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ABSTRACT

Real-world datasets often combine data collected under different experimental
conditions. Although this yields larger datasets, it also introduces spurious corre-
lations that make it difficult to accurately model the phenomena of interest. We
address this by learning two blocks of latent variables to independently represent
the phenomena of interest and the spurious correlations. The former are correlated
with the target variable y and invariant to the environment variable e, while the lat-
ter depend on e. The invariance of the phenomena of interest to e is highly sought-
after but difficult to achieve on real-world datasets. Our primary contribution is an
algorithm called Supervised Contrastive Block Disentanglement (SCBD) that is
highly effective at enforcing this invariance. It is based purely on supervised con-
trastive learning, and scales to real-world data better than existing approaches. We
empirically validate SCBD on two challenging problems. The first is domain gen-
eralization, where we achieve strong performance on a synthetic dataset, as well
as on Camelyon17-WILDS. SCBD introduces a single hyperparameter α that con-
trols the degree of invariance to e. When we increase α to strengthen the degree of
invariance, there is a monotonic improvement in out-of-distribution performance
at the expense of in-distribution performance. The second is a scientific problem
of batch correction. Here, we demonstrate the utility of SCBD by learning repre-
sentations of single-cell perturbations from 26 million Optical Pooled Screening
images that are nearly free of technical artifacts induced by the variation across
wells.

1 INTRODUCTION

Real-world machine learning (ML) datasets often combine data collected under different experi-
mental conditions, such as medical images or stained histopathology sections collected at different
hospitals (Bándi et al., 2019; McKinney et al., 2020). This practice yields larger datasets, but the
different experimental conditions alter the images’ appearance, and induce spurious correlations
that make it difficult to model the phenomena of interest. While human perception is relatively ro-
bust (Makino et al., 2022b), ML models tend to rely on hospital-specific spurious correlations, and
fail to generalize out-of-distribution to unseen hospitals (Koh et al., 2021).

Similar spurious correlations are a long-standing problem in experimental biology (Chandrasekaran
et al., 2024), where they are called batch effects (Leek et al., 2010). They can arise between experi-
ments conducted in different labs, within the same lab, and even within a single large parallelized ex-
periment. Removing batch effects by batch correction is a highly-active research direction (Arevalo
et al., 2024). Batch effects have been ubiquitously observed across various high-throughput lab
techniques. For example, consider image-based perturbation screening, where the goal is to under-
stand the effect of perturbations by comparing the images of perturbed cells to those from a control
condition. When the images also vary due to differences in experimental conditions, this confounds
our understanding of the effect of the perturbations.

In some cases, we have prior knowledge of the spurious correlations, and can take steps to remove
them. For example, color-based data augmentation can remove the staining variation in histopathol-
ogy images, yielding significant improvements in out-of-distribution generalization (Nguyen et al.,
2023). Similarly, in experimental biology, there are manually-engineered post-processing methods
that remove specific known batch effects (Carpenter et al., 2006). However, such manual approaches
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have two important limitations. First, they require manual post-hoc quality checks to ensure the
post-processing did not remove variations of interest. Second, some spurious correlations may be
unknown, and therefore uncorrected. This motivates the development of automated approaches that
maximize the removal of the spurious correlations, while minimizing the impact on the phenomena
of interest.

Figure 1: Spurious correlations emerge
when collecting medical images from
different hospitals, or conducting
single-cell perturbation screens across
multiple wells. zs models these spuri-
ous correlations, while zc models the
environment-invariant correlations.

To address these issues, we propose to learn representa-
tions of the data using two blocks of latent variables, one
encoding the variation of interest, and the other encoding
the spurious correlations. We break symmetry between
the blocks by exploiting the supervisory signal of the tar-
get variable y and the environment variable e. Let x be
the observation, such as a histopathology image. Let y
represent the phenomenon of interest, such as the pres-
ence of disease. Finally, let e represent the experimental
conditions, such as the hospital that processed the image.
From these observed variables, we learn two embeddings
zc and zs, where zc represents the variation of x induced
by y, and zs represents the variation of x induced by e.
As we discuss in Section 2, we can also let zs represent
the variation of x induced by both y and e. Our goal is
to block disentangle zc and zs so that they independently
represent distinct information.

The promise of estimating zc such as it represents the variation of x due to y in way that is invari-
ant to e is significant for many high-impact downstream applications. However, existing methods
for this task require additional regularization and hyperparameter tuning to ensure that zc remains
invariant with respect to e. Optimizing those hyperparameters in the presence of distribution shifts
has proven challenging in practice (Gulrajani & Lopez-Paz, 2021). While a few existing approaches
have shown success in simplified settings (Peters et al., 2016; Ganin et al., 2016; Louizos et al., 2016;
Lopez et al., 2018; Arjovsky et al., 2019; Lu et al., 2021; Kong et al., 2022), most methods tested
on real-world data have not outperformed carefully-tuned supervised learning baselines (Gulrajani
& Lopez-Paz, 2021). Consequently, the problem of learning block-disentangled representations re-
mains largely unsolved.

Our primary contribution is an algorithm called Supervised Contrastive Block Disentanglement
(SCBD). We claim that SCBD achieves the desired invariance to e with minimal and interpretable
hyperparameter tuning. Unlike prior work on block disentanglement that use variational or adver-
sarial objectives, our algorithm is based purely on Supervised Contrastive Learning (SCL) (Khosla
et al., 2020). Following the authors’ notation, we learn two encoder networks Encc(·) and Encs(·)
that map x to the representations given by

rc := Encc(x) ∈ RDrc , rs := Encs(x) ∈ RDrs .

