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ABSTRACT

Trained Transformers have been shown to compute abstract features that appear
redundant for predicting the immediate next token. We identify which compo-
nents of the gradient signal from the next-token prediction objective give rise to
this phenomenon, and we propose a method to estimate the influence of those
components on the emergence of specific features. After validating our approach
on toy tasks, we use it to interpret the origins of the world model in OthelloGPT
and syntactic features in a small language model. Finally, we apply our framework
to a pretrained LLM, showing that features with extremely high or low influence
on future tokens tend to be related to formal reasoning domains such as code.
Overall, our work takes a step toward understanding hidden features of Trans-
formers through the lens of their development during training.

1 INTRODUCTION

Large Language Models (LLMs) are usually pretrained with the objective of next-token prediction
(NTP). In this paradigm, a model learns to predict each token in a sequence given all previous tokens:
in other words, it learns the distribution p(xt+1 | x1 · · ·xt).

Thus, the model is incentivized to compute features that help predict the immediate next token.
Hence, one could reasonably expect that the hidden representations at position t, computed by a
model trained in this way, would contain only the information relevant for predicting xt+1. On
certain synthetic tasks, this was found to be true, highlighting a downside of NTP as a training
objective (Bachmann & Nagarajan, 2024; Thankaraj et al., 2025).

However, a growing body of work on LLMs (and NTP-trained Transformers in general) shows that
sometimes they learn much more than that. For example, Transformers reconstruct abstract features
of the input text (Templeton et al., 2024; Park et al., 2024), infer the high-level structure of the
processes generating their training data, forming ‘world models’ (Li et al., 2023; Karvonen, 2024;
Shai et al., 2024; Jin & Rinard, 2024; Gurnee & Tegmark, 2023), or implicitly predict the sequence
multiple tokens ahead (Pal et al., 2023; Jenner et al., 2024). Motivated by these intriguing findings,
we ask:

How do Transformers trained for NTP learn features that don’t help in the prediction of the
immediate next token?

The prior work investigating learned features in Transformers mostly employed a teleological per-
spective: that is, features are viewed in the context of their role in the algorithms implemented by
a trained model (e.g., Ameisen et al. (2025); Arditi et al. (2024)). This approach is useful to find
the circuits encoded in LLMs, but it doesn’t tell us much about the gradient signal that causes those
circuits to develop during training. Thus, the ways of how training for NTP drives the emergence of
features has been largely underexplored so far.

Towards closing this gap, we develop a novel view on features learned by Transformers. Based
on the structure of information flow in causally masked Transformers, we show that features can
in principle be learned by three distinctive mechanisms, which we refer to as direct learning, pre-
caching, and circuit sharing. The two latter ones allow the token distribution at positions > i + 1
to influence the model’s representations at position i, unlocking the learning of “useless” features.
Next, for a given feature, we propose an experimental method to classify it depending on which
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mechanism contributed the most to its development. We then use our framework to understand
the learned features in Transformers trained on different data domains, including toy functions, the
board game of Othello, and language.

Our key contributions include: (i) A theoretically grounded explanation for why Transformers
trained for NTP learn complex features that are not immediately helpful; (ii) An approach for tracing
the gradient components of the NTP objective that led to the development of a given feature in a
model; (iii) Novel findings obtained using the proposed framework, including an explanation of
the OthelloGPT world model fragility, inspection of the role of pre-caching in text generation, and
interpretation of the pre-cached features in an LLM.

2 SETUP

We use X to denote a variable-length input space of discrete token sequences x1 . . . xn. We view a
model Tθ as representing a function x1 . . . xn → x̂2 . . . x̂n+1 such that

x̂i+1(x) = hL+1
θ (rLi ) r0θ,i(x) = h0

θ(xi)

rkθ,i(x) = hk
θ(r

k−1
1 . . . rk−1

i ), k > 1

and rkθ,i(x) ∈ Rd. Here h0
θ and hL+1

θ are embedding and unembedding layers, respectively, rkθ,i(x)
are the values of the residual stream, and hk

θ are Transformer blocks.

We call a learned feature any linear component of the residual stream at a specific layer and position
⟨wk

i , r
k
θ,i(x)⟩, where a vector wk

i ∈ Rd defines the feature direction. We informally call a feature of a
sequence x<t NTP-useless if there exists an optimal next-token predictor for xt that doesn’t compute
it. Otherwise, we call that feature NTP-useful. For example, NTP-useless features can include the
positioning of the board game pieces that don’t affect the set of possible next moves, or the surface
properties of the sequence that are irrelevant to its continuation. The central question of our work
can then be formulated as understanding how NTP-useless features emerge in Transformers.

3 INFORMATION FLOW DECOMPOSITION

3.1 GRADIENT DECOMPOSITION

We fix position i and layer k and study all information paths in the computational graph of the
model, classifying them by how they relate to rkθ,i(x). We argue that the gradient training signal can
flow to θ through three types of paths, illustrated in Figure 1.

Firstly, a gradient signal can come from the immediate next-token prediction (direct learning). This
includes all paths passing through rkθ,i(x) and x̂i+1 and represents the effect of the information
encoded in rkθ,i(x) on the prediction of the immediate next token. These paths are colored green in
Figure 1. We formalize this by comparing the overall gradient with a gradient after a stop-gradient
operator is applied:

∇θL
k
i (direct) = ∇θLi −∇θL

sg(k,i)
i . (1)

Secondly, the information encoded in rkθ,i(x) affects the loss at positions j > i because attention
heads at those positions can attend to position i. Thus, a gradient signal can come from prediction
loss at future positions, after passing through one or more attention operations (pre-caching). This
component includes the paths passing through rkθ,i and x̂j for j > i+ 1 (blue in Figure 1):

∇θL
k
i (pre-cached) = ∇θ

∑
j ̸=i

[
Lj − L

sg(k,i)
j

]
. (2)

Third, there are paths that do not pass through rkθ,i(x) at all. Hence, some gradient signal arises inde-
pendently of rkθ,i(x). Since Transformer blocks use the same parameters to perform the computation
at every position, this signal may influence the parameters computing it. We call this phenomenon
circuit sharing and visualize the related paths in orange in Figure 1:

∇θL
k
i (shared) =

∑
j

∇θL
sg(k,i)
j . (3)
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Figure 1: Left: An illustration of the information-flow decomposition for i = 2 and k = 1 into
direct, pre-cached, and shared components. Direct and pre-cached paths must pass through the
residual stream at position i = 2 and layer k = 1; any other path is considered shared. The turquoise
rectangle indicates rk=1

θ,i=2. Right: by decomposing the loss gradients, in Section 3.4 we partition the
improvements in feature linearity at each training step.

The term pre-caching is borrowed from Wu et al. (2024), who studied it as a possible explanation
for look-ahead in LLMs. We discuss the relation of our work to Wu et al. (2024) in Section 6.

These three components provide an exhaustive decomposition of the gradient signal:

Proposition 3.1 (Loss gradients decomposition). For any layer k and position i,

∇θL = ∇θL
k
i (direct) +∇θL

k
i (pre-cached) +∇θL

k
i (shared).

By Proposition 3.1, for each i and k, the total gradients that are backpropagated to the model param-
eters after computing the loss on one training batch can be split into three terms distinctive in their
nature: direct, pre-cached, and shared components.

