
Towards Visually Plausible Explanations

Reproducibility Summary1

Introduction2

The goal of this assignment is to firstly reimplement the work from the paper Liu et al. (2020) and secondly extend3

their work. Liu et al. develops a new technique which visually explains VAE by generating attention maps from the4

learned latent space. Then the paper applies the VAE into two applications: anomaly localisation and latent space5

disentanglement. This paper reimplements Liu’s experiments and compares our results with the results from the paper6

under restricted computational resources. The acquired results will be analyzed and compared to the original paper.7

Scope of Reproducibility8

The paper Liu et al. (2020) claims that their research takes steps towards visually explaining generative models by using9

a new method visual attention maps conditioned on the latent space of a variational autoencoder (VAE). Furthermore,10

the attention maps can be used to demonstrate the localisation of anomalies in images. This localisation method for11

anomaly detection, resulted in state-of-the-art performance in the MVTec-AD dataset. Moreover, a new learning12

objective was formed: attention disentanglement loss. This resulted in better performance on the Dpsrites dataset13

compared to state-of-the-arts methods.14

Methodology15

For the first part of the experiment the author’s code was used, and for the second experiment, the proposed method from16

(Kim and Mnih, 2019) was used with the addition of the disentanglement metric mentioned in the original paper. The17

total training lasted around six hours for the anomaly localisation and for the disentanglement it lasted approximately18

40 to 80 hours. Slight hyperparameter tuning was needed for some of the datasets.19

Results20

The results showed that for the most part the anomaly localisation claims seem to be reproducible (except for the UCSD21

pedestrians dataset). But the disentanglement was not reproducible.22

What was easy23

The easiest reproducible parts for this experiment was the part for which the code and documentation was available.24

What was difficult25

There was a wide range of obstacles, when reproducing this code. Much of the information was dependent on the26

interpretation of the reader. There is no explicit documentation about the implementation in the paper; hyper-parameters,27

experiment set-up and model descriptions are not present. Also, the full second part of the implementation was missing28

from the code base. And many equations or formulations were not sufficiently explained.29

Communication with original authors30

There was little communication, only an opened issue on their Github repository, giving a solution to a known issue.31
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1 Introduction32

The goal of this assignment is to firstly reimplement the work from the paper Liu et al. (2020) and secondly extend33

their work. Liu et al. (2020) state that their research takes steps towards visually explaining generative models. This is34

done by using a new method; visual attention maps conditioned on the latent space of a variational autoencoder (VAE).35

Attention maps aim at intuitively representing different regions of normal and abnormal images. The paper applies the36

VAE in two experiments: anomaly localisation and latent space disentanglement. Anomaly localisation means to detect37

and localise the abnormal phenomena in an image. This is performed through the cues in the attention maps. Latent38

space disentanglement focuses on learning a decomposed representation, meaning it describes each piece of data x by a39

set of statistically independent factors z. This has several benefits, such as explaining the underlying decision making40

process in unsupervised learning (Nitzan et al., 2020). The novel disentanglement loss (mentioned in the original paper)41

helps utilize the information from the attention maps to improve the performance of Factor VAE (Liu et al., 2020). We42

reimplemented their experiments and compare our results with the result from the paper. Moreover, we analyze the43

claims of the paper and assess their validity.44

2 Scope of reproducibility45

The work presented in this report aligns with our views of having visual systems that are more explainable. The ability46

to extract insights about the decisions made by Generative models is very important given that they are targets for the47

new trend of deepFakes (Nguyen et al., 2020). Hence, we think investigation in this area should be developed and48

applied in the industry and academia.49

According to the study from Liu et al. (2020), the proposed attention mechanism is able to highlight anomalous areas in50

the images, and consequently identify the features in the underlying latent space that cause the abnormality.51

Regarding the Anomaly detection, (i) good qualitative results are found for the MNIST dataset, meaning that the52

attention maps’ highlighted regions correlate with high precision to the localisation of a single anomaly, (ii) the53

qualitative and quantitative results for the UCSD Pedestrians dataset perform better than the baseline. (iii) And, the54

