Under review as a conference paper at ICLR 2026

UNDERSTANDING THE EMERGENCE OF SEEMINGLY
USELESS FEATURES IN NEXT-TOKEN PREDICTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Trained Transformers have been shown to compute abstract features that appear
redundant for predicting the immediate next token. We identify which compo-
nents of the gradient signal from the next-token prediction objective give rise to
this phenomenon, and we propose a method to estimate the influence of those
components on the emergence of specific features. After validating our approach
on toy tasks, we use it to interpret the origins of the world model in OthelloGPT
and syntactic features in a small language model. Finally, we apply our framework
to a pretrained LLM, showing that features with extremely high or low influence
on future tokens tend to be related to formal reasoning domains such as code.
Overall, our work takes a step toward understanding hidden features of Trans-
formers through the lens of their development during training.

1 INTRODUCTION

Large Language Models (LLMs) are usually pretrained with the objective of next-token prediction
(NTP). In this paradigm, a model learns to predict each token in a sequence given all previous tokens:
in other words, it learns the distribution p(x¢41 | 1 - - - x¢).

Thus, the model is incentivized to compute features that help predict the immediate next token.
Hence, one could reasonably expect that the hidden representations at position ¢, computed by a
model trained in this way, would contain only the information relevant for predicting z;4;. On
certain synthetic tasks, this was found to be true, highlighting a downside of NTP as a training
objective (Bachmann & Nagarajan, |2024; Thankaraj et al.| 2025)).

However, a growing body of work on LLMs (and NTP-trained Transformers in general) shows that
sometimes they learn much more than that. For example, Transformers reconstruct abstract features
of the input text (Templeton et al., 2024} [Park et al.l 2024), infer the high-level structure of the
processes generating their training data, forming ‘world models’ (Li et al., [2023; |[Karvonen, 2024;
Shai et al., 2024; Jin & Rinard, 2024} |Gurnee & Tegmarkl, [2023), or implicitly predict the sequence
multiple tokens ahead (Pal et al., 2023} |Jenner et al., [2024). Motivated by these intriguing findings,
we ask:

How do Transformers trained for NTP learn features that don’t help in the prediction of the
immediate next token?

The prior work investigating learned features in Transformers mostly employed a teleological per-
spective: that is, features are viewed in the context of their role in the algorithms implemented by
a trained model (e.g., Ameisen et al.| (2025)); |Arditi et al.| (2024)). This approach is useful to find
the circuits encoded in LLMs, but it doesn’t tell us much about the gradient signal that causes those
circuits to develop during training. Thus, the ways of how training for NTP drives the emergence of
features has been largely underexplored so far.

Towards closing this gap, we develop a novel view on features learned by Transformers. Based
on the structure of information flow in causally masked Transformers, we show that features can
in principle be learned by three distinctive mechanisms, which we refer to as direct learning, pre-
caching, and circuit sharing. The two latter ones allow the token distribution at positions > ¢ + 1
to influence the model’s representations at position ¢, unlocking the learning of “useless” features.
Next, for a given feature, we propose an experimental method to classify it depending on which

Under review as a conference paper at ICLR 2026

mechanism contributed the most to its development. We then use our framework to understand
the learned features in Transformers trained on different data domains, including toy functions, the
board game of Othello, and language.

Our key contributions include: (i) A theoretically grounded explanation for why Transformers
trained for NTP learn complex features that are not immediately helpful; (ii) An approach for tracing
the gradient components of the NTP objective that led to the development of a given feature in a
model; (iii) Novel findings obtained using the proposed framework, including an explanation of
the OthelloGPT world model fragility, inspection of the role of pre-caching in text generation, and
interpretation of the pre-cached features in an LLM.

2 SETUP

We use &X' to denote a variable-length input space of discrete token sequences x1 ... x,. We view a
model T} as representing a function x ...z, — Z2...Z,4+1 such that

Tipa1(x) = hﬁ“(rf) Tg,z'(x) = hg(l"i)

k k(. k—1 k—1
rgi(x) =hg(ry™ ...), k>1

and r} ,(z) € RY. Here h) and hGL *+1 are embedding and unembedding layers, respectively, rf ()
are the values of the residual stream, and h’g are Transformer blocks.
We call a learned feature any linear component of the residual stream at a specific layer and position
(wk, 7k (x)), where a vector w? € R¢ defines the feature direction. We informally call a feature of a
sequence x ¢+ NTP-useless if there exists an optimal next-token predictor for x; that doesn’t compute
it. Otherwise, we call that feature NTP-useful. For example, NTP-useless features can include the
positioning of the board game pieces that don’t affect the set of possible next moves, or the surface
properties of the sequence that are irrelevant to its continuation. The central question of our work
can then be formulated as understanding how NTP-useless features emerge in Transformers.

3 INFORMATION FLOW DECOMPOSITION

3.1 GRADIENT DECOMPOSITION

We fix position ¢ and layer k£ and study all information paths in the computational graph of the
model, classifying them by how they relate to r’g’ ;(x). We argue that the gradient training signal can
flow to 6 through three types of paths, illustrated in Figure

Firstly, a gradient signal can come from the immediate next-token prediction (direct learning). This
includes all paths passing through rg,i(:c) and Z;41 and represents the effect of the information
encoded in 7“{3'72-(1:) on the prediction of the immediate next token. These paths are colored green in
Figure[l] We formalize this by comparing the overall gradient with a gradient after a stop-gradient
operator is applied:

VoLY ireet) = VoLi — VoL#H. (1)

Secondly, the information encoded in rg’ ;(x) affects the loss at positions j > 7 because attention
heads at those positions can attend to position . Thus, a gradient signal can come from prediction
loss at future positions, after passing through one or more attention operations (pre-caching). This
component includes the paths passing through rg_’i and &; for j > ¢ + 1 (blue in Figure :

k sg(k,i
ngi (pre-cached) — Vo Z |:L] — ng():| . 2)
J#i
Third, there are paths that do not pass through rg,i(a:) at all. Hence, some gradient signal arises inde-

direct

pendently of 7“5 ;(x). Since Transformer blocks use the same parameters to perform the computation
at every position, this signal may influence the parameters computing it. We call this phenomenon
circuit sharing and visualize the related paths in orange in Figure [T}

sg(k,i
v(gLi’c(shared) = Z VQng() 3)
J

Under review as a conference paper at ICLR 2026

- shared gradients

v

- direct gradients

- full gradients

- pre-cached
gradients

Lsnarea
-t

; Tpre-cached Lgirecr decrease in
18 feature mismatch

all Ly

i=1 i=2 i=3 i=4

need]

Figure 1: Left: An illustration of the information-flow decomposition for ¢ = 2 and k£ = 1 into
direct, pre-cached, and shared components. Direct and pre-cached paths must pass through the
residual stream at position ¢ = 2 and layer £ = 1; any other path is considered shared. The

indicates rgji 5- Right: by decomposing the loss gradients, in Sectionwe partition the
improvements in feature linearity at each training step.

The term pre-caching is borrowed from |[Wu et al.[(2024}, who studied it as a possible explanation
for look-ahead in LLMs. We discuss the relation of our work to |Wu et al.|(2024) in Section @

These three components provide an exhaustive decomposition of the gradient signal:

Proposition 3.1 (Loss gradients decomposition). For any layer k and position i,

k k k
VoL = vaLi (direct) + ngi (pre-cached) + v9Lz' (shared)"

By Proposition[3.] for each i and k, the total gradients that are backpropagated to the model param-
eters after computing the loss on one training batch can be split into three terms distinctive in their
nature: direct, pre-cached, and shared components.

How to study pre-caching and circuit sharing? In light of Proposition [3.1] a natural question
arises: how important each of the introduced components is for learning the task, as well as for
representing the latent features picked up by the model. The role of the direct component is in some
sense trivial: that is the main source of the gradient signal for predicting the immediate next token,
thus we concentrate on analyzing pre-caching and circuit sharing. We approach the analysis by two
complementary ways: intervention (training a model with one of the components ablated, Section
[3.2) and artribution (quantifying the influence of each component in a training run, Section [3.4).

3.2 ABLATING PRE-CACHING AND CIRCUIT SHARING

Ablating pre-caching. |Wu et al.| (2024) proposed myopic training — a way to train an LLM that
prevents pre-caching. The only difference between myopic and normal training is that all gradients
between the loss at the i-th position and the activations at the j-th position (where j #) are blocked.
Since the only path for information to flow between the i-th and j-th tokens is through attention, it
is sufficient to stop gradients after computing the K and V' matrices (excluding those for the current
token). The purpose of myopic training is to block gradients so that the i-th token is not incentivized
to compute any feature that is NTP-useless for predicting ;4 ; but useful for being picked up by an
attention head later. This way, pre-cached features do not appear.