How to study pre-caching and circuit sharing? In light of Proposition 3.1, a natural question
arises: how important each of the introduced components is for learning the task, as well as for
representing the latent features picked up by the model. The role of the direct component is in some
sense trivial: that is the main source of the gradient signal for predicting the immediate next token,
thus we concentrate on analyzing pre-caching and circuit sharing. We approach the analysis by two
complementary ways: intervention (training a model with one of the components ablated, Section
3.2) and attribution (quantifying the influence of each component in a training run, Section 3.4).

3.2 ABLATING PRE-CACHING AND CIRCUIT SHARING

Ablating pre-caching. Wu et al. (2024) proposed myopic training – a way to train an LLM that
prevents pre-caching. The only difference between myopic and normal training is that all gradients
between the loss at the i-th position and the activations at the j-th position (where j ̸= i) are blocked.
Since the only path for information to flow between the i-th and j-th tokens is through attention, it
is sufficient to stop gradients after computing the K and V matrices (excluding those for the current
token). The purpose of myopic training is to block gradients so that the i-th token is not incentivized
to compute any feature that is NTP-useless for predicting xi+1 but useful for being picked up by an
attention head later. This way, pre-cached features do not appear.

Ablating circuit sharing. To stop learning features shared across positions, we use a technique
that we call m-untied training. We select an index m and use one set of parameters (θ⩽m) for the
forward pass on all positions before m and another (θ>m) for positions after m. This way, we have
two models that are trained only to predict their respective part of the input, but the second model
still attends to the KV-cache of the first one. In the extreme m-untied + myopic case, the pre-cached
gradients do not flow through attention, so the parameters θ⩽m do not depend on the data after the
m-th token. In this case, our double model resembles a patient with non-communicating left and
right brain hemispheres, as in the split brain experiments in neuroscience (Gazzaniga, 2005).
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3.3 THE ROLES OF PRE-CACHING AND CIRCUIT SHARING

Pre-caching increases expressivity. The power of Transformers comes from complex interactions
of attention heads that move information between different tokens. Even constructions as simple
as an induction head require at least two layers of attention interacting with each other. Disabling
pre-caching prevents the Transformer from deliberately learning such constructions. Indeed, if a
feature is NTP-useless at all positions, there is no hope for it to be learned and used by later layers.
Thus, many constructions requiring more than one layer of attention (such as the ones described by
Liu et al. (2022)) will be impossible to learn.

Note that circuit sharing, by contrast, does not have this property, since even with untied training the
gradient signal between tokens still passes through. Compared to myopic training, where an optimal
solution cannot be reached due to the lack of training signal, SGD in the case of untied training has
the signal needed to find the minimum.

Circuit sharing enables cross-position feature transfer. While the strength of pre-caching is
increased expressivity, circuit sharing has a different unique property: enabling feature transfer
across positions. Imagine a feature that is NTP-useless at position i but NTP-useful at position j.
Due to its usefulness at j, it will be learned, and thanks to circuit sharing, it will also be encoded at
i. In this way, position i will have access to knowledge learned at a different position.

3.4 ESTIMATING THE EFFECT OF GRADIENT COMPONENTS ON FEATURE EMERGENCE

So far, we have argued that there are three path types along which the loss signal, via its gradient,
can pass to the model parameters. We now use this decomposition to study the extent to which a
feature is produced, over the course of training, by each of the three components of the gradient. To
this end, we aim to quantify how much each component of the gradient signal pushes the parameters
towards developing a feature.
Definition 3.2. We call a feature mismatch the value

R(x | θ1, θ2, wk
i ) =

1

2

(
⟨wk

i , r
k
θ1,i(x)⟩ − ⟨w

k
i , r

k
θ2,i(x)⟩

)2
The feature mismatch quantifies how much the projections of the residual streams onto the feature
wk

i differ between models parameterized by θ1 and θ2.

We now want to quantify the extent to which a single gradient update to an intermediate checkpoint
θt narrows the feature mismatch when compared to the final checkpoint θ∗. By separately consider-
ing the three components of the gradient signal, we will be able to understand what role each plays
in the development of the feature. We formalize this in terms of an influence I(θ, x, y | wk

i , θ
∗, G):

Definition 3.3. For a vector G ∈ R|θ|, we call the influence of G the value

Iki (θ, x | wk
i , θ

∗, G) =
d

dε
R
(
x | θ + εG, θ∗, wk

i

) ∣∣∣∣
ε=0

.

Applying the decomposition from Proposition 3.1, for each feature we define direct influence:

Idirect(w
k
i , θ) = I(θ, x | wk

i , θ
∗,∇θL

k
i (direct)).

The definitions of pre-cached and shared influences are analogous.
Remark 3.4 (informal). Consider a model Tθ, trained for M steps of SGD with a small step size η.
Then

R(x | θ0, θ∗, w) ≈ η ·
∑
s∈S

M∑
t=1

I(θt, xt | wk
i , θ

∗,∇θLs),

where S = {direct,pre-cached, shared}.

Remark 3.4 holds approximately due to the first-order approximation of the feature mismatch
R(x | θt, θ∗, w). Expressing the change in feature mismatch at each step through its gradient
and breaking it down into direct, pre-cached, and shared components leads to the equality above.
The remark shows that each loss component has its own influence on feature representation at every
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Figure 2: Performance of the linear probes applied to the residual stream after the first Transformer
block. Left: Majority, the feature “majority-so-far”. Right: Conditioned Majority, the feature
“previous-token”. In both cases, the feature is NTP-useless until the 10th token. In both cases,
ablating pre-caching and circuit sharing substantially hurts the probing performance.

step of gradient descent. Integrated over the whole training process, this influence accounts for the
discrepancy between the feature representation at the beginning and at the end of training.

The remark above is grounded for SGD; however, the optimizer commonly used to train models is
Adam (Kingma & Ba, 2014). Thus, we adjust each gradient component G to reflect the gradient
steps made by Adam. We keep separate moments m(component) for each of the three components
and calculate the step attributed to each of the components as

G(component) = −α ·
m(component)

1− βt
1

Then the G(direct), G(pre-cached) and G(shared) are an exact partition of the optimizer step, and we
use them to compute influence as defined above.

We interpret the value Ĩdirect(w
k
i ) ≡

∑
t Idirect(w

k
i , θt) (integrated direct influence) as the overall

impact of the direct loss component on the emergence of the feature wk
i in the model, and similarly

for the other two components. We use this decomposition to answer which combinations of direct,
shared, and pre-cached gradient signals produced a feature over the course of training, by evaluating
the magnitudes of the three integrated components Ĩdirect(wk

i ), Ĩpre-cached(w
k
i ), and Ĩshared(w

k
i ).

4 EXPERIMENTS WITH SMALL TRANSFORMERS

In all experiments in this section, we train GPT-2-like Transformers (Radford et al., 2019) for NTP
using cross-entropy loss. If not stated otherwise, all our models have standard architecture: they are
non-myopic and tied. To estimate if a Transformer represents a given feature linearly, we train layer-
and position-specific linear probes (Alain & Bengio, 2016; Belinkov, 2022) to predict the value of a
feature using the residual stream of the trained model θ∗ as input. For consistency, we always treat
probing as a regression task and evaluate the probes using Pearson correlation between the predicted
and true values of a feature. Each of the probes represents one feature direction wk

i .