We additionally learn two projection networks Projc(·) and Projs(·) that map the representations
to the lower-dimensional embeddings given by

zc := Projc(rc) ∈ RDzc , zs := Projs(rs) ∈ RDzs ,

which are normalized to the unit hypersphere. Finally, we learn a decoder Dec(zc, zs) which recon-
structs x from zc and zs. The optimization objective consists of four losses, and is given by

minLsup
zc,y + Lsup

zs,e + αLinv
zc,e − log p(x | Dec(zc, zs)). (1)

The first loss directly applies SCL to cluster zc with respect to y. Similarly, the second loss directly
applies SCL to cluster zs with respect to e. The third loss is our novel invariance loss, which is also
based on SCL, and ensures that zc is well-mixed with respect to e. In other words, our invariance
loss purges zc of the influence of e. The fourth loss is a reconstruction loss. We describe these losses
in detail in Section 2. SCBD incorporates a single hyperparameter α ∈ R≥0 to adjust the degree to
which zc is invariant to e. When we increase α, we observe a monotonic improvement on several
downstream evaluation metrics that benefit from block disentanglement.

We empirically validate SCBD on three datasets spanning two challenging real-world problems.
The first problem is domain generalization (Blanchard et al., 2011; Muandet et al., 2013), where
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zc represents features whose correlation with y is invariant to e. We use SCBD to generalize
out-of-distribution on the synthetic Colored MNIST (CMNIST) dataset, as well as the real-world
histopathology dataset Camelyon17-WILDS (Koh et al., 2021). We demonstrate that SCBD enables
precise control over the trade-off between in-distribution and out-of-distribution generalization per-
formance through adjustment of the hyperparameter α. Additionally, we show that on both datasets,
SCBD achieves better out-of-distribution performance relative to the conventional baselines in the
literature.

The second problem is batch correction, where we apply SCBD to a dataset of images of over 26
million individual cells (Funk et al., 2022). The cells are treated with 5,050 genetic perturbations
which are labeled as y, and collected across 34 wells which are labeled as e. We use SCBD to
represent the effect of the perturbation with zc, and the variation across wells with zs. We show that
relative to strong baselines, SCBD provides estimates of zc that preserves biological signal and are
significantly less sensitive to batch effects.

2 SUPERVISED CONTRASTIVE BLOCK DISENTANGLEMENT

We now define the individual terms in the SCBD optimization objective in Equation 1. Our starting
point is a probabilistic interpretation of SCL that helps derive our novel invariance loss. Following
the notation from Khosla et al. (2020), let I be the set of indices of examples within a minibatch.
For each anchor point i ∈ I , we denote the set of the remaining examples as A(i) = I \{i}. In SCL,
anchor points are compared to other examples via their dot product. We define |A(i)| independent
Bernoulli random variables M j

i,c for j in {1, . . . , |A(i)|} to represent whether zic is matched with
zjc. The matching probability is defined as

P (M j
i,c = 1) =

exp(zic · zjc/τ)∑
a∈A(i) exp(z

i
c · zac/τ)

.

The notion of matching is relative to the rest of the examples in A(i), which is why we use a softmax
despite the random variable being binary. A similar definition holds for the random variable M j

i,s,
defined in the space of zs.

The first term in Equation 1 is a direct application of SCL, and is given by

Lsup
zc,y = −

∑
i∈I

1

|Py(i)|
∑

p∈Py(i)

logP (Mp
i,c = 1),

where Py(i) = {j ∈ A(i) : yi = yj} are the positive pairs for the anchor point i with respect to
y. This represents the negative log joint probability of observing the positive pairs, normalized by
the number of positive pairs, and summed across all anchor points. Minimizing this loss clusters zc
with respect to y.

The second term in Equation 1 is also a direct application of SCL, and is given by

Lsup
zs,e = −

∑
i∈I

1

|Pe(i)|
∑

p∈Pe(i)

logP (Mp
i,s = 1),

where Pe(i) = {j ∈ A(i) : ei = ej} are the positive pairs for the anchor point i with respect
to e. Minimizing this loss clusters zs with respect to e. As we later discuss in our experiments
(Section 4.1), it can be useful to let zs represent the variation of x with respect to the pair (y, e),
rather than just e. We can do this by replacing Lsup

zs,e with

Lsup
zs,(y,e)

= −
∑
i∈I

1

|P(y,e)(i)|
∑

p∈P(y,e)(i)

logP (Mp
i,s = 1),

where P(y,e)(i) = {j ∈ A(i) : yi = yj , ei = ej} are the positive pairs for the anchor point i with
respect to the pairs of labels (y, e).

The third term in Equation 1 is our novel invariance loss. We define Ne(i) = A(i) \ Pe(i) as the
negative pairs with respect to the label e. Since {Pe(i),Ne(i)} is a partition of A(i), we consider
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the binary classification task of whether zic is more likely to be matched with its positive or negative
pairs with respect to e. One way to perform this classification is to predict that i is more likely to be
matched with Pe(i) if ∑

p∈Pe(i)

logP (Mp
i,c = 1) >

∑
n∈Ne(i)

logP (Mn
i,c = 1).

Since our goal is to make zc invariant to e, we optimize zc to make this classifier fail. We do this by
minimizing

Linv
zc,e =

∣∣∣∣∣∣
∑

p∈Pe(i)

logP (Mp
i,c = 1)−

∑
n∈Ne(i)

logP (Mn
i,c = 1)

∣∣∣∣∣∣,
which makes it equally probable that zic is matched with its positive and negative pairs with respect
to e. In other words, it makes zic well-mixed with respect to e. This is analogous to adversarial
approaches that train a discriminator to predict e, where the goal of representation learning is to
fool the discriminator (Ganin et al., 2016; Edwards & Storkey, 2016). However, it can be difficult to
apply these adversarial methods due to the complexity of minimax optimization. SCBD circumvents
the need to train a discriminator, since the dot products between pairs of zc can be used to predict e.

The fourth term in Equation 1 reconstructs x from zc and zs. Importantly, we only use the recon-
struction loss to optimize the decoder parameters, while holding zc and zs fixed. Therefore, the
representation learning of zc and zs is done purely through supervised contrastive learning. It is
possible to train the encoders and decoder jointly, which would likely improve the reconstruction
quality. However, this adds the further complexity of balancing the relative contributions of the su-
pervised contrastive and reconstruction losses by incorporating an additional hyperparameter. We
leave this to future work, and focus on achieving strong performance on downstream tasks.