Ablating circuit sharing. To stop learning features shared across positions, we use a technique
that we call m-untied training. We select an index m and use one set of parameters (6,,) for the
forward pass on all positions before m and another (- ,,,) for positions after m. This way, we have
two models that are trained only to predict their respective part of the input, but the second model
still attends to the K'V-cache of the first one. In the extreme m-untied + myopic case, the pre-cached
gradients do not flow through attention, so the parameters <,, do not depend on the data after the
m-th token. In this case, our double model resembles a patient with non-communicating left and
right brain hemispheres, as in the split brain experiments in neuroscience (Gazzanigal, 2005).

Under review as a conference paper at ICLR 2026

3.3 THE ROLES OF PRE-CACHING AND CIRCUIT SHARING

Pre-caching increases expressivity. The power of Transformers comes from complex interactions
of attention heads that move information between different tokens. Even constructions as simple
as an induction head require at least two layers of attention interacting with each other. Disabling
pre-caching prevents the Transformer from deliberately learning such constructions. Indeed, if a
feature is NTP-useless at all positions, there is no hope for it to be learned and used by later layers.
Thus, many constructions requiring more than one layer of attention (such as the ones described by
Liu et al.| (2022))) will be impossible to learn.

Note that circuit sharing, by contrast, does not have this property, since even with untied training the
gradient signal between tokens still passes through. Compared to myopic training, where an optimal
solution cannot be reached due to the lack of training signal, SGD in the case of untied training has
the signal needed to find the minimum.

Circuit sharing enables cross-position feature transfer. While the strength of pre-caching is
increased expressivity, circuit sharing has a different unique property: enabling feature transfer
across positions. Imagine a feature that is NTP-useless at position ¢ but NTP-useful at position j.
Due to its usefulness at j, it will be learned, and thanks to circuit sharing, it will also be encoded at
1. In this way, position ¢ will have access to knowledge learned at a different position.

3.4 ESTIMATING THE EFFECT OF GRADIENT COMPONENTS ON FEATURE EMERGENCE

So far, we have argued that there are three path types along which the loss signal, via its gradient,
can pass to the model parameters. We now use this decomposition to study the extent to which a
feature is produced, over the course of training, by each of the three components of the gradient. To
this end, we aim to quantify how much each component of the gradient signal pushes the parameters
towards developing a feature.

Definition 3.2. We call a feature mismatch the value

R | 60, 2,k) = 3 (o, o(2)) — (w78, ()

2

The feature mismatch quantifies how much the projections of the residual streams onto the feature
wf differ between models parameterized by 6; and 6.

We now want to quantify the extent to which a single gradient update to an intermediate checkpoint
0; narrows the feature mismatch when compared to the final checkpoint 6*. By separately consider-
ing the three components of the gradient signal, we will be able to understand what role each plays
in the development of the feature. We formalize this in terms of an influence I(0,x,y | wf, 0*, G):

Definition 3.3. For a vector G € RI?!, we call the influence of G the value

d
IFO,z | wk,0%,G) = deR (z]60+eG, 0%, wh)
e=0

Applying the decomposition from Proposition 3.1} for each feature we define direct influence:
Lgirect (wf, 0) = I(Ha T | wfa 0*3 V9Lf (direct))'

The definitions of pre-cached and shared influences are analogous.

Remark 3.4 (informal). Consider a model Tp, trained for M steps of SGD with a small step size 7.
Then

M
R((E | 60,0*,10) ~n- ZZI(atvl't ‘ w?aa*avaLs)»
seS t=1
where S = {direct, pre-cached, shared}.

Remark holds approximately due to the first-order approximation of the feature mismatch
R(x | 6;,6*,w). Expressing the change in feature mismatch at each step through its gradient
and breaking it down into direct, pre-cached, and shared components leads to the equality above.
The remark shows that each loss component has its own influence on feature representation at every

Under review as a conference paper at ICLR 2026

8

g 1.0 0 1.0

E os 3 0.8

-8 7 n

Qg Non-myopic, tied 2 06 - Non-myopic, tied

L5 0.6 4 Non-myopic, untied g Non-myopic, untied

2’ Myopic, tied S 0.4 Myopic, tied

-g 0.4 Myopic, untied A Myopic, untied

& T T T T T T T T T 0214 T T T T T T T T
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

Sequence Position Sequence Position

Figure 2: Performance of the linear probes applied to the residual stream after the first Transformer
block. Left: Majority, the feature “majority-so-far”. Right: Conditioned Majority, the feature
“previous-token”. In both cases, the feature is NTP-useless until the 10th token. In both cases,
ablating pre-caching and circuit sharing substantially hurts the probing performance.

step of gradient descent. Integrated over the whole training process, this influence accounts for the
discrepancy between the feature representation at the beginning and at the end of training.

The remark above is grounded for SGD; however, the optimizer commonly used to train models is
Adam (Kingma & Bal [2014). Thus, we adjust each gradient component G to reflect the gradient
steps made by Adam. We keep separate moments 1 (component) fOr €ach of the three components
and calculate the step attributed to each of the components as

m component
G(Component) = —a- (1 ﬁt)
et

Then the G (girect)s G (pre-cached) aNd G (shared) are an exact partition of the optimizer step, and we
use them to compute influence as defined above.

We interpret the value Idirect(wf) =3, Idirect(wz’?, 0:) (integrated direct influence) as the overall
impact of the direct loss component on the emergence of the feature w? in the model, and similarly
for the other two components. We use this decomposition to answer which combinations of direct,
shared, and pre-cached gradient signals produced a feature over the course of training, by evaluating

the magnitudes of the three integrated components Igirect (W), Tpre-cachea (wF), and Iyparea (wF).

4 EXPERIMENTS WITH SMALL TRANSFORMERS

In all experiments in this section, we train GPT-2-like Transformers (Radford et al., 2019) for NTP
using cross-entropy loss. If not stated otherwise, all our models have standard architecture: they are
non-myopic and tied. To estimate if a Transformer represents a given feature linearly, we train layer-
and position-specific linear probes (Alain & Bengio, 2016; Belinkov, |[2022) to predict the value of a
feature using the residual stream of the trained model * as input. For consistency, we always treat
probing as a regression task and evaluate the probes using Pearson correlation between the predicted
and true values of a feature. Each of the probes represents one feature direction w¥.

In the attribution experiments, we then retrain the Transformer from scratch with the same random
seed and data order, repeating the training trajectory of the first run that lead to 6*. For each batch
in the training set, we compute Idivect (WY, 0), Ipre-cached (W, 0), and Igparea (w?, 6). We sum those
values across the batches, obtaining the integrated influences for each featur

4.1 INToy TASKS, NTP-USELESS FEATURES DO NOT EMERGE WITHOUT PRE-CACHING
AND CIRCUIT SHARING

First, we verify our intuitions using two toy tasks where we have a clear understanding of the re-
quired circuits: Majority and Conditioned Majority. We train two-layer models to solve each task.

In Majority, each example x consists of M tokens sampled uniformly from a vocabulary of size V,
and M tokens sampled from the set of the most frequent tokens so far: argmax, count(t, z<nr).
The task is solved by a simple uniform attention head computing the most frequent token. We track
the influence components of the feature F} “the most frequent token so far.”

'Our approach is discussed in more detail in Appendix

Under review as a conference paper at ICLR 2026

Component ~ NTP-useful? [2.5% 97.5%]

& 0.08 4 direct yes 2.85 12.38
] 0.06 no -4.69 2.74
g’ : pre-cached yes -1.99 0.66
g 0.04 4 no 0.55 3.05

& shared yes 4.80 12.48
— Layer 1 = Layer 2 = Layer 3 no 2.93 991

0.02 + ~ Layer 4 Layer 5 Layer 6
I/\/‘/ T T T T combined yes 12.14 19.05
20 30 40 50 60 no 4.42 10.07

Position in the Sequence

Figure 3: Left: the gap in probing performance between NTP-useful and NTP-useless board squares
for OthelloGPT. Right: 95% confidence intervals for the integrated influence of each component on
the representation of NTP-useful and NTP-useless features.

Conditioned Majority is designed to bring out the importance of pre-caching. The input consists
again of two parts: M uniformly sampled tokens, followed by M samples from the set of those
tokens that followed the token “A” most often in the first part. The task requires a mechanism akin
to induction heads (Olsson et al., [2022)): the first attention layer attends to the preceding token, and
the second layer attends to the tokens after “A.” We study the feature F; “the preceding token is A.”