In the attribution experiments, we then retrain the Transformer from scratch with the same random
seed and data order, repeating the training trajectory of the first run that lead to θ∗. For each batch
in the training set, we compute Idirect(w

k
i , θ), Ipre-cached(w

k
i , θ), and Ishared(w

k
i , θ). We sum those

values across the batches, obtaining the integrated influences for each feature1.

4.1 IN TOY TASKS, NTP-USELESS FEATURES DO NOT EMERGE WITHOUT PRE-CACHING
AND CIRCUIT SHARING

First, we verify our intuitions using two toy tasks where we have a clear understanding of the re-
quired circuits: Majority and Conditioned Majority. We train two-layer models to solve each task.

In Majority, each example x consists of M tokens sampled uniformly from a vocabulary of size V ,
and M tokens sampled from the set of the most frequent tokens so far: argmaxt count(t, x⩽M ).
The task is solved by a simple uniform attention head computing the most frequent token. We track
the influence components of the feature F1 “the most frequent token so far.”

1Our approach is discussed in more detail in Appendix B.
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direct yes 2.85 12.38
no -4.69 2.74

pre-cached yes -1.99 0.66
no 0.55 3.05

shared yes 4.80 12.48
no 2.93 9.91

combined yes 12.14 19.05
no 4.42 10.07

Figure 3: Left: the gap in probing performance between NTP-useful and NTP-useless board squares
for OthelloGPT. Right: 95% confidence intervals for the integrated influence of each component on
the representation of NTP-useful and NTP-useless features.

Conditioned Majority is designed to bring out the importance of pre-caching. The input consists
again of two parts: M uniformly sampled tokens, followed by M samples from the set of those
tokens that followed the token “A” most often in the first part. The task requires a mechanism akin
to induction heads (Olsson et al., 2022): the first attention layer attends to the preceding token, and
the second layer attends to the tokens after “A.” We study the feature F2 “the preceding token is A.”

In both tasks, the first M tokens are random and can be predicted trivially, without F1 or F2. Thus,
in the input phase F1 and F2 are NTP-useless, and we are interested in whether our models will
learn to represent them, and if they do, why.

For different random seeds, we train (non-)myopic (M -un)tied models. Thus, we obtain models
that all experienced direct learning, but had pre-caching and/or circuit sharing ablated. We plot the
performance of probes trained to extract F1 for Majority and F2 for Conditioned Majority in Figure
2. In both cases the myopic untied models show the most fragile representation of the features during
the input phase, supporting our prediction that such models have no incentive to learn NTP-useless
features. Lifting the ablation of pre-caching or circuit sharing improves the performance of probes.
Notably, both tied and untied myopic models are unable to learn Conditioned Majority (Appendix
E.1): the two-layer circuit described above cannot develop without pre-caching.

4.2 PRE-CACHING AND CIRCUIT SHARING HOLD TOGETHER OTHELLOGPT’S WORLD
MODEL

Next, we apply our framework to study Transformers trained to predict legal moves in the game of
Othello, a common testbed for evaluating world models implicit in language models (Li et al., 2023;
Yuan & Søgaard, 2025). In Othello, two players place their tiles on the cells of an 8 × 8 board in
turns. The set of legal moves is a deterministic function of the current board state. The initial work
on the topic claimed the discovery of coherent board state features in OthelloGPT (Li et al., 2023;
Nanda et al., 2023), however more recent evidence was more pessimistic, reporting that the implicit
world model of OthelloGPT is fragile, especially when it comes to boards sharing the same set of
legal next moves (Vafa et al., 2024; 2025). We aim to make sense of this new evidence from our
perspective of NTP-use(ful/less) features.

Recall that we defined NTP-useless features as the ones that are not needed for predicting the next
token. Hence, in the case of Othello, for each sequence of moves x<t, NTP-useless features are the
representations of cells that don’t affect the set of the legal next moves xt. Our theory implies that,
all else being equal, NTP-useless features should be represented worse than NTP-useful features
since they lack the direct learning component. However, pre-cached and shared components are
active even for NTP-useless features, supplying them with some training signal.

We follow a standard experimental setting and train a Transformer on randomly generated game
transcripts represented as sequences of up to 60 tokens. The i-th token indicates the square where
the tile was placed during the i-th move in the game. Then we train linear probes to extract the board
state from the model’s hidden representations.

The experimental results align with our predictions. Figure 3 (left) shows the gap between the
performance of linear probes trained to extract NTP-useful and NTP-useless features: it is always
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Figure 4: Comparison of the three distinct types of features in a small language model: POS tags,
dependency tags, and the positional feature. Left: probing scores for myopic and non-myopic
models. Center: direct and pre-cached influence components for each feature type.

positive and increases with layer depth (most likely because the deepest layers align more on direct
influence). We verify the reasons for this disparity by inspecting the influence of each component
calculated separately for NTP-useless and NTP-useful features (Figure 3 (right)). Direct influence
alone is positive for NTP-useful but indistinguishable from zero for NTP-useless features. However,
since pre-cached and shared influence is positive even for NTP-useless features, they are still learned.

These observations provide new evidence that complements the empirical findings of Vafa et al.
(2025). Specifically, we show with statistical significance that the model’s inductive bias toward
next-token partitions of state arises from the direct gradient component promoting learning of NTP-
useful features. We also refine the result of Vafa et al. (2025) by showing that the NTP-useless
cells are learned as well, albeit less robustly, since the signal for learning them is present due to the
non-zero pre-cached and shared components. Together, our results explain both 1) why the model
represents NTP-useful cells better than NTP-useless ones, and 2) why NTP-useless cells can still be
recovered better than chance.

4.3 PRE-CACHING IS REQUIRED FOR COHERENT TEXT GENERATION, BUT NOT NEEDED
FOR SYNTAX

0 200 400 600 800 1000
Step

0.03

0.02

0.01

0.00

0.01

0.02

I

2 - direct
3 - direct
2 - p-c
3 - p-c

Figure 5: Development of the
direct and pre-cached influence
components of the positional
feature in the non-myopic model
during training.

The environment that ultimately interests us is language. Thus,
we train and study tiny Transformers for natural text generation.
The main question we ask is: Is pre-caching needed for coherent
text generation, and which relevant features does it affect?

We use TinyStories v2 (Eldan & Li, 2023), which contains GPT-
4-generated children’s stories. The texts in this dataset use sim-
ple language that could be understood by a child; these proper-
ties make it learnable even by a very small model. Following
Eldan & Li (2023), we train tiny (non-)myopic GPT-2-like lan-
guage models on this dataset with different random seeds. For
each story, we randomly choose a starting point and from there
sample a substring of 64 tokens. We annotate each token with
syntactic features (POS and dependency tags), as well as with a
positional feature: the position of the token in the original story
before subsampling the sequence. See Appendix D.3 for the full experimental details.

We observe that myopic models have a consistently much higher loss than non-myopic models
(3.29 ± 0.02 vs 2.53 ± 0.10, with training curves reported in Appendix E.3), indicating that pre-
caching is necessary for the task. At the same time, nearly all features we study seem to be direct:
the performance of probes extracting these features does not vary significantly between myopic and
non-myopic models, and for all but the positional feature, pre-caching influence lies much lower
than direct influence (Figure 4) with non-overlapping confidence intervals for mean (Figure 14) and
one-sided Wilcoxon tests showing that the gap is statistically significant (Table 5). We conclude that
simple syntax can be learned without pre-caching.