MVTec-AD dataset out-performed other state-of-the-arts (Bergmann et al., 2019) (for more information on evaluation55

see section 3.5) Regarding, the attention disentanglement (iv) a new learning objective is proposed that improves the56

trade-off between reconstruction loss and disentanglement metric over existing methods. Additionally, (v) the paper57

asserts that the attention disentanglement loss helps to separate the high-response pixel regions which promise better58

results quantitatively and qualitatively in comparison to the state-of-the-arts (Liu et al., 2020).59

To push the boundaries of the proposed visual explanations we extend their approach to Restricted Boltzmann Machines,60

hypothesising similar claims to the original paper; expecting significant performance qualitative and quantitatively .61

3 Methodology62

The research is divided into three different part: the anomaly detection, the latent space disentanglement and the ablation63

study.64

3.1 Datasets65

The datasets used in this research are the MNIST, UCSD Ped 1, MVTec-AD and Dsprites datasets. The MNIST66

dataset contains 70,000 grey level images of handwritten digits (60,000 in training and 10,000 in test set) that are67

size-normalized and centered in a fixed-size image of 28x28 (LeCun et al., 1998).68

The MVTec-AD Dataset contains 5354 high-resolution images. These images are divided into fifteen different objects69

and textures with various defects. It includes pixel-wise annotations. (Bergmann et al., 2019). The images are resized70

to 256x256 (as is done in the original paper). The data is also augmented by performing random flips and rotations.71

For more information on the distribution for this dataset and the MNIST dataset see figure 9 & 8 in the supplementary72

materials.73

The UCSD Ped 1 anomaly detection dataset is compromised of images (frames from videos) from a stationary camera74

overlooking a pedestrian walkway. The anomalies are in the form of non-pedestrian entities (e.g. cart, wheelchair).75

Peds1 consists of 5500 frames training test and 3400 anomalous test frames. The frames are resized to 100x100 pixels76

(same as the original paper). Some manually generated pixel-level binary anomaly masks are available. (Li et al., 2013).77
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The Dsprites datasets consists of 737280 64x64 black and white images of 2D shapes. The images are augmented by78

varying six ground truth independent latent factors (color, shape, scale, rotation and x and y positions).(Higgins et al.,79

2016) (Matthey et al., 2017).80

3.2 Anomaly detection81

The anomaly localisation with attention maps applies a vanilla VAE (one-class VAE). This essentially is an autoencoder82

trained with a reconstruction objective and a variational term objective that attempts learning a standard normal latent83

space distribution. The variational term objective is generally implemented with a Kullback-Leibler distribution metric,84

which is based on a computation featuring the latent space distribution and a standard Gaussian. Additionally you can85

refer to (Liu et al., 2020)(Kingma and Welling, 2014). The attention maps are generated by computing a score from the86

latent space and back-propagating on this score to a particular convolutional layer to get the gradients of the score with87

respect to the activations of that layer. The paper introduced a way to generate attention maps for anomaly localisation,88

by computing a score through taking the element-wise sum of the mean vector, µ, from the encoder (for more detailed89

information see (Liu et al., 2020)).90

There are no specifics on the model architectures for the anomaly localisation. However, the Github repository from the91

authors provides a simple VAE architecture for MNIST, which provides decent qualitative results. This model was92

adapted to fit the resized UCSD images, by adding extra convolutional layers. For the MVTec-AD dataset according93

to the original paper a ResNet-18 is used. To build the architecture for this dataset, a ResNet-18 VAE was used by94

replacing the last two layers of the standard ResNet-18 architecture to the latent dimension space, in this case 32,95

to build a ResNet-18 encoder. For the decoder, transpose convolutions and upsampling layers are used instead of96

convolutional layers (for more information on the architectures supplementary material B.1).97

The hyperparameter settings can be found in the Table 1, the hyperparameters for the MNIST dataset were already98

predefined and sufficient to achieve comparable results to the original paper, so these functions were used. These also99

served as a starting point for (manual) tuning the other two models on the UCSD and MVTec-AD dataset. However, for100

the MVTec-AD it was changed slightly to accommodate our computational power.101

3.3 Latent space disentanglement102

The factor disentanglement adapts the Factor VAE which attempts to learn a factorial distribution for the latent variables103

distributions by using a Multilayer Perceptron. The Factor VAE loss (LFV ) component takes into account the batch104

size N , the reconstruction loss, the Kullback-Leibler metric and the total correlation penalty. The γ hyperparameter105

controls the importance of the discriminator cross-entropy loss. For details of the Factor VAE refer to (Kim and Mnih,106

