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ABSTRACT

Neural networks appear to have mysterious generalization properties when using
parameter counting as a proxy for complexity. Indeed, neural networks often have
many more parameters than there are data points, yet still provide good general-
ization performance. Moreover, when we measure generalization as a function
of parameters, we see double descent behaviour, where the test error decreases,
increases, and then again decreases. We show that many of these properties become
understandable when viewed through the lens of effective dimensionality, which
measures the dimensionality of the parameter space determined by the data. We
relate effective dimensionality to posterior contraction in Bayesian deep learning,
model selection, width-depth tradeoffs, double descent, and functional diversity in
loss surfaces, leading to a richer understanding of the interplay between parameters
and functions in deep models. We also show that effective dimensionality compares
favourably to alternative norm- and flatness- based generalization measures.

1 INTRODUCTION

Parameter counting pervades the narrative in modern deep learning. “One of the defining properties
of deep learning is that models are chosen to have many more parameters than available training data.
In light of this capacity for overfitting, it is remarkable that simple algorithms like SGD reliably return
solutions with low test error” (Dziugaite and Roy, 2017). “Despite their massive size, successful
deep artificial neural networks can exhibit a remarkably small difference between training and test
performance” (Zhang et al., 2017). “Increasing the number of parameters of neural networks can
give much better prediction accuracy” (Shazeer et al., 2017). “Scale sensitive complexity measures
do not offer an explanation of why neural networks generalize better with over-parametrization”
(Neyshabur et al., 2018). “We train GPT-3, an autoregressive language model with 175 billion
parameters, 10× more than any previous non-sparse language model” (Brown et al., 2020). The
number of model parameters explicitly appears in many modern generalization measures, such as in
Equations 20, 51, 52, 56, 57, 59, and 60 of the recent study by Jiang et al. (2020). Phenomena such
as double descent are a consequence of parameter counting. Parameter counting even permeates our
language, with expressions such as over-parametrization for more parameters than data points.

But parameter counting can be a poor description of model complexity, model flexibility, and inductive
biases. One can easily construct degenerate cases, such as predictions being generated by a sum of
parameters, where the number of parameters is divorced from the statistical properties of the model.
When reasoning about generalization, over-parametrization is besides the point: what matters is how
the parameters combine with the functional form of the model.

Indeed, the practical success of convolutional neural networks (CNNs) for image recognition tasks is
almost entirely about the inductive biases of convolutional filters, depth, and sparsity, for extracting
local similarities and hierarchical representations, rather than flexibility (LeCun et al., 1989; Szegedy
et al., 2015). Convolutional neural networks have far fewer parameters than fully connected networks,
yet can provide much better generalization. Moreover, width can provide flexibility, but it is depth
that has made neural networks distinctive in their generalization abilities.

In this paper, we gain a number of insights into modern neural networks through the lens of effective
dimensionality, in place of simple parameter counting. Effective dimensionality, defined by the
eigenspectrum of the Hessian on the training loss (equation 2, Section 2), was used by MacKay
(1992a) to measure how many directions in the parameter space had been determined in a Bayesian
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Figure 1: A resolution of double descent. We replicate the double descent behaviour of deep neural
networks using a ResNet18 (He et al., 2016) on CIFAR-100, where train loss decreases to zero with
sufficiently wide model while test loss decreases, then increases, and then decreases again.
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Figure 2: Left: Effective dimensionality as a function of model width and depth for a CNN on
CIFAR-100. Center: Test loss as a function of model width and depth. Right: Train loss as a
function of model width and depth. Yellow level curves represent equal parameter counts (1e5, 2e5,
4e5, 1.6e6). The green curve separates models with near-zero training loss. Effective dimensionality
serves as a good proxy for generalization for models with low train loss.

neural network. There is immense value in revisiting effective dimensionality in the context of modern
deep learning. We demonstrate that effective dimensionality can be used to explain phenomena
such as double descent and width-depth trade-offs in architecture specification (Section 5). We also
show that effective dimensionality provides a straightforward, scalable, and promising metric for
generalization in modern deep learning, comparing to PAC-Bayes flatness and path-norm measures,
two of the most successful measures in the recent study by Jiang et al. (2020) (Section 6). We
additionally show how effective dimension can explain why subspace compression methods for
neural networks (Izmailov et al., 2019; Li et al., 2018) can be so effective in practice, demonstrating
function-space homogeneity as we move in directions given by eigenvectors corresponding to the
smallest eigenvalues of the Hessian (Section 4). We connect this finding with Bayesian Occam factors
and minimum description length frameworks, providing an interpretation of effective dimensionality
as model compression (Section 4.3). Moreover, we show that despite a seeming lack of determination
in parameter space, a neural network can be relatively well-determined in function space (Section 4).

Consider Figure 1, where we see that once a model has achieved low training loss, the effective
dimensionality, computed from training data alone, replicates double descent behaviour for neural
networks. Models that are wider have both lower effective dimensionality and better generalization.
Alternatively, in Figure 2 we see that width and depth determine effective dimensionality in different
ways, though both are related to numbers of parameters. Remarkably, for models with low training
loss (above the green partition), the effective dimensionality closely tracks generalization performance
for each combination of width and depth. We also see that wide but shallow models overfit, while
depth helps provide lower effective dimensionality. When two models have the same training loss
they can be viewed as providing a compression of the training data at the same fidelity, in which case
the model with the lower effective dimensionality, and thus provides the better compression (Section
4.3) — capturing more regularities — will tend to generalize better. In particular, effective dimension
should be used to compare models with similarly low values of training loss. In this regime, we see
that ED closely tracks generalization for both double descent and width-depth trade-offs.
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2 POSTERIOR CONTRACTION, EFFECTIVE DIMENSION, AND THE HESSIAN

We consider a model, typically a neural network, f(x;θ), with inputs x and parameters θ ∈ Rk.
We define the Hessian as the k × k matrix of second derivatives of the loss,Hθ = −∇∇θL(θ,D),
where D is the training data. To begin, we describe posterior contraction, effective dimensionality,
and connections to the Hessian.

2.1 THE HESSIAN AND THE POSTERIOR DISTRIBUTION
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Figure 3: Left: A comparison of prior and pos-
terior distributions in a linear regression setting,
demonstrating the decrease in variance referred to
as posterior contraction. Right: Functions sam-
pled from the prior and posterior distributions.

We begin by providing a simple example ex-
plaining the relationship between the posterior
distribution over the model’s parameter, the
amount of posterior contraction from the prior,
and the Hessian of the negative log posterior.
Figure 3 shows the prior and posterior distribu-
tion for a Bayesian linear regression model with
a single parameter, with predictions generated
by parameters drawn from these distributions.
As expected, we see that the variance of the pos-
terior distribution is significantly reduced from
that of the prior; we call the difference of the
variance between the posterior and the prior the
posterior contraction of the model. More specif-
ically, as shown in Figure 3, the arrival of data
increases the curvature of the loss (negative log
posterior) at the optimum. This increase in curvature of the loss that accompanies certainty about the
parameters leads to an increase in the eigenvalues of the Hessian of the Growth in eigenvalues of the
Hessian of the loss corresponds to increased certainty about parameters.

