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Abstract—Detecting retinal image analysis, particularly the
geometrical features of branching points, plays an essential role in
diagnosing eye diseases. However, existing methods used for this
purpose often are coarse-level and lack fine-grained analysis for
efficient annotation. To mitigate these issues, this paper proposes
a novel method for detecting retinal branching angles using
a self-configured image processing technique. Additionally, we
offer an open-source annotation tool and a benchmark dataset
comprising 40 images annotated with retinal branching angles.
Our methodology for retinal branching angle detection and cal-
culation is detailed, followed by a benchmark analysis comparing
our method with previous approaches. The results indicate that
our method is robust under various conditions with high accuracy
and efficiency, which offers a valuable instrument for ophthalmic
research and clinical applications. The dataset and source codes
are available at: https://github.com/Retinal-Research/RBAD.

Index Terms—Medical Imaging, Retinal Analysis, Image Pro-
cessing, Medical Dataset.

I. INTRODUCTION

Despite the increasing utilization of deep learning (DL)-
based image processing for retinal disease diagnosis, the lack
of interpretability and easy annotations remain two significant
challenges of such methods, preventing their widespread adop-
tion by medical professionals [1]–[6]. Consequently, many
medical practitioners continue to rely on the quantitative
analysis of retinal vessel images, as the most prevalent method
in modern medicine. Quantitative analysis is indispensable
for the early diagnosis, monitoring, treatment planning, and
population studies of various retinal diseases. Variations in
vascular morphology and structures often indicate disease
progression [7], [8]. One notable metric in this context is
the retinal branching angle, which is instrumental in as-
sessing vascular health and the early detection of systemic
diseases such as hypertension and diabetes [9]–[11]. Abnormal
branching angles can be indicative of health problems, such as
impaired blood flow efficiency due to cardiovascular events.
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These angles are crucial for maintaining the structural integrity
of the retinal vasculature [12], with deviations potentially sig-
naling vessel damage. The quantitative analysis of branching
angles provides standardized and objective metrics for precise
disease diagnosis and monitoring. Additionally, this analysis
enhances population studies in retinal research, offering in-
sights into underlying disease mechanisms and supporting the
development of innovative diagnostic and therapeutic strate-
gies [13]. By providing a robust framework for evaluating
vascular health, the study of branching angles can play a key
role in extending our understanding and treatment of retinal
and systemic diseases.

Non-invasive retinal imaging is widely used for retinal
vascular analysis due to its ability to capture high-resolution
and detailed images of the retinal blood vessels. Advances
in retinal imaging and its easy accessibility have incubated
a series of tools for branching angle detection that assist
medical experts in making decisions and streamlining clinical
workflow [14], [15]. Specifically, the Retina system (VAM-
PIRE) [16] and the Singapore ‘I’ Vessel Assessment pro-
gram (SIVA) [17] are two popular tools for branching angle
analysis. However, these tools are not fully automated and
necessitate human experts’ intervention (i.e., semi-automated).
Recently, there exists an abundant of retinal imaging datasets,
exemplified by large-scale datasets like the UK Biobank that
consists of more than 100,000 patients [18]. However, these
datasets require manual branching angle detection, making
them prohibitively impractical to be utilized by medical ex-
perts. While the aforementioned semi-automated tools mitigate
this issue, conducting branching angle detection for large-scale
datasets still remains a time-consuming and labor-intensive
task [19], [20]. In addition, existing semi-automated branching
angle detection tools are not open-sourced, which hinders the
customization of these tools for specialized and streamlined
clinical workflows. Therefore, it is inevitable to develop an
automated and open-source tool for branching angle detection.
Another key challenge in developing branching angle detection
tools is the absence of a benchmark dataset, which complicates
the evaluation of these tools. Consequently, there is a press-



ing need for to generate a benchmark dataset to assess the
performance of branching angle detection tools accurately.