2019). The innovative contribution in the disentanglement combines the information from the attention maps to create107

the disentanglement loss component108

LAD = 2 ∗
∑

ij min(A1
ij , A

2
ij)∑

ij A
1
ij +A2

ij

(1)

where the model loss is L = LFV +λLAD and λ is a hyperparameter. The last loss component promotes the divergence109

between the two attention maps and takes into account their lowest response pixel regions. The attention maps selection110

mechanism used in all experiments pairs the attention maps and averages the disentanglement loss from equation 1 over111

all pairs. For example, in the case of 4 attention maps a, b, c, d we average the loss over the pairs (a, b), (b, c), (c, d).112

One drawback is that by forcing the attention between consecutive maps to diverge it might lead to one of them113

becoming closer to another map, however these trade-offs are beyond the scope of the current experiments and future114

work could explore different attention maps selection mechanisms.115

The disentanglement metric employed was proposed by (Kim and Mnih, 2019). It is a majority vote linear classifier116

that aims at being robust over hyperparameter changes and different training schedules.117

Since the attention disentanglement implementation was missing from the author’s codebase, we used this Github118

repository for the implementation. Moreover, the disentanglement metric used in the experiments by Kim and Mnih119

(2019) was adapted from the following Github repository. The architecture for the experiments is described in the120

supplementary material C.1. The influence of the attention disentanglement loss (defined by equation 1) was compared121

through varying the values of gamma in the Factor VAE and the AD-Factor VAE (Table 1). Moreover, the latent122

dimensions that collapsed to the prior were removed by using a threshold of 0.01 (in the metric score calculation).123

The amount of epochs and values of gamma are based on the FactorVAE original paper (the exact values of the124

hyperparameters are shown in Table 1). Across the experiments for each model we use 10 latent variables and the125

number of iterations was half of the iterations mentioned in Kim and Mnih (2019). For more details on this decision126

refer to supplementary material C.2.127
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Hyperparameters Epochs Batch Size Learning rate β1 β2 ε
MNIST VAE 200 128 0.001 0.9 0.999 1× 10−8

UCSD Ped1 VAE 300 128 0.001/0.0005/0.0001 0.9 0.999 1× 10−8

MVTec-AD VAE 300 16 0.0005 0.9 0.999 1× 10−8

Hyperparameters Iterations Batch Size Learning rate β1 β2 γ λ
Experi1 Vani F. VAE 150000 64 0.0001 0.9 0.999 10/20/30/40/50 -
Experi1 AD-F. VAE 150000 64 0.0001 0.9 0.999 10/20/30/40/50 1.0
Experi2 AD-F. VAE 150000 64 0.0001 0.9 0.999 5/15/25/35/45 1.0
Experi3 AD-F. VAE 150000 64 0.0001 0.9 0.999 10/20/30/40/50 0.5/1.5

Discriminator - - 0.0001 0.5 0.9 - -
Table 1: Hyperparameters for the experiments: the first part is for the anomaly localisation experiment and the second
part is for the disentanglement experiment + ablation study (the optimizer used was Adam).

3.4 Ablation study128

Two distinct types of ablation studies were performed. The first type is to analyse discrepancies and ambiguities in the129

code. The second type is to extend the approach of the original paper to a different type of Generative model.130

3.4.1 Hyper parameters and discrepancies131

The aim was to reproduce the paper from the available code and description in the original paper. However, due to132

discrepancies between the author’s codebase and paper, additional experiments were performed. First of all, in equation133

2 in the original paper there is a ReLU activation on the attention maps, which is absent from the codebase. But, this134

barely affected any of the attention maps and quantitative results, so this was deemed unnecessary. Moreover, the135

codebase uses L2 normalization on the gradients, dz
dA , before computing the weights α for generating the attention maps.136