In both tasks, the first M tokens are random and can be predicted trivially, without F; or F5. Thus,
in the input phase F; and F, are NTP-useless, and we are interested in whether our models will
learn to represent them, and if they do, why.

For different random seeds, we train (non-)myopic (M -un)tied models. Thus, we obtain models
that all experienced direct learning, but had pre-caching and/or circuit sharing ablated. We plot the
performance of probes trained to extract F; for Majority and F5 for Conditioned Majority in Figure
[l In both cases the myopic untied models show the most fragile representation of the features during
the input phase, supporting our prediction that such models have no incentive to learn NTP-useless
features. Lifting the ablation of pre-caching or circuit sharing improves the performance of probes.
Notably, both tied and untied myopic models are unable to learn Conditioned Majority (Appendix
[E-I): the two-layer circuit described above cannot develop without pre-caching.

4.2 PRE-CACHING AND CIRCUIT SHARING HOLD TOGETHER OTHELLOGPT’S WORLD
MODEL

Next, we apply our framework to study Transformers trained to predict legal moves in the game of
Othello, a common testbed for evaluating world models implicit in language models (Li et al., 2023
Yuan & Sggaard, [2025). In Othello, two players place their tiles on the cells of an 8 x 8 board in
turns. The set of legal moves is a deterministic function of the current board state. The initial work
on the topic claimed the discovery of coherent board state features in OthelloGPT (Li et al.| 2023
Nanda et al.,|2023)), however more recent evidence was more pessimistic, reporting that the implicit
world model of OthelloGPT is fragile, especially when it comes to boards sharing the same set of
legal next moves (Vafa et al} [2024; 2025). We aim to make sense of this new evidence from our
perspective of NTP-use(ful/less) features.

Recall that we defined NTP-useless features as the ones that are not needed for predicting the next
token. Hence, in the case of Othello, for each sequence of moves x;, NTP-useless features are the
representations of cells that don’t affect the set of the legal next moves ;. Our theory implies that,
all else being equal, NTP-useless features should be represented worse than NTP-useful features
since they lack the direct learning component. However, pre-cached and shared components are
active even for NTP-useless features, supplying them with some training signal.

We follow a standard experimental setting and train a Transformer on randomly generated game
transcripts represented as sequences of up to 60 tokens. The i-th token indicates the square where
the tile was placed during the ¢-th move in the game. Then we train linear probes to extract the board
state from the model’s hidden representations.

The experimental results align with our predictions. Figure 3] (left) shows the gap between the
performance of linear probes trained to extract NTP-useful and NTP-useless features: it is always

Under review as a conference paper at ICLR 2026

o
=3
1

—— POS tags (direct) —— POS tags (pre-cached)
- -~ dependency tags (direct) ==+ dependency tags (pre-cached)
----- positional (direct) ++++ positional (pre-cached)

0.02

e
~
1

0.00

o
o
1

. POS tags (myopic) POS tags (non-myopic)
dependency tags (myopic) dependency tags (non-myopic)
positional (myopic) positional (non-myopic)

—-0.02 4

o
o
1

Probing Performance

Layer Layer

Figure 4: Comparison of the three distinct types of features in a small language model: POS tags,
dependency tags, and the positional feature. Left: probing scores for myopic and non-myopic
models. Center: direct and pre-cached influence components for each feature type.

positive and increases with layer depth (most likely because the deepest layers align more on direct
influence). We verify the reasons for this disparity by inspecting the influence of each component
calculated separately for NTP-useless and NTP-useful features (Figure [3] (right)). Direct influence
alone is positive for NTP-useful but indistinguishable from zero for NTP-useless features. However,
since pre-cached and shared influence is positive even for NTP-useless features, they are still learned.

These observations provide new evidence that complements the empirical findings of |Vata et al.
(2025). Specifically, we show with statistical significance that the model’s inductive bias toward
next-token partitions of state arises from the direct gradient component promoting learning of NTP-
useful features. We also refine the result of |Vafa et al.| (2025)) by showing that the NTP-useless
cells are learned as well, albeit less robustly, since the signal for learning them is present due to the
non-zero pre-cached and shared components. Together, our results explain both 1) why the model
represents NTP-useful cells better than NTP-useless ones, and 2) why NTP-useless cells can still be
recovered better than chance.

4.3 PRE-CACHING IS REQUIRED FOR COHERENT TEXT GENERATION, BUT NOT NEEDED

FOR SYNTAX

The environment that ultimately interests us is language. Thus, 0.02
we train and study tiny Transformers for natural text generation. 0.01 - o e
The main question we ask is: Is pre-caching needed for coherent ._ 0.0 1 & 3 direct
text generation, and which relevant features does it affect? -0.01 -

YT S N e e
We use TinyStories v2 (Eldan & Li,/2023), which contains GPT- 003
4-generated children’s stories. The texts in this dataset use sim- 0 200 400 600 800 1000
ple language that could be understood by a child; these proper- Step

ties make it learnable even by a very small model. Following

Eldan & Li (2023), we train tiny (non-)myopic GPT-2-like lan- Figure 5: Development of the
guage models on this dataset with different random seeds. For direct and pre-cached influence
each story, we randomly choose a starting point and from there components of the positional
sample a substring of 64 tokens. We annotate each token with feature in the non-myopic model
syntactic features (POS and dependency tags), as well as with a during training.

positional feature: the position of the token in the original story

before subsampling the sequence. See Appendix [D.3|for the full experimental details.

We observe that myopic models have a consistently much higher loss than non-myopic models
(3.29 £ 0.02 vs 2.53 £ 0.10, with training curves reported in Appendix [E.3), indicating that pre-
caching is necessary for the task. At the same time, nearly all features we study seem to be direct:
the performance of probes extracting these features does not vary significantly between myopic and
non-myopic models, and for all but the positional feature, pre-caching influence lies much lower
than direct influence (Figure[d) with non-overlapping confidence intervals for mean (Figure[T4) and
one-sided Wilcoxon tests showing that the gap is statistically significant (Table[5). We conclude that
simple syntax can be learned without pre-caching.

What is pre-caching needed for then, if not syntax? It seems to be relevant for computing more
complex properties of the input text: as can be seen in Figure] (center), in a non-myopic model the
positional feature, which relates to high-level properties of the stories, starts to be learned due to the
pre-caching influence. Figure[5]shows a transition during training, when pre-caching starts affecting
the feature, hinting to a development of a circuit involving it.

Under review as a conference paper at ICLR 2026

standards and standardization processes
— poverty and marginalized communities "formal reasoning”
details of activities in various contexts 1o
legal restrictions 1
logistics, regulations, technical specifications

HTML or CSS code ———

programming constructs

French pronouns

graphical user interface elements
identifiers and numerical values

class and method definitions in programming
web development, library management
code structure and control flow

programming constructs and syntax
software usage rights, permissions, and licensing terms

i T T T T T
102 10! 10° 10t 102 10° 10*
Pre-Caching Degree

Figure 6: Distribution of Q(w) for the SAE features of Gemma 2 2B. The text boxes show the
compressed descriptions of 5 features from the tails of the distribution, as well as 5 random features
from the mode of the distribution.

5 INVESTIGATING FEATURES IN LARGE LANGUAGE MODELS

Retraining an LLM from scratch is computationally very expensive, which is why the field of LLM
interpretability operates mostly on final model checkpoints. For the same reason, the attribution
method that we used in Section []is inapplicable in the same form to large-scale models.

However, even with access only to the final checkpoints, we can draw some conclusions about the
emergence reasons of features, connecting traditional interpretability and our framework introduced
above. In this section, we use this connection to understand the latent features of a State-of-the-Art
LLM: Gemma 2 (Gemma Team et al., [2024).

5.1 FINDING AND UNDERSTANDING PRE-CACHED FEATURES IN AN LLM

The standard way of estimating the causal role of a feature in a Transformer is an intervention
(Mueller et al., |2024): modifying the activations of a model during the forward pass to alter the
representation of a feature and observing the changes in predictions. Assume that one intervenes
on the residual stream 7}, ’ ;(z) of a trained model Ty-, adding to it a vector w, and then records the
KL-divergence between the predictions with and without the intervention at each position after i:

d} = Dxv(Tp- (a5 | 2.))|Tyss(25 | 2<))
Here, Ty/i(z; | x<;) are the predictions of a model under the intervention on the i-th position.