What is pre-caching needed for then, if not syntax? It seems to be relevant for computing more
complex properties of the input text: as can be seen in Figure 4 (center), in a non-myopic model the
positional feature, which relates to high-level properties of the stories, starts to be learned due to the
pre-caching influence. Figure 5 shows a transition during training, when pre-caching starts affecting
the feature, hinting to a development of a circuit involving it.
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HTML or CSS code 
programming constructs

French pronouns
graphical user interface elements
identifiers and numerical values

class and method definitions in programming
web development, library management
code structure and control flow
programming constructs and syntax
software usage rights, permissions, and licensing terms

standards and standardization processes
poverty and marginalized communities
details of activities in various contexts
legal restrictions
logistics, regulations, technical specifications

Figure 6: Distribution of Q(w) for the SAE features of Gemma 2 2B. The text boxes show the
compressed descriptions of 5 features from the tails of the distribution, as well as 5 random features
from the mode of the distribution.

5 INVESTIGATING FEATURES IN LARGE LANGUAGE MODELS

Retraining an LLM from scratch is computationally very expensive, which is why the field of LLM
interpretability operates mostly on final model checkpoints. For the same reason, the attribution
method that we used in Section 4 is inapplicable in the same form to large-scale models.

However, even with access only to the final checkpoints, we can draw some conclusions about the
emergence reasons of features, connecting traditional interpretability and our framework introduced
above. In this section, we use this connection to understand the latent features of a State-of-the-Art
LLM: Gemma 2 (Gemma Team et al., 2024).

5.1 FINDING AND UNDERSTANDING PRE-CACHED FEATURES IN AN LLM

The standard way of estimating the causal role of a feature in a Transformer is an intervention
(Mueller et al., 2024): modifying the activations of a model during the forward pass to alter the
representation of a feature and observing the changes in predictions. Assume that one intervenes
on the residual stream rkθ∗,i(x) of a trained model Tθ∗ , adding to it a vector w, and then records the
KL-divergence between the predictions with and without the intervention at each position after i:

d
/i
j = DKL(Tθ∗(xj | x<j)∥Tθ/i(xj | x<j))

Here, Tθ/i(xj | x<j) are the predictions of a model under the intervention on the i-th position.

Proposition 5.1 (Approximating influence with interventions).

Iki (θ
/i, x | w, θ∗,∇θLpre-cached)

Iki (θ
/i, x | w, θ∗,∇θLdirect)

≈
∑

j>i+1 d
/i
j

d
/i
i+1

≜ Q(w)

The proof is deferred to Appendix C. Proposition 5.1 implies that even if we cannot rigorously
compute the influence components of a feature as we don’t have access to the model’s training
trajectory, we can estimate the ratio of direct and pre-cached influence around the trained model
using the quantity we denote Q(w). In other words, we can find out if a given feature is more likely
to be direct (an intervention changes only the prediction of the immediate next token) or pre-cached.
Importantly, however, we can only make statements about the components ratio in the region around
the final model, not along the whole training path.

Finding pre-cached features in Gemma 2. To extract the learned features in an unsupervised fash-
ion, we use a Sparse Autoencoder from the Gemma-Scope suite (Lieberum et al., 2024). To compute
Q(w) for each feature, we find the tokens where the feature is active and ablate it, effectively sub-
tracting ⟨r, w⟩/∥w∥2 · w from the residual stream. See the details in Appendix D.4.

Using the fact that automatically generated descriptions of the SAE features are available, we study
the descriptions of features with extreme values of Q(w) and observe that most of them are related to
programming or formal structure of the input text. Based on this observation, we form a hypothesis:
are features related to formal reasoning tasks more likely to have extreme values of Q(w)?

8
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To test this hypothesis, we label each feature as 0 or 1 depending on whether it activates on this type
of inputs (details in Appendix D.5), and plot Q(w) separately for those groups (Figure 6). Indeed,
the tails of the distribution see much higher concentration of these formal features. Estimated 95%
CI for the σformal when modeled with a log-normal distribution is 1.63± 0.03, for the σnot formal it is
1.23 ± 0.02. The results align with the intuitions detailed in Section 3.3: pre-caching seems to be
needed in tasks that require emulating formal computational devices (e.g., AST for code parsing).

To further test the robustness of the link between Q(w) and feature semantics, we examine how
steering features with different values of Q(w) affects samples from the model. For each feature,
we draw unconditional generations from the model while steering that feature by adding its direc-
tion vector, scaled by a steering coefficient, to the residual stream at the target layer. We find that
steering features with a high pre-caching degree leads to generations containing more code and more
punctuation than average (Figure 19). Interestingly, we don’t observe the same effect for features on
the opposite end of the spectrum. The results thus support the connection between a feature having
a high value of Q(w) and its involvement in formal reasoning. For features with low Q(w), this
connection, if present, appears weaker and not as easily detectable by steering. Full experimental
details are provided in Appendix D.6.

5.2 PRE-CACHING AND LOOK-AHEAD ARE SEPARATE PHENOMENA

Wu et al. (2024) initially introduced the notion of pre-caching as a potential explanation for the
look-ahead in LLMs (Pal et al., 2023), suggesting that pre-cached features may be the ones that
contribute to the ability to predict future tokens the most. We test this hypothesis by investigating if
the learned features of Gemma 2 with high Q(w) are also most useful for the look-ahead.

We obtain a future token predictor by training a linear layer mapping WLA from rkθ,i(x)
to xi+t+1 on a subset of the Pile dataset (Gao et al., 2020). Then, for each SAE
feature, we compute the angle A(WLA, w, r) between the feature direction w and the
subspace formed by r main singular components of WLA. See the details in Ap-
pendix D.7. We report the Spearman correlation between cosA(WLA, w, r) and Q(w)

0 500 1000 1500 2000
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Figure 7: Correlations between
cosA(WLA, w, r) and Q(w).

for each r in Figure 7 for the mapping up to 5 tokens ahead.

Surprisingly, we find the negative correlation across all look-
ahead maps. This means that not only the look-ahead is not
caused exclusively by the pre-cached features only, but they con-
tribute to it less than direct features. This is strong evidence for
the breadcrumbs hypothesis of Wu et al. (2024): look-ahead in
LLMs arises not from implicit planning but rather from the simi-
larities of features needed to predict tokens at different positions.

6 RELATED WORK

Effects of NTP training. This paper is a part of a line of work aiming to understand how the NTP
objective shapes the algorithms learned by Transformers. Bachmann & Nagarajan (2024); Nagarajan
et al. (2025) discuss the critiques of NTP and show how it can lead to learning undesirable shortcuts
or lack of creativity, mitigated by multi-token training initially proposed by Gloeckle et al. (2024).
Motivated by these findings, Hu et al. (2025) modify the objective, Thankaraj et al. (2025) propose
reordering the tokens in the input.