This was not mentioned in the paper, but also hardly affected the generated attention maps and AUROC scores. Lastly,137

the visualization of the attention maps as shown in the paper was accomplished by interpolating the attention maps to138

the input size and overlaying them on top of the input image (also not explained in the paper).139

On the Attention Disentanglement section there were also some lacking documentations. On formula 6 there is no140

information regarding the λ hyperparameter, so the most suitable value was searched in an ablation study.141

3.4.2 Applying Stacked RBM to Anomaly Detection142

To extend the work of the original paper, the novelty of this paper is applied to the stacked restricted boltzman machine143

(stacked RBM) (Van et al., 2017). In order to perform anomaly detection, an attention map is generated for the RBM. A144

RBM is composed of visible and hidden units. It is parameterized by a bias vector in the visible layer, a bias vector in145

the hidden layer and a weight matrix that does transformations between these two layers. A RBM is an energy-based146

model that aims at minimizing the energy score of the network and maximizing the likelihood of observed data. The147

optimal weights are found by applying contrastive divergence (CD) with Gibbs Sampling. This means that a RBM148

draws samples alternatively from two conditional probabilities until the CD converges. We stack multiple RBMs149

together to form a deep RBM network. The deep RBM network is trained from bottom RBM to top RBM. To generate150

the attention map, we take the output of the layer that we specify, and compute the attention map as is explained151

in section 3.2. Moreover, the hidden units are constraint to either 1 or -1, which makes it impossible to apply the152

reparametarization trick used in the original paper to generate the attention maps. In order to approximate an equivalent153

continuous distribution we used the Gumbel-Max Trick (Maddison et al., 2017).154

3.5 Evaluation155

The evaluation is performed in the same fashion as in the original paper. For anomaly detection, the performance of all156

quantitative results are evaluated pixel-level segmentation through the area under the receiver operating characteristic157

curve score(ROC AUC or AUROC). The true positive rate (TPR) is defined as the amount of pixels across the testing158

set correctly classified as anomalous pixels. On the other hand, the False positive rate (FPR) is the amount of pixels159

wrongly classified as anomalous across the testing set. Moreover, the best threshold is picked based on the thresholds160

returned in the ROC curve and picking the best one based off the intersection-over-union (IoU).161

Since the UCSD and MVTec-AD datasets include target masks, these are evaluated quantitatively and qualitatively,162

wheareas the MNIST datset is only evaluated qualitatively. For the UCSD, the attention mechanism is also tested with163

different spatial solutions by back-propagating the three penultimate convolutional layers in the model.164
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(a) Anomaly attention maps for
model trained on digit 1, evalu-
ated on digits 7, 4, 9 and 2

(b) Anomaly attention maps for
model trained on digit 3, evalu-
ated on digits 8 and 5

Figure 1: Qualitative results on MNIST dataset

For the disentanglement experiment, two different random seeds were used to smooth the results for all the experiments165

and reduce instabilities. Quantitative results were obtained by evaluating the performance through the training metrics166

of reconstruction error, true total correlation (from VAE) and the test metric of disentanglement. Here the baselines167

were the Factor VAE and β-VAE.168

3.6 Computational requirements169

The experiments were run on two different systems. The anomaly localisation was performed on Nvidia RTX 2070 Super170

(8GB VRAM). The total amount of time for running the model constituted around six hours and 18 minutes. However,171

this varied between datasets, since they are of different lengths. On the other hand, the attention disentanglement was172

performed with a Nvidia GTX 1080 Ti GPU (11GB VRAM). The experiment 1 and 2 took around 40 hours each to be173

completed, while the third took about 75 hours.174

4 Results175

This section describes the results that were obtained from the experiments. 4.1 shows the results regarding the claims176

made by the original paper. And section 4.2 shows the results from the ablation studies performed on the original paper.177

For visualizing the figures with more detail, please refer to the following Github repository.178

4.1 Results reproducing original paper179

4.1.1 Anomaly detection180

Figure 1 illustrates qualitative results from the MNIST dataset. Figure 1a show attention maps for a model trained on181

inlier digit 1, and evaluated on digit 7, 4, 9 and 2, as done in the original paper. Figure 1b shows the attention maps182

from a model trained on digits 3, and evaluated on digit 5 and 8. We achieve similar anomaly maps to the original paper,183

for instance horizontal bars are highlighted as anomalous regions when trained on digits 1.184