2.2 POSTERIOR CONTRACTION AND EFFECTIVE DIMENSIONALITY

When combined with the functional form of a model, a distribution over parameters p(θ) induces a
distribution over functions p(f(x;θ)). The parameters are of little direct interest — what matters
for generalization is the distribution over functions (e.g. the right panel of Figure 3). As parameter
distributions concentrate around specific values we expect to generate less diverse functions, the
behavior seen in Figure 3. We show in Appendix E that we can describe posterior contraction in
Bayesian linear regression, y ∼ N (Φβ, σ2I), with isotropic Gaussian prior, β ∼ N (0, α2Ik), as

∆post(Φ) = α2
N∑
i=1

λi
λi + α−2

, (1)

where λi are the eigenvalues of Φ>Φ/α2, the Hessian of the log likelihood, which is dependent
on both the model and the training data. We refer to the summation in equation 1 as the effective
dimensionality of Φ>Φ/α2. We generalize equation 1, defining the effective dimensionality of a
symmetric matrixA ∈ Rk×k as

Neff (A, z) =

k∑
i=1

λi
λi + z

, (2)

in which λi are the eigenvalues ofA and z > 0 is a regularization constant MacKay (1992a).1

Typically as neural networks are trained we observe a gap in the eigenspectrum of the Hessian of
the loss (Sagun et al., 2017); a small number of eigenvalues become large while the rest are near
zero. In computing effective dimensionality, eigenvalues much larger than z contribute a value of
approximately one to the summation, and eigenvalues much smaller than z contribute a value of
approximately zero.

1In discussing model generalization, we use effective dimensionality as short form for the effective dimen-
sionality of the Hessian of the loss of a trained model.
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Figure 4: We see a similarly strong relative relationship between effective dimensionality and test loss
over a wide range of regularization parameters z. Each point is the effective dimensionality computed
for a regularization parameter (varying colors) and a particular width and depth, as in Figure 2. We
use only models with low training loss (above the green partition in Figure 2) for this plot.

Therefore, the effective dimensionality explains the number of parameters that have been determined
by the data, which corresponds to the number of parameters the model is using to make predictions. In
comparing models of the same parameterization that achieve low loss on the training data, we expect
models with lower effective dimensionality to generalize better — which is empirically verified in
Figures 1 and 2. The intuition built using Figure 3 carries through to this approximation: as the
eigenvalues of the Hessian increase, the eigenvalues of the covariance matrix in our approximation to
the posterior distribution shrink, further indicating contraction around the MAP estimate.

Practical Computations For large neural networks computing the eigenvalues and eigenvectors of
the Hessian of the loss is nontrivial. We estimate effective dimensionality by computing the dominant
eigenvalues using the Lanczos algorithm implemented in GPyTorch, since many of the eigenvalues
are typically close to zero and do not significantly contribute to the estimate (Gardner et al., 2018).
Hessian vector products as implemented in PyTorch take three backward passes; In our experiments,
we compute 100 Hessian vector products to produce 100 eigenvalues, so that the cost is about 1.5×
the cost of standard training 2. As a heuristic, one can set z using the connection with the prior
variance α2 and `2 regularization, or to measure the number of relatively large eigenvalues. We use a
value of z = 1 in equation 2 for all experiments, and show in Figure 4 that effective dimensionality for
model comparison is highly robust to different values of z over the range of networks with near zero
training loss in Figure 2. For neural networks, the Hessian can have negative eigenvalues (e.g., Sagun
et al., 2017; Ghorbani et al., 2019); however, these negative eigenvalues are in practice extremely
small in magnitude compared to the positive ones, and do not practically impact the computations of
effective dimensionality.

The Hessian (and its effective dimensionality) is not invariant to re-parameterizations (e.g. ReLU
rescaling and batch normalization) (MacKay, 2003, Chapter 27). For this reason we assume a fixed
parameterization, as is the case in practice, and compare between models of the same parameterization.

3 RELATED WORK

MacKay (1992a) used effective dimensionality to measure posterior contraction in Bayesian neural
networks. Effective dimensionality has also been used for measuring generalization error of kernel
methods (Caponnetto and Vito, 2007).

Various connections between flatness and generalization have been explored via Occam factors
(MacKay, 2003; Smith and Le, 2018) and minimum description length (Hinton and Van Camp, 1993;
Achille and Soatto, 2018). Nakkiran et al. (2020) found generalization gains as neural networks
become overparameterized, showing the double descent phenomenon (e.g., Belkin et al., 2019a;
Nakkiran et al., 2020) that occurs as the width increases in residual and convolutional neural networks.

Flatness has also be considered in the PAC-Bayes literature (e.g., Dziugaite and Roy, 2017; Jiang
et al., 2020), with Jiang et al. (2020) showing that PAC-Bayesian measures of flatness, in the sense of

2In Appendix I we provide an example of the insensitivity of effective dimensionality to the number of
eigenvalues used.
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Figure 5: The effective dimensionality of the posterior covariance over parameters and the function-
space posterior covariance. Red indicates the over-parameterized setting, yellow the critical regime
with k ≈ n, and green the under-parameterized regime. In both models we see the expected increase
in effective dimensionality in parameter space and decrease in effective dimensionality of the Hessian.

insensitivity to random perturbations, perform well relative to many generalization bounds. Zhou
et al. (2018) used PAC-Bayesian compression arguments to construct non-vacuous bounds.

Our work shows that effective dimensionality can shed light on a number of phenomena in modern
deep learning, including double descent, width-depth trade-offs, and Bayesian subspace inference,
while providing a straightforward and compelling generalization metric, relative to several of the
highest performing metrics in Jiang et al. (2020). We provide an extended discussion of historical
perspectives in Appendix D.

4 POSTERIOR CONTRACTION AND FUNCTION-SPACE HOMOGENEITY

We demonstrate how the effective dimensionality of both the posterior parameter covariance and the
Hessian of the loss provides insights into how a model adapts to data during training. Additionally
we show that in directions in which the posterior has not contracted, neural networks are insensitive
to parameter perturbations. In other words, we show that although there are many flat directions in a
neural network posterior, the functions obtained by moving along those directions are remarkably
homogeneous. Finally we relate insensitivity to parameter perturbations to Occam factors, connecting
effective dimensionality to data compression. These findings help explain the surprising success of
subspace inference methods for capturing functional variability in low dimensional subspaces.

4.1 POSTERIOR CONTRACTION OF BAYESIAN MODELS

Theorem 4.1 (Posterior Contraction in Bayesian Linear Models). Let Φ = Φ(x) ∈ Rn×k be a
feature map of n data observations, x, with k features, such that n < k and assign isotropic prior
β ∼ N (0k, α

2Ik) for parameters β ∈ Rk. Assuming a model of the form y ∼ N (Φβ, σ2In) the
posterior distribution of β has a k − n directional subspace in which the variance is identical to the
prior variance.

Theorem 4.1, along with an equivalent result for generalized linear models, is proven in Appendix
F.1. Theorem 4.1 demonstrates why parameter counting often makes little sense: for a fixed data
set of size n, only min(n, k) parameters can be determined, leaving many dimensions in which the
posterior is unchanged from the prior when k � n.