Proposition 5.1 (Approximating influence with interventions).

Izk(e/ y L ‘ w,@ avé)Lpre-cached) ~ Zj>1’,+1 d"z

J_ A
150/ @ | w,0%, VoLaieet) diiy S

The proof is deferred to Appendix |[C} Proposition implies that even if we cannot rigorously
compute the influence components of a feature as we don’t have access to the model’s training
trajectory, we can estimate the ratio of direct and pre-cached influence around the trained model
using the quantity we denote Q(w). In other words, we can find out if a given feature is more likely
to be direct (an intervention changes only the prediction of the immediate next token) or pre-cached.
Importantly, however, we can only make statements about the components ratio in the region around
the final model, not along the whole training path.

Finding pre-cached features in Gemma 2. To extract the learned features in an unsupervised fash-
ion, we use a Sparse Autoencoder from the Gemma-Scope suite (Lieberum et al.,[2024). To compute
Q(w) for each feature, we find the tokens where the feature is active and ablate it, effectively sub-
tracting (r,w)/||w||? - w from the residual stream. See the details in Appendix

Using the fact that automatically generated descriptions of the SAE features are available, we study
the descriptions of features with extreme values of () (w) and observe that most of them are related to
programming or formal structure of the input text. Based on this observation, we form a hypothesis:
are features related to formal reasoning tasks more likely to have extreme values of Q(w)?

Under review as a conference paper at ICLR 2026

To test this hypothesis, we label each feature as 0 or 1 depending on whether it activates on this type
of inputs (details in Appendix , and plot Q(w) separately for those groups (Figure E]) Indeed,
the tails of the distribution see much higher concentration of these formal features. Estimated 95%
CI for the oforma When modeled with a log-normal distribution is 1.63 %= 0.03, for the oy formal it 1S
1.23 4 0.02. The results align with the intuitions detailed in Section pre-caching seems to be
needed in tasks that require emulating formal computational devices (e.g., AST for code parsing).

To further test the robustness of the link between (Q(w) and feature semantics, we examine how
steering features with different values of QQ(w) affects samples from the model. For each feature,
we draw unconditional generations from the model while steering that feature by adding its direc-
tion vector, scaled by a steering coefficient, to the residual stream at the target layer. We find that
steering features with a high pre-caching degree leads to generations containing more code and more
punctuation than average (Figure[I9). Interestingly, we don’t observe the same effect for features on
the opposite end of the spectrum. The results thus support the connection between a feature having
a high value of Q(w) and its involvement in formal reasoning. For features with low Q(w), this
connection, if present, appears weaker and not as easily detectable by steering. Full experimental
details are provided in Appendix

5.2 PRE-CACHING AND LOOK-AHEAD ARE SEPARATE PHENOMENA

Wu et al.| (2024) initially introduced the notion of pre-caching as a potential explanation for the
look-ahead in LLMs (Pal et al, [2023), suggesting that pre-cached features may be the ones that
contribute to the ability to predict future tokens the most. We test this hypothesis by investigating if
the learned features of Gemma 2 with high @ (w) are also most useful for the look-ahead.

We obtain a future token predictor by training a linear layer mapping Wi from r",?’i(x)

to x;yty1 on a subset of the Pile dataset (Gao et al.l 2020). Then, for each SAE
feature, we compute the angle A(Wp4,w,r) between the feature direction w and the
subspace formed by 7 main singular components of Wrpa. See the details in Ap-
pendix We report the Spearman correlation between cos A(Wpa,w,r) and Q(w)
for each r in Figure[7] for the mapping up to 5 tokens ahead.

0.025
Surprisingly, we find the negative correlation across all look- 0.000
ahead maps. This means that not only the look-ahead is not
caused exclusively by the pre-cached features only, but they con-
tribute to it less than direct features. This is strong evidence for
the breadcrumbs hypothesis of [Wu et al.| (2024): look-ahead in —0.100
LLMs arises not from implicit planning but rather from the simi- 0 500 1000 1500 2000
larities of features needed to predict tokens at different positions. r

—0.025

corr(Q,A)

—0.050 4 — t+l — t+4

t+2 — t+5
— t+3

—0.075

Figure 7: Correlations between
6 RELATED WORK cos A(Wpa,w,r) and Q(w).

Effects of NTP training. This paper is a part of a line of work aiming to understand how the NTP
objective shapes the algorithms learned by Transformers. Bachmann & Nagarajan|(2024)); Nagarajan
et al.|(2025) discuss the critiques of NTP and show how it can lead to learning undesirable shortcuts
or lack of creativity, mitigated by multi-token training initially proposed by |Gloeckle et al.| (2024).
Motivated by these findings, [Hu et al.| (2025) modify the objective, Thankaraj et al.| (2025) propose
reordering the tokens in the input.

Most relevant to our work, [Wu et al.| (2024)) investigates the reasons behind the emergence of look-
ahead in LLMs and proposes the pre-caching hypothesis, stating that some tokens might “prepare
in advance” the information relevant for future tokens. We build upon that work and borrow the
term “pre-caching” from there. However, our contribution is distinct from that of[Wu et al.|(2024])) in
several aspects: most importantly, we bring the level of analysis down to the development of specific
features, and also introduce the concept of circuit sharing, not analyzed by Wu et al.| (2024).

Developmental interpretability. Another relevant to us line of research is the emerging subarea of
interpretability that takes inspiration from the field of training dynamics and analyzes the changes
in the algorithms encoded in the models at different moments of training. [Tigges et al.| (2024)
analyze circuits in LLMs at different training checkpoints and find that they stay consistent. [Wang

Under review as a conference paper at ICLR 2026

et al.| (2025) use Singular Learning Theory to monitor emerging specialization of attention heads.
Concurrently with our work, Bayazit et al.|(2025) track the emergence of features using crosscoders
trained across model checkpoints. |[Kangaslahti et al.| (2025) cluster different datapoints based on
their loss dynamics, estimating the moments when certain abilities become acquired by the model.

7 CONCLUSION

Traditional work in mechanistic interpretability aims to understand a learned feature by tracing
which circuits it plays a role in. However, those circuits do not simply appear in the model; they
need a gradient signal to develop. In this work, we studied the sources of that gradient signal,
shifting from the commonly employed static teleological perspective to a developmental one, in
which learned features in Transformers are viewed as outcomes of gradient-based learning rather
than a gear in a final algorithm.

In Section 4}, we showed how this change of perspective makes a difference, helping interpret fea-
tures that cannot be explained solely through being a part of an algorithm predicting the immediate
next token. We believe that Othello is a prime example, where representation of NTP-useless fea-
tures can be explained by inspecting pre-cached and shared gradient components.

Unfortunately, modifying the training pipeline of a model is often too computationally expensive
to be done in practice. The best one can do in this case is inspecting the region around the trained
model, which is what we did in Section [5] but even using the restricted toolkit of intervening on
a static model, we can perform analysis on the development of linearly represented features under
study.

Improving the efficiency of our attribution method and adapting it to be applicable to large-scale
models is a potential avenue for future work. Another promising direction is to use our method
to discover previously unknown interpretable features by analyzing the residual stream subspaces
formed by a distinct gradient component (e.g., only by pre-cached updates but not direct updates).

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer—-circuits.pub/2025/attribution-graphs/methods.htmll

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction. Advances in Neural Infor-
mation Processing Systems, 37:136037-136083, 2024.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 2296-2318. PMLR, 21-27 Jul 2024. URL https://proceedings.
mlr.press/v235/bachmann24a.htmll

Deniz Bayazit, Aaron Mueller, and Antoine Bosselut. Crosscoding through time: Tracking emer-
gence & consolidation of linguistic representations throughout llm pretraining. arXiv preprint
arXiv:2509.05291, 2025.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207-219, 2022.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://proceedings.mlr.press/v235/bachmann24a.html
https://proceedings.mlr.press/v235/bachmann24a.html

Under review as a conference paper at ICLR 2026

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Michael S Gazzaniga. Forty-five years of split-brain research and still going strong. Nature Reviews
Neuroscience, 6(8):653-659, 2005.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. In International Conference on
Machine Learning, pp. 15706-15734. PMLR, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy: Industrial-
strength Natural Language Processing in Python. 2020. doi: 10.5281/zenodo.1212303.

Edward S Hu, Kwangjun Ahn, Qinghua Liu, Haoran Xu, Manan Tomar, Ada Langford, Dinesh
Jayaraman, Alex Lamb, and John Langford. The belief state transformer. In The Thirteenth
International Conference on Learning Representations, 2025.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart J Russell.
Evidence of learned look-ahead in a chess-playing neural network. Advances in Neural Informa-
tion Processing Systems, 37:31410-31437, 2024.