3 IMPROVEMENTS TO VARIATIONAL APPROACHES FALL SHORT OF SCBD

As a basis of comparison for SCBD, we develop a block disentanglement approach based on Identifi-
able Variational Autoencoders (iVAEs) (Khemakhem et al., 2020). Several extensions to Variational
Autoencoders (VAEs) (Kingma & Welling, 2014) address the problem of invariance to auxiliary vari-
ables, including the Variational Fair Autoencoder (Louizos et al., 2016) and the HSIC-constrained
VAE (Lopez et al., 2018). These methods learn a single block of latent variables, and apply ad-
ditional regularization to achieve invariance to an auxiliary variable. While successful in simple
settings, these approaches have not gained widespread adoption for large-scale imaging data. Wang
et al. (2023) applied contrastive learning to train a VAE with two blocks of latent variables, where
one block does not condition on any auxiliary variables, and the other does. Our approach differs
from theirs because we do not use contrastive learning, and both of our latent blocks condition on
auxiliary variables.

We specify an iVAE with the same blocks of latent variables as SCBD. The generative model is
defined as

pθ(x, zc, zs | y, e) = pθ(x | zc, zs)pθ(zc | y)pθ(zs | e),

while the inference model is defined as

qϕ(zc, zs | x, e) = qϕ(zc | x)qϕ(zs | x, e).

We fit this model by maximizing the evidence lower bound (ELBO) (Jordan et al., 1999), given by

min
θ,ϕ

Eqϕ(zc|x)qϕ(zs|x,e)[− log pθ(x | zc, zs)]

+ DKL(qϕ(zc | x) ∥ pθ(zc | y)) +DKL(qϕ(zs | x, e) ∥ pθ(zs | e)).

Empirically, conditioning the posterior of zs on both x and e, rather than just x, significantly impacts
downstream performance. We demonstrate this using ablation studies, comparing the two versions
iVAE (qϕ(zs | x, e)) and iVAE (qϕ(zs | x)). We hypothesize that conditioning the posterior of zs
on e makes it easier to encode the variation with respect to e in zs, which reduces the incentive to
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encode it in zc. We use a mixture of experts approach to condition on e, where a neural network
takes in x and outputs separate posterior parameters for each value of e.

Despite this improvement, we find that iVAE performs worse than SCBD in general. VAE-based
block disentanglement methods inherently struggle to balance reconstruction and KL divergence
minimization, leading to several failure modes. First, posterior collapse happens when the KL term
is trivially minimized to zero by making the latent variables uninformative (Bowman et al., 2015;
Razavi et al., 2019; Fu et al., 2019; Dai et al., 2020; Wang et al., 2021). Second, prior collapse
occurs when learned parameters for pθ(zc | y) collapse to the uninformative prior pθ(zc). Third,
numerical instability necessitates heuristics such as gradient clipping or skipping (Child, 2021).
These issues significantly limit the ability to train VAEs with large-capacity neural networks, likely
explaining why open-source VAE implementations rarely use generic image encoders like those in
torchvision (Marcel & Rodriguez, 2010).

4 EXPERIMENTS

We empirically validate SCBD on three datasets spanning two difficult real-world problems. We
discuss domain generalization in Section 4.1, and batch correction in Section 4.2. In domain gen-
eralization, we use one synthetic and one realistic dataset, while in batch correction we use one
large-scale realistic dataset with over 26 million images. The two problems are similar in that in
both cases, we want zc to represent the correlation between x and y that is invariant to e, and zs
to encode the remaining spurious correlations that depend on e. The key difference between the
two problems relates to the evaluation. In domain generalization, we evaluate the ability to predict
y given zc on an out-of-distribution test set. In contrast, in batch correction the evaluation is in-
distribution, and measures the degree to which zc discards the information in e, while preserving the
information in y.

4.1 DOMAIN GENERALIZATION

4.1.1 PROBLEM DESCRIPTION

Domain generalization is an out-of-distribution generalization problem, where the data come from
different environments. Environments represent different conditions under which data are gener-
ated, such as the hospital that collected the samples. We assume data are sampled from a family of
distributions pall = {pe(xe, ye) : e ∈ Eall} indexed by the environment e ∈ Eall ⊆ N. The training
data are sampled from ptr = {pe(xe, ye) : e ∈ Etr}, where Etr ⊂ Eall is the set of training environ-
ments. The test data are sampled from pte = {pe(xe, ye) : e ∈ Ete}, where Ete ⊂ Eall is the set of test
environments. Because Etr and Ete are disjoint, there is a distribution shift between ptr and pte. The
goal is to predict y from x in a way that is invariant to e, so that we can generalize from ptr to pte.

4.1.2 IN- AND OUT-OF-DISTRIBUTION PERFORMANCE MUST BE NEGATIVELY CORRELATED

We begin by precisely characterizing the conditions under which SCBD should be effective at do-
main generalization. This is important, as it motivates our choice of datasets that we use in our
experiments. The conditions are intuitively simple and empirically testable. SCBD requires the
existence of spurious features in the training environments where the more they are learned, in-
distribution performance improves, and out-of-distribution performance worsens. In other words,
datasets need to exhibit a trade-off between in- and out-of-distribution performance. SCBD pre-
vents the learning of such spurious features, since they are predictive of the training environments.
This promotes the learning of features that are invariant to the environment, and thus generalize on
the test environments.

We therefore want to evaluate SCBD on datasets that exhibit this trade-off. Fortunately, there is an
empirical test for this, which is to train ERM across a large region of the hyperparameter search
space, and check whether there are regions where in-distribution performance is strong, and is neg-
atively correlated with out-of-distribution performance. Teney et al. (2024) carried out such a study,
and found the trade-off to be particularly prominent on the Camelyon17-WILDS (Koh et al., 2021)
dataset. We therefore include this dataset in our experiments.
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(a) Dataset
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(b) Counterfactual
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Figure 2: Colored MNIST. (a) There is an environment-dependent correlation between color and
digit on the training set, which does not persist on the test set where all digits are white. (b) We can
generate images counterfactually using SCBD. When we swap zc across examples, it changes the
digit without affecting the color. In contrast, when we swap zs across examples, it changes the color
without affecting the digit. By composing digit and color independently, we generate images outside
of the support of the training distribution, such as a light red one (bottom middle) and a bright green
five (bottom right).