Most relevant to our work, Wu et al. (2024) investigates the reasons behind the emergence of look-
ahead in LLMs and proposes the pre-caching hypothesis, stating that some tokens might “prepare
in advance” the information relevant for future tokens. We build upon that work and borrow the
term “pre-caching” from there. However, our contribution is distinct from that of Wu et al. (2024) in
several aspects: most importantly, we bring the level of analysis down to the development of specific
features, and also introduce the concept of circuit sharing, not analyzed by Wu et al. (2024).

Developmental interpretability. Another relevant to us line of research is the emerging subarea of
interpretability that takes inspiration from the field of training dynamics and analyzes the changes
in the algorithms encoded in the models at different moments of training. Tigges et al. (2024)
analyze circuits in LLMs at different training checkpoints and find that they stay consistent. Wang

9
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et al. (2025) use Singular Learning Theory to monitor emerging specialization of attention heads.
Concurrently with our work, Bayazit et al. (2025) track the emergence of features using crosscoders
trained across model checkpoints. Kangaslahti et al. (2025) cluster different datapoints based on
their loss dynamics, estimating the moments when certain abilities become acquired by the model.

7 CONCLUSION

Traditional work in mechanistic interpretability aims to understand a learned feature by tracing
which circuits it plays a role in. However, those circuits do not simply appear in the model; they
need a gradient signal to develop. In this work, we studied the sources of that gradient signal,
shifting from the commonly employed static teleological perspective to a developmental one, in
which learned features in Transformers are viewed as outcomes of gradient-based learning rather
than a gear in a final algorithm.

In Section 4, we showed how this change of perspective makes a difference, helping interpret fea-
tures that cannot be explained solely through being a part of an algorithm predicting the immediate
next token. We believe that Othello is a prime example, where representation of NTP-useless fea-
tures can be explained by inspecting pre-cached and shared gradient components.

Unfortunately, modifying the training pipeline of a model is often too computationally expensive
to be done in practice. The best one can do in this case is inspecting the region around the trained
model, which is what we did in Section 5, but even using the restricted toolkit of intervening on
a static model, we can perform analysis on the development of linearly represented features under
study.

Improving the efficiency of our attribution method and adapting it to be applicable to large-scale
models is a potential avenue for future work. Another promising direction is to use our method
to discover previously unknown interpretable features by analyzing the residual stream subspaces
formed by a distinct gradient component (e.g., only by pre-cached updates but not direct updates).
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A PROOF OF PROPOSITION 3.1

Proposition A.1 (Restated from Proposition 3.1). For any layer k and position i,

∇θL(x, Tθ(x)) = ∇θL
k
i (direct) (x, Tθ(x))+∇θL

k
i (pre-cached) (x, Tθ(x))+∇θL

k
i (shared) (x, Tθ(x))

(4)
Where

∇θL
k
i (direct) (x, Tθ(x)) = ∇θL(xi+1, Tθ(x)i)−∇θL

(
xi+1, [Tθ(x)]

sg(i,k)
i

)
, (5)

∇θL
k
i (pre-cached) (x, Tθ(x)) =

∑
j ̸=i

[
∇θL(xj+1, Tθ(x)j)−∇θL

(
xj+1, [Tθ(x)]

sg(i,k)
j

)]
, (6)

∇θL
k
i (shared) (x, Tθ(x)) =

∑
j

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
(7)

Proof.

∇θL(x, Tθ(x)) = ∇θL
(
x, Tθ(x)

)
+∇θL

(
x, [Tθ(x)]

sg(i,k)
)
−∇θL

(
x, [Tθ(x)]

sg(i,k)
)
=

=

N−1∑
j=1

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
+

N−1∑
j=1

∇θL
(
xj+1, Tθ(x)j

)
−

N−1∑
j=1

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
=

=

∇θL
k
i (shared)︷ ︸︸ ︷

N−1∑
j=1

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
+

∇θL
k
i (direct)︷ ︸︸ ︷(

∇θL
(
xi+1, Tθ(x)i

)
−∇θL

(
xi+1, [Tθ(x)]

sg(i,k)
i

))
+

+
∑
j ̸=i

[
∇θL

(
xj+1, Tθ(x)j

)
−∇θL

(
xj+1, [Tθ(x)]

sg(i,k)
j

)]
︸ ︷︷ ︸

∇θLk
i (pre-cached)

B ADDITIONAL DETAILS ON ATTRIBUTION EXPERIMENTS

Computing the component influence. By Definition 3.3,

Iki (θ, x | wk
i , θ

∗, G) =
d

dε
R
(
x | θ + εG, θ∗, wk

i

) ∣∣∣∣
ε=0

A simple application of the chain rule gives an equivalent definition:

Iki (θ, x | wk
i , θ

∗, G) =
〈
∇θR

(
x | θ, θ∗, wk

i

)
, G

〉
(8)

Thus, computing the influence of a given gradient term can be done by taking the inner product of
that gradient term and the gradient of the feature mismatch.

To compute Idirect(w
k
i , θ), Ipre-cached(w

k
i , θ), and Ishared(w

k
i , θ) for given i and k, we employ the

following algorithm. First, we calculate ∇θLj for every j in a standard way. Next, we calculate
∇θL

sg(k,i)
j in a similar manner, but during the forward pass of the model we detach the tensor

corresponding to rkθ,i(x). After that, we compute the gradient decomposition terms according to the
definitions in Section 3.4.

The only thing left is the gradient of the feature mismatch. We apply the linear probe defined by wk
i

to both rkθ,i(x) and rkθ∗,i(x) and compute the feature mismatch according to Definition 3.2. We run
one more backpropagation to find ∇θR and take its inner product with the gradient decomposition
terms, obtaining the desired influence values.
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Correction for Adam. As metioned in Section 3.4, the naive computation of influence compo-
nents described above is grounded for training with SGD (Remark 3.4) but not for Adam. Indeed,
in the case of Adam, the parameter update is computed differently, and a linear step toward the neg-
ative gradient no longer reflects how the model is trained. Moreover, due to the inclusion of the first
and second moments, the parameter update cannot be computed as a linear sum of three separable
components:

θt+1 − θt ̸= g(∇L(direct)) + g(∇L(pre-cached)) + g(∇L(shared))

while for SGD it is true, with g(x) = −η · x (and that fact is the basis behind Remark 3.4).

However, with two small adjustments we can make the Adam parameter update separable. First, we
keep separate moments for each of the three components:

m
(direct)
t = β1m

(direct)
t−1 + (1− β1)∇L(direct)

(similarly for the other two).

Second, we use the same adaptive learning rate for all three components:

α =
η√

v̂t + ϵ
,

where v̂t is computed normally. Then,

θt+1 − θt = g(m
(direct)
t ) + g(m

(pre-cached)
t ) + g(m

(shared)
t ),

where
g(x) = −α · x

1− βt
1

.

This way, we can use g(m
(direct)
t ) as an adjusted gradient for the direct component. From here, the

computation is similar to the case of SGD.

Overall Algorithm. First, for a given dataset, we train a model normally. In all our experiments,
we use Adam to follow community standards. After the model has been trained, we freeze it, save
the hidden activations on the validation dataset, and obtain a set of linear probes to regress latent
variables.

For us, these probes represent the directions wk
i needed to compute the gradient-component in-

fluence. Once we have the probes, we retrain the model from scratch, fully repeating its training
trajectory, which involves starting from the same initialization as the first time, keeping the data
point order the same, fixing the PyTorch random seed, etc. During this second training run, at each
training batch we compute the feature mismatch and the gradient-component influence for each
probe.