In response to the aforementioned needs, we first intro-
duce an open-sourced annotation tool implemented in Python
that can efficiently annotate the branching angle from gen-
eral retinopathy images. This tool is clinically friendly and
can enhance retinal vessel visibility using edge detection
and high-pass filters, enabling precise manual annotations.
Second, we present a benchmark dataset by applying our
customized annotation tool to a popular diabetic retinopathy
dataset (i.e., DRIVE dataset [21]) and creating a ready-to-
use well-annotated dataset. This dataset comprises 40 retinal
images with high-quality annotated branching angles. The
annotations are initially conducted by three annotators and
further corrected by human medical experts. Subsequently,
we propose a bifurcation detection algorithm that efficiently
calculates branching angles on retinal segmentation maps.

The contribution of this paper can be summarized as
follows: (i) We introduce a benchmark dataset for retinal
branching angle detection, which is well-annotated by experts
with our customized annotation tool, and (ii) we proposed
an efficient retinal branching angle detection method. We
conduct a comprehensive benchmark analysis to demonstrate
its superiority by comparing it with recent state-of-the-art
algorithms.

In the following sections, we will first introduce the pro-
posed dataset and the annotation tool in Section II. Next,
we will provide a detailed description of our branching angle
detection and calculation methods in Section III. Subsequently,
we will summarize previous work and outline our evaluation
metrics, followed by an analysis of the annotated dataset
in Section IV. Finally, we will discuss the results of our
comprehensive benchmark analysis, highlighting the accuracy
and efficiency of our approach compared to existing methods.

II. BENCHMARK DATASET

A. Dataset Overview

The DRIVE (Digital Retinal Images for Vessel Extraction)
dataset [21] is a key resource in retinal image analysis,
supporting the development of algorithms for automatic blood
vessel detection. It comprises 40 color fundus photographs,
each with a resolution of 565× 584 pixels and a field of view
(FOV) of 45 degrees. The dataset is divided into a training
set and a validation set, each containing 20 images in JPEG
format. 20 manual annotations are provided for each training
sample with ground truth segmentations by an expert. The
validation set provided by another observer allows for rigorous
evaluation of segmentation algorithms. The DRIVE dataset is
publicly available from various academic repositories and has
become fundamental for retinal disease research, highlighting
microvascular complications of diabetic retinopathy. Building
on the DRIVE dataset, we present a new dataset that includes
40 retinal vessel images with branching angle annotations.
This enhanced dataset aims to provide additional valuable
resources for research in retinal image analysis.

B. Annotation Tool

1) Interface: Our annotation tool is designed to promote
the fast and accurate annotation of retinal branching angles.
The tool is implemented in Python and uses OpenCV library to
provide a user-friendly interface. This interface allows users to
load retinal images and annotate bifurcation points by simply
marking the relevant locations in the image.

2) Visual Enhancement: To reduce user fatigue and visual
stress during the annotation process, we use different color
channels to make retinal vessels and other features more
prominent and easier to annotate. Users can dynamically
switch between different color channels during annotation, as
shown in Figure 1. Our visual enhancement method mainly
including:
Green Channel. As shown in Figure 1 (c), the green channel
reduces the contrast between the background and the vessels
while highlighting the vessels. Particularly, it is commonly
used as a preprocessing method in unsupervised vessel seg-
mentation algorithms [22], [23]. This selective enhancement
allows annotators to focus more easily on the vessels without
being distracted by the background.
Edge Detection. Figure 1 (d) shows the extracted vessel
lines through the Laplacian edge detector [24]. Edge detection
algorithms are essential for identifying the boundaries of
retinal vessels, making them more distinguishable against the
background. The Laplacian edge detector works by calculating
the second-order derivatives of the image, highlighting regions
of rapid intensity change that correspond to edges. In our
implementation, we use a kernel size of 5.
High-Pass Filter. Figure 1 (e) applies a high-pass filter to
an image using kernel convolution. This process enhances the
visibility of high-frequency details by emphasizing edges and
fine structures within the retinal vessels [25]. The function
accepts three parameters: the image to be processed, the kernel
size (51 in our case) for convolution, and an optional boolean
to choose between a Gaussian kernel and a mean kernel for
blurring. In our implementation, we first calculate the average
color value of the image: µ = 1