This trade-off between in- and out-of-distribution performance is the exception rather than the rule
for domain generalization datasets. That is, despite the datasets being constructed to have quali-
tatively different training and test environments, it is often the case that in- and out-of-distribution
performance are positively correlated. Wenzel et al. (2022) reached this conclusion by carrying out
a large-scale empirical study involving 172 datasets, including those in the DomainBed (Gulrajani
& Lopez-Paz, 2021) and WILDS (Koh et al., 2021) suites. It is difficult to outperform ERM when
the correlation is positive, which may explain why Gulrajani & Lopez-Paz (2021) found ERM to be
state-of-the-art across the DomainBed suite.

4.1.3 DATASETS

In addition to Camelyon17-WILDS, we experiment with one synthetic dataset. This dataset is called
Colored MNIST (CMNIST), and extends the version from Arjovsky et al. (2019). The target label
y ∈ {0, . . . , 9} represents the digit. There are two training environments and a test environment.
In the training environments e ∈ {0, 1}, there is an environment-dependent correlation between the
color and y (Figure 2a). For e = 0 the color changes from dark to light red as the digit increases.
In contrast, for e = 1 the color changes from light to dark green as the digit increases. All digits
are white in the test environment. This presents a severe distribution shift, since color is perfectly
predictive of y in the training environments, but is unpredictive in the test environment. Details re-
garding the data generating process are in Appendix A.2.1. We train ERM across a range of learning
rates and maximum training steps on this dataset, and observe that in- and out-of-distribution per-
formance are negatively correlated (Appendix Figure 5). This satisfies the assumptions of SCBD,
so therefore we expect it to be effective on this dataset. We expect zc to encode the digit, and zs to
encode the environment-specific colors.

Camelyon17-WILDS (Koh et al., 2021) is a patch-based variant of the original Camelyon17
dataset (Bándi et al., 2019) of histopathology images of breast tissue, and represents a binary clas-
sification task of predicting the presence of a tumor. The data were collected in five hospitals, and
have significant inter-hospital batch effects. It has been reported that for similar datasets, the most
significant batch effects are from differences in how the slides are stained (Tellez et al., 2019). As
mentioned previously, Teney et al. (2024) showed that this dataset exhibits a trade-off between in-
and out-of-distribution performance, and therefore satisfies the assumptions of SCBD. We also ver-
ify this in Appendix Figure 11. On this dataset, we want zc to represent the biomarkers of disease
that are invariant across hospitals, and zs to represent the hospital-specific spurious correlations.

4.1.4 BASELINES

We compare SCBD to a diverse range of algorithms that are considered to be standard baselines
in the domain generalization literature. This includes Empirical Risk Minimization (ERM) (Vap-
nik, 1995), CORrelation ALignment (CORAL) (Sun & Saenko, 2016), Domain-Adversarial Neural
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Figure 3: Increasing α strengthens the degree that zc is invariant to e, and monotonically improves
test accuracy at the expense of validation accuracy.

Table 1: Test accuracy (%) for domain generalization for ten random seeds. SCBD with α = 192
significantly outperforms all baselines on both CMNIST and Camelyon17-WILDS.

Algorithm CMNIST Camelyon17-WILDS

SCBD (α = 0) 25.5± 3.0 61.9± 3.8
SCBD (α = 192) 82.9± 12.1 72.7± 3.0
ERM 37.8± 2.6 65.8± 4.9
CORAL 37.6± 3.6 59.5± 7.7
DANN 39.0± 4.5 55.2± 6.7
IRM 37.0± 4.2 66.3± 2.1
Fish 48.2± 3.5 49.1± 0.9
Group DRO 35.0± 2.9 68.4± 7.3
iVAE (qϕ(zs | x, e)) 52.1± 37.6 52.0± 2.0
iVAE (qϕ(zs | x)) 37.7± 29.4 51.9± 4.3

Networks (DANN) (Ganin et al., 2016), Invariant Risk Minimization (IRM) (Arjovsky et al., 2019),
Fish (Shi et al., 2022), and Group Distributionally Robust Optimization (Group DRO) (Sagawa et al.,
2020). We additionally compare against our two versions of iVAE from Section 3 for completeness.

4.1.5 QUALITATIVE RESULTS

Our image generation results in Figure 2b qualitatively demonstrate that SCBD achieves block dis-
entanglement. This is possible on CMNIST because we know that the ground-truth phenomenon of
interest is the digit, and the spurious correlation is the color. These results show that when we swap
zc between examples, it changes the digit without affecting the color. In contrast, when we swap
zs between examples, it changes the color without affecting the digit. Note that the quality of the
reconstructed images is relatively poor because, as mentioned in Section 2, the decoder is not trained
jointly with the encoders. We leave it to future work to train the decoder jointly and improve the
image reconstruction capability of SCBD. We provide similar visualization results with the iVAE in
Appendix Figure 6.

4.1.6 QUANTITATIVE RESULTS

We present two kinds of quantitative results. In Figure 3, we show that by increasing α, SCBD
removes spurious correlations that are specific to the training environments. This encourages the
learning of features that are invariant to the environment, which yields a smooth and monotonic
trade-off between in- and out-of-distribution performance on both datasets.

In Table 1, we show the test accuracy on both datasets for SCBD and the baseline algorithms.
We report the average and standard deviation for ten random seeds. For the baseline algorithms,
we optimize the hyperparameters with respect to the performance on the in-distribution validation
set. The hyperparameter search space for each algorithm is provided in Appendix Table 5. Most
of the baseline results for Camelyon17-WILDS are taken from the authors’ leaderboard, with the
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exception of Fish (Shi et al., 2022), which we evaluate ourselves. Our results for Fish are weaker
than those reported on the leaderboard, because we additionally included the pretraining duration in
the hyperparameter search space. The leaderboard results used the value of this hyperparameter that
achieved the best test accuracy, as described in the appendix of Shi et al. (2022).