The second run is needed because during the first one we do not have the directions wk
i needed to

compute component influences, and to estimate them we need θ∗, which itself requires the training
run to finish. In principle, one could save all gradient components during the first run and then
retrieve them from memory when computing the influence, but that is extremely expensive in terms
of the disk space needed. Thus, we perform two consecutive training runs.

C PROOF OF PROPOSITION 5.1

Proposition C.1 (Restated from Proposition 5.1).

Iki (θ
/i, x | w, θ∗,∇θLpre-cached)

Iki (θ
/i, x | w, θ∗,∇θLdirect)

≈
∑

j>i+1 d
/i
j

d
/i
i+1

≜ Q(w)

Proof. Both direct and pre-cached gradient components consider only the gradient paths that have
rki as a bottleneck, so by chain rule they can be expressed as

∇θL
k
i (direct) = Jθ[r

k
i ] · ∇rki

Li
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And

∇θL
k
i (pre-cached) = Jθ[r

k
i ] · ∇rki

∑
j>i

Lj


For convenience, from this point we will treat them together as∇θLc, c ∈ {direct, pre-cached}.

R(x | θ, θ∗, wk
i ) =

1

2

(
⟨wk

i , r
k
θ,i(x)⟩ − ⟨wk

i , r
k
θ∗,i(x)⟩

)2
∇θR(x | θ, θ∗, wk

i ) =
(
⟨wk

i , r
k
θ,i(x)⟩ − ⟨wk

i , r
k
θ∗,i(x)⟩

)
∇θ⟨wk

i , r
k
θ,i(x)⟩ = ∆ · Jθ[rkθ,i](wk

i )

Per equation 8,

Iki (θ, x | wk
i , θ

∗,∇θLc) =
〈
∇θR

(
x | θ, θ∗, wk

i

)
,∇θLc

〉
= (9)

= ∆(wk
i )

TJθ[r
k
θ,i]

TJθ[r
k
i ] · ∇rkθ,i

Lc = Jθ[r
k
θ,i]

TJθ[r
k
θ,i]⟨∆wk

i ,∇rkθ,i
Lc⟩ (10)

Imagine we do a feature ablation: that is, we take a trained model θ∗ and add a vector ∆wk
i to rkθ∗,i.

We measure the loss Lc that depends on the model’s output. Doing a first-order approximation
around rθ′,i (θ′ are the parameters of this intervened model),

L′
c − L∗

c ≈ (∆wk
i )

T∇rθ′,iLc (11)

A corollary of equation 10 and equation 11 is that for any model with parameters θ′ such that
rkθ,i = rkiθ∗ +∆wk

i , the influence of component c is proportional to the increase in loss compared to
the model θ∗.

Assuming that that θ∗ perfectly fits the data (p(xt | x<t) = Tθ∗(xt | x<t), the difference in cross-
entropy NTP losses becomes

L′
direct − L∗

direct = − E
xt∼Tθ∗ (xt|x<t)

log Tθ′(xt | x<t) + E
xt∼Tθ∗ (xt|x<t)

log Tθ∗(xt | x<t) =

= E
xt∼Tθ∗ (xt|x<t)

log Tθ∗(xt | x<t)

log Tθ′(xt | x<t)
= DKL(Tθ∗(xt | x<t)∥Tθ′(xt | x<t))

Similarly, for the pre-cached component, the difference in losses corresponds to the sum of KL-
divergences for future positions.

Iki (θ, x | wk
i , θ

∗,∇θLdirect)

Iki (θ, x | wk
i , θ

∗,∇θLpre-cached)
=

DKL(Tθ∗(xi+1 | x⩽i)∥Tθ′(xi+1 | x⩽i)∑
j>i+1 DKL(Tθ∗(xj+1 | x⩽j)∥Tθ′(xj+1 | x⩽j))

(12)

Where Tθ′ is a model where rki was modified along the direction wk
i .

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 TOY TASKS (SECTION 4.1)
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Table 1: Hyperparameters for the experiments with the tasks of Majority and Conditioned Majority.

Hyperparameter Value
Layers 2
Heads 4
Hidden dim 128
Feedforward dim 512
Learning Rate 0.001
Batch size 256

Hyperparameter Value
Steps 3000
Train size 102,400
Eval size 10,240
Number of seeds 10
Input phase size 10
Output phase size 10
Vocabulary size 3

D.2 OTHELLO (SECTION 4.2)

Table 2: Hyperparameters for the Othello experiment.

Hyperparameter Value
Layers 6
Heads 4
Hidden dim 256
Feedforward dim 1024
Learning Rate 0.001
Batch size 1024

Hyperparameter Value
Steps 5000
Train size 5,120,000
Eval size 20,480
Number of seeds 1

Following prior work, we generate a dataset of synthetic games of Othello. When generating a new
game, we always randomly choose a move that is legal given the current board state.

We encode the game as a sequence of tokens, where the i-th token represents a square where a stone
was placed at the i-th turn, irrespective of which player placed it. We also add a token pass for the
turns when no moves are legal. The games in our datasets have a fixed length of 60 turns, and end
with repetitions of pass if the game tree finished before that.

When training the linear probes, we encode the board state as a matrix of -1, 0, and 1. 1 represents
the squares belonging to the active player, -1 represents the squares belonging to the non-active
player, and 0 represents the empty squares. When a square is placed, the board state matrix gets
negated (because the active player changed) and -1 gets added to one of the cells.

When estimating the influence separately for NTP-useless and NTP-useful squares, we don’t take
empty cells into account. For a given board state, we consider a square NTP-useful if flipping
it (negating the corresponding cell in the board state matrix) changes the set of the legal moves.
Otherwise, the square is considered NTP-useless. When estimating the influence components for the
NTP-useless and NTP-useful features, we use the same probe for both types, but compute feature
mismatch separately. This way, we aggregate R(x | θ, θ∗, wk

i ) disjointly for the objects in the batch
where the square is NTP-useless and NTP-useful, and proceed as usual.

After that, Ĩfull(wk
i )NTP-useless can be seen as the contribution of NTP-useless features into the devel-

opment of the linear direction defined by wk
i . If Ĩfull(wk

i )NTP-useless is negative or close to zero, it
indicates that these features do not contribute to the linearity of the representation.

Due to the resource constraints, we cannot compute the influence components for each position and
square of the board. Thus, we use 16 central squares and compute influence for every 4th position
(from 4th to the 56th turn).

D.3 SMALL LANGUAGE MODEL (SECTION 4.3)

We employ the tokenizer used in the original work on TinyStories (Eldan & Li, 2023).

We test the following features:

1. POS tags: we annotate POS tags using spaCy (Honnibal et al., 2020), one-hot encode them
and use the 10 most common tags, encoded as 0 or 1, as features. Since one word can
contain multiple tokens, each token gets assigned the tag of the word it belongs to.
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Table 3: Hyperparameters for the small LM experiment (TinyStories).