H×W

∑H
i=1

∑W
j=1 Inorm(i, j),

where Inorm = I
255 . Then, depending on the boolean

parameter, we apply either a Gaussian blur or a mean blur
to the image to obtain the blurred version Iblurred. The high-
pass filter then subtracts a blurred version of the image (low-
frequency components) from the original image: Ihigh-pass =
Inorm − (Iblurred − µ), thus highlighting the high-frequency
components.

Additionally, we implemented useful functions such as mask
overlay to separate the annotation from the original image.
Users can also edit existing annotations for fast correction.

3) Instructions: Users can directly annotate relevant lo-
cations within the image display window by selecting three
consecutive points, labeled as a, b, and c. Upon selection, these
points are automatically connected to form an angle vector,
as depicted in Figure ?? (a). This intuitive interface allows
users to efficiently identify and mark critical features within
the image. The program then employs vector mathematics to



Fig. 1. Framework. (I) shows the annotation process, (b) is the proposed annotation tool, and (c) is the proposed angle detection method. Specifically, (a)
is the original RGB image, (b) is the annotated image, (c) is the green channel, (d) is the edge-enhanced image with Laplacian filter, (e) is the image with
high-pass-filter, (e) is the segmentation map of RGB image, and (f) is the key points map.

calculate the branching angles formed by the annotated points.
This calculation utilizes the coordinates of the three selected
points: the bifurcation point and the two branching points. The
process is visually represented in Figure ?? (b). The computed
angle is immediately displayed on the image, providing users
with instant feedback on their annotations. This real-time
feedback mechanism enhances the accuracy of the annotation
process. If corrections are needed, users can remove the
annotated angle by alter-clicking the bifurcation point of the
connected vectors, as shown in Figure ??(c). After the user
confirms the annotations, the data, including the coordinates
of the points and the calculated angles, are stored in JSON
format. This structured data format ensures compatibility with
other analysis tools, ensuring further processing and analysis.
Additionally, annotations can be easily retrieved for subse-
quent review or integration into larger datasets, promising the
safety and accessibility of datasets in future development.

C. Expert Annotation Protocol

In our study, we employed three annotators to meticulously
annotate the blood vessel segmentation images derived from
the DRIVE dataset of retinal images. Prior to commencing
the annotation work, we provided standardized training to
ensure high-quality annotations. This training included de-
tailed instruction on the accurate selection of vessel branching
angles in the segmented images, the precision of the annotation
angles, and the distinction between true branching angles
and artifacts caused by vessel overlap (illustrated in Fig. 3).
Moreover, we addressed potential issues arising from sampling
instability, such as blurring, residual shadows, and noise intro-
duced by the sampling device itself. To mitigate these issues,
we implemented rigorous training sessions aimed at ensuring

Fig. 2. Interface of Annotation Tool. (a) is the visually enhanced image
with angle annotations overlaid. (b) is the annotation process, where an angle
annotation is marked with three consecutive clicks, and the second point
becomes the bifurcation. (c) shows the annotation editing function, angles
can be deleted by alter-clicking (right-click) the bifurcation point.

the validity of the labeled angle information. Each annotator
independently annotated all images in the dataset, ensuring
thoroughness and accuracy. Following this, we averaged the
labeled angles for each retinal image to enhance the stability of
the annotations and reduce potential errors. To further ensure
that the annotations met medical standards, we submitted the
final annotated results for secondary review by a medical
professional. Based on the feedback received, the annotators
made necessary modifications, which included adding missing
annotations and correcting erroneous ones. This rigorous and
iterative process ensured the accuracy, standardization, and



medical relevance of each annotated branching angle, thereby
enhancing the overall reliability of the dataset.

Fig. 3. Some of the problems that tend to occur when labeling are listed,
including blurred, overlapping vessels, and false angles due to overlap.