Figure 2 compares the qualitative results from the original paper with our results, with similar examples shown for the185

anomaly attention maps and target masks. We observe that though very similar, our attention maps are less precisely186

localised around the anomaly. Additionally, the AUROC our model achieved was lower (0.8731 as opposed to 0.92)187

than reported in the paper. Furthermore, for all convolutional layers to which we back-propagate, we achieved the exact188

same AUROC.189

The MVTec-AD AUROC and IoU scores are similar to that of the paper (see Table 2). In figure 3 various sample190

comparisons are shown side-by-side with samples from the original paper. We achieved AUROC scores that were close191

enough, however, the IoU scores on average were much higher. Perhaps this is due to a different reduction method used192

to calculate the overall IoU of the test set, or different test sets that were used. Qualitatively, the anomaly maps look193

very similar to the original results for most categories, especially as hazelnut, leather and wood.194

4.1.2 Latent space disentanglement195

The first attention disentanglement experiment results are depicted in figure 4. The trade-off between the reconstruction196

error and disentanglement metric for the FactorVAE and the AD-FactorVAE is assessed. Given our assumption about the197

attention map selection mechanism, the author’s claim regarding the improvement of the disentanglement metric over198

state-of-the-arts is not reproducible. Over training iterations, the disentanglement metric does not offer much insights199

since in both approaches the fluctuations are minimal after 100,000 iterations. In figure 5 the lowest reconstruction200

losses are observed in AD-FactorVAE with γ = 30 and FactorVAE with γ = 20.201
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Category Carpet Grid Leather Tile Wood Bottle Cable Capsule
Ours 0.63 / 0.51 0.69 / 0.52 0.80 / 0.55 0.73 / 0.54 0.70 / 0.54 0.70 / 0.46 0.79 / 0.59 0.82 / 0.50
Orig. 0.78 /0.1 0.73 / 0.02 0.95 / 0.24 0.80 / 0.23 0.77 / 0.14 0.87 / 0.27 0.90 / 0.18 0.74 / 0.11

Category Hazelnut Metal Pill Screw Toothbrush Transistor Zipper
Ours 0.90 / 0.60 0.64 / 0.43 0.78 / 0.48 0.91 / 0.50 0.83 / 0.49 0.72 / 0.48 0.67 / 0.48
Orig. 0.98 / 0.44 0.94 / 0.49 0.83 / 0.18 0.97 / 0.17 0.94 / 0.14 0.93 / 0.30 0.78 / 0.06

Table 2: AUROC and best IoU (AUROC/IoU) for each object in the MVTec-AD dataset. Our results (ours) in
comparison to the results from the original paper (orig.)

(a) Our reproduced results on the UCSD dataset,
showing input image, ground-truth masks and
anomaly attention maps

(b) The original paper’s results on the UCSD dataset,
showing input image, ground-truth masks, anomaly
attention maps and produced localisation maps

Figure 2: Results from the anomaly localisation in the UCSD dataset

The qualitative results present the attention maps of the above highlighted models configurations with the lowest202

reconstruction loss and disentanglement metric in figure 4 (left). The first row shows three input images and the next203

four rows describe the first and second highest response attentions maps for FactorVAE and AD-FactorVAE. The204

FactorVAE attention maps show the highest response in similar regions where the sprite is visible. However, in two205

situation this is not the case and the attention is spread. On the AD-FactorVAE attention maps, the attention is mostly in206

the same region indicating that they did not disentangle. Given the insights from the anomaly experiments, we know207

that the layer selected for computing the attention maps has a considerable influence. In this case we used the last208

convolutional layer of the encoder, which turned out to be detrimental.209

Figure 3: Results from the anomaly localisation in the MVTec-AD dataset
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Figure 4: Left: Trade-off between disentanglement metric and reconstruction loss for trained FactorVAEs and AD-
FactorVAE with 150000 iterations and λ = 1.0. The label is the γ value. Right: The first row is the input image, 2nd
and 3rd are the FactorVAE attention maps while 4th and 5th are AD-FactorVAE attention maps.