Hyperparameter Value
Layers 4
Heads 4
Hidden dim 128
Feedforward dim 512
Learning Rate 0.001
Batch size 1024

Hyperparameter Value
Steps 1000
Train size 256,000
Eval size 30,000
Number of seeds 10
Max length of text 64

2. Dependency tags: same procedure, also the 10 most common tags.

3. Positional feature: since we sample substrings of 64 tokens from the original stories to
train the model, the positions of tokens in these substrings do not directly correspond to
their positions in the original text. We use that original position as another feature that
assumes the values from 0 (the token is the first token in the original story) to 1 (the last
token).

Thus, we have 20 binary features and 1 continuous feature. We estimate influence of those features
for each position from 30 to 39.

D.4 CALCULATING Q(w) (SECTION 5.1)

To characterize the causal role of the learned features in Gemma 2 (Gemma Team et al., 2024),
we employ a Sparse Autoencoder (SAE) from the Gemma-Scope suite (Lieberum et al., 2024),
specifically the SAE trained at the residual stream in layer 15 with 16k hidden features.

The first step is to curate a dataset of diverse, high-activating text examples for each feature. We se-
lect text sequences from Neuronpedia (Lin, 2023) where features show their highest activation. For
each feature, we find the token position with the maximum activation value and extract the surround-
ing text, including a fixed window of 10 subsequent tokens to create an initial set of sequences. This
set is then filtered for diversity based on token-level Levenshtein distance, resulting in a collection
of high-activating and textually different sequences.

On these sequences, we perform an intervention at the token position of maximum activation. We
intercept the residual stream activation vector, pass it through the SAE’s encoder, and set the activa-
tion value of our target feature to zero. This modified set of feature activations is then passed through
the SAE’s decoder to create a new, ablated residual stream vector, which replaces the original one
in the forward pass.

To quantify the impact of the feature, we compare the model’s subsequent token predictions with
and without the intervention. We measure the change in the output probability distribution at each
future position using KL-divergence. This allows us to compute a Q(w) score representing the ratio
of the feature’s delayed to immediate influence. We average this score across different sequences.
As discussed in Appendix C, a high Q(w) value indicates a ’pre-cached’ feature whose primary
influence is on the model’s future state, while a low value indicates a ’direct’ feature influencing on
the immediate prediction. We filter out from the analysis the features, ablating which does not show
substantial effect on any generated tokens:

1

S

S∑
s=1

∑
j>i

DKL(Tθ∗(x
(s)
j+1 | x

(s)
⩽j)∥Tθ′(x

(s)
j+1 | x

(s)
⩽j)) < 0.05

After that, we are left with 14,565 features to analyze out of the initial 16,384.

D.5 CLASSIFYING SAE FEATURES (SECTION 5.1)

To assess whether a given SAE feature relates to formal reasoning, we use its automatically gener-
ated decsription available in Neuronpedia (Lin, 2023). We use the available descriptions generated
using GPT-4o-mini (OpenAI, 2024) and classify these descriptions themselves with GPT-4.1-nano
(OpenAI, 2025).
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Our prompt is Here is the description of a certain textual property:
"DESCRIPTION". Is this property related to TAG? Respond with one
word only: yes or no.

In this prompt, DESCRIPTION is filled with the retrieved description of the feature, and TAG is one
of “computer code, programming languages, or math” or “syntax or text
structure”.

In this way, for each feature we obtain the labels is code and is syntax and we consider the
feature related to formal reasoning if at least one of them is 1.

D.6 STEERING SAE FEATURES (SECTION 5.1

To steer a feature w in a model, we add w multiplied by a steering coefficient to the residual stream:
rki ← rki + δw. In our experiments, we set δ = 10.

For each feature, we sample 64 generations from a model with that feature steered at every token
position. We sample 20 tokens unconditionally with temperature 1, thus generating samples from a
distribution Tθ(x), but under steering.

For each generated sample, we count the number of punctuation characters it contains. We also
classify whether the sample represents a snippet of computer code using Llama 3.1 8B (Grattafiori
et al., 2024) as a classifier. This gives us, for each feature, two metrics: the number of generated
code snippets (out of 64 total generations) (#code) and the average number of punctuation symbols
per generation (#punct).

In Figure 19, we show these metrics grouped by Q(w) of the corresponding feature. Additionally,
similarly to Section 5.1, we estimate the 95% CI for the σ parameter of the distribution of Q(w)
when it is modeled as a log-normal distribution. We split features into two groups: those with
#code above the median value and those below it. We perform the same split for #punct. The
results, presented in Table 6, indicate that Q(w) has heavier tails for the groups where #code (or
#punct) is above the median, mirroring our results in Section 5.1.

D.7 LOOK-AHEAD EXPERIMENT (SECTION 5.2)

We obtain a simple future token predictor by training a linear layer mapping from rkθ,i(x) to xi+t+1

on a subset of the Pile dataset Gao et al. (2020):

x̂i+t+1 = hL+1
θ (WLA · rkθ,i(x))

Here x̂i+t+1 is the frozen language modeling head of Gemma, and t > 0 is the distance of the
look-ahead.

This approach resembles Linear Model Approximation of Pal et al. (2023), except we keep the
language modeling objective instead of the reconstruction loss on the activations at the last layer.

After training, WLA defines a subspace in the space of the residual stream. Note that the weights
of the SAE encoder define directions in the same space: indeed, one SAE feature can be seen is a
linear projection of residual stream followed by an activation function. Thus, we can estimate how
much a feature contributes to the look-ahead by checking how close the feature encoder vector lies
to the subspace defined by WLA.

Intuitively, if some linear direction v in the residual stream of the model contains information crucial
for predicting look-ahead linearly, WLA would learn to “read” from this direction, and columns
proportional to v would appear in WLA.

To check that, we compute the angle A(WLA, w, r) between the feature direction w and the subspace
formed by r main singular components of WLA. Specifically, let WLA = UΣV T be the SVD
decomposition of WLA. Let E be the matrix of SAE feature directions: the weights of the SAE
encoder of the size d × nfeatures. For each r from 1 to d, we compute the projection matrix P =

VrV
T
r , feature projections Ê = PE, and save the cosine distances between the corresponding

columns in E and Ê.
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In this way, for the given look-ahead distance t and matrix W t
LA, we obtain a matrix C of size

d × nfeatures: Crj is the cosine similarity between j-th feature and its projection on VrV
T
r . In

Figures 7 and 20 we report the correlations between Q(w) and Crj for each r.

E FURTHER EXPERIMENTAL RESULTS

E.1 TOY TASKS

Table 4: Accuracy of a trained model for the first token in the output phase. All trained models
successfully solve the tasks, except for the myopic models trained on Conditioned Majority.

non-myopic myopic

tied 10-untied tied 10-untied

Majority 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.96± 0.05

Conditioned Majority 0.99± 0.02 1.00± 0.00 0.76± 0.01 0.76± 0.09

2 4 6 8 10 12 14 16 18
Sequence Position

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io direct
pre-cached
shared

2 4 6 8 10 12 14 16 18
Sequence Position

2

1

0

1

2

3

R
at

io

direct
pre-cached
shared

2 4 6 8 10 12 14 16 18
Sequence Position

2

1

0

1

2

3

R
at

io

direct
pre-cached
shared

Figure 8: Normalized integrated influence components for the tasks of Majority (left) and Condi-
tioned Majority (center: tied model, right: 10-untied model).
In models solving Majority, the features in the input phase seem to be predominantly shared, but
that flips at the 10th token – exactly the point where the feature is needed to predict the immediate
next token, which is the output for the task.
The images for Conditioned Majority may help explain the curious increase in the performance and
probing accuracy of the 10-untied model compared to the tied model. We see that for the 10-untied
model it is the pre-caching influence that causes the previous-token feature to be learned in the input
phase, while for the tied model there is no clear pattern. This likely indicates that, instead of the
robust circuit we expected, the tied model learned a less robust, possibly shortcut solution, due to
the influence of shared gradients from the output phase.