III. PROPOSED METHOD

As previous key points searching works are designed for
general tree-based graphs [26]–[29], we propose a new bifur-
cation detection and angle calculation method that is specif-
ically designed for retinal images. Our algorithm not only
detects bifurcation nodes but also identifies the nearby nodes
and their relationships (e.g., child, parent). A bifurcation map
generated using our algorithm clearly illustrates the path of
detection and calculation for each angle, as depicted in Figure
4 (e). The first step is converting the retinal segmentation
map (Figure 4(a)) into a skeletonized representation, where
the retinal image is binarized and thinned into 1-pixel-width to
highlight the blood vessel centerlines. Then we find a random
pixel (non-zero) as the initial point. Assume I represent the
skeleton mask:

I(x, y) =

{
1 if (x, y) is part of the vessel centerline,
0 otherwise.

(1)

Then, the set of non-zero (vessel centerline) pixels is denoted
as:

P = {(x, y) | S(x, y) = 1}. (2)

Then we denote p̃ ∈ P as a randomly selected initial point.
Subsequently, we apply Fast Key Points Detection to the
skeleton mask I by starting from the initial point p̃ to generate
the initial key points map. Specifically, we detect potential
bifurcation nodes by analyzing pixel connectivity. We use
a sliding window approach to traverse the skeleton from
the initial point p̃ and examine each pixel within a defined
neighborhood to count the number of neighbor pixels. The
detailed key points searching process is shown in Figure 4(b)
and Algorithm 1.

Subsequently, we apply a Gaussian aggregation to every
detected bifurcation to create a heatmap [30], which efficiently
identifies the geometric root of the generated tree graph, as
shown in Figure 4 (d). Specifically, a Gaussian distribution
mask is applied at each bifurcation node pk:

Algorithm 1 Bifurcation Detection
Input: Skeletonized binary mask I
Output: Set of key points K

Initialization:
Define T = 3
Initial key points set K = ∅
Define step count index c = 0
Define node pruning threshold n = 15
Initial point pk = p̃ ∈ P = {(x, y) | S(x, y) = 1}
Initialize sliding windows W of size 3× 3 at each seed point
while P ̸= ∅ do

for each active window Wk ∈ W centered at (xk, yk) do
Calculate nearby pixels for node k:

N(xk, yk) =

1∑
i=−1

1∑
j=−1

I(xk + i, yk + j), (3)

pk = I(xk, yk). (4)

Eliminate visited pixels in I:

I(xk, yk) = 0. (5)

Add 1 on step index ck for node pk:

ck = ck + 1. (6)

if N(xk, yk) > T then
Record pk as a bifurcation node and add to K and P
Generate new windows for each new branch

else if N(xk, yk) ≤ 1 then
if ck ≥ n then

Record pk as a prune node and add to K
else

Record pk as an endpoint and add to K
Erase window Wk

end if
else

Add pk to P
end if

end for
end while
Termination:
P = ∅
return K

Gnew =
∑

Gk(x, y | pk, σi). (7)

Here, Gk(x, y | pk, σi) represents the Gaussian distribution
centered at key point pk with a standard deviation σi (typically
set to 21 in this study). The resulting image Gnew is a
heatmap indicating the distribution of bifurcations, where the
highest pixel intensity area represents the region with the
most gathered bifurcations. As shown in Figure 4 (c), the
red circle highlights the region where most bifurcation nodes
assemble, identifying it as the root r. Thus, we apply our
proposed bifurcation detection algorithm again with the new
root r ∈ P as the start. For each detected bifurcation node,
we calculate the angle formed by the branching vessels. This
involves computing the vectors of the vessel segments and
determining the angle between them. Specifically, we generate



Fig. 4. The process of retina branching angle detection. (a) is the segmentation map, (b) is the Fast Key Points searching process in the selected region of
(a), (c) is the key points map, where the red circle indicates an area that has the most bifurcations, (d) is the heatmap of bifurcation points, where the red
mark is the location of highest pixel intensity which indicates the root, and (e) is the branching angle map.