For SCBD, we apply the same model selection procedure to optimize the learning rate and weight
decay. We do not optimize α during model selection, since this would result in choosing α = 0.
We report the test accuracy for α = 0 and α = 192 as evidence that the invariance loss in SCBD
is effective at removing spurious correlations and improving out-of-distribution performance. With
α = 192, SCBD significantly outperforms all baseline algorithms across both datasets. Tuning α
corresponds to model selection with respect to an unknown test distribution, which is a difficult open
problem (Gulrajani & Lopez-Paz, 2021), and is a limitation shared by other works (Makino et al.,
2022a; Wortsman et al., 2022).

Also, we demonstrate the robustness of our approach to the choice of hyperparameters by providing
the results of ablation studies in Appendix A.2.1 and A.2.2, where we vary Dzc

and Dzs
, the batch

size, and the degree of weight decay.

We additionally experiment with PACS (Li et al., 2017) and VLCS (Fang et al., 2013) from Do-
mainBed (Gulrajani & Lopez-Paz, 2021), and include the results in Appendix Sections A.2.3 and
A.2.4. We find that these datasets exhibit a positive correlation between in- and out-of-distribution
performance, which is consistent with Wenzel et al. (2022). Since this violates the assumptions of
SCBD, we are unable to trade-off in- and out-of-distribution performance, as expected.

4.2 BATCH CORRECTION WITH A REAL-WORLD OPTICAL POOLED SCREEN DATASET

4.2.1 PROBLEM DESCRIPTION AND DATASET

Having demonstrated the efficacy of SCBD on domain generalization, we proceed to a related but
different problem called batch correction. Here, we experiment with one realistic single-cell pertur-
bation dataset that is of significantly large scale. We use the Optical Pooled Screen (OPS) (Feldman
et al., 2019) dataset from Funk et al. (2022) comprised of 26 million images of single cells, each
perturbed with one of 5,050 genetic perturbations targeting an expressed gene, including one non-
targeting control. Such data are collected in order to understand the effect of each perturbation on
cellular morphology. The 100×100 pixel images have four channels that measure staining informa-
tion for key cellular features: DNA damage, F-actin, DNA content, and microtubules. Each channel
therefore measures a unique aspect of a cell’s phenotype, which taken together shed light on how
each perturbed genes affects the cell. An important problem in the field is to build a cartography
of perturbation effects on cells, by grouping perturbed genes by their similarity on the phenotypic
level (Celik et al., 2024). This perturbation map is then interpreted to characterize the function of
unknown genes, recapitulate protein complexes, and highlight interacting pathways (Rood et al.,
2024).

OPS technologies generate large quantities of data in a cost effective manner by conducting several
batches of experiments in parallel. In this case, the data were collected at a single lab but using
34 wells. There can be significant unintended variation across wells, solely based on seemingly
minor differences in experimental conditions. For example, if the wells are stained sequentially,
the difference in elapsed time can result in different image brightness across wells. Our goal with
SCBD is to capture this unintended variation across wells in zs, so that zc is an unconfounded
representation of the impact of genetic perturbations on cell morphology.

For each image of a single cell x, y labels the genetic perturbation that was applied, and e labels
which of the 34 wells the cell was in. By optimizing the SCBD objective in Equation 1, we ensure
that the variation in the images due to the perturbation is represented by zc, and the variation due
to the well e is represented by zs. We can then use zc for downstream analysis. For this task,
we are using zc with Dzc = Dzs = 64, whereas we used rc for domain generalization. This is
because all of our baselines for this task use 64 dimensional embeddings, so the lower-dimensional
zc helps ensure a fair comparison. We show results using ResNet-18 encoders in the main text, and
additionally provide results using DenseNet-121 encoders in Appendix Figure 25.

We evaluate two tasks to understand the degree to which we remove the influence of e, while pre-
serving the information in y. We describe the tasks at a high level here, and provide the details in
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Figure 4: Comparison of SCBD to CellProfiler and VAE-based baselines on real-world batch cor-
rection. Left: Performance of predicting the well label e. Right: Performance on predicting protein
complex membership (biological content). SCBD is almost completely unpredictive of the well,
while retaining a similar level of biological information as CellProfiler.

Appendix A.3. The first task is to use the perturbation embeddings to predict e, which measures the
sensitivity to inter-well batch effects. We fit a linear classifier on top of each of the embeddings, and
compute the F1 score. We want the performance on this task to be weak.

The second task is CORUM prediction, which is one measure of the biological information content
in the embeddings. This task relies on the CORUM database (Ruepp et al., 2010) as the ground truth
of whether two genes are functionally related based on their membership in the same protein com-
plex (a definition previously used in the context of this biological screen). We take the biological
embeddings corresponding to those genetic perturbations y, interpret their dot product as the pre-
diction that they are similar, and use these predictions to compute the area under the precision-recall
curve. Unlike the first task, we want the performance on this task to be strong.

4.2.2 BASELINES

CellProfiler (Carpenter et al., 2006) is the most important baseline that we compare SCBD against.
It is an open-source software that takes in an image of a cell, and outputs several thousand manually-
engineered morphological features that describe the cell’s phenotype. It is a very strong baseline in
which substantial human-expert effort has been invested, and its representations are post-processed
to effectively remove the variation across plates and wells. Following conventional practice, we use
the top-64 principal components of the full set of CellProfiler features.

The remaining baselines are all based on VAEs, which are considered conventional. We experiment
with iVAE (qϕ(zs | x, e)) and iVAE (qϕ(zs | x)) from Section 3, as well as the Multi-Contrastive
VAE (mcVAE) (Wang et al., 2023), which uses two blocks of latent variables in order to represent
the perturbation effect and the natural cell-to-cell variation. While it was previously shown that
mcVAE is effective at modeling genetic perturbations, it has a significant weakness in that it does not
effectively correct for batch effects. Finally, for our simplest baseline we use a vanilla VAE (Kingma
& Welling, 2014), which has a single block of latent variables, and ignores y and e. For all VAE-
based models, we use 64 dimensional latent variables in each block. The perturbation embedding is
zc for SCBD and the iVAEs. For mcVAE it is the block of salient variables, and for CellProfiler and
the vanilla VAE, there is only a single block of latent variables.