Charles Jin and Martin Rinard. Emergent representations of program semantics in language models
trained on programs. In Forty-first International Conference on Machine Learning, 2024.

Sara Kangaslahti, Elan Rosenfeld, and Naomi Saphra. Hidden breakthroughs in language model
training. arXiv preprint arXiv:2506.15872, 2025.

Adam Karvonen. Emergent world models and latent variable estimation in chess-playing language
models. In First Conference on Language Modeling, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
ICLR, 2023.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramdr, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Aaron Mueller, Jannik Brinkmann, Millicent L Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, et al. The quest for the right
mediator: A history, survey, and theoretical grounding of causal interpretability. CoRR, 2024.

11

https://www.neuronpedia.org

Under review as a conference paper at ICLR 2026

Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, and Aditi Raghunathan. Roll the dice &
look before you leap: Going beyond the creative limits of next-token prediction. In Forty-second
International Conference on Machine Learning, 2025.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. In Yonatan Belinkov, Sophie Hao, Jaap Jumelet, Najoung
Kim, Arya McCarthy, and Hosein Mohebbi (eds.), Proceedings of the 6th BlackboxNLP Work-
shop: Analyzing and Interpreting Neural Networks for NLP, pp. 16-30, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.blackboxnlp-1.2. URL
https://aclanthology.org/2023.blackboxnlp—-1.2.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

OpenAl. Gpt-40 mini: advancing cost-efficient intelligence, July 2024. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

OpenAl. Introducing gpt-4.1 in the api, April 2025. URL https://openai.com/index/
gpt—-4-1/L.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. Future lens: Anticipating
subsequent tokens from a single hidden state. In Proceedings of the 27th Conference on Compu-
tational Natural Language Learning (CoNLL), Singapore, December 2023.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. In International Conference on Machine Learning, pp. 39643-39666.
PMLR, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Adam Shai, Lucas Teixeira, Alexander Oldenziel, Sarah Marzen, and Paul Riechers. Transformers
represent belief state geometry in their residual stream. Advances in Neural Information Process-
ing Systems, 37:75012-75034, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer—circuits.pub/2024/
scaling-monosemanticity/index.html.

Abitha Thankaraj, Yiding Jiang, J Zico Kolter, and Yonatan Bisk. Looking beyond the next token.
In ICML 2025 Workshop on Long-Context Foundation Models, 2025.

Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. LIm circuit analyses are consistent
across training and scale. Advances in Neural Information Processing Systems, 37:40699-40731,
2024.

Keyon Vafa, Justin Y Chen, Jon Kleinberg, Sendhil Mullainathan, and Ashesh Rambachan. Evalu-
ating the world model implicit in a generative model. arXiv preprint arXiv:2406.03689, 2024.

Keyon Vafa, Peter G Chang, Ashesh Rambachan, and Sendhil Mullainathan. What has a foundation
model found? inductive bias reveals world models. In Forty-second International Conference on
Machine Learning, 2025.

George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differ-
entiation and specialization of attention heads via the refined local learning coefficient. In The
Thirteenth International Conference on Learning Representations, 2025.

12

https://aclanthology.org/2023.blackboxnlp-1.2
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Under review as a conference paper at ICLR 2026

Wilson Wu, John Xavier Morris, and Lionel Levine. Do language models plan ahead for future
tokens? In First Conference on Language Modeling, 2024.

Yifei Yuan and Anders Sggaard. Revisiting the othello world model hypothesis. In ICLR 2025
Workshop on World Models: Understanding, Modelling and Scaling, 2025.

13

Under review as a conference paper at ICLR 2026

A PROOF OF PROPOSITION

Proposition A.1 (Restated from Proposition[3.1). For any layer k and position i,
VGL(1.7 Ty (LU)) = ngf (direct) ({I?, Ty (LC)) +V9Lz (pre-cached) (.’E, Ty ({E)) + ngf (shared) (II?7 Ty (LC))

4)
Where
VoL§ ivect) (@ To(2)) = Vo L(zit1, Ty(2);) — VoL (it1, [To(x)) " m) : (5)
v‘9L§(pre-cached) (.%',Tg(.%’)) = Z |:VQL($j+17T9({L‘)) VGL (CUJ+17 [Tg()]55(2 k))i| , (6)
J#i
VQL?(Shared) (z,To(x Z VoL ($g+1, [Ty(x)]sg(z k)))
Proof.
VQL(JJ, Tg(m)) = VQL(:L‘, Tg(l‘)) + VoL (1‘7 [Te(x)]sg(i,k)) VL (l‘, [Tg(l‘)]sg(i’k)) _
N—-1 N_1
VoL (ijrl’ [Ty (x)]Sg(z k)) Z VoL xj+1,T9 VoL (ijrl’ [Ty(x)]sg(z k))
Jj=1 j=1 j=1
véLi.(shared)

k
Vo L?ﬂ (direct)

B Nz: (%H’ [To(Hsg(l k)) + (veL(fciH’TG(m)i) — Vol ($i+17 [Te(x)]:g(i’k))) +

> |:v9L(xj+1;T9(x)j) — VoL (xjH, [TQ(I)Eg(ika }

j#i
Vo Li'c (pre-cached)
O
B ADDITIONAL DETAILS ON ATTRIBUTION EXPERIMENTS
Computing the component influence. By Definition[3.3]
d
IF 0,z | wF,0°,G) = —R (2| 0+ G, 0, wl)
de =0
A simple application of the chain rule gives an equivalent definition:
150,z | wF,0%,G) = (VR (x| 0,0%,w}) ,G) 8)

Thus, computing the influence of a given gradient term can be done by taking the inner product of
that gradient term and the gradient of the feature mismatch.

To compute Tgirect (WF,6), Ipre-cached (WY, 0), and Isparea(w?,) for given i and k, we employ the
following algorithm. F1rst we calculate Vo L; for every j in a standard way. Next, we calculate
V(;L;g(k’i) in a similar manner, but during the forward pass of the model we detach the tensor
corresponding to r’g) ;(x). After that, we compute the gradient decomposition terms according to the
definitions in Section 3.4

The only thing left is the gradient of the feature mismatch. We apply the linear probe defined by w¥
to both r{g’i(:v) and r’g*ﬂ-(:c) and compute the feature mismatch according to Definition We run
one more backpropagation to find Vy R and take its inner product with the gradient decomposition
terms, obtaining the desired influence values.

14

Under review as a conference paper at ICLR 2026

Correction for Adam. As metioned in Section the naive computation of influence compo-
nents described above is grounded for training with SGD (Remark [3.4) but not for Adam. Indeed,
in the case of Adam, the parameter update is computed differently, and a linear step toward the neg-
ative gradient no longer reflects how the model is trained. Moreover, due to the inclusion of the first
and second moments, the parameter update cannot be computed as a linear sum of three separable
components:

0t+1 — 0, 7& g(VL(direct)) + g<vL(pre—cached)) + g(vL(shared))
while for SGD it is true, with g(x) = —n - = (and that fact is the basis behind Remark [3.4).

However, with two small adjustments we can make the Adam parameter update separable. First, we
keep separate moments for each of the three components:

e = Bimi 1 4 (1= B1)V L aiveer
(similarly for the other two).

Second, we use the same adaptive learning rate for all three components:
__n
vV ﬁt + € ’

«

where 0, is computed normally. Then,

direc re-cached shared
Oui1 — 0 = g(m(™) 4 g(mP D) 4 g(m (D),

where
T

11—t

This way, we can use g(mg as an adjusted gradient for the direct component. From here, the
computation is similar to the case of SGD.

g(x) = —a

direct))

Overall Algorithm. First, for a given dataset, we train a model normally. In all our experiments,
we use Adam to follow community standards. After the model has been trained, we freeze it, save
the hidden activations on the validation dataset, and obtain a set of linear probes to regress latent
variables.

For us, these probes represent the directions w¥ needed to compute the gradient-component in-
fluence. Once we have the probes, we retrain the model from scratch, fully repeating its training
trajectory, which involves starting from the same initialization as the first time, keeping the data
point order the same, fixing the PyTorch random seed, etc. During this second training run, at each
training batch we compute the feature mismatch and the gradient-component influence for each
probe.

The second run is needed because during the first one we do not have the directions w? needed to
compute component influences, and to estimate them we need 6*, which itself requires the training
run to finish. In principle, one could save all gradient components during the first run and then
retrieve them from memory when computing the influence, but that is extremely expensive in terms
of the disk space needed. Thus, we perform two consecutive training runs.