a table to describe each key point, as shown in Table I. The
branching angle is determined by analyzing the types of the
child nodes. For instance, if one child node is a prune node
and the other is an endpoint, they are likely on the same
path, indicating an incorrect vector for the branching angle,
as shown in Figure 5 (d). Conversely, if both child nodes are
prune nodes, they are more likely to represent the correct
vectors for determining the branching angle as they are located
on different routes. The node pruning threshold is set to 15 in
our experimental section. Assume pk is a bifurcation, and a
and c are two adjacent points along the vessel segments. The
vectors v⃗1 and v⃗2 are defined as:

v⃗1 = (ax − px, ay − py), (8)
v⃗2 = (cx − px, cy − py).

The angle θ between these vectors is given by:

θ = cos−1

(
v⃗1 · v⃗2

∥v⃗1∥∥v⃗2∥

)
. (9)

Thus, we record the angle information while the searching
window passes through each bifurcation node to generate an
angle map, as shown in Figure 4 (e). The proposed random
initialization, Gaussian aggregation, bifurcation detection, and
angle calculation methods ensure full automation, making it
more accessible compared to previous approaches.

TABLE I
THE DESCRIPTION OF ATTRIBUTES OF KEY POINTS WITH THEIR

EXEMPLARY FEASIBLE VALUES.

Attribute Definition Values (Typical/Example)

index Index of the key point 485
(x,y) Pixel location of the key point (235, 496)
type Type of key point root, bifurcation, endpoint, prune
step Pixel distance to its parent 9
parent Parent node pixel location (235, 495)
parent index Index of the parent node 484
child child node [(235, 497), (236, 496)]
child index Index of the child nodes [485,486]

IV. BENCHMARK

A. Previous Work

We summarized and implemented three different methods
referenced from previous work that were specifically designed

for retinal bifurcation detection and angle calculation [19],
[31], [32]. These methods are:
Line Detection-based method. This method detects lines
within retinal vessels and finds intersections of these lines as
bifurcation points. The angles between the intersecting lines
are then calculated as the branching angles, as illustrated in
Figure 5 (a).
ROI-Window-based Detection. This method calculates
branching angles by tracing the vessel branches from the
bifurcation point within a region of interest (ROI) window.
Initially, the root is identified manually, and a 3 × 3 window
is used to detect possible bifurcations by checking if the
surrounding pixels exceed a certain threshold (e.g., 5-8). For
each detected bifurcation, a new window (50 × 50 in our
case) is applied to determine the tail of the vectors, and
the angle between these vectors is calculated. As depicted in
Figure 5 (b), this method provides a structured approach to
detecting bifurcation points and calculating angles by focusing
on specific regions of interest.
Rule-based Detection. This method measures angles by
drawing tangents from the bifurcation point along the vessel
segments. Acute angles are preferred as branching angles
to distinguish actual bifurcations from distorted ones. Pix-
els with more than three surrounding pixels are identified
as bifurcations, and the angles are calculated based on the
surrounding sub-pixels. As shown in Figure 5 (c), this method
identifies bifurcation points by analyzing pixel connectivity
and calculating angles based on the tangents drawn from the
bifurcation points.

As illustrated in Figure 5, the Line-Detection-based method
(a) demonstrates poor detection performance, as the retinal
bifurcation branches are not completely straightforward. In
contrast, the Rule-Based method (c) shows efficient angle
detection; however, some angles are misdirected because the
method does not account for the relationship with other nodes.
The ROI-Window-based method (b) produces more robust
results compared to (a) and (c), successfully detecting all
branching angles with correct directional information. As a
comparison, our proposed method (d) surpasses the ROI-
Window-based method in angle detection performance. By
using the prune node as the child of the bifurcation, our
method achieves greater precision than approaches relying on



Fig. 5. Retinal angle detection and calculation methods. (a) is the Line Detection-based method, (b) is the ROI-Window method, (c) is the rule-based method,
and (d) is our proposed bifurcation detection method with node pruning.

endpoints or other bifurcations as angle vectors.