While much effort has been spent grappling with the challenges of high dimensional parameter spaces
for Bayesian neural networks, the practical existence of subspaces where the posterior variance has
not collapsed from the prior suggests that both computational and approximation gains can be made
from ignoring directions in which the posterior variance is unchanged from the prior. This observation
helps explain the success of subspace based techniques (e.g., Izmailov et al., 2019) that marginalize
the loss in a lower dimensional space. For Bayesian linear models, the effective dimensionality of
the parameter covariance is the inverse of the Hessian, and as the effective dimensionality of the
parameter covariance decreases, the effective dimensionality of the Hessian increases. Supporting this
argument, in Figure 5 we demonstrate for both Bayesian linear models and Bayesian neural networks
that as the number of data points grows, the effective dimensionality of the posterior covariance
decreases while the effective dimensionality of the Hessian increases until both are limited by the
number of parameters. The details of the experimental setup for Figure 5 are given in Appendix B.
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Figure 6: Swiss roll data. Left: Adam trained feed-forward, fully connected classifier. Center:
Differences in original and perturbed classifier when parameters are perturbed in low curvature
degenerate directions. Right: Differences in the original and perturbed classifier when parameters
are perturbed in high curvature directions. Note the perturbation in the center plot is approximately
100 times the size of that of the plot on the right!

4.2 FUNCTION-SPACE HOMOGENEITY

The previous section has demonstrated that parameters can be undetermined by the data; we now
show that the function induced by the model is unchanged in these directions.

Theorem 4.2 (Function-Space Homogeneity in Linear Models). Let Φ = Φ(x) ∈ Rn×k be a
feature map of n data observations, x, with n < k, and assign isotropic prior β ∼ N (0k, α

2Ik) for
parameters β ∈ Rk. The minimal eigenvectors of the Hessian define a k − n dimensional subspace
in which parameters can be perturbed without changing the training predictions in function space.

The proof (along with an extension to generalized linear models) is given in Appendix F.2. Although
there may be large regions in parameter-space that lead to low-loss models, many of these models
may be homogeneous in function space. We can interpret Theorem 4.2 in terms of the eigenvectors
of the Hessian indicating which directions in parameter space have and have not been determined by
the data. The dominant eigenvectors of the Hessian (those with the largest eigenvalues) correspond
to the directions in which the parameters have been determined from the data and the posterior has
contracted significantly from the prior. The minimal eigenvectors (those with the smallest eigenvalues)
correspond to the directions in parameter space in which the data has not determined the parameters.

Figure 6 demonstrates that the results of Theorem 4.2 apply to neural networks as well, with large
perturbations to the parameters in undetermined directions having little effect on the classification
boundary. As parameters are perturbed in directions that have not been determined by the data
(minimal eigenvectors of the Hessian), the functional form remains identical to the MAP estimate.
Perturbations in determined directions (dominant eigenvectors of the Hessian) yield models that
perform poorly on the training data and significantly deviate from the MAP estimate on the test set.
The homogeneity found by taking perturbations in undetermined parameter directions shows that
even in cases with a lack of determination in parameter space, the functional form of the model is
well specified by the data. Further results regarding function space homogeneity and the connection
to loss surface structure, including the projection of the loss surface of the classifier shown in Figure
6 onto random, low curvature, and high curvature bases, are given in Appendix A.

4.3 EFFECTIVE DIMENSIONALITY AS COMPRESSION

In Section 4.2 we show that effective dimensionality relates to the number of parameter directions in
which the functional form of the model is sensitive to perturbations, and that in the low curvature
directions given by the Hessian eigenvectors corresponding to the smallest eigenvalues the model
outputs are largely unchanged by perturbations to the parameters. The presence of these degenerate
directions suggests that we can disregard high dimensional subspaces that contain little information
about the model, for compression into a smaller subspace containing only the most important
parameter directions given by the eigenvalues of the Hessian. This observation helps explain the
practical success of such subspace approaches (Izmailov et al., 2019; Li et al., 2018). In short, if two
models have similar and low training loss, then the model with lower effective dimension will be
providing a better compression of the training data at a similar level of fidelity, and will therefore tend
to generalize better. On the other hand, if models have different training loss, or high training loss,
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then it becomes harder to user effective dimensionality to predict generalization, as the models may
not have learned much from the data, and therefore the level of compression becomes less relevant.

We can also understand the compression of the data provided by a model in terms of minimum
description length, by examining the Occam factor of the model evidence (MacKay, 2003, Chapter 28).
For modelM with parameters θ, we find the Occam factor in decomposing the evidence as,

p(D|Mi) ≈ p(D|θMP ,M)︸ ︷︷ ︸× p(θMP |M)det−
1
2 (Hθ/2π)︸ ︷︷ ︸,

Evidence ≈ Likelihood × Occam Factor
(3)

in whichHθ is the Hessian of the loss, and θMP is the MAP estimate of the parameters.

As the eigenvalues of the Hessian decay and the effective dimensionality decreases, the determinant
of the Hessian also decreases, causing the Occam factor to increase, and the description length to
decrease, providing a better compression. MacKay (1992b) and MacKay (2003) contains a further
discussion of the connection between Occam factors and minimum description length.

5 DOUBLE DESCENT AND WIDTH-DEPTH TRADE-OFFS

5.1 DOUBLE DESCENT

Thus far, we have simply demonstrated that effective dimensionality gives a better understanding of
diversity in the context of the space of functions induced by neural networks. The phenomenon of
double descent of the generalization performance in both linear and deep models has attracted recent
attention (Belkin et al., 2019a; Nakkiran et al., 2020); here, we explain double descent as a function
of effective dimensionality.

Following the experimental setup of Nakkiran et al. (2020), we train ResNet18s (He et al., 2016)
with varying width parameters, reproducing their double descent curve.3 In Figure 1 we see effective
dimensionality tracks remarkably well with generalization for models with low training loss —
displaying the double descent curve that is seen in the test error. We emphasize again that the
effective dimensionality is computed using solely the training data, supporting the hypothesis that
the eigenvalues of the Hessian matrix can provide a good proxy for generalization performance. In
Appendix H, we show similar findings for linear models and small neural networks.

In short, double descent is an artifact of overfitting. As the dimensionality of the parameter space
continues to increase past the point where the corresponding models achieve zero training error,
flat regions of the loss occupy a greatly increasing volume (Huang et al., 2019), and are thus more
easily discoverable by optimization procedures such as SGD. These solutions have lower effective
dimensionality, and thus provide better compressions of the data, as in Section 4.3, and therefore
better generalization. In concurrent work, Wilson and Izmailov (2020) show that exhaustive Bayesian
model averaging over multiple modes eliminates double descent.

In addition to test loss, we also demonstrate that effective dimensionality tracks double descent in test
error in Figure A.15 (Appendix). Double descent is clearly present for test loss on CIFAR-100, but
not test error. To produce double descent for test error, we follow the setup in Nakkiran et al. (2020)
and introduce 20% label corruption, which increases the chance of overfitting.

5.2 NETWORKS OF VARYING WIDTH AND DEPTH

Double descent experiments typically only consider increases in width. However, it is depth which
has endowed neural networks with distinctive generalization properties. In Figure 2, we consider
varying both the width and depth of a convolutional neural network on the CIFAR-100 dataset. In
the region of near-zero training loss, separated by the green curve, we see effective dimensionality
closely matches generalization performance. Moreover, wide but shallow models tend to overfit,
providing low training loss, but high effective dimensionality and test loss. On the other hand, deeper
models have lower test loss and lower effective dimensionality, showing that depth enables a better
compression of the data.