4.2.3 QUANTITATIVE RESULTS

We show our results on both tasks in Figure 4. SCBD achieves close to zero predictive performance
on the well-prediction task, while retaining a similar level of biological information as CellProfiler.
Thus, zc estimated with SCBD can be used by biologists for downstream analysis, and they can be
confident that any conclusions reached are not due to the inter-well variation. Our results also show
that for the iVAE baselines, additionally conditioning the posterior of zs on e significantly improves
the results on both tasks. Although mcVAE performs better than the vanilla VAE on CORUM due to
its ability to incorporate the perturbation labels y, they are both highly susceptible to the inter-well
batch effects. This highlights the fact that explicit regularization is required in order to purge the
effect of e from the embeddings, and that this does not occur naturally.
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5 RELATED WORK

5.1 DISENTANGLED REPRESENTATION LEARNING

Our goal of block disentanglement is closely related to that of disentangled representation learning,
which assumes that a relatively small number of independent factors are sufficient to explain the
important patterns of variation in x. Disentangled representation learning is typically cast as learning
a latent variable z ∈ RDz , where z is disentangled if its individual components z1, . . . , zDz are
independent and semantically meaningful (Higgins et al., 2017; Esmaeili et al., 2019; Kim & Mnih,
2018; Chen et al., 2018). This informal definition of disentanglement is generally agreed upon, and
it is not trivial to define this concept quantitatively (Eastwood & Williams, 2018; Higgins et al.,
2018). This is related to independent component analysis (Comon, 1994; Jutten & Herault, 1991;
Hyvärinen & Oja, 2000), which makes the additional assumption that the encoding is noiseless.

With block disentanglement, instead of assuming there are Dz independent scalar factors, we assume
there are two independent vector-valued factors zc ∈ RDzc and zs ∈ RDzs . Recent works study
identifiability for block disentanglement (Von Kügelgen et al., 2021; Lachapelle & Lacoste-Julien,
2022; Kong et al., 2022; Lachapelle et al., 2024; Lopez et al., 2024). While we believe this is
an important research direction, we focus on developing a simple algorithm that achieves strong
empirical results on difficult real-world problems.

5.2 INVARIANT REPRESENTATION LEARNING

The challenge of domain generalization has gained significant attention as ML systems often fail to
generalize out-of-distribution. Peters et al. (2016) introduced a framework for causal inference us-
ing invariant prediction, helping maintain predictive accuracy under interventions or environmental
changes. Building on this foundation, Arjovsky et al. (2019) proposed IRM, a learning paradigm
for learning an embedding of the data representation such that the optimal classifier on top of that
representation remains invariant across different environments. These works, as well as many exten-
sions (Lu et al., 2021), have been benchmarked on datasets created by the research community, such
as those in the DomainBed (Gulrajani & Lopez-Paz, 2021) and WILDS (Koh et al., 2021) suites.
Gulrajani & Lopez-Paz (2021) revealed that with rigorous model selection, ERM often achieves
state-of-the-art performance, challenging the perceived benefits of more complex domain general-
ization methods.

6 CONCLUSION

We presented Supervised Contrastive Block Disentanglement (SCBD), an algorithm for block dis-
entanglement that is based purely on supervised contrastive learning. We use SCBD to estimate
zc such that it represents the correlation between x and y that is invariant to e. This invariance,
which is considered difficult to achieve in practice, allows us to solve two difficult real-world prob-
lems. The first is domain generalization, where we achieve strong out-of-distribution generalization
on a synthetic dataset called Colored MNIST, as well as a real-world histopathology dataset called
Camelyon17-WILDS. The second is batch correction, where we use SCBD to learn representations
of single-cell perturbations from over 26 million images that are nearly free of inter-well batch
effects.

We believe a promising direction for future work is to investigate how to jointly train the decoder
to combine the representation learning capabilities of supervised contrastive learning and genera-
tive modeling. While iVAE failed at domain generalization, it achieved strong performance on the
CORUM task in the batch correction problem. We interpret this as a sign that image reconstruction
can yield additional useful features that SCBD is currently not capturing. With improved generative
modeling, SCBD has the potential to be used for impactful counterfactual image generation, such
as generating images of the same cell under different perturbations. Also, in this work we assumed
access to the variable e, which labels the source of unwanted variation. We leave it to future work
to learn this variable from data.
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APPENDIX

A EXPERIMENTS

A.1 EXPERIMENTAL SETUP

All of our experiments were done using a single NVIDIA A100 GPU on our institutions’ high-
performance computing clusters.

A.1.1 SUPERVISED CONTRASTIVE BLOCK DISENTANGLEMENT

Our experimental setup for SCBD is remarkably similar across all of our experiments, which high-
lights the generality of our approach. We resize the images to 32× 32 pixels and use a batch size of
2,048. We set the temperature parameter in the supervised contrastive losses to τ = 0.1. We adopt
both of these practices from Khosla et al. (2020). For optimization, we use AdamW (Loshchilov &
Hutter, 2019) with 1 × 10−4 learning rate and 0.01 weight decay. We chose these values because
they resulted in stable training and validation curves across our experiments, and did not tune them
extensively.

For domain generalization, we set Dzc
= Dzs

= 128, which we adopt from Khosla et al. (2020).
We train for a maximum of 25,000 steps, and select the weights that minimize the validation loss.
We obtain error bars by repeating each experiment with ten random seeds.

For batch correction, we set Dzc = Dzs = 64 in order to ensure a fair comparison with the top-64
PCA features of CellProfiler. To sample a minibatch, we first sample 256 distinct values of y from
the class distribution of the training set, and then sample the same number of examples per value
of y. This was necessary in order to ensure a large number of positive pairs with respect to y in
our supervised contrastive losses, given that there are 5,050 classes. We trained for a maximum of
150,000 steps, and evaluated on the test set using the weights that minimize the validation loss. We
obtain error bars by repeating each experiment with three random seeds.

We use standard architectures such as ResNet-18 (He et al., 2016) and DenseNet-121 (Huang et al.,
2017) for the encoders Encc(x) and Encs(x). The projection networks Projc(rc) and Projs(rs)
are two-layer Multilayered Perceptrons (Rumelhart et al., 1986) with hidden sizes of Drc and Drs ,
and GELU activations (Hendrycks & Gimpel, 2016). Our decoder Dec(zc, zs) architecture is shown
in Appendix Table 2, with GELU activations (Hendrycks & Gimpel, 2016) between layers. We use
an additive decoder (Lachapelle et al., 2024), and found this to be necessary to achieve sensible
visualization results on CMNIST. That is, we define

log p(x | zc, zc) = Decc(zc) + Decs(zs),

where both Decc and Decs have the same architecture.