C PROOF OF PROPOSITION [3.1]

Proposition C.1 (Restated from Proposition [5.1).

Izk(e/ y L ‘ w,@ aVQLpre-cached) ~ Zj>1’,+1 d"l

J_ A
Iik(e/i,x | w, 0%, Vo Ldirect) B dz/j-l o

Proof. Both direct and pre-cached gradient components consider only the gradient paths that have
r¥ as a bottleneck, so by chain rule they can be expressed as

%

v9L§C(direct) =Jo [Tf] : vrfLi

15

Under review as a conference paper at ICLR 2026

V@Lf (pre-cached) — Jo [Tﬂ ’ Vrf Z Lj

J>i

For convenience, from this point we will treat them together as Vy L., ¢ € {direct, pre-cached}.

R(x | 0,07, wF) = = ((wh, vk (2)) — (wh,rh. .(2)))’

VoR(w | 0,0%,wf’) = ((wf,rf ;(x)) = (wi’,rg- ;(2))) Vo(wi,rg ;(x)) = A~ Jo[rg ;) (w])

N |

Per equation|[§]
IF (0,2 | wF, 07, VoLe) = (VR (x| 0,07, wF) ,VoL.) =)
= Awi) Jolr 1" Jolr] - Vo Le = Jolrg)" Jolrg J(Aw], Ve Le) (10)

s

Imagine we do a feature ablation: that is, we take a trained model §* and add a vector AwZ’fc to 7"5* i
We measure the loss L. that depends on the model’s output. Doing a first-order approximation
around rg. ; (¢’ are the parameters of this intervened model),

L, — Lt~ (Awf)"'V,,, L (11)

A corollary of equatlonm 110|and equation .1s that for any model with parameters 0’ such that
rh . =rk. 4+ Awk, the influence of component c is proportional to the increase in loss compared to
the model 6*.

Assuming that that * perfectly fits the data (p(z; | x<+) = Tp(x+ | 2<¢), the difference in cross-
entropy NTP losses becomes

Nirect — Livect = — E log T/ (4 | w<¢) + E log Tp+ (z¢ | x<4) =
d t d t zi~Tox (Te|T<t) & 9(t| <t) zi~Tox (Te|T<t) &0 (t| <t)
log Ty« (z1 | z<4)
= E — % — Dy, (Tp (x| x To(xy | T
2o~ Tys ($t|w<t) IOgTQI(.’L't ‘ x<t) ((t | <t)H (t | <t))

Similarly, for the pre-cached component, the difference in losses corresponds to the sum of KL-
divergences for future positions.

IF(0,x | wF, 0%, Vg Lairect) _ Dxr,(To+ (@ig1 | x<i)l|Tor (i1 | ©<i) (12)
IF O, 2 | wi, 0%, VoLprecached) 2 jsi1 DRL(To= (@541 |)1 Tor (T)41 | 2<5))

Where Ty is a model where r¥ was modified along the direction w?.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 Toy TASKS (SECTION[.T))

16

Under review as a conference paper at ICLR 2026

Table 1: Hyperparameters for the experiments with the tasks of Majority and Conditioned Majority.

Hyperparameter Value Hyperparameter Value

Layers 2 Steps 3000

Heads 4 Train size 102,400

Hidden dim 128 Eval size 10,240

Feedforward dim 512 Number of seeds 10

Learning Rate 0.001 Input phase size 10

Batch size 256 Output phase size 10
Vocabulary size 3

D.2 OTHELLO (SECTION
Table 2: Hyperparameters for the Othello experiment.

Hyperparameter Value Hyperparameter Value

Layers 6 Steps 5000

Heads 4 Train size 5,120,000

Hidden dim 256 Eval size 20,480

Feedforward dim 1024 Number of seeds 1

Learning Rate 0.001

Batch size 1024

Following prior work, we generate a dataset of synthetic games of Othello. When generating a new
game, we always randomly choose a move that is legal given the current board state.

We encode the game as a sequence of tokens, where the i-th token represents a square where a stone
was placed at the i-th turn, irrespective of which player placed it. We also add a token pass for the
turns when no moves are legal. The games in our datasets have a fixed length of 60 turns, and end
with repetitions of pass if the game tree finished before that.

When training the linear probes, we encode the board state as a matrix of -1, 0, and 1. 1 represents
the squares belonging to the active player, -1 represents the squares belonging to the non-active
player, and O represents the empty squares. When a square is placed, the board state matrix gets
negated (because the active player changed) and -1 gets added to one of the cells.

When estimating the influence separately for NTP-useless and NTP-useful squares, we don’t take
empty cells into account. For a given board state, we consider a square NTP-useful if flipping
it (negating the corresponding cell in the board state matrix) changes the set of the legal moves.
Otherwise, the square is considered NTP-useless. When estimating the influence components for the
NTP-useless and NTP-useful features, we use the same probe for both types, but compute feature
mismatch separately. This way, we aggregate R(z | 0, 0%, wk) disjointly for the objects in the batch
where the square is NTP-useless and NTP-useful, and proceed as usual.

After that, ffull (UJ:;C)NTp_use]ess can be seen as the contribution of NTP-useless features into the devel-

opment of the linear direction defined by wf If ffull(wzk)NTp_useless is negative or close to zero, it
indicates that these features do not contribute to the linearity of the representation.

Due to the resource constraints, we cannot compute the influence components for each position and
square of the board. Thus, we use 16 central squares and compute influence for every 4th position
(from 4th to the 56th turn).

D.3 SMALL LANGUAGE MODEL (SECTION |4.3))

We employ the tokenizer used in the original work on TinyStories (Eldan & Li, 2023).

We test the following features:

1. POS tags: we annotate POS tags using spaCy (Honnibal et al.|[2020), one-hot encode them
and use the 10 most common tags, encoded as O or 1, as features. Since one word can
contain multiple tokens, each token gets assigned the tag of the word it belongs to.

17

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters for the small LM experiment (TinyStories).

Hyperparameter Value Hyperparameter Value
Layers 4 Steps 1000
Heads 4 Train size 256,000
Hidden dim 128 Eval size 30,000
Feedforward dim 512 Number of seeds 10
Learning Rate 0.001 Max length of text 64

Batch size 1024

2. Dependency tags: same procedure, also the 10 most common tags.

3. Positional feature: since we sample substrings of 64 tokens from the original stories to
train the model, the positions of tokens in these substrings do not directly correspond to
their positions in the original text. We use that original position as another feature that
assumes the values from O (the token is the first token in the original story) to 1 (the last
token).

Thus, we have 20 binary features and 1 continuous feature. We estimate influence of those features
for each position from 30 to 39.

D.4 CALCULATING Q(w) (SECTION|5.1)

To characterize the causal role of the learned features in Gemma 2 (Gemma Team et al., 2024),
we employ a Sparse Autoencoder (SAE) from the Gemma-Scope suite (Lieberum et al., [2024),
specifically the SAE trained at the residual stream in layer 15 with 16k hidden features.

The first step is to curate a dataset of diverse, high-activating text examples for each feature. We se-
lect text sequences from Neuronpedia (Linl 2023)) where features show their highest activation. For
each feature, we find the token position with the maximum activation value and extract the surround-
ing text, including a fixed window of 10 subsequent tokens to create an initial set of sequences. This
set is then filtered for diversity based on token-level Levenshtein distance, resulting in a collection
of high-activating and textually different sequences.

On these sequences, we perform an intervention at the token position of maximum activation. We
intercept the residual stream activation vector, pass it through the SAE’s encoder, and set the activa-
tion value of our target feature to zero. This modified set of feature activations is then passed through
the SAE’s decoder to create a new, ablated residual stream vector, which replaces the original one
in the forward pass.

To quantify the impact of the feature, we compare the model’s subsequent token predictions with
and without the intervention. We measure the change in the output probability distribution at each
future position using KL-divergence. This allows us to compute a QQ(w) score representing the ratio
of the feature’s delayed to immediate influence. We average this score across different sequences.
As discussed in Appendix [C} a high Q(w) value indicates a *pre-cached’ feature whose primary
influence is on the model’s future state, while a low value indicates a ’direct’ feature influencing on
the immediate prediction. We filter out from the analysis the features, ablating which does not show
substantial effect on any generated tokens:

s
1 S S S S
3 SN D (T (), | 281 Tor (2, | 24))) < 0.05
s=1j5>1

After that, we are left with 14,565 features to analyze out of the initial 16,384.
D.5 CLASSIFYING SAE FEATURES (SECTION|5.1))
To assess whether a given SAE feature relates to formal reasoning, we use its automatically gener-
ated decsription available in Neuronpedia (Lin}, [2023). We use the available descriptions generated

using GPT-40-mini (OpenAl, |2024) and classify these descriptions themselves with GPT-4.1-nano
(OpenAlL 2025).