3See Appendix G for training details.
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(a) Double Descent, No Label Noise
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Figure 7: Comparing effective dimensionality as a generalization measure to the path-norm, log
path-norm, PAC-Bayes, and magnitude aware PAC-Bayes flatness measures from Jiang et al. (2020)
for double descent (a) without and (b) with label noise. For models with low train loss, effective
dimensionality most closely follows both test error and test loss.

6 EFFECTIVE DIMENSIONALITY AS A GENERALIZATION MEASURE

We have shown, for the first time, that a generalization measure is able to track and explain double
descent and width-depth trade-offs in modern deep networks. We now demonstrate that effective
dimensionality is a strong generalization measure by itself. For comparison, we choose path-norm
and PAC-Bayesian based sharpness measures, due to their good performance in prior work (Jiang
et al., 2020; Keskar et al., 2017; Neyshabur et al., 2017). We compute the norms as in Jiang et al.
(2020) for a neural network function f(x;θ) with input x and weights θ.

The path-norm describes the norm of all paths within a network between input and output nodes,
measuring the complexity of traversing the network. The standard PAC-Bayesian flatness measure
aims to measure the overall flatness of the solution by determining the size of the largest perturbation
that can be made to the parameters such that the expected increase in training error remains low. We
additionally compare to the magnitude aware PAC-Bayesian flatness measure, which is similar to the
standard PAC-Bayesian flatness measure, except that the perturbations to parameters are scaled by
the magnitude of the weights in the network. Computation details are given in Appendix C.

We extend the results of Figure 1 in Figure 7 to include the path-norm and PAC-Bayesian flatness
measures. We display test loss, test error, and generalization measures, standardized by subtracting
the sample mean and dividing by the sample standard deviation. We extend the results of Figure 2 in
the same fashion as Figure 7 in the Appendix in Figure A.13. We additionally show correlations with
generalization in Tables 1 and 2 in the Appendix.

There are several key take-aways: (1) effective dimension overall provides a better proxy for test
loss and test error than the PAC-Bayes or path-norm measures for double descent and width-depth
trade-offs; (2) not all flatness-based generalization measures are equivalent, and in fact different
flatness measures can provide wildly different behaviour; (3) effective dimension is more stable than
the other measures, with relatively consistent behaviour across qualitatively similar datasets and
models; (4) effective dimension is interpretable, providing a clear connection with function-space and
an explanation for why a model should generalize, in addition to an association with generalization.

Not all flatness-based generalization measures are equivalent. In contrast to the PAC-Bayesian flatness
measure considered in Jiang et al. (2020), effective dimension computes the number of directions
in parameter space that are flat, as determined by the curvature of the loss surface. Combined with
our observations about function-space homogeneity in Section 4.2, we see that effective dimension
provides a proxy for model compression and generalization in addition to providing correlation with
performance. By contrast, the PAC-Bayes flatness measure considers the size of the basin surrounding
an optimum, and is highly sensitive to the sharpest direction.
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7 CONCLUSION

We have shown how the effective dimensionality of the Hessian of the loss can be used to gain insight
into a range of phenomena, including double descent, posterior contraction, loss surface structure,
subspace inference, and function-space diversity of models. As we have seen, simple parameter count-
ing can be a misleading proxy for model complexity and generalization performance; models with
many parameters combined with a particular functional form can give rise to simple explanations for
data. Indeed, we have seen how depth and width have different effects on generalization performance,
regardless of the total number of parameters in the model. In all cases, effective dimensionality tracks
generalization performance for models with comparable training loss. Moving forward, we hope
our work will help inspire a continued effort to capture the nuanced interplay between the statistical
properties of parameter space and function space in understanding generalization behaviour, and
highlight effective dimension as a relatively simple and robust generalization measure in modern
deep learning.
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CONTENTS

In Appendix A, we study the loss surfaces of neural netwroks from their function space representations.
Then in Appendix B, we give experimental details on our experiments regarding the effective
dimensionality of the posterior covariance. In Appendix C, we describe how we computed the PAC
Bayes norms of Jiang et al. (2020). We describe further related work on effective dimensionality in
Appendix D. In Appendix E, we give proofs about posterior contraction for Bayesian linear models,
while in Appendix F, we give proofs for the theorems on function space homoegeneity for linear and
generalized linear models. In Appendix G, we describe how we trained the DNNs used in the paper.
In Appendix H, we describe some further experiments on double descent and effective dimensionality.
[Finally, in Appendix I we examine the effect of the number of eigenvalues as well as repeated
training runs on the effective dimensionality of the model.]

A LOSS SURFACES AND FUNCTION SPACE REPRESENTATIONS

Recent works have discussed the desirability of finding solutions corresponding to flat optima in
the loss surface, arguing that such parameter settings lead to better generalization (Izmailov et al.,
2018; Keskar et al., 2017). There are multiple notions of flatness in loss surfaces, relating to both
the volume of the basin in which the solution resides and the rate of increase in loss as one moves
away from the found solution. As both definitions correspond to low curvature in the loss surface, it
is standard to use the Hessian of the loss to examine structure in the loss surface Madras et al. (2019);
Keskar et al. (2017).

The effective dimensionality of the Hessian of the loss indicates the number of parameters that have
been determined by the data. In highly over-parameterized models we hypothesize that the effective
dimensionality is substantially less than the number of parameters, i.e. Neff (Hθ, α)� p, since we
should be unable to determine many more parameters than we have data observations.

Recall from Section 2.2 the large eigenvalues of the Hessian have eigenvectors corresponding to
directions in which parameters are determined. equation 2 dictates that low effective dimensionality
(in comparison to the total number of parameters) would imply that there are many directions in
which parameters are not determined, and the Hessian has eigenvalues that are near zero, meaning
that in many directions the loss surface is constant. We refer to directions in parameter space that
have not been determined as degenerate for two reasons: (1) degenerate directions in parameter space
provide minimal structure in the loss surface, shown in Section A.1; (2) parameter perturbations
in degenerate directions do not provide diversity in the function-space representation of the model,
shown in Section A.2. We refer to the directions in which parameters have been determined, directions
of high curvature, as determined.

To empirically test our hypotheses regarding degenerate directions in loss surfaces and function space
diversity, we train a neural network classifier on 1000 points generated from the two-dimensional
Swiss roll data, with a similar setup to Huang et al. (2019), using Adam with a learning rate of 0.01
Kingma and Ba (2015). The network is fully connected, consisting of 5 hidden layers each 20 units
wide (plus a bias term), and uses ELU activations with a total of 2181 parameters. We choose a small
model with two-dimensional inputs so that we can both tractably compute all the eigenvectors and
eigenvalues of the Hessian and visualize the functional form of the model.

A.1 LOSS SURFACES AS DETERMINED BY THE HESSIAN

To examine the loss surface more closely, we visualize low dimensional projections. To create the
visualizations, we first define a basis given by a set of vectors, then choose a two random vectors,
u and ṽ, within the span of the basis. We use Gram-Schmidt to orthogonalize ṽ with respect to u,
ultimately giving u and v with u ⊥ v. We then compute the loss at parameter settings θ on a grid
surrounding the optimal parameter set, θ∗, which are given by

θ ← θ∗ + αu+ βv (4)

for various α and β values such that all points on the grid are evaluated.