Table 2: SCBD decoder architecture

Linear(64, 256 * (2 ** 2))
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 256, 3, padding=1)
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 256, 3, padding=1)
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 256, 3, padding=1)
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 128, 3, padding=1)
Conv2d(128, img_ch, 1)

A.1.2 VARIATIONAL AUTOENCODERS

For our experiments with VAE-based approaches, we use the same experimental setup used in Wang
et al. (2023), including the architecture and hyperparameters. We resize the images to 64×64 pixels
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and use a batch size of 1024. The encoder and decoder architectures are in Appendix Tables 3 and
4, with GELU activations (Hendrycks & Gimpel, 2016) between layers. Since the CMNIST images
are 32 × 32, we modify the architectures to reduce the up- and down-sampling. For optimization,
we use the AdamW (Loshchilov & Hutter, 2019) optimizer with 1 × 10−4 learning rate and 0.01
weight decay. We additionally skip gradients with a norm above 1 × 1012, and clip gradients with
a norm above 1 × 106, as done in Child (2021). We train for a maximum of 50,000 steps for
domain generalization, and three epochs for batch correction, and select the weights with minimum
validation loss. We report the validation and test performance across ten random seeds for domain
generalization, and three random seeds for batch correction.

Table 3: VAE encoder architecture

Conv2d(img_c, 32, 3, stride=2, padding=1)
Conv2d(32, 32, 3, padding=1)
Conv2d(32, 64, 3, stride=2, padding=1)
Conv2d(64, 64, 3, padding=1)
Conv2d(64, 64, 3, stride=2, padding=1)
Linear(64 * (8 ** 2), 2 * 64)

Table 4: VAE decoder architecture

Linear(2 * 64, 64 * (8 ** 2))
ConvTranspose2d(64, 64, 3, stride=2, padding=1, out_padding=1)
Conv2d(64, 64, 3, padding=1)
ConvTranspose2d(64, 32, 3, stride=2, padding=1, out_padding=1)
Conv2d(32, 32, 3, padding=1)
ConvTranspose2d(32, img_c, 3, stride=2, padding=1, out_padding=1)

A.1.3 OTHER BASELINES

Table 5: Hyperparameter search space

Condition Hyperparameter Search space

CMNIST

Learning rate {0.0001, 0.001, 0.01}
Weight decay {0, 0.001, 0.01}
Batch size {32}
Maximum epochs {1, 20, 100}

Camelyon17-WILDS

Learning rate {0.0001, 0.001, 0.01}
Weight decay {0, 0.001, 0.01}
Batch size {32}
Maximum epochs {5}

CORAL Penalty weight {0.1, 1, 10}

DANN Penalty weight {0.1, 1, 10}

IRM Penalty weight {1, 10, 100, 1000}

Fish Pretrain steps {1000, 10000}
Meta learning rate {0.001, 0.01, 0.1}

Group DRO Step size {0.01}
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A.2 DOMAIN GENERALIZATION

A.2.1 COLORED MNIST

Data generating process The images are 32 × 32 pixels, and are RGB. There are two training
environments and a test environment. In the first training environment, which we label e = 0, we set
the foreground pixels in the red channel to the value one, and those in the green and blue channels
to the value y/|Y|, where |Y| = 10 is the number of digits. For images with the digit zero, y = 0,
so the digit is colored completely red. Then, as the digit increases from zero to nine, the digits are
colored red, but with a decreasing intensity. In the second training environment, which we label
e = 1, we set the foreground pixels in the green channel to the value one, and those in the red and
blue channels to the value (|Y| − 1 − y)/|Y|. This has the effect of the digits being colored green,
where the intensity increases with as the digit increases from zero to nine. In the test environment,
the foreground pixels are set to one in all channels, which makes all of the digits white.
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Figure 5: In- and out-of-distribution performance are negatively correlated on CMNIST, which
satisfies the assumptions made by SCBD.

Original

Reconst

Swap

Swap

Figure 6: Counterfactual generation with iVAE. When we swap zc, it changes the digit but not the
color, and when we swap zs, it changes the color but not the digit. iVAE generates better-looking
images than SCBD, since the decoder is trained jointly with the encoder for iVAE.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 64 128 192

0.925

0.950

0.975

1.000

Va
l a

cc
ur

ac
y

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

Val Test

Figure 7: CMNIST results for an ablation in which we omit zs, and learn a single block of latent
variables zc that are correlated with y and invariant to e. These results are similar to the model that
learns zs. We use ResNet-18 encoders here, as we did in the main text.
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Figure 8: CMNIST embedding size (Dzc
and Dzs

) ablation study for SCBD with ResNet-18 en-
coders and α = 192. The results are relatively consistent across different embedding sizes.
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Figure 9: CMNIST batch size ablation study for SCBD with ResNet-18 encoders and α = 192.
The results are generally better for larger batch sizes, which was also observed by the authors of
SCL (Khosla et al., 2020).
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Figure 10: CMNIST weight decay ablation study for SCBD with ResNet-18 encoders and α = 192.
The results are relatively consistent across different degrees of weight decay.
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A.2.2 CAMELYON17-WILDS
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Figure 11: In- and out-of-distribution performance are negatively correlated on Camelyon17-
WILDS. This is consistent with Teney et al. (2024), and therefore this dataset satisfies the assump-
tions made by SCBD.
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Figure 12: Camelyon17-WILDS results for SCBD using ResNet-18 encoders. The conclusions are
the same as with the DenseNet-121 encoders.
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(a) ResNet-18
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(b) DenseNet-121

Figure 13: Camelyon17-WILDS results for an ablation in which we omit zs, and learn a single
block of latent variables zc that are correlated with y and invariant to e. We observe a clean trade-off
between validation and test accuracy with respect to α, but the test accuracy error bars are larger
than those of the model that includes zs.
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Figure 14: Camelyon17-WILDS embedding size (Dzc
and Dzs

) ablation study for SCBD with
DenseNet-121 encoders and α = 192. The results are relatively consistent across different embed-
ding sizes.
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Figure 15: Camelyon17-WILDS batch size ablation study for SCBD with DenseNet-121 encoders
and α = 192. The results are generally better for larger batch sizes, which was also observed by the
authors of SCL (Khosla et al., 2020).
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Figure 16: Camelyon17-WILDS weight decay ablation study for SCBD with DenseNet-121 en-
coders and α = 192. The results are relatively consistent across different degrees of weight decay.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.2.3 PACS
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 17: PACS with art painting as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.

