We compare our method to two baselines: Equispaced (or Equisdistant) and LOUPE. Eq-
uispaced masks were shown by Hammernik et al. (2018) to be a strong hand-designed
subsampling strategy for deep learning-reconstructed multi-coil MRI. Such masks have
been long-used in the parallel imaging literature and are a current standard for clinical
2D imaging. At the same time, they depart from random patterns favoured by compressed
sensing, which is applied for single-coil reconstruction. LOUPE is a dataset-specific (i.e.,
non-adaptive) learned strategy that aims to optimise a single subsampling mask for the
entire dataset, without conditioning on initial k-space measurements (Bahadir et al., 2019).
Recently, Zhang et al. (2020) extended LOUPE to the multi-coil setting, and we use their
method as implemented by Yin et al. (2021), which employs the same normalisation and
straight-through estimation used by our Policy network.

4.3. Training details

All models are trained to optimise SSIM (Wang et al., 2004) using Adam (Kingma and Ba,
2014) for 50 epochs with a learning rate of 0.001, decaying it by a factor 10 on epoch 40 — the
default fastMRI E2E VarNet training setting. We initialise the 4x acceleration experiments
with the 10 lowest frequency measurements k-space, and acquire 22 more measurements with
our models. The 8x acceleration experiments are initialised with the 4 lowest frequency
measurements, and we acquire 12 more, instead. This initialisation corresponds, to the
ACS used in the fastMRI E2E VarNet implementation to estimate sensitivity maps?, and
is thus a natural starting point for acquisition. See Appendix C for additional details. We
empirically search over several hyperparameter settings for both the reconstruction model
and the policy network. For the reconstructor, we consider either 5 or 7 cascades, and
either 18 or 36 channels in the first layer of the refinement modules. We also explore the
heatmap non-linearity mentioned in Section 3.1 and run experiments for both the sigmoid
and softplus non-linearities, using slope € {1,5,10} and 8 € {0.5,1,5}, respectively. Since
LOUPE employs the same normalisation and straight-through estimation as our Policy
network, we also explore these non-linearities for LOUPE. Unless otherwise specified, we
report the best (averaged over seeds) run under the explored hyperparameters.

4.4. Results

We report our main results in Table 1, where we present validation SSIM for the best
performing hyperparameter setting of each model. While the Policy network performs on-
par with LOUPE at 4x acceleration, it outperforms the best competing method at 8x
accelerations by 1.89 SSIM points. To further understand the gains obtained by the Policy

2. As of July 30th, 2021.
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Policy LOUPE  Equispaced Figure 2: SSIM as a function of policy mutual

4x 95.63+027 95.61+0.55 9538+0.03 information (MI), for the 8x setting. Each dot is
8% 93.264+020 91.37+0.67 91.30+0.06 a single model. Red: softplus; black: sigmoid.

model, we inspect the adaptivity of the learned policies by plotting the SSIM score as a
function of the mutual information (MI) between probability masks and images of all learned
policies (Policy and LOUPE) — see Figure 2 for the 8x acceleration results. We plot the
policies that use the sigmoid non-linearity in black, and policies that use the softplus non-
linearity in red. Surprisingly, we observe that the best performing Policy models exhibit zero
mutual information, denoting no adaptivity — i.e., the distribution of actions is constant
for all data points in our dataset. We observe that early in the learning process all policies
are adaptive and that some of them learn to be non-adaptive. Moreover, we observe that all
sigmoid-based Policies end up being non-adaptive while the majority of the softplus-based
Polices converge to adaptive strategies, suggesting that this non-linearity plays a crucial
role in learning adaptivity. We hypothesise that it may be easier for Policies using the
sigmoid non-linearity to learn non-adaptive strategies — which requires learning to ignore
their input — given the saturation of the function for both very large positive and negative
values. In contrast, the softplus non-linearity only saturates for large negative values, while
the model is simultaneously encouraged to assign positive values to at least B actions when
sampling from the distribution. Figure 3 displays some examples of image reconstructions
and learnt subsamplings for the 8 x acceleration. The sigmoid-based Policy chooses a subset
of actions to sample from with equal probability, whereas LOUPE appears to yield very-
nearly sparse probabilities; exhibiting probability close to 1 for a limited set of actions, while
most actions end up with a probability near 0. The more adaptive softplus-based Policy
assigns less regular probability values, and seems to favour the center region less than both
its sigmoid-based counterpart and LOUPE. Appendix D.2 contains additional qualitative
results.

4.4.1. DISCUSSION

In this subsection, we outline three hypotheses as to why the best performing policies learn
to be non-adaptive. The first one is model generalisation: the model may learn a strong
adaptive Policy on the training set that does not generalise to the validation set. However,
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(a) Target (b) Equispaced (¢) LOUPE (d) Sigmoid policy (e) Softplus policy
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Figure 3: Qualitative results for 8x: (a) Ground truth, (b-e) reconstructions, and (f-g) vi-
sualisations of subsampling policies. Each policy depicts 128 probabilities; one per potential
k-space measurement. The ACS region (red) has probability 1.

we examine the Policy adaptivity on the training set in Appendix D.1.2, and find no evidence
that the lack of adaptivity is caused by overfitting the train data. The second hypothesis
is connected to amortisation of the parameters of the reconstruction model over the large
training dataset. Adaptivity can act as a regulariser on the reconstruction model, since
a single reconstruction model needs to reconstruct MR images following multiple different
k-space sampling patterns. In Appendix D.1.3, we report results for systems trained with
reconstruction models of increasing capacities, and assess whether leveraging higher capacity
reconstructors can help achieve Policy adaptivity. Although the higher capacity models lead
to slight improvements in terms of SSIM, the best models are still not adaptive. Finally,
we hypothesise that the estimation of sensitivity maps — a significant difference between
single-coil and multi-coil reconstruction pipelines — may affect the adaptivity of the joint
model. In the E2E VarNet, sensitivity maps are estimated independently per slice, and this
may enable a form of adaptivity beyond the mask selection that we have explored here.
However, the interaction between the sensitivity maps and the acquisition policies requires
further investigation and is left as future work (see Appendix B). We display some learned
sensitivity maps for all models in Appendix D.2.3.

5. Conclusion

We have explored the problem of jointly optimising an adaptive sampling strategy and
a deep reconstruction model for multi-coil 2D MRI. To this end, we have proposed the
first method for integrating a policy network with the E2E VarNet reconstruction model,
and evaluated it on the large-scale, multi-coil fastMRI knee dataset. Our Policy networks
outperform previous learning based non-adaptive approaches as well as the handcrafted
equispaced masks at 8x accelerations. Interestingly however, the Policies learn to be ex-
plicitly non-adaptive. The main limitation of our work is the analysis on coil-compressed
(128 x 128) k-space acquisitions, rather than the full data. The relevance of our work for
the original, un-cropped data should be empirically verified by future research.
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