By selecting the basis in which u and v are defined we can specifically examine the loss in determined
and degenerate directions. Figure A.8 shows that in determined directions, the optimum appears

13



Under review as a conference paper at ICLR 2021

-1 0 1

-1

0

1

Full Surface

-1 0 1

-1

0

1

Top 3 Eigenvectors

-1 0 1

-1

0

1

Bottom 2000 Eigenvectors

5.0

4.5

4.0

3.5

3.0

2.5

Figure A.8: Left: A random projection of the loss surface. Center: A projection of the loss surface
in the top 3 directions in which parameters have been determined. Right: A projection of the loss
surface in the 2000 (out of 2181) directions in which parameters have been determined the least. The
rightmost plot shows that in degenerate parameter directions the loss is constant.

extremely sharp. Conversely, in all but the most determined directions, the loss surface loses all
structure and appears constant. Even in degenerate directions, if we deviate from the optimum far
enough the loss will eventually become large. However to observe this increase in loss requires
perturbations to the parameters that are significantly larger in norm than θ∗.

A.2 DEGENERATE PARAMETERS LEAD TO HOMOGENEOUS MODELS

In this section we show that degenerate parameter directions do not contain diverse models. This
result is not at odds with the notion that flat regions in the loss surface can lead to diverse but high
performing models. Rather, we find that there is a subspace in which the loss is constant and one
cannot find model diversity, noting that this subspace is distinct from those employed by works such
as Izmailov et al. (2019) and Huang et al. (2019). This finding leads to an interpretation of effective
dimensionality as model compression, since the undetermined directions do not contain additional
functional information.

We wish to examine the functional form of models obtained by perturbing the parameters found
through training, θ∗. Perturbed parameters are computed as

θ ← θ∗ + s
Bv

||Bv||2
(5)

where B ∈ Rk×d is a d dimensional basis in which we wish to perturb θ∗, and v ∼ N (0, Id), giving
Bv as a random vector from within the span of some specified basis (i.e. the dominant or minimal
eigenvectors). The value s is chosen to determine the scale of the perturbation, i.e. the length of the
random vector by which the parameters are perturbed.

Experimentally, we find that in a region near the optimal parameters θ∗, i.e. s ≤ ||θ∗||2/2 the
function-space diversity of the model is contained within the subspace of determined directions.
While the degenerate directions contain wide ranges of parameter settings with low loss, the models
are equivalent in function space.

Figure 6 shows the trained classifier and the differences in function-space between the trained
classifier and those generated from parameter perturbations. We compare perturbations of size
||θ∗||2/2 ≈ 10 in the direction of the 500 minimal eigenvectors and perturbations of size 0.1 in
the directions of the 3 maximum eigenvectors. A perturbation from the trained parameters in the
directions of low curvature (center plot in Figure 6) still leads to a classifier that labels all points
identically. A perturbation roughly 100 times smaller the size in directions in which parameters have
been determined leads to a substantial change in the decision boundary of the classifier.

However, the change in the decision boundary resulting from perturbations in determined directions
is not necessarily desirable. One need not perturb parameters in either determined or degenerate
directions to perform a downstream task such as ensembling. Here, we are showcasing the degeneracy
of the subspace of parameter directions that have not been determined by the data. This result
highlights that despite having many parameters the network could be described by a relatively low
dimensional subspace.

[Finally, Figure A.9 demonstrates that the degenerate directions in parameter space lead to
models that are homogeneous in function space on both training and testing data. As increas-
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Figure A.9: [Left: Loss, normalized by dataset size, on both train and test sets as perturba-
tions are made in high curvature directions and degenerate directions. Right: Classification
homogeneity, the fraction of data points classified the same as the unperturbed model, as per-
turbations are made in both high curvature and degenerate directions.]

ingly large perturbations are made in degenerate parameter directions, we still classify more
than 99% of both training and testing points the same as the unperturbed classifier.]

B EFFECTIVE DIMENSIONALITY OF THE POSTERIOR COVARIANCE

Linear Models: We construct Φ(x) with each row as an instance of a 200 dimensional
feature vector consisting of sinusoidal terms for each of 500 observations: Φ(x) =
[cos(πx), sin(πx), cos(2πx), sin(2πx), . . . ]. We assign the coefficient vector β a prior β ∼ N (0, I),
and draw ground truth parameters β∗ from this distribution. The model takes the form β ∼ N (0, I)
and y ∼ N

(
Φβ, σ2I

)
. We randomly add data points one at a time while re-computing the poste-

rior covariance. We compute the effective dimensionality, Neff
(
Σβ|D,σ, α

)
, where Σβ|D,σ is the

posterior covariance of β.4

Small Bayesian Neural Networks For the experiments with small Bayesian neural networks, we
generate a nonlinear function of the form, y = w1x+w2x

2+w3x
3+(0.5+x2)2+sin(4x2)+ε, with

wi ∼ N (0, I) and ε ∼ N (0, 0.052), and de-mean and standardize the inputs.5 We then construct a
Bayesian neural network with two hidden layers each with 20 units, no biases, and tanh activations,
placing independent Gaussian priors with variance 1 on all model parameters. We then run the
No-U-Turn sampler (Hoffman and Gelman, 2014) for 2000 burn-in iterations before saving the
final 2000 samples from the approximated posterior distribution. Using these samples, we compute
the effective dimensionality of the sample posterior covariance, Covp(θ|D)(θ), and Hessian of the
loss at the MAP estimate in Figure 5. The trends of effective dimensionality for Bayesian neural
networks are aligned with Bayesian linear regression, with the effective dimensionality of the Hessian
(corresponding to function space) increasing while the effective dimensionality of the parameter
space decreases.

C COMPUTATION OF THE PAC BAYES NORMS

The path-norm is the square root of the sum of the outputs produced by a forwards pass on an input
of all ones,

µpath-norm(f) =
(∑

f(1;θ2)
)1/2

. (6)

with the parameters θ squared (Eq. 44 of Jiang et al. (2020)). Through squaring the weights and
taking the square root of the output, we form a correspondence between the path-norm and the `2
norm of all paths within a network from an input node to an output node (Neyshabur et al., 2017).

4Here we use α = 5, however the results remain qualitatively the same as this parameter changes.
5From the Bayesian neural network example in NumPyro (Phan et al., 2019; Bingham et al., 2019): https:

//github.com/pyro-ppl/numpyro/blob/master/examples/bnn.py.
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The PAC-Bayesian flatness measure of Jiang et al. (2020), adapted from Dziugaite and Roy (2017)
and Keskar et al. (2017), is perturbation-based and computed as

µpac-bayes-sharpness(f) =
1

σ2
, (7)

where σ is the largest value such that

Eu∼N (0,σ2I) [L(θ + u,D)] ≤ L(θ,D) + 0.1 . (8)

In equation 8, L(θ,D) is the prediction error on the training dataset of the network with weights θ
as computed on data set D. This measure corresponds to a bound on parameter perturbations such
that increases in training error remain beneath 0.1 in expectation as in Jiang et al. (2020).