0 4 8 12
0.85

0.90

0.95

Va
l a

cc
ur

ac
y

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

Val Test

(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 18: PACS with cartoon as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 19: PACS with photo as the test domain.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 20: PACS with sketch as the test domain.

Table 6: Test accuracy (%) for PACS with three random seeds.

Algorithm Art painting Cartoon Photo Sketch Average

SCBD (α = 0) 86.6± 2.1 81.3± 1.9 97.0± 0.8 70.6± 4.9 83.9
ERM 88.1± 0.1 77.9± 1.3 97.8± 0.0 79.1± 0.9 85.7
CORAL 87.7± 0.6 79.2± 1.1 97.6± 0.0 79.4± 0.7 86.0
DANN 85.9± 0.5 79.9± 1.4 97.6± 0.2 75.2± 2.8 84.6
IRM 85.0± 1.6 77.6± 0.9 96.7± 0.3 78.5± 2.6 84.4
Group DRO 86.4± 0.3 79.9± 0.8 98.0± 0.3 72.1± 0.7 84.1

A.2.4 VLCS
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 21: VLCS with Caltech101 as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 22: VLCS with LabelMe as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 23: VLCS with SUN09 as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 24: VLCS with VOC2007 as the test domain.
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Table 7: Test accuracy (%) for VLCS with three random seeds.

Algorithm Caltech101 LabelMe SUN09 VOC2007 Average

SCBD (α = 0) 94.7± 1.8 67.1± 1.3 74.7± 3.0 71.4± 1.3 77.0
ERM 97.6± 1.0 63.3± 0.9 72.2± 0.5 76.4± 1.5 77.4
CORAL 98.8± 0.1 64.6± 0.8 71.7± 1.4 75.8± 0.4 77.7
DANN 98.5± 0.2 64.9± 1.1 73.1± 0.7 78.3± 0.3 78.7
IRM 97.6± 0.3 65.0± 0.9 72.2± 0.5 76.4± 1.5 78.1
Group DRO 97.7± 0.4 62.5± 1.1 70.1± 0.7 78.4± 0.9 77.2

A.3 BATCH CORRECTION

Batch prediction We begin by computing the perturbation embedding for every example in the
dataset, including the training, validation, and test sets. We then discard all examples for which we
do not have a corresponding CellProfiler embedding. Using a randomly sampled 60% of the data as
the training set, and the remaining data as the test set, we apply logistic regression to predict e given
the embeddings, and report the F1 score on the test set.

CORUM prediction Our CORUM prediction task mirrors that of (Wang et al., 2023), with some
modifications to ensure a fair comparison with CellProfiler. We begin by computing zc for every
single-cell image in the dataset, including the training, validation, and test sets. Then, we discard all
embeddings for which we do not have a corresponding CellProfiler embedding. The median number
of cells per gene is 6,000, and we want to average them to obtain a single embedding per gene.
We have four sgRNA sequences for each perturbed gene, and 250 sgRNA sequences for the non-
targeting control. We first average the zc’s across cells for each sgRNA sequence, and then average
the resulting sgRNA embeddings that correspond to the same gene. For each gene embedding, we
subtract the non-targeting control embedding, then standardize such that each of the 64 components
has mean zero and unit variance.

Then, we incorporate the CORUM database, which defines the pairs of genes that belong to the
same protein complex. We discard all gene embeddings that are not in this database. We compute
the cosine similarity between each pair of gene embeddings, and interpret it as the prediction that
they belong to the same family. The prediction target is one if they belong to the same family
according to the CORUM database, and zero otherwise. We turn the cosine similarities into binary
predictions by across various prediction thresholds by using the i’th percentile as the upper threshold
and the 100− i’th percentile as the lower threshold for each integer i ∈ {80, . . . , 100}. Finally, we
use the binary predictions and prediction targets to obtain a precision and recall at each value of i,
and plot the precision and recall curve.

Figure 25: The left subfigure shows the performance of predicting the well label e, while the right
subfigure represents the biological content. SCBD with DenseNet-121 encoders are less predictive
of the well than CellProfiler, while retaining a similar level of biological information. However, the
DenseNet-121 models are more sensitive to batch effects compared to the ResNet-18 models.
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B CODE

Here is our implementation of the supervised contrastive and invariance losses.

def supcon_loss(z, u, temperature):
batch_size = len(z)
u_col = u.unsqueeze(1)
u_row = u.unsqueeze(0)
mask_pos = (u_col == u_row).float()
offdiag_mask = 1. - torch.eye(batch_size)
mask_pos = mask_pos * offdiag_mask
logits = torch.matmul(z, z.T) / temperature
p = mask_pos / mask_pos.sum(dim=1, keepdim=True).clamp(min=1.)
q = F.log_softmax(logits, dim=1)
return F.cross_entropy(q, p)

def invariance_loss(zc, e, temperature):
batch_size = len(zc)
e_col = e.unsqueeze(1)
e_row = e.unsqueeze(0)
mask_pos = (e_col == e_row).float()
mask_neg = 1. - mask_pos
offdiag_mask = 1. - torch.eye(batch_size)
mask_pos = mask_pos * offdiag_mask
logits = torch.matmul(zc, zc.T) / temperature
q = F.log_softmax(logits, dim=1)
log_prob_pos = (q * mask_pos).mean(dim=1)
log_prob_neg = (q * mask_neg).mean(dim=1)
return (log_prob_pos - log_prob_neg).abs().mean()
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