18

Under review as a conference paper at ICLR 2026

Our prompt is Here is the description of a certain textual property:
"DESCRIPTION". Is this property related to TAG? Respond with one
word only: yes or no.

In this prompt, DESCRIPTION is filled with the retrieved description of the feature, and 7AG is one
of “computer code, programming languages, or math” or “syntax or text
structure”.

In this way, for each feature we obtain the labels is_code and is_syntax and we consider the
feature related to formal reasoning if at least one of them is 1.

D.6 STEERING SAE FEATURES (SECTION[3.1]

To steer a feature w in a model, we add w multiplied by a steering coefficient to the residual stream:
¥ < r¥ 4+ §w. In our experiments, we set § = 10.

For each feature, we sample 64 generations from a model with that feature steered at every token
position. We sample 20 tokens unconditionally with temperature 1, thus generating samples from a
distribution Ty (), but under steering.

For each generated sample, we count the number of punctuation characters it contains. We also
classify whether the sample represents a snippet of computer code using Llama 3.1 8B (Grattafior1
et al. 2024) as a classifier. This gives us, for each feature, two metrics: the number of generated
code snippets (out of 64 total generations) (#code) and the average number of punctuation symbols
per generation (#punct).

In Figure we show these metrics grouped by Q(w) of the corresponding feature. Additionally,
similarly to Section we estimate the 95% CI for the o parameter of the distribution of Q(w)
when it is modeled as a log-normal distribution. We split features into two groups: those with
#code above the median value and those below it. We perform the same split for #punct. The
results, presented in Table |§|, indicate that QQ(w) has heavier tails for the groups where #code (or
#punct) is above the median, mirroring our results in Section[3.1}

D.7 LOOK-AHEAD EXPERIMENT (SECTION[3.2)
We obtain a simple future token predictor by training a linear layer mapping from ré{i () t0 Tjtt41
on a subset of the Pile dataset|Gao et al.| (2020):

j¢+t+1 = h5+1(WLA : rg,z(x))

Here Z; 4441 is the frozen language modeling head of Gemma, and ¢ > 0 is the distance of the
look-ahead.

This approach resembles Linear Model Approximation of |Pal et al.| (2023), except we keep the
language modeling objective instead of the reconstruction loss on the activations at the last layer.

After training, Wp,o defines a subspace in the space of the residual stream. Note that the weights
of the SAE encoder define directions in the same space: indeed, one SAE feature can be seen is a
linear projection of residual stream followed by an activation function. Thus, we can estimate how
much a feature contributes to the look-ahead by checking how close the feature encoder vector lies
to the subspace defined by W1, .

Intuitively, if some linear direction v in the residual stream of the model contains information crucial
for predicting look-ahead linearly, Wi, would learn to “read” from this direction, and columns
proportional to v would appear in Wi, .

To check that, we compute the angle A(Wp 4, w, r) between the feature direction w and the subspace
formed by 7 main singular components of Wr,s. Specifically, let Wy, = UXV7T be the SVD
decomposition of Wy, o. Let E be the matrix of SAE feature directions: the weights of the SAE
encoder of the size d X Nfeatures- FOr each r from 1 to d, we compute the projection matrix P =

V,.V.I', feature projections £ = PE, and save the cosine distances between the corresponding
columns in ' and E.

19

Under review as a conference paper at ICLR 2026

In this way, for the given look-ahead distance ¢ and matrix Wﬁ A» We obtain a matrix C' of size
d X Neatures: Crj is the cosine similarity between j-th feature and its projection on VT.VT,T. In
Figures andwe report the correlations between Q(w) and C,.; for each r.

E FURTHER EXPERIMENTAL RESULTS
E.1 Toy TASKS

Table 4: Accuracy of a trained model for the first token in the output phase. All trained models
successfully solve the tasks, except for the myopic models trained on Conditioned Majority.

non-myopic myopic
tied 10-untied tied 10-untied
Majority 1.00 £+ 0.00 1.00 £ 0.00 1.00 + 0.00 0.96 +0.05

Conditioned Majority 0.99 &+ 0.02 1.00£0.00 0.76 £0.01 0.76 £ 0.09

= direct 7 = direct
& pre-cached 4 pre-cached
- shared 2 - - shared

-# direct
& pre-cached
-+ shared

Ratio
Ratio

T — T T T e L — T — T T T
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Sequence Position Sequence Position Sequence Position

Figure 8: Normalized integrated influence components for the tasks of Majority (left) and Condi-
tioned Majority (center: tied model, right: 10-untied model).

In models solving Majority, the features in the input phase seem to be predominantly shared, but
that flips at the 10th token — exactly the point where the feature is needed to predict the immediate
next token, which is the output for the task.

The images for Conditioned Majority may help explain the curious increase in the performance and
probing accuracy of the 10-untied model compared to the tied model. We see that for the 10-untied
model it is the pre-caching influence that causes the previous-token feature to be learned in the input
phase, while for the tied model there is no clear pattern. This likely indicates that, instead of the
robust circuit we expected, the tied model learned a less robust, possibly shortcut solution, due to
the influence of shared gradients from the output phase.

E.2 OTHELLO

= 1.0
4.0 9
Fo08 &
@ 3.5 i i g
& o train loss (non-myopic) =]
3 train accuracy (non-myopic) - 0.6 9
k= train loss (myopic) <
3 3.0 4 i
o train accuracy (myopic) £
& Fo4 '@
2.5 1 =
- 0.2
T T T T T T
0 1000 2000 3000 4000 5000
Steps

Figure 9: The training loss and accuracy curves of the myopic and non-myopic OthelloGPT models.
The training of a myopic model is much less stable and it does not converge to the same performance
as a non-myopic model.

20

Under review as a conference paper at ICLR 2026

Myopic
Non-Myopic

o o o
wu (=] ~
1 1 1

Probing Performance
I
-~
1

o
w
1

T T T T T T T
0 1 2 3 4 5 6

Layer

Figure 10: Performance of the probes trained to extract the board state from myopic and non-
myopic Transformers for Othello. Myopic model shows a much lower degree of the board state
representation.

The scores presented in this plot are lower than the ones reported in the prior literature (Nanda
et al., [2023) due to the differences in evaluation methodology (we train the probes for regression
and evaluate them using Pearson correlation, also unlike the prior work we include empty cells into
evaluation). In addition, our model is smaller than the one used in the prior work (6 layers against 8
and a smaller hidden dimensionality), dictated by the limits of computational resources.

In Figures [T1] and [T2] we compare the direct and pre-cached influence components for different
squares in the Othello experiment. Each plot is an average of the results for two close positions.

Interestingly, we find the results to be quite noisy and clearly non-stationary with respect to the
position in the sequence. In general, it seems that the importance of the direct component generally
goes down later in the game relative to the importance of the pre-cached component. However, we
believe that more experiments are needed to make conclusive statements.

21

Under review as a conference paper at ICLR 2026

4 Inner cells, positions [4, 8]

4 Inner cells, positions [12, 16]

150 A

100 A

—50 -

—100

- Direct NTP-useless
— Direct NTP-useful

= Pre-Cached NTP-useless
— Pre-Cached NTP-useful

Layer
4 Inner cells, positions [20, 24]

Layer

4 Inner cells, positions [28, 32]

Layer

4 Inner cells, positions [36, 40]

Layer
4 Inner cells, positions [44, 48]

Layer

4 Inner cells, positions [52, 56]

Figure 11: Integrated influence components at different positions for the 4 central cells in Othello.

Each plot is an averaging of two positions.

22

Under review as a conference paper at ICLR 2026

12 Outer cells, positions [4, 8] 12 Outer cells, positions [12, 16]

- Direct NTP-useless
15 — Direct NTP-useful 154
= Pre-Cached NTP-useless)
— Pre-Cached NTP-useful
10 1.0 9
— — _ M= -0
0.5 4 ~ 4
5 4 =
0.0 .
0 ud
-05 19
T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Layer Layer
1.0 1
0.5 4
— 0.0
—0.5
-1.0 o
~1.5
Layer Layer
12 Outer cells, positions [36, 40] 12 Outer cells, positions [44, 48]
0.5 4
~ ——
0.0 4
— — —0.5
~0.5
~1.0 4
~1.0 4
0 =154
Layer
12 Outer cells, positions [52, 56]
4
3 - =
2 i A\
14
0] gt

Figure 12: Integrated influence components at different positions for the 12 cells surrounding the
center in Othello. Each plot is an averaging of two positions.