We additionally compare to the magnitude aware PAC-Bayes bound,

µmag-pac-bayes-sharpness(f) =
1

σ′2
, (9)

where σ′ is the largest value such that

Eu∼N (0,σ′2|θ|+ε) [L(θ + u,D)] ≤ L(θ,D) + 0.1 . (10)

In equation 10 the variance of the perturbation to each parameter is scaled according to the magnitude
of that parameter, adding stability by accounting for differences in scales, and, implicitly, the size
of the perturbation with the dimension of the parameter space. The value of ε is taken to be 0.001
as in Jiang et al. (2020) and serves to regularize the distribution, preventing the distribution from
collapsing in the presence of weights that are close to 0.

In general, path-norm acts only on model parameters, and is thus not directly connected to function-
space or the shape of the loss. It should therefore be used with particular caution in comparing
different architectures. Indeed, we found that path-norm tends to quickly saturate with increases in
model size, with no preference between larger models even when these models provide very different
generalization performance. We exhaustively considered how path-norm could be made to provide
reasonable performance on these problems. For smaller models, the path-norm is orders of magnitude
larger than the path-norm computed on larger models. We therefore performed a log transform,
which to our knowledge has not been considered before. We surprisingly found the log transform
dramatically improves the correlation of path-norm to generalization performance for comparing
amongst large convolutional nets and residual nets. However, this modified measure is still only
associated with generalization, is highly sensitive to experimental details (e.g. size of models being
compared), and does not provide any direct intuition for model comparison given its reliance on
parameters alone.

D HISTORICAL PERSPECTIVES ON EFFECTIVE DIMENSIONALITY

Here, we provided a detailed description of the history of effective dimensionality and related
measures of flatness and generalization. Cleveland (1979) introduced effective dimensionality into
the splines literature as a measure of goodness of fit, while Hastie and Tibshirani (1990, Chapter 3)
used it to assess generalized additive models. Gull (1989) first applied effective dimensionality in
a Bayesian setting for an image reconstruction task, while MacKay (1992a;b) used it to compute
posterior contraction in Bayesian neural networks. Moody (1992) argued for the usage of the effective
dimensionality as a proxy for generalization error, while Moody (1991) suggested that effective
dimensionality could be used for neural network architecture selection. Zhang (2005) and Caponnetto
and Vito (2007) studied the generalization abilities of kernel methods in terms of the effective
dimensionality. Achille and Soatto (2018) argue that flat minima have low information content
(many small magnitude eigenvalues of the Hessian) by connecting PAC-Bayesian approaches to
information theoretic arguments, before demonstrating that low information functions learn invariant
representations of the data.

Friedman et al. (2001, Chapter 7) use the effective dimensionality (calling it the effective degrees of
freedom) to compute the expected generalization gap for regularized linear models. Dobriban and
Wager (2018) specifically tied the bias variance decomposition of predictive risk in ridge regression
(e.g. the finite sample predictive risk under Gaussian priors) to the effective dimensionality of the

16



Under review as a conference paper at ICLR 2021

feature matrix, Φ>Φ. Hastie et al. (2019), Muthukumar et al. (2019), Bartlett et al. (2019), Mei and
Montanari (2019), and Belkin et al. (2019b) studied risk and generalization in over-parameterized
linear models, including under model misspecification. Bartlett et al. (2019) also introduced the
concept of effective rank of the feature matrix, which has a similar interpretation to effective
dimensionality.

Sagun et al. (2017) found that the eigenvalues of the Hessian increase through training, while Papyan
(2018) and Ghorbani et al. (2019) studied the eigenvalues of the Hessian for a range of modern
neural networks. Suzuki (2018) produced generalization bounds on neural networks via the effective
dimensionality of the covariance of the functions at each hidden layer. Fukumizu et al. (2019)
embedded narrow neural networks into wider neural networks and studied the flatness of the resulting
minima in terms of their Hessian via a PAC-Bayesian approach.

Moreover, MacKay (2003) and Smith and Le (2018) provide an Occam factor perspective linking
flatness and generalization. Related minimum description length perspectives can be found in MacKay
(2003) and Hinton and Van Camp (1993). Other works also link flatness and generalization (e.g.,
Hochreiter and Schmidhuber, 1997; Keskar et al., 2017; Chaudhari et al., 2019; Izmailov et al., 2018),
with Izmailov et al. (2018) and Chaudhari et al. (2019) proposing optimization procedures for flat
minima.

To the best of our knowledge, Opper et al. (1989), Opper et al. (1990), Bös et al. (1993), and LeCun
et al. (1991) introduced the idea that generalization error for neural networks can decrease, increase,
and then again decrease with increases in parameters (e.g. the double descent curve) while Belkin et al.
(2019a) re-introduced the idea into the modern machine learning community by demonstrating its
existence on a wide variety of machine learning problems. Nakkiran et al. (2020) found generalization
gains as neural networks become highly overparameterized, showing the double descent phenomenon
that occurs as the width parameter of both residual and convolutional neural networks is increased.

[Similar to our work, both Ghorbani et al. (2019) and Yao et al. (2019) use different implemen-
tations of the Lanczos algorithm to estimate eigenvalues of the Hessian; however, they focus
on either estimating the spectral density (both) or on the trace of the Hessian (only Yao et al.
(2019)), with Ghorbani et al. (2019)’s work implemented in Tensorflow and Yao et al. (2019)
also implementing Lanczos in PyTorch.]

E MEASURING POSTERIOR CONTRACTION IN BAYESIAN GENERALIZED
LINEAR MODELS

We first consider the over-parametrized case, k > n:

∆post(θ) = tr(Covp(θ)(θ))− tr(Covp(θ|D)(θ)) =

k∑
i=1

α2 −
n∑
i=1

(λi + α−2)−1 +

k∑
i=n+1

α2

= kα2 − (k − n)α2 −
n∑
i=1

(λi + α−2)−1 =

n∑
i=1

1− α2(λi + α−2)

λi + α−2

= α2
n∑
i=1

λi
λi + α−2

; (11)

where we have used Theorem 4.1 to assess the eigenvalues of the posterior covariance. When n > k,
we have the simplified setting where the summation becomes to k instead of n, giving us that all of
the eigenvalues are shifted from their original values to become λi + α−2, and so

∆post.(θ) = α−2
k∑
i=1

λi
λi + α−2

, (12)

where λi is the ith eigenvalue of Φ>Φ/σ2.
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E.1 CONTRACTION IN FUNCTION SPACE

We can additionally consider the posterior contraction in function space. For linear models, the
posterior covariance on the training data in function space becomes

ΦΣβ|DΦ> = σ2Φ(Φ>Φ +
σ2

α2
Ip)
−1Φ>,−x (13)

while the prior covariance in function space is given by α2ΦΦ>. We will make the simplifying
assumption that the features are normalized such that tr(ΦΦ>) = rank(ΦΦ>) = r. Now, we can
simplify

∆post(f) = tr(Covp(f)(f)− tr(Covp(f |D)(f)) = α2r − σ2
r∑
i=1

λi
λi + σ2/α2

= α2
r∑
i=1

λi + σ2/α2

λi + σ2/α2
− σ2

r∑
i=1

λi
λi + σ2/α2

= (α2 − σ2)

r∑
i=1

λi
λi + σ2/α2

+ σ2
r∑
i=1

1

λi + σ2/α2
.