E.2 OTHELLO

0 1000 2000 3000 4000 5000
Steps

2.5

3.0

3.5

4.0

Tr
ai

n 
Lo

ss train loss (non-myopic)
train accuracy (non-myopic)
train loss (myopic)
train accuracy (myopic)

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Ac

cu
ra

cy

Figure 9: The training loss and accuracy curves of the myopic and non-myopic OthelloGPT models.
The training of a myopic model is much less stable and it does not converge to the same performance
as a non-myopic model.
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Figure 10: Performance of the probes trained to extract the board state from myopic and non-
myopic Transformers for Othello. Myopic model shows a much lower degree of the board state
representation.
The scores presented in this plot are lower than the ones reported in the prior literature (Nanda
et al., 2023) due to the differences in evaluation methodology (we train the probes for regression
and evaluate them using Pearson correlation, also unlike the prior work we include empty cells into
evaluation). In addition, our model is smaller than the one used in the prior work (6 layers against 8
and a smaller hidden dimensionality), dictated by the limits of computational resources.

In Figures 11 and 12, we compare the direct and pre-cached influence components for different
squares in the Othello experiment. Each plot is an average of the results for two close positions.

Interestingly, we find the results to be quite noisy and clearly non-stationary with respect to the
position in the sequence. In general, it seems that the importance of the direct component generally
goes down later in the game relative to the importance of the pre-cached component. However, we
believe that more experiments are needed to make conclusive statements.
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Figure 11: Integrated influence components at different positions for the 4 central cells in Othello.
Each plot is an averaging of two positions.
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Figure 12: Integrated influence components at different positions for the 12 cells surrounding the
center in Othello. Each plot is an averaging of two positions.
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E.3 SMALL LANGUAGE MODEL
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Figure 13: The training loss curves of the myopic and non-myopic small language models. It can be
seen that a myopic LM has a consistently much higher loss from very early in training.
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Figure 14: Direct and pre-cached influence for different feature types (as in Figure 4) with 95% CI
estimates for the average value at each layer.

Feature category Layer t-statistic pgreater pless

POS tags

1 358640 5.8× 10−8 1.0
2 387970 3.1× 10−16 1.0
3 374375 5.5× 10−12 1.0
4 452676 3.3× 10−46 1.0

Dependency tags

1 269035 9.4× 10−18 1.0
2 297604 2.5× 10−34 1.0
3 301802 2.9× 10−37 1.0
4 350830 1.1× 10−80 1.0

Positional

1 4080 4.5× 10−8 1.0
2 1033 1.0 1.4× 10−7

3 1289 1.0 1.1× 10−5

4 3007 4.9× 10−2 0.95

Table 5: One-sided Wilcoxon test statistics comparing direct and pre-cached influence components,
with p-values reported for each feature type and layer. In all layers, the direct influence for POS
and dependency tags is significantly larger than the pre-cached influence, which is reversed in the
middle layers for the positional feature.

E.4 GEMMA 2
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Figure 15: Distribution of Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B.

10 2 10 1

Pre-Caching Degree

is_union
0
1

10 2 10 1 100 101 102 103 104

Pre-Caching Degree

is_union
0
1

101 102 103 104

Pre-Caching Degree

is_union
0
1

Figure 16: Distribution of Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B. The
features classified as related to code, math, syntax, or text structure, are plotted orange; others are
plotted blue. Images to the left and to the right show the tails of the distribution.
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Figure 17: Distribution of Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B. The
features classified as related to code or math are plotted orange; others are plotted blue. Images to
the left and to the right show the tails of the distribution.
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Figure 18: Distribution of Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B. The
features classified as related to syntax or text structure, are plotted orange; others are plotted blue.
Images to the left and to the right show the tails of the distribution.
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Figure 19: Number of unconditional generations classified as code (left) and average number of
punctuation symbols (right) obtained by steering SAE features in Gemma 2 2B. Steering features
with high pre-caching degree leads to both more code and more punctuation symbols being gener-
ated.

Group σ̂ (95% CI)

#code above median 1.479± 0.030
#code below median 1.428± 0.020
#punct above median 1.519± 0.025
#punct below median 1.351± 0.022

Table 6: Estimated scale parameter σ of the log-normal distribution fitted to Q(w) for different
feature groups. For each group, we report the estimated σ̂ and its 95% confidence interval. Features
are split at the median value of #code and #punct.

Feature Q(w) Description

15050 0.002 HTML or CSS code referencing scripts and stylesheets
3016 0.006 programming constructs related to annotations and metadata in code
3025 0.006 French pronouns and their conjugations in various contexts
4840 0.006 aspects related to graphical user interface elements
2127 0.007 identifiers and numerical values in a structured format
9124 0.010 elements related to data structures and operations in programming contexts
11737 0.011 the article ”An” used in various contexts
4214 0.011 numerical values or symbols, particularly those frequently associated with coding, data

structures, or software libraries
11655 0.013 articles and determiners preceding nouns
13070 0.014 compiler directives and warning pragmas in code

Table 7: 10 features with the lowest Q(w) among the SAE features of Gemma 2 2B under study.

Feature Q(w) Description

4592 13710.8 programming-related terms and structures, particularly those associated with class and
method definitions

12285 6946.1 references to web development, particularly relating to dependencies and library
management

6579 3308.5 code structure and control flow statements
15090 2675.1 programming constructs and syntax elements
10042 1853.5 text related to software usage rights, permissions, and licensing terms
13045 1641.9 elements and objects that are part of a programming interface or user interface
15829 1202.1 function calls and their syntax within code
6139 898.5 technical references to Forms and related components in programming

13552 871.2 terms related to networking and software development
2162 756.9 colons or punctuation marks

Table 8: 10 features with the highest Q(w) among the SAE features of Gemma 2 2B under study.
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Feature Q(w) Description

9964 0.125 terms related to standards and standardization processes
14622 0.663 terms related to poverty and marginalized communities
5029 0.928 details related to activities undertaken or actions witnessed in various contexts
136 0.852 terms associated with legal prohibitions and restrictions

4010 0.435 concepts related to logistics, regulations, and technical specifications
13176 0.227 references to events or gatherings
2463 0.330 references to assembly attributes in a programming context
4685 0.109 tokens related to identifiers or types in programming languages
2803 0.171 references to processes related to healthcare, particularly in the context of treatment and

intervention strategies
9598 0.560 legal and political events or controversies

Table 9: 10 random features with Q(w) between 0.1 and 1.1.
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Figure 20: Pearson correlations between cosA(WLA, w, r) and Q(w) among the SAE features in
Gemma 2.
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STATEMENT ON LLM USAGE

We used LLMs to assist with text editing and with writing experimental code. We take full respon-
sibility for all content in the paper and presented results.
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