23

Under review as a conference paper at ICLR 2026

E.3 SMALL LANGUAGE MODEL

myopic
non-myopic

Train Loss
IS
1

T T T T T T
0 200 400 600 800 1000

Steps

Figure 13: The training loss curves of the myopic and non-myopic small language models. It can be
seen that a myopic LM has a consistently much higher loss from very early in training.

0.04 o

— direct
— pre-cached

— direct

0.02 - — pre-cached 0.03 4 0.02

0.02 - 0.00

= 0.01 o

0.01 —0.02

= direct
0.00 I—I\I/- —0.04 — pre-cached

T T T T T T T T T T T T
1 2 3 4 1 2 3 4 1 2 3 4

Layer Layer Layer

0.00 o

(a) POS tags (b) Dependency tags (c) Positional feature

Figure 14: Direct and pre-cached influence for different feature types (as in Figure |7_1|) with 95% CI
estimates for the average value at each layer.

Feature category Layer {¢-statistic Dgreater Dless
1 358640 5.8 x 1078 1.0
2 387970 3.1 x 10716 1.0
POS tags 3 374375 5.5 x 10~ 12 1.0
4 452676 3.3 x 10746 1.0
1 269035 9.4 x 1018 1.0
Dependency tags 2 297604 2.5 x 10734 1.0
3 301802 2.9 x 10737 1.0
4 350830 1.1 x 10780 1.0
1 4080 4.5 x 1078 1.0
Positional 2 1033 1.0 14x1077
3 1289 1.0 1.1x107°
4 3007 4.9 x 1072 0.95

Table 5: One-sided Wilcoxon test statistics comparing direct and pre-cached influence components,
with p-values reported for each feature type and layer. In all layers, the direct influence for POS
and dependency tags is significantly larger than the pre-cached influence, which is reversed in the
middle layers for the positional feature.

E.4 GEMMA 2

24

Under review as a conference paper at ICLR 2026

i T S A
102 10! 10° 10! 10% 108 10*
Pre-Caching Degree

Figure 15: Distribution of Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B.

is_union is_union is_union
/o /o o
| ¥ | R § 1
' ' '
102 1071 10-2 10-* 10° 10! 102 10% 10* 10! 102 10° 10
Pre-Caching Degree Pre-Caching Degree Pre-Caching Degree

Figure 16: Distribution of @Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B. The
features classified as related to code, math, syntax, or text structure, are plotted orange; others are
plotted blue. Images to the left and to the right show the tails of the distribution.

is_code is_code is_code
o /o o
| o 1
' ' '
1072 1071 10-2 10! 10° 10! 102 10% 10* 10! 102 10° 10
Pre-Caching Degree Pre-Caching Degree Pre-Caching Degree

Figure 17: Distribution of Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B. The
features classified as related to code or math are plotted orange; others are plotted blue. Images to
the left and to the right show the tails of the distribution.

is_syntax is_syntax is_syntax
o /o /o
| 1 1

Ty T ' '
10! 102 10° 10% 10! 102 10° 10*

1072 1071 1072 10! 10°
Pre-Caching Degree Pre-Caching Degree Pre-Caching Degree

Figure 18: Distribution of Q(w) (pre-caching degree) for the SAE features of Gemma 2 2B. The
features classified as related to syntax or text structure, are plotted orange; others are plotted blue.
Images to the left and to the right show the tails of the distribution.

25

Under review as a conference paper at ICLR 2026

5.0

4.5

Code Completions

© 7.0
[S]
E
5 6.5
n
g
g 6.0
j=1
Ay
5.5
0.1-10 > 10 <0.1 0.1-10 >10
Pre-Caching Degree Pre-Caching Degree

Figure 19: Number of unconditional generations classified as code (left) and average number of
punctuation symbols (right) obtained by steering SAE features in Gemma 2 2B. Steering features
with high pre-caching degree leads to both more code and more punctuation symbols being gener-

ated.

Group 6 (95% CI)

#code above median 1.479 £ 0.030
#code below median 1.428 +0.020
#punct above median 1.519 4+ 0.025
#punct below median 1.351 £ 0.022

Table 6: Estimated scale parameter o of the log-normal distribution fitted to Q(w) for different
feature groups. For each group, we report the estimated & and its 95% confidence interval. Features
are split at the median value of #code and #punct.

Feature @Q(w) Description
15050 0.002 HTML or CSS code referencing scripts and stylesheets
3016 0.006 programming constructs related to annotations and metadata in code
3025 0.006 French pronouns and their conjugations in various contexts
4840 0.006 aspects related to graphical user interface elements
2127 0.007 identifiers and numerical values in a structured format
9124 0.010 elements related to data structures and operations in programming contexts
11737 0.011 the article "An” used in various contexts
4214 0.011 numerical values or symbols, particularly those frequently associated with coding, data
structures, or software libraries
11655 0.013 articles and determiners preceding nouns
13070 0.014 compiler directives and warning pragmas in code

Table 7: 10 features with the lowest Q(w) among the SAE features of Gemma 2 2B under study.

Feature = Q(w) Description

4592 13710.8 programming-related terms and structures, particularly those associated with class and
method definitions

12285 6946.1 references to web development, particularly relating to dependencies and library
management

6579 3308.5 code structure and control flow statements

15090 2675.1 programming constructs and syntax elements

10042 1853.5 textrelated to software usage rights, permissions, and licensing terms

13045 1641.9 elements and objects that are part of a programming interface or user interface

15829 1202.1 function calls and their syntax within code

6139 898.5 technical references to Forms and related components in programming

13552 871.2 terms related to networking and software development

2162 756.9 colons or punctuation marks

Table 8: 10 features with the highest (Q(w) among the SAE features of Gemma 2 2B under study.

26

Under review as a conference paper at ICLR 2026

Feature @Q(w) Description

9964 0.125 terms related to standards and standardization processes

14622 0.663 terms related to poverty and marginalized communities

5029 0.928 details related to activities undertaken or actions witnessed in various contexts
136 0.852 terms associated with legal prohibitions and restrictions

4010 0.435 concepts related to logistics, regulations, and technical specifications

13176 0.227 references to events or gatherings

2463 0.330 references to assembly attributes in a programming context

4685 0.109 tokens related to identifiers or types in programming languages

2803 0.171 references to processes related to healthcare, particularly in the context of treatment and

intervention strategies
9598 0.560 legal and political events or controversies

Table 9: 10 random features with Q(w) between 0.1 and 1.1.

0.01 -
< 0.00 -
<
5 —0.01 ~
V)

-0.02

0 500 1000 1500 2000
r

Figure 20: Pearson correlations between cos A(Wp 4, w,r) and Q(w) among the SAE features in
Gemma 2.

27

Under review as a conference paper at ICLR 2026

STATEMENT ON LLM USAGE

We used LLMs to assist with text editing and with writing experimental code. We take full respon-
sibility for all content in the paper and presented results.

28

	Introduction
	Setup
	Information Flow Decomposition
	Gradient Decomposition
	Ablating Pre-Caching and Circuit Sharing
	The Roles of Pre-Caching and Circuit Sharing
	Estimating the Effect of Gradient Components on Feature Emergence

	Experiments with small Transformers
	In Toy Tasks, NTP-Useless Features Do Not Emerge Without Pre-Caching and Circuit Sharing
	Pre-Caching and Circuit Sharing Hold Together OthelloGPT's World Model
	Pre-Caching is Required for Coherent Text Generation, but not Needed for Syntax

	Investigating Features in Large Language Models
	Finding and Understanding Pre-Cached Features in an LLM
	Pre-Caching and Look-ahead Are Separate Phenomena

	Related Work
	Conclusion
	Proof of Proposition 3.1
	Additional Details on Attribution Experiments
	Proof of Proposition 5.1
	Additional Experimental Details
	Toy Tasks (Section 4.1)
	Othello (Section 4.2)
	Small Language Model (Section 4.3)
	Calculating Q(w) (Section 5.1)
	Classifying SAE Features (Section 5.1)
	Steering SAE Features (Section 5.1
	Look-Ahead Experiment (Section 5.2)

	Further Experimental Results
	Toy Tasks
	Othello
	Small Language Model
	Gemma 2