Simplifying and recognizing these summations as the effective dimensionalities of Φ>Φ and
(Φ>Φ)+, we get that

∆post(f) = (α2 − σ2)Neff (Φ>Φ, σ2/α2) + σ2Neff ((Φ>Φ)+, α2/σ2) (14)

= σ2r + (α2 − 2σ2)Neff (Φ>Φ, σ2/α2),

thereby showing that the posterior contraction in function space is explicitly tied to the effective
dimensionality of the Gram matrix.

F POSTERIOR CONTRACTION AND FUNCTION-SPACE HOMOGENEITY PROOFS
AND ADDITIONAL THEOREMS

In this section we complete the proofs to Theorems 4.1 and 4.2 and extend the results from linear
models to generalized linear models.

F.1 PROOF AND EXTENSIONS TO THEOREM 4.1

Theorem (Posterior Contraction in Bayesian Linear Models). Let Φ = Φ(x) ∈ Rn×k be a feature
map of n data observations, x, with n < k and assign isotropic prior β ∼ N (0k, S0 = α2Ik) for
parameters β ∈ Rk. Assuming a model of the form y ∼ N (Φβ, σ2In) the posterior distribution of
β has an [k − n] directional subspace in which the variance is identical to the prior variance.

Proof. The posterior distribution of β in this case is known and given as

β|D ∼ N ((µ|D), (Σ|D))

µ|D = (Φ>Φ/σ2 + S−10 )−1Φ>y/σ2

Σ|D = (Φ>Φ/σ2 + S−10 )−1
(15)

We want to examine the distribution of the eigenvalues of the posterior variance. Let Φ>Φ/σ2 =
V λnV

> be the eigendecomposition with eigenvalues Λ = diag(γ1, . . . , γn, 0n+1, . . . , 0k); k − n of
the eigenvalues are 0 since the gram matrix Φ>Φ is at most rank [n] by construction. Substitution
into the posterior variance of β yields,

(Φ>Φ/σ2 + S−10 )−1 = (V ΛV > + α−2Ik)−1 = V (Λ + α−2Ik)−1V >

= V ΓV >.
(16)
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The eigenvalues of the posterior covariance matrix are given by the entries of Γ,(
(γ1 + α−2)−1, . . . , (γn + α−2)−1, α2, . . . , α2

)
, where there are k − n eigenvalues that retain a

value of α2. [Therefore, the posterior covariance has k − n directions in which the posterior
variance is unchanged and n directions in which it has contracted as scaled by the eigenvalues
of the gram matrix Φ>Φ.]

Generalized linear models (GLMs) do not necessarily have a closed form posterior distribution.
However, Neal and Zhang (2006) give a straightforward argument using the invariance of the
likelihood of GLMs to orthogonal linear transformation in order to justify the usage of PCA as a
feature selection step. We can adapt their result to show that overparameterized GLMs have a k − n
dimensional subspace in which the posterior variance is identical to the prior variance.
Theorem F.1 (Posterior Contraction in Generalized Linear Models). We specify a generalized linear
model, E[Y ] = g−1(Φβ) and V ar(Y ) = V (g−1(Φβ)), where Φ ∈ Rn×k is a feature matrix of n
observations and k features and β ∈ Rk are the model parameters. In the overparameterized setting
with isotropic prior on β, there exists a k − n dimensional subspace in which the posterior variance
is identical to the prior variance.

Proof. First note that the likelihood of a GLM takes as argument Φβ, thus transformations that leave
Φβ unaffected leave the likelihood, and therefore the posterior distribution, unaffected.

Let R be an orthogonal matrix, R>R = RR> = Ip, and β̃ = Rβ ∼ N(0, σ2I). If we assign
a standard isotropic prior, to β then β̃ = Rβ ∼ N (0, σ2RIkR

> = σ2Ik). If we also rotate the
feature matrix, Φ̃ = ΦR> ∈ Rn×k so that Φ̃β̃ = ΦR>Rβ = Φβ, showing that the likelihood and
posterior remain unchanged under such transformations.

In the overparameterized regime, k > n, with linearly independent features we have that Φ has rank
at most k, and we can therefore choose R to be a rotation such that ΦR has exactly k − n columns
that are all 0. This defines a k − n dimensional subspace of β ∈ Rk in which the the likelihood is
unchanged. Therefore the posterior remains no different from the prior distribution in this subspace,
or in other words, the posterior distribution has not contracted in k − n dimensions.

F.2 FUNCTION-SPACE HOMOGENEITY

Theorem (Function-Space Homogeneity in Linear Models). Let Φ = Φ(x) ∈ Rn×k be a feature
map of n data observations, x, with n < k and assign isotropic prior β ∼ N (0k, S0 = α2Ik) for
parameters β ∈ Rk. The minimal eigenvectors of the Hessian define a k − n dimensional subspace
in which parameters can be perturbed without changing the training predictions in function-space.

Proof. The posterior covariance matrix for the parameters is given by

Σβ|D =

(
Φ>Φ

σ2
+ α−2Ik

)−1
,

and therefore the Hessian of the log-likelihood is
(

Φ>Φ
σ2 + α−2Ik

)
. By the result in Theorem 4.1

there are k − n eigenvectors of the Hessian all with eigenvalue α−2. If we have some perturbation to
the parameter vector u that resides in the span of these eigenvectors we have(

Φ>Φ

σ2
+ α−2Ik

)
u = α−2u,

which implies u is in the nullspace of Φ>Φ. By the properties of gram matrices we have that
the nullspace of Φ>Φ is the same as that of Φ, thus u is also in the nullspace of Φ Therefore
any prediction using perturbed parameters takes the form ŷ = Φ(β + u) = Φβ, meaning the
function-space predictions on training data under such perturbations are unchanged.

Theorem F.2 (Function-Space Homogeneity in Generalized Linear Models). We specify a generalized
linear model, E[Y ] = g−1(Φβ), where Φ ∈ Rn×k is a feature matrix of n observations and k
features and β ∈ Rk are the model parameters. In the overparameterized setting with isotropic
prior on β, there exists a k − n dimensional subspace in which parameters can be perturbed without
changing the training predictions in function-space or the value of the Hessian.
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Figure A.10: Demonstration of double descent for linear models with an increasing number of
features. We plot the effective dimensionality of the Hessian of the loss. In the regime with near-
zero train error, the test error is almost entirely explained by the effective dimensionality, which is
computed on the train set alone. The red region corresponds to underparameterized models, yellow to
critically parameterized models, and green to overparameterized models.

Proof. The Hessian of the log-likelihood for GLMs can be written as a function of the feature map,
Φ, and the product of the feature map and the parameters, Φβ, i.e. β only appears multiplied by
the feature map (Nelder and Wedderburn, 1972). We can then writeHβ = f(Φβ,Φ) Additionally
predictions are generated by y = g−1 (Φβ). Since Φ ∈ Rn×p with n < p there is a nullspace of Φ
with dimension at least n− p. Thus for any u ∈ null(Φ) we have g−1 (Φ(β + u)) = g−1 (Φβ) = y
and f(Φ(β + u),Φ) = f(Φβ,Φ) = Hβ, which shows that the training predictions and the Hessian
remain unchanged.