B. Evaluation Metrics

To evaluate the effectiveness of these methods for detecting
and calculating retinal branching angles, we illustrate the
mathematical equations for each metric calculated for each
image:

1) Average Angle: The average angle for each image is
calculated as follows:

θ̄ =
1

n

n∑
i=1

θi, (10)

where θ̄ is the average angle, n is the number of angle
annotations in the image, and θi is the i-th angle in the list of
angles for that image.

2) Mean Average Angle : The mean average angle across
all images is calculated as follows:

Mean Avg. Angle =
1

k

k∑
j=1

θ̄j , (11)

where Mean Avg. Angle is the mean average angle, k is the
number of images, and θ̄j is the mean angle for the j-th image.

3) Standard Deviation of Angles: The standard deviation
of angles for each image is calculated as follows:

σ =

√√√√ 1

n

n∑
i=1

(θi − θ̄)2, (12)

where σ is the standard deviation of the angles, θi is the i-th
angle in the list of angles, θ̄ is the mean angle, and n is the
number of angle annotations in the image.

4) Mean Standard Deviation: The mean standard deviation
across all images is calculated as follows:

Mean Std. =
1

k

k∑
j=1

σj , (13)

where Mean Std. is the mean standard deviation, k is the
number of images, and σj is the standard deviation for the
j-th image.

5) Variance of Angles: The variance of angles for each
image is calculated as follows:

σ2 =
1

n

n∑
i=1

(θi − θ̄)2, (14)

where σ2 is the variance of the angles, θi is the i-th angle in
the list of angles, θ̄ is the mean angle, and n is the number
of angle annotations in the image.

6) Mean-Variance: The mean-variance across all images is
calculated as follows:

Mean Var. =
1

k

k∑
j=1

σ2
j , (15)

where Mean Var. is the average variance, k is the number
of images, and σ2

j is the variance for the j-th image.
7) Average Number of Angles: The average number of

angles detected per image is calculated as follows:

Avg. Num. of Angles =
1

k

k∑
j=1

nj , (16)

where Avg. Num. of Angles is the average number of angles,
k is the number of images, and nj is the number of angle
annotations in the j-th image.

TABLE II
PERFORMANCE BENCHMARK

Method Avg. Num.
of Angles

Mean Avg.
Angle

MAE MSE Mean
Std.

Mean
Var.

Human Annotation 28 71.31 NA NA 18.322 348.765

Rule-based 30 83.91 12.479 185.222 23.850 591.264
ROI-Window 134 76.71 6.724 60.582 37.686 1432.737

Line Detection 71 76.56 9.823 132.399 22.985 529.839
Ours 113 73.39 3.519 17.896 22.017 487.421

C. Data Analysis

We analyzed 40 annotated retinal images, where an average
of 28 branching angles are annotated in each image, as shown
in Figure 6. Our analysis revealed that the Mean Average
Angle across all 40 images is 71.31 degrees, and the Mean
Standard Deviation of the branching angles is 18.32 degrees,
suggesting that most branching angles fall within a range of
approximately 53 to 89 degrees (71.31 ± 18.32). This value



Fig. 6. Retina Angles for 40 annotated images.

indicates the typical deviation of individual branching angles
from the mean, reflecting the variability and dispersion of
angles within the dataset. Additionally, the Mean-Variance
of the branching angles was calculated to be 348.77, which
measures the average squared deviation from the mean angle,
provides another indicator of the spread of angle values. A
higher variance suggests greater variability in the branching
angles, while a lower variance indicates more consistency. To
further elucidate the distribution of branching angles across
our dataset, we visualized the angles for each image, as
depicted in Figure 6. This visualization aids in illustrating the
range and patterns of branching angles within the data, offering
a comprehensive overview of their distribution. This result
established a benchmark baseline (Human Annotation) for
retinal branching angle detection methods. This groundwork
is critical for the development and assessment of detection
techniques, as the baseline serves as a reference point for
evaluating the performance of the implemented detection
methods. By providing these standardized metrics, we enable
more accurate and reliable comparisons of different detection
approaches, thereby advancing the field of retinal branching
angle analysis.