Figure 5: The top plot corresponds to the reconstruction loss over training iterations and the bottom to the Total
Correlation over training iterations. On left is the AD-FactorVAE statistics and on the right for the FactorVAE.

4.2 Results beyond original paper210

4.2.1 Ablation study211

The results for the second disentanglement experiment are shown in figure 6. The disentanglement metric depicted212

on the left shows that all the gamma values are very similar in performance. By observing the reconstruction loss it213

becomes visible that γ = 25 and γ = 30 have lower reconstruction errors, at least with λ = 1.0. Additionally, the true214

total correlation loss fluctuates close to 0.215

Figure 7 shows the results for experiment 3. On the disentanglement metric there is a separation where the γ = 1.5216

shows higher disentanglement. This trend is verified by the lower reconstruction loss for γ = 20, λ = 1.5 and217

γ = 30, λ = 1.5. There appears to be a smaller total correlation fluctuation compared to the λ = 1.0 counterparts.218

These are no definitive results and further experiments with higher λ values should be performed to build stronger219

premises.220

Figure 6: Left - Disentanglement metric over training iterations for the AD-FactorVAE γ combinations tested with
λ = 1.0. Right - The top plot corresponds to the reconstruction loss over training and the bottom to the Total Correlation
over training.
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Figure 7: Left - Disentanglement metric over training iterations for the AD-FactorVAE γ and λ combinations tested.
Right - The top plot corresponds to the reconstruction loss over training iterations and the bottom to the Total Correlation
over training iterations.

4.2.2 Anomaly attention maps with Stacked RBMs on MNIST221

The results from the stacked RBM do not seem to show meaningful information regarding potential anomalous regions222

in the image as with the VAE anomaly attention maps. We suspect this is caused by the use of fully connected layers in223

which the weights are not spatially correlated, as opposed to convolutional layer. Therefore, the results might not be as224

interpretable. For more information and some example results see supplementary material D figure 12.225

5 Discussion226

Reproducing the results over all went seemingly well. Most of the qualitative results for the experiment on the anomaly227

detection experiments were in line with the results from the original paper. Thus, for anomaly detection we confirm228

claim (i) the results from the MNIST dataset are quantitatively good. Furthermore, claim (iii) is also confirmed, since229

our MVTec-AD results were similar to the results in the original paper.230

However, claim (ii) for the UCSD dataset, was not reproducible, since the attention maps were qualitatively not localised231

enough and the quantitative re AUROC scores were more in line with the baseline.232

Regarding disentanglement claim (iv) the results appear to be irreproducible given our assumption about the attention233

map selection strategy, since our results deviate strongly from the results in the original paper. For claim (v) the results234

cannot be validated, since the convolutional layer used for generating the attention maps in the encoder was not properly235

selected. In the next sections, the limits of the original paper and the difficulties as well as ease will be discussed.236

5.1 What was easy237

The easier part of the experiment was the first part, since the code was readily available and similar results were quickly238

reproduced.239

5.2 What was difficult240

The most difficult part of reproducing this paper was that much of the information was left up to the interpretation of the241

reader. For example, there is no explicit documentation about the implementation in the paper. Hyperparameters (e.g.242

value of λ, number of epochs and the learning rate), experiment set-up, dataset augmentation and model descriptions243

are not present. The only presence of this information is in a referral to the gradcam paper (Selvaraju et al., 2017), in244

which the implementation is explained in more detail. Additionally, there were many discrepancies between the paper245

and the codebase. For example, in the original paper, equation 5 for the attention disentanglement loss, is not clear on246

the selection mechanism for the attention maps A1
ij and A2

ij in equation 1 (our solution for this is explained in section247

3.3). For more information and solutions on this see section 3.4.248

Furthermore, in the paper a second approach for computing the score to backpropagate on for the attention maps in249

anomaly detection is presented. However, this method was not used in their paper and the equation (like many others)250

was not sufficiently explained; a u is mentioned, but there is no mention of what this u might refer to.251
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5.3 Communication with original authors252

Some communication with the author was had through the use of issues in the author’s Github repository. Some of the253

code was not running correctly due to different version of pytorch conflicting with each other hence the communication254

with the authors was made only in that occasion.255
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