G TRAINING DETAILS

For the double descent experiments in Figures 1 and 2 we use neural network architectures from the
following sources:

• CNNs from https://gitlab.com/harvard-machine-learning/
double-descent/-/blob/master/models/mcnn.py but also include an
option to vary the depth,

• ResNet18 from https://gitlab.com/harvard-machine-learning/
double-descent/-/blob/master/models/resnet18k.py,

Specifically, we train with SGD with a learning rate of 10−2, momentum of 0.9, weight decay of
10−4 (thus corresponding approximately to a Gaussian prior of with variance 1000) for 200 epochs
with a batch size of 128. The learning rate decays to 10−4 following the piecewise constant learning
rate schedule in Izmailov et al. (2018) and Maddox et al. (2019), beginning to decay at epoch 100.
We use random cropping and flipping for data augmentation — turning off augmentations to compute
eigenvalues of the Hessian.

H DOUBLE DESCENT AND EFFECTIVE DIMENSIONALITY: FURTHER
EXPERIMENTS

Linear Models Although double descent is often associated with neural networks, we demonstrate
similar behaviour with a linear model with a varying number of features: first drawing 200 data points
y ∼ N (0, 1) and then drawing 20 informative features y + ε, where ε ∼ N (0, 1), before drawing
k − 20 features that are also just random Gaussian noise, where k is the total number of features in
the model.6 For the test set, we repeat the generative process. In Figure A.10 we show a pronounced
double descent curve in the test error as we increase the number of features, which is mirrored by the
effective dimensionality.

In Figure A.11, we plot the effective dimensionality against the test error for the linear model example
in Section 5. A clear linear-looking trend is observed, which corresponds to the models that have
nearly zero training error. The bend near the origin is explained by models that do not have enough

6From https://github.com/ORIE4741/demos/blob/master/double-descent.ipynb.
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capacity to fit — therefore, their effective dimensionality is very small. We observe a similar trend
for ResNets and CNNs.

0 1 2 3 4 5

Effective Dimensionality

0.1

0.0

0.1

0.2

0.3

0.4

0.5

G
en

er
al

iz
at

io
n 

G
ap

Figure A.11: Effective dimensionality plotted against generalization gap (test error − train error) for
the linear model of Section 5. Note that all but the very smallest models with effective dimensionality
track nearly linearly with generalization error.

Small Neural Networks Finally, we consider several further experiments on the two spirals prob-
lem to test the effects of increasing depth and width to serve as a sanity check for our results on both
ResNets and CNNs. In Figure A.12, we fix the number of data points to be 3000, and vary the depth
of the neural network (20 hidden units at each layer, ELU activations) using between one and 15
hidden units, training for 4000 steps as before. Here, we run each experiment with 25 repetitions
and compute all of the eigenvalues of the Hessian at convergence (the largest model contains 6000
parameters). In the left panel, we see a pronounced double descent curve with respect to both effective
dimensionality and test loss as we vary depth. In the right panel, we use the same data points, but use
three hidden layer networks, varying the width of each layer between one and 30 units per layer. Here,
we see only a monotonic decrease in both test error and effective dimensionality with increasing
width not helping that much in terms of test error — the effective dimensionality is highest for the
models with smallest size and slowly decreases as the width is increased. These results serve as a
sanity check on our large-scale Lanczos results in the main text.

Test loss Test Error Gen. Gap
Neff (Hessian) 0.9434 0.9188 0.9429

PAC-Bayes −0.8443 −0.7372 −0.8597
Mag. PAC-Bayes 0.7066 0.8270 0.6805

Path-Norm 0.5598 0.7216 0.5259
Log Path-Norm 0.9397 0.9846 0.9257

Table 1: Sample Pearson correlation with generalization on double descent for ResNet18s of varying
width on CIFAR-100 with a training loss below 0.1.

Test loss Test Error Gen. Gap
Neff (Hessian) 0.9305 0.9461 0.9060

PAC-Bayes −0.8619 −0.7916 −0.8873
Mag. PAC-Bayes 0.8724 0.9225 0.8330

Path-Norm 0.7996 0.7721 0.7511
Log Path-Norm 0.9781 0.9402 0.9602

Table 2: Sample Pearson correlation with generalization for CNNs of varying width and depth on
CIFAR-100 with a training loss below 0.1.

Deep Networks In Figure A.15, we plot the effective dimensionality against the test error for
the ResNet18s trained on CIFAR-100 with 20% data corruption. We show the sample Pearson
correlation with respect to test loss, error, and the generalization gap for the same dataset of effective
dimensionality along with PAC-Bayes, magnitude aware PAC-Bayes, path norm, and the logarithm
of the path norm in Table 3. Finally, in Figure A.14, we plot the PAC-Bayes and magnitude aware
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Figure A.12: Left: Increasing depth on the two spirals problem. Clearly seen is a double descent
curve where the test loss first increases before decreasing as a function of depth. The effective
dimensionality follows the same trend. Right: Increasing width on the two spirals problem. Here,
increased width produces constant test performance after the training loss reaches zero, and the
effective dimensionality stays mostly constant. Shading represents two standard deviations as
calculated by 25 random generations of the spirals data.

Test loss Test Error Gen. Gap
Neff (Hessian) 0.8772 0.87608 0.8578

PAC-Bayes 0.6644 0.6424 0.7758
Mag. PAC-Bayes 0.6933 0.6728 0.7956

Path-Norm 0.6722 0.6478 0.7937
Log Path-Norm 0.9585 0.9492 0.9836

Table 3: Sample Pearson correlation between generalization measures and the test loss, test error, and
generalization gap for ResNet18s of varying width trained on CIFAR-100 with 20% corruption that
achieve a training loss below 0.1. Among these models effective dimensionality and path-norm are
most correlated with test loss, test error, and the generalization gap.

PAC-Bayes bounds on their raw scale for ResNet18s trained on CIFAR-100 and on the 20% corrupted
CIFAR-100 dataset. The trends are similar for the bounds across the two datasets, with the PAC-Bayes
bound generally increasing as width increases. The magnitude aware PAC-Bayes bounds also act
similarly, decreasing as width increases.

I EFFECT OF NUMBER OF EIGENVALUES USED

[Figure A.16 shows the model effective dimensionality for small MLPs trained on the two spi-
rals problem from Section A.2 over 10 random initializations when we vary how many eigen-
values are used in the computation. From this experiment we see first that provided a large
enough amount of the dominant eigenvalues are used, effective dimensionality is insensitive
to exactly how many eigenvalues are considered. Secondly, we observe that upon repeatedly
initializing and training networks the effective dimensionality generally falls in the same range
of values, up to some randomness in that we may find classifiers of different performance in
each training run.]
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Figure A.13: Plots of all generalization errors considered by width and depth. The green curve
separates models that achieve below 0.1 training error. Additionally, we standardize all measures and
test error to 0 mean and unit variance for comparison.
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Figure A.14: PAC-Bayes and magnitude aware PAC-Bayes bounds displayed on their raw scale for
both CIFAR-100 and the 20% corrupted CIFAR-100. All have a significant spike near a width of 20
which is when training loss first reaches zero. The standard PAC-Bayes bounds increase as width
increases, while the magnitude aware ones seem to decrease towards zero.
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Figure A.15: Double descent with respect to test error as demonstrated on ResNet18 on CIFAR-100
with 20% corruption. The effective dimensionality again tracks the double descent curve, this time
present in the test error rather than test loss.
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Figure A.16: [Violin plots of effective dimensionality over 10 random initializations of the two
spirals problem when the top k eigenvalues are used to compute the model effective dimension-
ality].
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