D. Results

We evaluated various methods by inputting the retina im-
ages into each algorithm and outputting the predicted retinal
branching angles. For each image, we mainly compare the
predicted Mean Average Angle of the implemented methods
with the baseline using Mean Absolute Error (MAE) and
Mean Squared Error (MSE). As shown in Table II, the ROI
Window-based method previously achieved the best results
among earlier works, detecting an average of 134 angles
with a mean average angle of 76.71 degrees, an MAE of
6.724, and an MSE of 60.582. However, our proposed method
surpasses all prior approaches. Specifically, our method detects
an average of 113 angles with a mean average angle of 73.39
degrees, an MAE of 3.519, and an MSE of 17.896. To put
these results into context, when the average angle for a retinal
image is 71 degrees, our predicted value is 73 degrees. This is
significantly more precise compared to the Rule-based method,
which had an MAE of 12.479 and an MSE of 185.222, and

the Line method, which had an MAE of 9.823 and an MSE of
132.399. While the ROI Window method detected more angles
on average (134 compared to 113), our method significantly
outperforms it in terms of accuracy. Our proposed method
achieves a much lower MAE of 3.519 compared to the ROI
Window’s MAE of 6.724, demonstrating more precise angle
predictions. Additionally, our method maintains a competitive
Mean Standard Deviation of 22.017, and Mean-Variance
of 487.421, which is very close to the Human Annotation
(18.322/348.765), even with approximately four times the
number of detected angles. This indicates that our predictions
are not only more accurate but also more consistent with the
actual distribution of branching angles in the retinal images.
Therefore, the performance of our method demonstrates its
robustness and reliability in detecting retinal branching angles,
providing precise angle predictions from the observed retinal
images.

V. DISCUSSION

Our study offers several contributions to the detection and
annotation of retinal branching angles, yet there are areas
where further improvements can enhance the methodology
and its applications. Firstly, the implemented ROI-Window-
based method demonstrates significant potential for improve-
ment, given its structural similarity to our proposed method.
This method already shows robust performance in detecting
branching angles with accurate directional information, which
can be further improved by incorporating our pruning method,
as our node pruning can reduce outliers by tuning its threshold.
Secondly, while our method for finding the root is highly
efficient, its robustness can be further enhanced. Some retinal
images may exhibit xenomorphic characteristics, presenting
challenges for accurate root identification. Future work should
focus on improving the algorithm’s ability to handle such
variations. Thirdly, our annotation tool, which facilitates the
accurate marking of branching angles, can be further improved
by integrating it with our proposed angle detection method.
This integration would enable users to quickly generate an
estimated angle map with a single click, significantly speeding
up the annotation process. Users could then fine-tune these
preliminary annotations, combining the efficiency of auto-
mated detection with the precision of manual correction. This
enhancement would make the annotation process more effi-
cient and user-friendly, particularly for large datasets. Lastly, in
our ongoing efforts to enhance the usability of our annotation
tool, we are committed to making it more accessible and
clinic-friendly for a broader range of users including those
with limited technical expertise to boost the medical research
community.

VI. CONCLUSION

In this study, we introduced an annotation tool that en-
hances retinal vessel visibility through color channels and edge
detection, improving annotation accuracy and efficiency. We
also created a dataset of 40 high-quality retinal fundus images
with branching angle annotations, validated by professional
annotators and medical doctors. This dataset fills the gap in



high-quality resources for retinal branching angle analysis.
Our method for automatic detection of vascular branching
angles outperforms previous approaches in terms of MAE and
MSE, with highly consistent results. We offer open-source
algorithms and datasets to extend retinal analysis and support
more accurate diagnoses, contributing to medical imaging and
ophthalmology.
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